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ABSTRACT  

Background: In settings like the Ebola epidemic, where proof-of-principle trials have provided 

evidence of efficacy but questions remain about the effectiveness of different possible modes of 

implementation, it may be useful to conduct trials that not only generate information about 

intervention effects but also themselves provide public health benefit. Cluster randomized trials are 

of particular value for infectious disease prevention research by virtue of their ability to capture 

both direct and indirect effects of intervention, the latter of which depends heavily on the nature of 

contact networks within and across clusters. By leveraging information about these networks – in 

particular the degree of connection across randomized units, which can be obtained at study 

baseline – we propose a novel class of connectivity-informed cluster trial designs that aim both to 

improve public health impact (speed of epidemic control) and to preserve the ability to detect 

intervention effects.   

Methods: We consider cluster randomized trials with staggered enrollment, in each of which the 

order of enrollment is based on the total number of ties (contacts) from individuals within a cluster 

to individuals in other clusters. Our designs can accommodate connectivity based either on the total 

number of external connections at baseline or on connections only to areas yet to receive the 

intervention. We further consider a “holdback” version of the design in which control clusters are 

held back from re-randomization for some time interval. We investigate the performance of these 

designs in terms of epidemic control outcomes (time to end of epidemic and cumulative incidence) 

and power to detect intervention effect, by simulating vaccination trials during an SEIR-type 

epidemic outbreak using a network-structured agent-based model.  We compare results to those of 

a traditional Stepped Wedge trial.  

Results: In our simulation studies, connectivity-informed designs lead to a 20% reduction in 

cumulative incidence compared to comparable traditional study designs, but have little impact on 
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epidemic length. Power to detect intervention effect is reduced in all connectivity-informed designs, 

but “holdback” versions provide power that is very close to that of a traditional Stepped Wedge 

approach.  

Conclusions: Incorporating information about cluster connectivity in the design of cluster 

randomized trials can increase their public health impact, especially in acute outbreak settings. 

Using this information helps control outbreaks – by minimizing the number of cross-cluster 

infections – with very modest cost in power to detect effectiveness.  

 

 

Keywords: Vaccine, Cluster Randomized Trial, Ebola, Network, Epidemic Control, Power  
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BACKGROUND 

Vaccine and other treatment trials are typically designed to ensure sufficient power to detect effects 

for the intervention under study [1]. In an epidemic setting, however, rapid disease control may 

also be of vital importance. The goal of intervention trials may be to generate proof of efficacy (i.e. 

benefit to trial participants receiving the intervention), or of effectiveness (i.e. benefit to 

communities participating in the trial). In an epidemic setting, a trial may also benefit wider society 

now, if it substantially reduces the number of infectious individuals in the current outbreak, or if it 

identifies an efficacious intervention for future outbreaks. In this paper we consider designs that 

are intended to simultaneously address the goals of evaluating effectiveness and of epidemic 

control.  

Statistical inference in the context of vaccine (and other infectious disease) trials is complicated by 

“dependent happenings” – where the risk of infection of an index depends on the health status of 

others – which may lead to interference between treatment and control groups [2, 3]. Cluster 

randomized trials allow the estimation of combined direct effect (benefit of vaccinating the index) 

and indirect effect (benefit to the index of vaccinating others). In the commonly-used “Parallel” 

design, clusters are randomized to treatment or control, and then followed-up for a pre-determined 

period of time. An alternative approach, the “Stepped Wedge” design, treats all clusters sequentially 

in a randomized order. In this latter design, intervention effects can be measured through some 

combination of between- and within-cluster comparisons, accounting for the presence of temporal 

effects unrelated to the intervention [4, 5]. Such designs address  logistical difficulties preventing 

simultaneous intervention roll-out in all clusters, and also have the advantage that the study power 

is less affected by intraclass correlation than Parallel designs [4]. Stepped Wedge designs may be of 

particular value in settings where efficacy has already been demonstrated in individual-level trials 

[4].  



Page 5 

 

Standard Parallel and Stepped Wedge designs benefit from cluster randomization to prevent 

possible confounding by underlying heterogeneity in clusters [6]. Concerns regarding risk factor 

imbalance in cluster randomized trials are addressed by matching of clusters based on predictors of 

outcome, which may also improve efficiency[7]. Such designs may be particularly useful in 

infectious diseases trials, given the likelihood of considerable heterogeneity in outcomes across 

clusters [8].  

Cluster randomized trial designs generally seek to minimize contamination between study arms 

that arises when individuals in different arms have contact with one another [9], but this is not 

always feasible. For example, in cluster randomized trials for HIV prevention, individuals in one 

cluster may have partners in another [10]; in Ebola vaccine trials, infected individuals from one 

cluster may travel for care to homes or hospitals in another [11]. In an epidemic setting, the degree 

of connection between clusters is likely to predict outcomes of interest, including outbreak timing 

within a cluster and epidemic size. Taking between-cluster connectivity into account can therefore 

aid in matching.  

The purpose of a vaccine is to render potentially-infectious network ties (i.e. the direct connection 

between infectious person � and susceptible person �) non-infectious.[12-14]. This change can be 

achieved by successfully vaccinating either end of the tie. Hence, vaccination acts by removing ties 

from a graph that represents potentially-infectious pathways within a population. Contamination 

can be conceptualized as a network problem: individuals from clusters randomized to one 

intervention arm can be impacted by those from clusters randomized to the other arm through ties 

between them. Such contamination will attenuate the randomized treatment effect observed, and 

thus limit our ability to measure the causal effect of the intervention. 

Recent efforts to measure vaccine efficacy in the context of a waning epidemic have led to 

innovative designs in which intervention ordering is driven by observed incidence or prevalence of 
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disease (i.e. risk-informed). One such innovative design is the use of “Ring” vaccination – a method 

previously employed to control smallpox and foot-and-mouth [15, 16] – within trials of vaccines 

against Ebola in Guinea [17, 18]. In the Ebola trial, vaccination of all contacts was immediate in the 

intervention arm, and delayed for three weeks in the control arm [19, 20]. Another example is the 

“risk-prioritized” approach proposed by Bellan et al., in which clusters are assigned to intervention 

based on recent incident case rates [11].  

While recent incidence rates are likely to be strong predictor of future case load within a 

community, the degree to which each community is connected to the outside world, and thus at risk 

of importing new infection chains, is also likely to predict risk. Taking such connectivity into 

account when planning the order in which a trial is rolled out to clusters may therefore offer 

benefits to the trial community, and potentially to those outside this community. It may also 

increase the public health impact of the trial if clusters treated early on do indeed have higher 

incidence by virtue of their higher level of connectedness. 

We therefore propose a novel class of cluster randomized trial designs, which makes use of 

information about the connectivity between study clusters. We show that these designs can reduce 

the number of new infections more rapidly than standard designs, while still allowing for the 

evaluation of intervention effectiveness. We focus exclusively on Stepped Wedge trials, which are 

particularly relevant for settings where the intervention’s efficacy has been shown at least in part 

and when logistic or resource constraints require roll-out in a sequential manner; but where either 

evidence of field effectiveness is not considered sufficient for licensure, or the usefulness of a 

licensed vaccine is not sufficiently well established. We investigate the performance of these 

designs by simulating vaccination trials during an Ebola-like epidemic and evaluate both epidemic 

outcomes and power to detect the vaccine effect under various designs.  
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METHODS 

A class of connectivity-informed cluster trial designs 

Connectivity defines how individuals or groups in a network are linked to one-another. For sexually 

transmitted infections, ties are sexual acts; for hemorrhagic fevers, physical contacts; for behavior 

change interventions, conversations. In our study, we consider ties measured prior to study start; 

for each cluster we measure the absolute number of ties from members of the cluster to members 

of all other clusters. We then rank clusters from most- to least-connected in one of two ways: the 

“Static Rank” approach, where the ranking is conducted only once at baseline; and the “Adaptive 

Rank” approach, where clusters that have not yet been assigned to receive the intervention are re-

ranked after each randomization based only on their connectedness to other clusters yet to receive 

the intervention. Both approaches are based on the idea that a cluster’s connectivity to all other 

clusters is related to its tendency to transmit infections; hence intervening in more connected 

clusters earlier may slow epidemic spread. Both approaches can be used to determine the order in 

which interventions will be rolled-out prior to trial commencement, since they use only information 

available at baseline. We outline the proposed study designs in Figure 1. 

Within the Static Rank approach, we consider several different designs. First, a “Strict Order” design 

which rolls-out an intervention in order from the most- to the least-connected clusters; this non-

randomized approach roughly provides an upper bound on how fast the epidemic might be 

controlled using between-cluster connectivity information. Second, a “Fuzzy Order” design which 

randomizes the two most-connected clusters to intervention and control status at the time of study 

origin (step 1). At the next time of randomization, the control cluster from step 1 and the next most-

connected cluster are randomized. This process is repeated until there is one remaining  cluster 

that has not received the intervention; this cluster is then assigned to intervention. The Fuzzy Order 

design can be generalized to a “Fuzzy Order Holdback-ℎ” design, in which the control cluster at each 
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time of randomization is held-back from randomization for ℎ intervention time units: if ℎ = 1, the 

control cluster from step 1 would be re-eligible for randomization at step 3; if ℎ = 2, at step 4, etc. 

We illustrate how these Static Rank designs operate in Figure 2A. Both Strict Order and Fuzzy Order 

designs are specific examples of connectivity-informed Stepped Wedge designs, since they are 

rolled out sequentially based on how connected clusters are. 

All our proposed designs can all also use an Adaptive Rank approach. This approach is particularly 

relevant for vaccination interventions, since it minimizes provision of the intervention to people 

whose contacts have already been vaccinated. Because successful vaccination effectively removes 

the potentially infecting tie between a vaccinated subject and her/his uninfected contact, there is no 

further benefit to vaccinating susceptible individuals whose contacts have all been successfully 

vaccinated. This implies that vaccinating a cluster that is highly connected to already-treated 

clusters is likely to provide less cluster-level benefit than does vaccinating a cluster that is highly 

connected to untreated clusters. By including only clusters yet to receive the intervention in its 

measurement of between-cluster connectivity, the Adaptive Rank approach should therefore 

preferentially target cross-cluster ties that still have the potential to transmit infection. 

Removing ties involving clusters that have received the intervention from the set of ties used to 

define cluster connectivity levels can lead to significant re-rankings (see Figure 2B). Where this 

leads to more transmissible ties being removed, it should also lead to more rapid epidemic control. 

The cost of the Adaptive Rank approach is its requirement for more detailed data as compared to 

the Strict Rank approach: the latter requires only an ordering of clusters by their overall 

connectivity (� quantities in a study of � clusters), whereas the former requires a measure of 

connectivity for every pair of clusters (�	

� = ��� − 1�/2 quantities).  
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Simulation studies 

We generate a community-structured population using a standard stochastic block model with 

� = 20 blocks (clusters), with each block consisting of � = 200 nodes (individuals) [21]. Mean 

total degree (inclusive of both intra-cluster ties and inter-cluster ties) for each individual is set at 

5.5. In the baseline simulation, we assume that within each cluster, ties are distributed uniformly at 

random across all dyads (node pairs). Half of all clusters are designated to have higher external 

connectivity: in these clusters, individuals have a number of between-cluster ties drawn from a 

normal distribution with a mean of 1, compared to 0.5 for the other clusters; the standard deviation 

of the number of ties for all individuals in all clusters  is 0.5.  

We simulate an epidemic on the network graph of the community-structured population, using 

parameter values relevant for Ebola, which provides a recent example of a disease for which 

preliminary data on vaccine efficacy has been developed. This member of the viral hemorrhagic 

fever group has caused, acute outbreaks and is, of course, likely to do so again in the future [22]. We 

use a state transition model with six states: Susceptible, Exposed, Infectious, Hospitalized, Funeral, 

and Removed (see Supplementary Figure 1) [21]. Parameter values for the simulation are chosen so 

that progression times between states and the basic reproductive number (��, the average number 

of new infections caused by an infectious individual in a fully susceptible population) are roughly 

equal to those observed for Ebola [23, 24]. These values were not optimized to simulate epidemics 

that resemble those previously observed, as the simulation is intended for design comparison, not 

Ebola epidemic prediction.  

To compare study designs, we first generate a network realization from the stochastic block model. 

We then simulate seven epidemics on the network, one for each trial design, using the above six-

state epidemic model. We initialize the epidemic model by randomly selecting four nodes 

(corresponding to 0.1% of the population) at the beginning of the simulation to be infected and use 
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the same initial condition for each study design (and for the reference simulation involving no 

intervention at all). In each case, the epidemic is propagated on the underlying network using daily 

time steps, and allowed to run for 42 days (six weeks) from the initial introduction of infection. If all 

seven epidemics have substantial ongoing transmission at this point – specifically the effective 

reproductive number (�� , the average number of new infections actually caused by each infectious 

person) is greater than one in week six – then we begin the trial; otherwise we discard this network 

realization and generate a new realization.  

We simulate vaccinating one cluster every seven days. We assume 80% vaccine coverage of 

susceptible individuals in targeted clusters, and that vaccine immediately removes individuals from 

a susceptible state 95% of the time. We continue the simulation until each epidemic has died out. 

We repeat the network generation and epidemic simulation process until we have 1,000 complete 

realizations. Parameter values for network generation, epidemic model, and infection and 

vaccination models are provided in Supplementary Table 2. 

Statistical analyses 

For each simulation we compute three metrics to quantify the epidemic outcomes: (1) time from 

epidemic start ���� until �� first falls below one; (2) time from �� until the last infectious individual 

recovers; and (3) cumulative incidence for the entire epidemic. These metrics are intended to 

evaluate the: (i) speed of control; (ii) speed of elimination; and (iii) overall burden of the epidemic. 

For each metric, we calculate median and interquartile range across all 1,000 simulations.  

We compare the statistical power to detect vaccine effectiveness using permutation tests for the 

five study designs that involve randomization. The null hypothesis is that the cumulative incidence 

rates in the intervention and control clusters are equal. We evaluate power for a class of test 

statistics based on the difference in cumulative incidence rates between intervention and control 

clusters, with varying length of follow-up. The test statistics are calculated from the sum of 
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differences in incidence rates measured during each study week across all applicable pairs of 

intervention and control clusters. That is, these differences are summed across � weeks after ��, 

the date at which the intervention is provided to cluster k. We vary � from 1 to 10. Since there are 

�� − ℎ − 1� randomizations in the trial, the test statistic is the sum of �� − ℎ − 1� terms, where 

each term represents the difference in cumulative incidence rates between intervention and control 

clusters within each pair. For example, in a 20-cluster Fuzzy Order trial, which requires 19 

randomizations, data from 19 pairs of cluster cumulative incidence rates are used for the test for 

differing lengths of follow-up. 

To generate the permutation null distribution, we randomly permute the treatment assignment 

within each pair of clusters and calculate the same test statistic as described above. Each 

permutation test involves 2000 permutations, and p-values are computed as the proportion of test 

statistics greater or equal to the observed test statistic in absolute value across these 2000 

permutations. The validity of the permutation tests is ensured by randomization [25].  

To assess sensitivity of results to key vaccine, trial and population characteristics, we conduct a 

range of additional analyses. First, we run a model for a vaccine with no effectiveness (to 

investigate type-I error control). Second, we model vaccines that are: (i) perfect (100% reach and 

100% protective); (ii) poor (70% reach and 70% effective); and (iii) perfect and able to protect 

those in the Exposed as well as in the Susceptible state, moving them directly to the Removed state. 

Third, we begin the intervention program at 56 and 70 days post-initial infection. Fourth, we 

modify the heterogeneity in connectivity between clusters by varying the standard deviation of the 

number of between-cluster ties from 0.5 to 0.25 and 0.5 to 0.75 contacts. Fifth, we lengthen the time 

period between intervention steps from 7 to 14 and 21 days. Sixth, we reduce the infectiousness of 

the infection by 40%, to simulate a less-serious epidemic. Seventh, we consider clusters with 

skewed distributions for within-cluster ties by drawing each respondent’s degree from a lognormal 
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distribution with � = 1. Finally, we double the simulation population to 40 clusters, keeping all 

other parameter values the same, and then randomly select 20 clusters to participate in the trial. 

Intervention ordering is determined by total connectivity of clusters to both trial and non-trial 

clusters. The goal of this sensitivity analysis is to evaluate the impact of clusters being connected to 

the wider world. For each sensitivity analysis we summarize results in terms of the key metrics for 

epidemic outcomes.  

 

RESULTS  

In the absence of an intervention, the spreading process infects a median of 80.0% of the 

population (interquartile range [IQR] across 1,000 runs: 78.9-81.1%), peaks at a mean of 107.4 

incident cases per 1000 susceptible individuals per week, and dies out after a median of 292 days 

(IQR 270-317). Mean �� declines slowly from a peak of 2.08 on day 36, falling below 1 after a 

median of 149 days (IQR: 137-164). Temporal plots of mean values for all state variables are shown 

in Supplementary Figure 2.   

As intended, all study designs lead to substantial reductions in proportion of individuals ever 

infected, time to end of outbreak and time to ��<1, relative to no intervention (Table 1). All 

connectivity-informed designs lead to lower peak infectiousness than traditional study designs, 

with little discernable difference among them (Figure 3B). Connectivity-informed designs reduce 

the proportion of individuals ever infectious relative to the Standard Stepped Wedge by 

approximately 20%, but do not have meaningful impact on time to last infection or to infection 

control (Table 1).  

Cluster-level mean incidence rates decline as each cluster receives the intervention (Figure 4). In 

the Static Rank approach, the clusters that receive the intervention last – and thus have lowest 
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baseline connectivity – have notably lower incidence rates throughout the follow-up period; this is 

not the case for the other designs where clusters receiving the intervention last are determined 

either at random (Standard approach) or based on Adaptive Ranks.  

The Standard Stepped Wedge design has the greatest power to detect differences in incidence rates 

when using data collected over any length of time post-intervention, rising from 61.8% using data 

from the first seven days to 82.7% after 2 weeks and 90.4% after 3 weeks (Figure 5). While the 

trends for the Fuzzy Order designs are similar, the levels of power to detect effects are markedly 

lower, starting at 47.1% (Static Order) and 45.8% (Adaptive Order) after 1 week, and plateauing at 

72% (both orderings) based on 10 weeks of data. The Holdback-1 design falls between the 

Standard and Fuzzy Order designs, with 56.3% power after 1 week, 74.7% after 2 weeks and 91% 

after 10 weeks. The lower power of connectivity-informed designs reflects the impact of 

subsequent intervention on control communities within each pair of clusters.  

In our first sensitivity analysis we show that when the vaccine is ineffective, cumulative incidences 

are indistinguishable across intervention approaches and the empirical type-I errors are close to 

5% as expected, illustrating the validity of the permutation tests (Supplementary Table 3). 

Sensitivity analyses also suggest that time to epidemic end is affected strongly by the effectiveness 

of the vaccine; a vaccine that protects only 50% of vaccinated people leads to outcomes almost 

equal to no vaccine at all. Less-effective vaccine scenarios lead to both lower power to detect effects 

and reduced benefits in terms of lower cumulative incidence associated with connectivity-informed 

designs. Greater heterogeneity in the level of between-cluster connectedness leads to greater 

epidemic control benefits from the proposed designs and slightly greater power losses compared to 

the Standard Stepped Wedge design, although these effects were relatively small within the range 

of parameter values we considered. 
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Expanding the time between each study step prolongs the epidemic, leading to higher cumulative 

incidence than does a 7-day step length; as a result, connectivity-informed designs give almost 

identical results as does the standard design. When we reduce the infectiousness of infected 

subjects, any intervention is extremely effective in reducing cumulative incidence (from around 

40% with no intervention to under 4% in all designs), while power after 1 week is reduced by 

approximately one-third (3 percentage points) under all connectivity-informed designs compared 

to the Standard Stepped Wedge.  

Finally, analyses in which we either wait until the epidemic is more advanced (start at 8 or 10 

weeks) or run the trial within a subset of a larger population (20 out of 40 clusters), cumulative 

incidence is roughly equal across all connectivity-informed designs (and approximately 10% lower 

than for the standard design aside from the 10 week start). Power at 1 week is only slightly lower 

for the Fuzzy Order approach than for the Standard Stepped Wedge, but is higher for the Holdback-

1 approach.  

 

DISCUSSION 

In this paper we propose a class of connectivity-informed designs for cluster randomized trials that 

provide more rapid epidemic control in return for reduced ability to detect intervention effects that 

varies from minimal to considerable. This potential addition to the trial design arsenal for epidemic 

settings is made possible by leveraging knowledge of the contact network between clusters. Based 

solely on a relative ordering of how connected members of a cluster are to the outside world (Static 

Rank) or absolute levels of connectivity (Adaptive Rank), our designs aim to minimize the potential 

number of cross-cluster infections that can arise, and thus reduce both the rate at which incidence 

grows and the overall epidemic size. In simulation studies, we show that such designs reduce the 

total number of infections in the study population by up to 20%, compared to traditional Stepped 



Page 15 

 

Wedge cluster randomized trials. This benefit appears to be spread across clusters receiving the 

intervention both early and late in the trial (Figure 4) across a wide range of sensitivity scenarios.  

In any trial of an intervention that is expected to reduce disease burden, the primary goal is 

generally to test vaccine efficacy (or effectiveness) and obtain randomized estimates of vaccine 

effects (either efficacy or effectiveness). Nonetheless, achieving a public health benefit for those 

within the trial may also be desirable and achievable – for example, in the next outbreak of Ebola. 

Our designs are most relevant when some preliminary evidence of vaccine efficacy has been 

developed: as our class of designs is likely to be more applicable for effectiveness than for efficacy 

trials, we apply them to Stepped Wedge trials. For example, for interventions intended to control 

the vectors carrying Zika virus, our design might be appropriate, provided that data are available on 

how mosquitoes link communities together.  

Within the class of designs we propose, the relative level and timing of each study’s ability to detect 

a difference between study arms varies. The upward sloping power curves in Figure 5 reflect the 

indirect effect of vaccination of an index on other members of intervened-upon clusters that arises 

from the fact that a case prevented in one time period has follow-on benefits in subsequent periods. 

[3]. All of the connectivity-informed designs perform worse in terms of power than their traditional 

counterparts, even in the period immediately following intervention, at least in part due to the 

lower overall cumulative incidence seen in these scenarios. Lower power a few weeks post-

vaccination is to be expected for the Fuzzy Order designs, as a cluster which is a control at one time 

point can be randomized to vaccination status at later time points, potentially underestimating 

intervention effects.  

Nonetheless, adding a holdback period (i.e. a period after randomization to control status in which 

each control cluster cannot be vaccinated), greatly improves study power in our simulations – 

regaining more than two-thirds of the power lost by shifting from a Standard to Fuzzy Order design, 
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with little impact on infection levels. While longer gaps between intervention steps can also allow 

for incidence differences to arise between arms, such pauses also increase the overall cumulative 

incidence in the population, potentially removing too many susceptibles prior to intervention (as 

we see in our sensitivity analysis). A brief holdback period therefore appears useful in settings 

where insufficient sample sizes can otherwise be obtained. Less-effective vaccine scenarios lead to 

both lower power to detect effects and reduced benefits in terms of lower cumulative incidence 

associated with connectivity-informed designs. 

The choice of design within our connectivity-informed class will depend on the study goals. A Strict 

Order design should be most effective for epidemic control, since it leads to the fastest 

immunization of potentially-infectious ties between clusters; but it does not provide randomized 

comparisons. A Fuzzy Order design includes randomization; however, it can only ensure that each 

control cluster remains without intervention for a single period. Depending on how fast the 

infection spreads, this may not be sufficient for substantial differences between intervention and 

control arms to emerge. Adding holdback periods to the Fuzzy Order design offers the assurance 

that control clusters remain without intervention for longer periods of time, which can allow larger 

differentials in observed incidence rates to arise. The trade-off is that some highly connected 

clusters may not receive the intervention early on. 

These connectivity approaches can be applied to Parallel or Stepped Wedge design, although we 

present only the latter as examples here. It is less clear, however, if and when connectivity-

informed designs would perform better or worse than risk-informed ones such as a ring 

vaccination trial [18, 20] or Bellan’s incidence-prioritized model [11]. The relative benefit is likely 

to depend on both the ease of identifying incident infections, which depends on the proportion of 

infections that are symptomatic and the uniqueness of symptoms, and the ease of detecting relevant 

connections between clusters. The relative benefit will also depend on the specifics of the epidemic. 
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A combination of both approaches may be possible: for example, prioritizing clusters for 

randomization based on some weighted combination of high incidence and high connectivity 

(drawing on our Static Rank approach), or high levels of connection to clusters with high incidence 

(drawing on our Adaptive Rank approach).  

Another way to incorporate both risk and connectivity would be to use different designs at different 

epidemic stages. Connectivity-informed designs are likely to have the greatest ability to reduce 

infections early in the epidemic, when many clusters have low incidence. In such a situation, the 

ability to stop infections from reaching clusters other than those receiving the intervention, i.e. 

acting as a fire-break, is greatest. Once the epidemic is widespread or waning, this inter-cluster 

spillover benefit will be reduced, as seen in the lesser control benefit of connectivity-informed 

approaches in our sensitivity analyses which started the epidemic later, were less infectious, or 

were also seen in non-trial clusters. Thus a connectivity-informed approach might be best early on, 

but a risk-informed one more powerful later in the epidemic.  

In addition to the stage of the epidemic, the nature of the connection network is also likely to be 

important in determining the benefit of a connectivity-informed approach in at least two ways. 

First, the better-defined the clusters (i.e. the lower the ratio of between-cluster to within-cluster 

connectivity), the more useful a connectivity-informed approach is likely to be. Second, the more 

heterogeneous the between-cluster connectivity, the more benefit is likely to arise from prioritizing 

the most connected clusters, since a larger proportion of all between-cluster ties will be effectively 

eliminated early on in such settings.  

A key aspect of our proposed methods is the assumption that connectivity can be quantified; we 

stress that our method requires only between-cluster connectivity measures. For the Static Rank 

approach, only a rank ordering of the connectivity between each cluster and all other individuals 

(either within or without the trial) is required. While we have focused on connectivity within the 
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trial population itself, all connections outside a cluster can be used to generate measures of 

connectivity, and indeed when the epidemic under consideration is widespread it would seem 

prudent to do so.  

Ideally, measures of connectivity would be based on empirical data on the type of ties through 

which the epidemic is passed (e.g. sexual episodes, physical contacts, mosquito movements). Such 

information is unlikely to be quickly accessible in the context of a fast-moving epidemic. However, 

more readily measured statistics can potentially be used as proxies. In the context of the designs we 

present, the crucial aspect of connectivity is the density of connections between cluster pairs. Call 

detail records (CDRs) for cellphones offer one empirical way to ascertain such densities [26], and 

they have been used previously to infer approximate residential locations for large numbers of 

people [27] and to learn about their mobility patterns [28]. Indeed, a recent study considered how 

CDRs might be used to estimate between-cluster mixing in the context of a cluster randomized trial 

[29]. CDR data can be augmented by self-reported mobility data [30], or data on traffic flows, 

should such be available. In the absence of rapidly available empirical data on connectivity, a 

gravity model utilizing only the spatial distance between clusters and their population sizes can be 

highly effective in predicting how epidemics will spread, particularly for infections spread by 

interpersonal contact, such as cholera [31]. These data can all be analyzed prior to the start of a 

trial, and different network measures of interest easily recomputed based on the order of cluster 

intervention.  

Limitations of our approach arise from its need for information on connectivity regarding ties 

through which epidemics are passed (e.g. sexual partners, close contact). This information is not 

easy to gather accurately, and insofar as it is mis-measured or evaluated via proxy variables, 

clusters may be mis-ranked. Such mis-ranking may reduce the performance of our proposed 

designs in reducing overall incidence, though even mis-ranking should not cause overall incidence 
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to be worse than under Standard approaches on average. Second, our designs add complications 

regarding interpretation of the randomized effect of vaccine in the presence of between-cluster 

interference, due in part to the fact that random assignment of a cluster depends on prior 

randomizations. In the presence of connectivity among clusters, the randomized effect differs from 

the overall causal effect; i.e., the difference between the effect of providing the intervention to all 

clusters compared to providing it to none [32]. In our designs, the order of randomization would 

impact the randomized effect because the cluster pairs are formed based on connectivity.  

This paper could be extended in several ways. First, our set of study designs is not exhaustive. 

Connectivity information could be used in various other ways, for example it could be measured 

relative to an outbreak source. Alternatively, one might wish to account for the nature of networks 

within clusters [10], either in addition to or instead of between-cluster connections. Second, we 

have presented a vaccine candidate for Ebola but our designs could be applied to interventions for 

other infections as well as to the spread of ideas or behaviors. The only requirements for our 

methods are the existence of a spreading process and an intervention that affects this process. 

Third, we have presented a simple case in which the study population is homogeneous except for 

each person’s number of contacts. The approach can be extended to adjust for individual covariates 

of individuals, or characteristics (e.g. strength) of the ties between individuals.  

Conclusion 

Making use of information about cluster connectivity can allow for cluster randomized trial designs 

to address both the need for randomized evidence on effectiveness and to serve as public health 

interventions in their own right – especially in acute outbreak settings. While the performance of 

these designs depends on the infection and the social context of the outbreak, connectivity-

informed designs may play an important role in the implementation of novel interventions for 

which evidence of efficacy has been established.  
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FIGURES AND TABLES 

Figure 1: A typology of study designs 

 

 

Notes. The seven approaches compared are each shown in the blue rounded rectangles. Strict order designs 

are unable to evaluate vaccine efficacy. 
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Figure 2: Between-cluster connectivity calculated at different times in a cluster randomized trial 

 

A         B 

Each figure shows four clusters, each containing 10 individuals. Within-cluster ties are shown in grey (paler) and between-cluster ties are shown in red 

(darker). In panel A, cluster A has 14 ties to other clusters; cluster B 16; cluster C 8 and cluster D 12; the ordering of cross-cluster ties is thus (B, A, D, C). 

The Static Rank Strict Order design will follow the order B, A, D, C. The Static Rank Fuzzy Order design will first treat either A or B, with the other acting 

as control; at step 2, the untreated cluster from A or B will be randomized against D; and at step 3 the remaining untreated cluster will be randomized 

against cluster C. The Static Rank Fuzzy Order Holdback-1 would first treat either A or B, with the other acting as control and then being barred from 

randomization at step 2; at step 2 C and D would be randomized; at step 3 only the untreated cluster from the A and B randomization would be 

available and thus treated; at step 4 the final cluster would be treated. 

 

In panel B, after cluster ’B’ has been treated and removed from consideration, cluster ‘A’ has moved from the second most-connected to the least-

connected cluster; the ordering has now changed to (D, C, A). 
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Figure 3: Mean state values for each day since the start of the epidemic across 1000 simulations, selected states 
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Figure 4: Mean weekly incidence (per 1000 susceptible individuals) within clusters 

 

Darker lines represent earlier randomization times, thus the darkest line represents the mean incidence rate in clusters that were treated at the first 

possible time point (week 6) in each simulation realization.  
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Figure 5: Comparison of statistical power of various study designs  

 

 

Figure shows the proportion of 1000 simulations that reject the null hypothesis of no difference at α=0.05 

between the intervention and control clusters using a permutation test with varying test statistics. 

Comparisons are therefore across � − ℎ − 1 pairs of cluster-observation time: i.e. 18 pairs for the Holdback-1 

design; 19 for the remainder.  

Each datapoint in this figure represents a power estimate comparing the cumulative incidence up to the week 

in question (e.g. the points at “3 weeks after intervention” compare incidence rates over days 1 to 21 after 

each intervention in the intervention and control clusters). Data on which  this figure is based are shown in 

Supplementary Table 1. 
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Table 1: Population-level spreading process outcomes 

 

 

Proportion  

ever infectious 

(%)  

Time to  

last infectious 

individual 

(days)  

Time to ��  < 1  

(days) 

      

No randomization      

  No Vaccination 80.0 [78.9 - 81.1]  149 [137 - 164]  292 [270 - 317] 

  Static Rank Strict Order 29.7 [20.6 - 37.8]  130 [119 - 140]  229 [217 - 242] 

  Adaptive Rank Strict Order 29.3 [19.9 - 37.5]  129 [118 - 140]  228 [216 - 242] 

Stepped Wedge designs      

  Standard Stepped Wedge 35.8 [28.0 - 42.0]  131 [120 - 141]  226 [216 - 240] 

  Static Rank Fuzzy Order 29.6 [21.3 - 37.0]  131 [120 - 141]  227 [217 - 241] 

  Static Rank Fuzzy Order Holdback-1 31.2 [22.6 - 38.6]  130 [119 - 140]  226 [216 - 240] 

  Adaptive Rank Fuzzy Order 28.9 [20.2 - 37.9]  130 [118 - 141]  230 [218 - 242] 

 
Notes. All outcome figures are medians and interquartile ranges of result from 1000 simulation realizations.��: effective reproductive number.   
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Supplementary Material 

Title: Leveraging contact network structure in the design of cluster randomized trials  
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Supplementary Table 1: Probability of rejecting null hypothesis of no effect of intervention comparing incidence in treatment 

cluster to control cluster  

�� + 1 �� +2 �� + 3 �� + 4 �� + 5 �� + 6 �� + 7 �� + 8 �� + 9 �� + 10 

Stepped Wedge designs 

  Standard Stepped Wedge 61.8 82.7 90.4 93.5 94.4 95.4 96.1 96.4 96.6 97 

  Static Rank Fuzzy Order 47.1 59.8 64.5 67.9 69.5 70.5 71 71.2 71 72 

  Adaptive Rank Fuzzy Order 56.3 74.7 80.6 84.2 87.1 88.5 89.4 90.3 90.5 91 

  Static Rank Fuzzy Order Holdback-1  45.8 59.3 65.6 68.8 70.9 71.2 71.3 71.9 71.6 72 

 

All dates are relative to week �� , the cluster-specific date on which the intervention cluster in each pair received the intervention. Figures are power to 

reject a null hypothesis of no difference between the treatment and control cluster. Power is based on incidence in all weeks from the date of 

intervention, �� , up to the week indicated. Probability is calculated across 19 paired comparisons except for Static Rank Order Holdback-1 with 18 

paired comparisons. In all cases, the probability is calculated using a permutation test based on pairwise comparisons of incidence in 1000 simulations, 

with 2000 permutations per test. 
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Supplementary Table 2: Parameter values for primary simulations 

Cluster characteristics †  

  Number of clusters 20 

  Number of individuals per clusters 200 

  Mean (standard deviation) within-cluster degree  4.5 (0) & 5 (0) 

  Mean (standard deviation) between-cluster degree 1 (0.5) & 0.5 (0.5) 

  

Infection characteristics  

  Number of initial infections 4 

  Per-day risk of transmission from contact:  
  Infectious at home (!") 7.5% 

  Hospitalized (!#) 3.75% 

  Deceased, not buried (!$) 10% 

 Mean duration in state (days):  

  Incubation period (%&
'() 9 

  From symptom onset to hospitalization (%#
'() 5 

  From symptom onset to recovery (%"
'() 10 

  From symptom onset to death (%)
'() 10 

  From hospitalization to recovery (%"#
'() 5 

  From hospitalization to death (%)#
'() 5 

  From death to burial (%$
'() 2 

  Proportion of cases hospitalized (*) 0.5 
  *" 0.33 

  Case-fatality rate:  

  Without hospitalization (+") 0.75 
  With hospitalization (+#) 0.65 

  

Vaccination  characteristics  

  Time between vaccination rounds 7 days 

  Clusters vaccinated per round 1 

  Pause period for evaluation, Parallel trials 70 days 

  Proportion of cluster residents successfully vaccinated 80% 

  Probability of vaccination removing individual 95% 

 
† The 20 study clusters were divided into two groups; both had the same mean number of contacts per 

person, but individuals in clusters in one group had (on average) twice as many between-cluster contacts as 

the other. 
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Supplementary Table 3: Key epidemic and study outcomes for sensitivity analyses 

 

 

Standard  

Stepped Wedge 

Static Rank  

Strict Order 

Static Rank  

Fuzzy Order 

 Static Rank  

Holdback-1  

Time to end of epidemic (days) 
        

  Baseline 226 [216 - 240] 229 [217 - 242] 227 [217 - 241] 226 [216 - 240] 

  Negative control 292 [272 - 315] 292 [270 - 314] 290 [271 - 314] 292 [270 - 316] 

  Poor vaccine 281 [255 - 314] 287 [259 - 323] 290 [262 - 325] 287 [260 - 325] 

  Perfect vaccine 210 [203 - 218] 207 [199 - 216] 208 [200 - 216] 208 [201 - 216] 

  Perfect vaccine incl. Exposed 221 [210 - 235] 219 [207 - 232] 219 [208 - 232] 219 [208 - 233] 

  Week 8 vaccine 233 [221 - 247] 238 [227 - 252] 237 [226 - 250] 238 [226 - 250] 

  Week 10 vaccine 240 [228 - 254] 245 [234 - 259] 244 [233 - 257] 244 [232 - 258] 

  Low between-cluster heterogeneity  229 [218 - 242] 229 [220 - 243] 230 [218 - 242] 228.5 [218 - 243] 

  High between-cluster heterogeneity  226 [215 - 240] 226 [214 - 238] 226 [214 - 239] 226 [216 - 240] 

  Lognormal within-cluster ties 227 [216 - 240] 228 [217 - 241] 228 [216 - 242] 228 [218 - 241] 

  14 days between interventions 273 [255 - 294] 292 [268 - 318] 290 [268 - 318] 288 [267 - 311] 

  21 days between interventions 284 [264 - 306] 299 [275 - 332] 299 [276 - 329] 296.5 [273 - 325] 

  Lower infectiousness 198 [173 - 217] 184 [156 - 204] 185 [156 - 205] 186 [155 - 205] 

  Outside population 260 [241 - 286] 277 [253 - 309] 278 [253 - 307] 274 [251 - 304] 

Cumulative incidence (%) 
        

  Baseline  35.8   [28.0 - 42.0]   29.7   [20.6 - 37.8]   29.6   [21.3 - 37.0]   31.2   [22.6 - 38.6]  

  Negative control  80.0   [78.9 - 80.9]   80.0   [78.9 - 80.9]   79.9   [78.7 - 80.9]   80.0   [78.8 - 81.0]  

  Poor vaccine  44.0   [36.4 - 49.4]   40.2   [31.6 - 47.6]   39.9   [31.3 - 47.0]   41.0   [31.7 - 48.3]  

  Perfect vaccine  31.3   [24.1 - 37.4]   24.5   [16.0 - 32.5]   25.6   [17.6 - 32.8]   25.2   [17.8 - 33.9]  

  Perfect vaccine incl. Exposed  30.2   [22.1 - 36.1]   24.5   [16.0 - 32.2]   24.6   [16.9 - 32.2]   24.9   [17.3 - 31.9]  

  Week 8 vaccine  43.8   [35.9 - 49.8]   40.4   [30.6 - 48.3]   40.7   [31.5 - 48.3]   40.9   [31.1 - 48.3]  

  Week 10 vaccine  50.9   [43.1 - 57.0]   49.1   [40.1 - 56.6]   50.3   [41.1 - 57.7]   50.3   [41.0 - 58.0]  

  Low between-cluster heterogeneity   35.2   [27.6 - 40.2]   31.4   [22.8 - 38.6]   31.5   [23.3 - 38.6]   31.6   [23.7 - 38.3]  

  High between-cluster heterogeneity   36.3   [28.0 - 43.6]   28.9   [19.3 - 38.0]   29.1   [19.0 - 37.6]   30.5   [21.2 - 39.2]  

  Lognormal within-cluster ties  34.7   [26.8 - 41.0]   29.4   [20.2 - 36.9]   29.2   [20.5 - 37.1]   30.2   [21.3 - 38.2]  

  14 days between interventions  56.1   [51.4 - 59.8]   54.4   [48.9 - 59.2]   55.2   [49.4 - 59.3]   55.4   [50.0 - 59.7]  

  21 days between interventions  63.5   [60.4 - 66.3]   63.2   [59.2 - 66.5]   63.4   [59.1 - 66.2]   63.4   [59.8 - 66.3]  

  Lower infectiousness  3.4   [1.8 - 5.5]   3.1   [1.7 - 4.6]   2.9   [1.6 - 4.8]   3.1   [1.7 - 4.8]  

  Outside population  18.5   [15.9 - 20.9]   16.6   [13.6 - 19.6]   16.8   [13.3 - 19.8]   16.8   [13.9 - 19.8]  

Power after one week 
        

  Baseline 61.8   [58.8 - 64.8]  
  

 45.8   [42.7 - 48.9]  56.3   [53.2 - 59.4]  

  Negative control 4.5   [3.2 - 5.8]  
  

 4.7   [3.4 - 6.0]  3.7   [2.5 - 4.9]  

  Poor vaccine 29.9   [27.1 - 32.7]     24.5   [21.8 - 27.2]  28.6   [25.8 - 31.4]  

  Perfect vaccine 81.2   [78.8 - 83.6]     62.4   [59.4 - 65.4]  69.8   [67.0 - 72.6]  

  Perfect vaccine incl. Exposed 91.1   [89.3 - 92.9]  
  

 70.9   [68.1 - 73.7]  87.4   [85.3 - 89.5]  

  Week 8 vaccine 60.9   [57.9 - 63.9]  
  

 58.1   [55.0 - 61.2]  66.4   [63.5 - 69.3]  

  Week 10 vaccine 63.9   [60.9 - 66.9]  
  

 59.8   [56.8 - 62.8]  70.0   [67.2 - 72.8]  

  Low between-cluster heterogeneity  62.9   [59.9 - 65.9]  
  

 48.7   [45.6 - 51.8]  59.4   [56.4 - 62.4]  

  High between-cluster heterogeneity  60.9   [57.9 - 63.9]  
  

 48.0   [44.9 - 51.1]  56.0   [52.9 - 59.1]  

  Lognormal within-cluster ties 60.2   [57.2 - 63.2]  
  

 47.2   [44.1 - 50.3]  56.3   [53.2 - 59.4]  

  14 days between interventions 4.2   [3.0 - 5.4]  
  

 5.2   [3.8 - 6.6]  5.6   [4.2 - 7.0]  

  21 days between interventions 4.2   [3.0 - 5.4]  
  

 4.7   [3.4 - 6.0]  4.7   [3.4 - 6.0]  

  Lower infectiousness 10.4   [8.5 - 12.3]  
  

 6.7   [5.2 - 8.2]  7.0   [5.4 - 8.6]  

  Outside population 72.0   [69.2 - 74.8]  
  

 67.1   [64.2 - 70.0]  75.6   [72.9 - 78.3]  
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Notes. All outcome figures are medians and interquartile ranges of result from 1000 simulation realizations. Time to end of epidemic measured in 

days since first infections; cumulative incidence measured as percentage of all individuals ever infected.
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Supplementary Figure 1: Schematic of state transition model  

 
!" , !#-./ !$  are the transmission risk to a susceptible individual if one of the their contacts is, 

respectively, infectious at home (0"), hospitalized (0#) or deceased but not yet buried (0$).  

The inverse of each % term reflects the mean duration in a state: incubation period (%&); time from 

symptom onset to hospitalization (%#); time from symptom onset to recovery without 

hospitalization (%"); time from symptom onset to death without hospitalization (%)); time from 

hospitalization to recovery (%"#); time from hospitalization to death (%)#); and time to burial from 

death (%$). 

*"is computed to fix the proportion of individuals hospitalized, allowing for competing risks of 

death or recovery, +" -./ +#  are computed to fix the overall case-fatality ratio. Details, including 

equations for *" , +"  -./ +# , can be found in Tables 2 and 3 of [23]. 
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Supplementary Figure 2: Mean state values for each day since the start of the epidemic across 1000 simulations  
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Supplementary Figure 3: Mean daily effective reproductive rate for each vaccination study design across 1000 simulations 

 
Vertical dashed line represents date of first cluster vaccination; horizontal solid line represents Re=1.  

 

 


