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ABSTRACT

We study the problem of sparse signal acquisition and reconstruc-
tion known as Compressive Sensing (CS) in the presence of side
information, i.e., a class of signals correlated with the target signal.
Side-information aided CS has been applied in various fields, such as
medical imaging, remote sensing, sensor networks and compressive
video. In this context, we consider a setup where the side infor-
mation is available during both the signal acquisition stage, at the
encoder, and the signal reconstruction stage, at the decoder. Our ap-
proach leverages side information to construct specific measurement
matrices and then integrates side information into signal reconstruc-
tion by solving a `1-`1 minimization problem. The exploitation of
side information both at the encoder and decoder allows us to achieve
successful signal reconstruction with fewer measurements than just
using side information at the decoder. This is shown theoretically,
via establishing bounds on the number of measurements, as well as
experimentally, via a series of simulations.

Index Terms— Compressive Sensing, side information, mea-
surement matrix, `1-`1 minimization

1. INTRODUCTION

Sparse signal acquisition and reconstruction based on Compressive
Sensing (CS) [1, 2] has been applied in various fields, such as med-
ical imaging [3], radar detection [4], sensor networks [5], and com-
pressive video [6]. In many of these scenarios, one has access not
only to the signal of interest, but also to side information (SI), i.e.,
a class of signals correlated with our target signal. For example, in
the medical imaging domain, previous MRI scans can serve as side
information for current MRI image reconstruction. In sensor net-
works, the signals captured by nearby sensors can be regarded as
side information to assist distributed reconstruction.

The case where the side information is available at the de-
coder has been extensively analyzed. `1-`1 and `1-`2 minimiza-
tion [7–9] exploit a signal analogous to the signal to be recon-
structed. Modified-CS [10, 11] deterministically or probabilistically
use estimates of the support of the signal to modify the recon-
struction procedure, e.g., Basis Pursuit (BP) [12]. However, to our
knowledge, the scenario where side information is available at both
the encoder and decoder, has rarely been studied and no CS-type
bounds are known. Fig. 1 illustrates such a compressive sensing sys-
tem where, in addition to the signal of interest, one also has access to
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Fig. 1. CS with Side Information at both the encoder and decoder.

side information during both the signal acquisition process and the
reconstruction process. In this context, we propose an approach to
leverage side information to construct a more effective measurement
matrix and also to adopt a more suitable optimization program to
reconstruct the original signal. In sum, our goal is to explore the
availability of such side information at both the encoder and de-
coder, by conceiving better sampling procedures and reconstruction
procedures. Then, by capitalizing on the up-to-date convex geome-
try tools (namely the concept of Gaussian width [13]), we establish
a tight theoretical bound which indicates that our approach allows to
reduce the number of measurements via exploiting appropriate side
information.

Problem statement. Fig. 1 illustrates the situation where side
information is available at both the encoder and decoder. Let x? ∈
Rn be the signal of interest with sparsity s := |{i : x?i 6= 0}| and
w ∈ Rn be the side information, i.e., a signal similar to x?, with
sparsity sw := |{i : wi 6= 0}|. We take m linear measurements
y = Ax? from x?, where A ∈ Rm×n is the measurement matrix
designed with side information. Then the vector of measurements y
is sent to the decoder where the original signal is reconstructed from
y by solving an optimization problem, e.g., `1-`1 optimization. In
this context, we propose a scheme to design a specific measurement
matrix A by leveraging the side information w, and then analyze the
reconstruction performance of the resulting system.

2. BACKGROUND

Given m linear measurements y = Ax? of a signal of interest x?

and side information w, x? can be reconstructed from y via solving
a `1-`1 minimization problem [8, 9, 14, 15], formulated as follows:

minimize
x

‖x‖1 + ‖x−w‖1
subject to y = Ax .

(1)

where ‖ · ‖1 denotes the `1-norm.
Assuming that the measurement matrix A is composed of i.i.d.

Gaussian entries, [9] establishes a bound for the minimum number
of measurements required for successful signal reconstruction via
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Fig. 2. Visualization of the mismatch parameters r and v for SI at
both the encoder and decoder.

solving (1). Let us define

h := |{i : x?i > 0, x?i > wi} ∪ {i : x?i < 0, x?i < wi}| , (2)
ξ := |{i : x?i = 0, wi 6= 0}| − |{i : wi = x?i 6= 0}| , (3)

where | · | denotes the cardinality of a set. Note that, h is defined on
the support I := {i : x?i 6= 0} of x? and thus h ≤ s.

Theorem 1 (Theorem 1 in [9]). Let x? ∈ Rn be the signal of interest
with sparsity s := |{i : x?i 6= 0}|, and w ∈ Rn be the side informa-
tion. Given a vector of measurements y = Ax?, where the matrix
A ∈ Rm×n is composed of i.i.d. Gaussian entries with zero mean
and variance 1/m, x? is the unique optimal solution of (1) with

probability at least 1− exp
(
− 1

2

(√
m−

√
m− 1

)2), provided

m ≥ 2h ln

(
n

s+ ξ
2

)
+

7

10

(
s+

ξ

2

)
+ 1 . (4)

The theorem shows that the number of measurements required
for signal reconstruction via solving (1) is O(h ln n). In the next
section, we will demonstrate how to reduce (4) via integrating side
information into the design of measurement matrix.

3. SIDE INFORMATION AIDED CS SYSTEM

In this section, we consider the case where side information is avail-
able at both the encoder and the decoder. We start by presenting
our measurement matrix design scheme with side information and
the corresponding reconstruction program; then, we analyse the re-
sulting system and establish a theoretical bound for the number of
measurements required for perfect reconstruction in subsection 3.2,
and the proof outline for the bound is given in subsection 3.3.

3.1. Measurements Acquisition and Signal Reconstruction

The measurement matrix A ∈ Rm×n is designed by taking each
row vector of the measurement matrix to be independently drawn
from a Gaussian distribution N (0,Σ), where the covariance matrix
Σ, assumed diagonal, is designed according to the side information
w. That is, Σ = diag(σ1, . . . , σi, . . . , σn) ∈ Rn×n, with

σi =

{
1 if wi 6= 0

ε ∈ (0, 1] if wi = 0
(5)

The intuition of setting ε ≤ 1 stems from the consideration of spend-
ing less energy acquiring those components that the side information
indicates being close to zero. Based on the designed measurement
matrix, we solve a `1-`1 minimization problem (1) to reconstruct the
signal of interest.
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Fig. 3. Comparison of our theoretical bound (7) with the classic `1-
`1 bound (4) with r/s = 0.1, v/s = 0.1. It shows that our bound (7)
is lower than bound (4) and our bound (7) asymptotically approaches
(4) as ε increases toward to 1.

3.2. Theoretical Bound

In this section, we analyse the performance of the resulting CS sys-
tem and present a new tight bound on the number of measurements
required for successful reconstruction.

To present our result, we define two parameters that capture the
amount of mismatch between x? and w:

r := |{i : x?i 6= 0, wi = 0}| , (6a)
v := |{i : x?i = 0, wi 6= 0}|+ c , (6b)

where, c := |{i : wi = x?i 6= 0}| denotes the non-zero components
commonly shared by both x? and w, which is usually very small in
practice. In words, r counts the number of components missed by w,
and v−c counts the number of components that w overestimates, as
shown in Fig. 2. There holds 0 ≤ r ≤ h and 0 ≤ v ≤ min{sw, n−
s− c}.

Proposition 1. Let x? ∈ Rn be the signal of interest with sparsity
s := |{i : x?i 6= 0}|, and w ∈ Rn be the side information. Let
r > 0 and v > 0, defined as (6a) and (6b), denote the two types of
mismatch between x? and w. Given a vector of measurements y =
Ax?, where A ∈ Rm×n is designed as (5), then x? is the unique
optimal solution of the `1-`1 minimization (1) with probability at
least 1− exp

(
− 1

2

(√
m−

√
m− 1

)2), provided

m ≥ 2
(
εh+ (1− ε)r

)
ln

(
n

s+ ξ
2

)
+

7

10

(
s+

ξ

2

)
+

1−
√
ε

2
v + 1 .

(7)

Remark 1. Proposition 1 establishes that in the case where side
information is available at both the encoder and the decoder, our ap-
proach allows to reduce the number of required measurements from
O(h ln n) [cf. (4)] to O((εh+ (1− ε)r) ln n). In particular, if the
number of components missed by w, namely r, is small and the di-
mension n is large, the reduction in the number of measurements can
be significant.

Remark 2. Proposition 1 also shows that ε provides a trade-off
on how much we trust the side information in the measurement ma-
trix design. For high quality side information with small mismatch
r and v, a smaller ε should be selected to reduce the dominant loga-
rithmic term. Otherwise, a larger ε is more favourable.

Remark 3. It also shows that our bound (7) generalizes the
bound (4). Concretely, as shown in Fig. 3, bound (7) asymptotically
approaches (4) as ε increases. Note that taking ε = 1 leads to (7)
simplifying to (4), as εh+ (1− ε)r = h and (1−

√
ε)v/2 = 0.



3.3. Outline of the proof of Proposition 1

This section gives the proof outline of Proposition 1, which involves
mainly two stages: converting the `1-`1 minimization with our mea-
surement matrix design to a weighted `1-`1 minimization with an
i.i.d. Gaussian matrix and computing the upper bound.

Conversion to weighted `1-`1 minimization. We notice the
equivalence between `1-`1 minimization with our measurement ma-
trix design A and a weighted `1-`1 minimization with an i.i.d. Gaus-
sian matrix Ã. Concretely, problem (1) with the measurement ma-
trix A as proposed in §3.1 can be formulated as

min
x

‖x‖1 + ‖x−w‖1
s.t. y = Ax

⇐⇒ min
x

‖x‖1 + ‖x−w‖1
s.t. y = (AD)(D−1x)

⇐⇒ min
z

‖Dz‖1 + ‖Dz−w‖1
s.t. y = Ãz

(8)

where Ã := AD and z = D−1x for D := diag(d1, . . . , dn), with

di =
1√
σi

=

{
1; if wi 6= 0

1/
√
ε; if wi = 0

0 < ε ≤ 1 . (9)

Note that from (1) to (8), the optimization variable is changed from x
to z = D−1x, where the matrix D is invertible because ε > 0. The
goal of D is to transform the current non-i.i.d. (anisotropic) Gaus-
sian measurement matrix A to an i.i.d. (isotropic) Gaussian matrix
Ã. In addition, the diagonal form of D ensures that the optimal
solution z? of (8) has the same support as x?.

Computation of the bounds. The proof of Proposition 1 re-
lies on a result from [13], that establishes a bound for the mini-
mal number of measurements that guarantees the successful recon-
struction of a structured vector x? from a set of linear measure-
ments y. Specifically, Corollary 3.3 in [13] states that given a ma-
trix Φ ∈ Rm×n whose entries are i.i.d. Gaussian random variables
with zero-mean and variance 1/m, and a set of linear measurements
y = Φx?, then x? is the unique optimum solution of convex pro-
gram min {f(x) : y = Φx} provided m ≥ w(Ω)2 + 1, where
w(Ω) is referred as Gaussian width of the set Ω 1.

As it is difficult to compute the Gaussian width w(Ω) in closed
form, we compute instead the Gaussian distance as an upper bound.
Concretely, the objective function in our case is f(z) = ‖Dz‖1 +
‖Dz−w‖1. Suppose 0 /∈ ∂f(z?) holds for a given z? ∈ Rn,
[9, 13, 14] show that there holds

Eg

[
dist
(
g, cone ∂f(z?)

)2] ≥ w(Ω)2 (10)

where cone ∂f(z?) is the cone generated by the subdifferential
of the objective function f(z) at the point z?, and dist(g, S) :=
min{‖z− g‖2 : z ∈ S} denotes the Euclidean distance between a
point g and the set S.

Before we describe how to compute the Gaussian distance, we
introduce some useful notations. Define I := {i : z?i 6= 0}, Ic :=
{i : z?i = 0}, J := {i : z?i 6= wi}, and Jc := {i : z?i =
wi}. To compute an upper bound for the Gaussian distance in (10),
the objective is decomposed as f(z) = ‖Dz‖1 + ‖Dz−w‖1 =

1Let Ω = Tf (x?) ∩ Sn−1 denote the intersection of the tangent cone
Tf (x?) := cone {x− x? : f(x) ≤ f(x?)} and the unit sphere Sn−1 :=
{x ∈ Rn : ‖x‖2 = 1} ⊂ Rn. The Gaussian width of a set Ω ⊂ Rn

is defined as: w(Ω) := Eg

[
sup
z∈Ω

gTz

]
, where g ∼ N (0, In) ∈ Rn is a

vector of independent zero-mean unit-variance Gaussians.

∑n
i=1 f

(i)(zi) =
∑n
i=1 |di zi|+ |di zi−wi| and the corresponding

cone ∂f(z?) generated by f(z) at z? is computed as

cone ∂f(z?) =
(
t · ∂f (1)(z?1 ), t · ∂f (2)(z?2 ), · · · , t · ∂f (n)(z?n)

)
,

t · ∂f (i)(z?i ) =


t di sign(di z

?
i ) + t di sign(di z

?
i − wi) if i ∈ IJ

t di sign(di z
?
i ) + I

(
0 , t di

)
if i ∈ IJc

I
(
0 , t di

)
+ t di sign(di z

?
i − wi) if i ∈ Ic J

I
(
0 , 2 t di

)
if i ∈ Ic Jc

where i = 1, . . . , n and I(a, b) denotes an interval with centre a
and length b. Then, Jensen’s inequality 2 is applied to derive (11).

Eg

[
dist
(
g, cone ∂f(z?)

)2]
≤
∑
i∈IJ

Egi

[
dist
(
gi , t di sign(di z

?
i ) + t disign(di z

?
i − wi)

)2
]
(11a)

+
∑
i∈IJc

Egi

[
dist
(
gi , I

(
t di sign(di z

?
i ), t di

))2
]

(11b)

+
∑
i∈IcJ

Egi

[
dist
(
gi , I

(
t di sign(di z

?
i − wi), t di

))2
]

(11c)

+
∑

i∈IcJc

Egi

[
dist
(
gi , I

(
0 , 2t di

))2
]

(11d)

which holds for arbitrary t > 0. In our case, we will set t =√
ε
2

ln
(

n
s+ξ/2

)
, which yields an upper bound.

For simplicity, we define

A(x) = −xϕ(x) + (1 + x2)Q(x) . (12)

where ϕ(x) = exp
(
−x2/2

)
/
√

2π is the probability density
function of a standard Gaussian random variable, and Q(x) =∫ +∞
x

ϕ(t) dt is the Q-function. Then, we prove that for a scalar
zero-mean Gaussian random variable with unit variance, i.e.,
g ∼ N (0, 1), the Gaussian distance can be expressed as

Eg
[
dist
(
g, I(a, b)

)2]
= A(b− |a|) +A(b+ |a|). (13)

Then, we obtain

(11a) = |IJ |+
∑

i∈I+J+∪I−J−

(2tdi)
2

(11b) =
∑
i∈IJc

[
A(2tdi) +

1

2

]
=
∑
i∈IJc

A(2tdi) +
1

2
|IJc|

(11c) =
∑
i∈IcJ

[
A(2tdi) +

1

2

]
=
∑
i∈IcJ

A(2tdi) +
1

2
|IcJ |

(11d) = 2
∑

i∈IcJc

A(2tdi)

Expression for (11a) + (11b) + (11c) + (11d) is bounded as (14).

Eg

[
dist
(
g, cone∂f(z?)

)2] ≤ |IJ |+ 1

2
(|IJc|+ |IcJ |)

+
∑

i∈I+J+∪I−J−

(2tdi)
2 +

∑
i∈IJc∪IcJ

A(2tdi) + 2
∑

i∈IcJc

A(2tdi)

≤ 2
(
ε h+ (1− ε) r

)
ln

(
n

s+ ξ
2

)
+

7

10
(s+

ξ

2
) +

1−
√
ε

2
v

This, together with (10), completes the proof of (7).

2In the context of probability theory, Jensen’s inequality is generally
stated in the following form: if X is a random variable and ϕ is a convex
function, then ϕ(E[X]) ≤ E[ϕ(X)].



 m

0 200 400 600

S
u
c
c
 R

a
te

0

0.5

1
s = 100

 m

0 200 400 600

S
u
c
c
 R

a
te

0

0.5

1
s = 150

 m

0 200 400 600

S
u
c
c
 R

a
te

0

0.5

1
s = 200

 m

200 400 600 800

S
u
c
c
 R

a
te

0

0.5

1
s = 250

 m

200 400 600 800

S
u
c
c
 R

a
te

0

0.5

1
s = 300

 m

200 400 600 800

S
u
c
c
 R

a
te

0

0.5

1
s = 350

 m

400 600 800 1000

S
u
c
c
 R

a
te

0

0.5

1
s = 400

 m

400 600 800 1000

S
u
c
c
 R

a
te

0

0.5

1
s = 450

 m

400 600 800 1000
S

u
c
c
 R

a
te

0

0.5

1
s = 500

(a) Success ratio with measurements for different sparsity levels.
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Fig. 4. Experimental results. (a) In each sub-figure, the blue line
with marker × represents the recovery performance of i.i.d. Gaus-
sian matrix and `1-`1, the red line with marker ◦ represents our mea-
surement matrix design with `1-`1.

4. EXPERIMENTAL RESULTS
A set of numerical experiments have been conducted to verify our
approach. An i.i.d. Gaussian matrix is used as the benchmark. In the
signal reconstruction stage, we solve the same `1-`1 minimization
problem with both an i.i.d. Gaussian matrix and our measurement
matrix design. The parameters are shown in Table 1. m varies from
10 to 1000 in steps of 10, and the relative sparsity s/n varies from
0.1 to 0.8 in steps of 0.05. The number of measurements correspond-
ing to the success rate exceeding 85% serves as the empirical thresh-
old. The experiment results are shown in Fig. 4. Fig. 4(a) shows the
success rate as a function of the number of measurements for dif-
ferent sparsity levels. Fig. 4(b) compares the theoretical bounds and
empirical bounds. The results indicate that our measurement matrix
design outperforms the i.i.d. Gaussian matrix for small mismatch,
and our bound is tight and practically coincides with the empirical
bounds well.

Table 1. Parameters setting for the experiments

n m/n s/n r/s v/s ε
1000 0.01:0.01:1 0.1:0.05:0.8 0.1 0.1 0.1

5. CONCLUSIONS
In this paper, we studied a side-information aided Compressive Sens-
ing system. We design a specific measurement matrix to integrate

side information at the encoder and then exploit `1-`1 minimization
to incorporate side information at the decoder. We established a tight
theoretical bound to analyse the performance of the resulting system
in terms of the number of measurements required for perfect signal
reconstruction. Numerical experiments validate that our theoretical
bound practically coincides with empirical bound, and also indicate
that our paradigm requires less measurements than conventional ap-
proaches. We believe this work can contribute to improve the design
of CS systems in scenarios where side information is available, such
as medical imaging, sensor networks, and multi-view camera sys-
tems.
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