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ABSTRACT

Real-world data processing problems often involve multi-
ple data modalities, e.g., panchromatic and multispectral
images, positron emission tomography (PET) and magnetic
resonance imaging (MRI) images. As these modalities cap-
ture information associated with the same phenomenon, they
must necessarily be correlated, although the precise rela-
tion is rarely known. In this paper, we propose a coupled
dictionary learning (CDL) framework to automatically learn
these relations. In particular, we propose a new data model
to characterize both similarities and discrepancies between
multimodal signals in terms of common and unique sparse
representations with respect to a group of coupled dictionar-
ies. However, learning these coupled dictionaries involves
solving a highly non-convex structural dictionary learning
problem. To address this problem, we design a coupled dic-
tionary learning algorithm, referred to sequential recursive
optimization (SRO) algorithm, to sequentially learn these
dictionaries in a recursive manner. By capitalizing on our
model and algorithm, we conceive a CDL based multimodal
image super-resolution (SR) approach. Practical multispec-
tral image SR experiments demonstrate that our SR approach
outperforms the bicubic interpolation and the state-of-the-art
dictionary learning based image SR approach, with Peak-
SNR (PSNR) gains of up to 8.2 dB and 5.1 dB, respectively.

Index Terms— coupled dictionary learning, multimodal
data, sparse representation, sequential recursive optimization,
multispectral image super-resolution

1. INTRODUCTION

Image super-resolution (SR) is a set of techniques to enhance
pixel-based image resolution, while minimizing visual arti-
facts. Due to insufficient number of observations, image SR
is a severely ill-conditioned problem that needs to be regu-
larized via employing various image models and prior knowl-
edge [1-13]. Among these models, image SR based on sparse
representation over learned adaptive dictionaries has received
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an increased interest [5—8]. Dictionary learning (DL) tech-
niques [14-17] are playing a key role in such image SR tech-
niques, leading to state-of-the-art performance results [8].
However, in some practical application scenarios, the
observed images for a certain scene are often captured by dif-
ferent sensors. For example, in the medical imaging domain,
simultaneous PET-MRI scanning provides both positron
emission tomography (PET) and magnetic resonance imag-
ing (MRI) data for the same underlying anatomy [18-20].
In the field of remote sensing, the earth observation for the
same geographical region is commonly composed of mul-
tiple heterogeneous images, e.g., panchromatic band ver-
sion, multispectral bands version, infrared (IR) band version,
etc. [21-26]. In order to balance the cost, bandwidth and
complexity, these multimodal images are usually acquired
with different resolution [26]. This calls for multimodal
image super-resolution approaches in order to enhance the
resolution of heterogeneous images. Since these heteroge-
neous images originate from the same phenomenon, it is
realistic to assume that they admit some common inherent
characteristics. This belief motivates us to develop a new
coupled dictionary learning (CDL) framework to capture the
relations between multimodal signals. Then, based on the
proposed CDL framework, we conceive a multimodal im-
age super-resolution approach to exploit the learned prior
knowledge of the relation to enhance image resolution.

2. RELATION TO PRIOR WORK

Most dictionary learning based image SR approaches [5-8]
have two phases: learning some prior knowledge from
training data and performing image SR with the aid of the
learned prior knowledge. Yang et. al. [4, 5] proposed a
sparse representation invariance assumption that a pair of
low-resolution/high-resolution (LR/HR) images share the
same sparse representation with respect to their correspond-
ing dictionaries. Based on this assumption, [4, 5, 7] propose
to jointly learn a pair of LR/HR dictionaries to capture the
relation between LR/HR image pairs characterized by the
common sparse representation. Image SR approaches based
on coupled dictionary learning (CDL) [6] and semi-coupled
dictionary learning (SCDL) [27,28] allow more flexible map-
ping relations between sparse representations of LR/HR im-



age pairs. However, they still focus on images associated
with a single modality and hence only involve training one
LR/HR dictionary pair.

In contrast to existing work, our proposed multimodal
data model expresses multimodal signals in terms of common
sparse components (which capture the correlation between
the distinct data modalities) and unique components (which
capture the particular aspects of each individual data modal-
ity). These common and unique sparse components are dis-
covered via our proposed sequential recursive optimization
(SRO) algorithm tailored for the coupled dictionary learning
problem, which differs from convectional dictionary learning
ones.

3. COUPLED DICTIONARY LEARNING FOR
MULTIMODAL DATA

We first introduce our data model and explain how it cap-
tures correlation between multimodal data. Next, based on
this model, we propose a coupled dictionary learning prob-
lem and an associated algorithm. Finally, we show how to
use the framework to perform multimodal image SR.

3.1. Multimodal Data Model

Given two classes of data of different modalities, X and
Y (€ RV*T), we assume that the set of data can be decom-
posed as

X=¥,Z+¥U,

(D
Y=®.Z+dV,

where, ., ¥, &, and P (6 RNXK) are the dictionaries to
be found, and Z, U and V (E RE XT) are the correspond-
ing sparse representations, also to be found. 7" corresponds to
the number of training examples, N denotes the ambient data
dimensionality (which we take to be the same for both data
modalities without loss of generality) and K corresponds to
the number of atoms in the various dictionaries (which we
also take to be the same without loss of generality). The com-
mon sparse components Z, with respect to ¥, and ®., ex-
press common characteristics underlying both X and Y. In
contrast, the unique sparse components U and V, w.r.t ¥ and
@ respectively, express unique characteristics associated with
the data modalities X and Y.

3.2. Coupled Dictionary Learning

Based on the data model (1), the coupled dictionary learning
problem can be cast as
2

minimize X — v. ¥ 0 [Zj

(V. 0,&.,P} Y ®, 0 @ v )
{z,U,V} F
subject to  [|z;lo + [Jusllo + [[villo < s, Vi.

where z;, u; and v; denote the ¢-th column of matrix Z, U
and V, respectively. || - || and || - ||o denote the Frobenius
norm and ¢y norm, respectively.
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Fig. 1: Flowchart of the proposed SRO algorithm for CDL.
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Algorithm 1 Sequential Recursive Optimization (SRO)

Input: Training data matrices X and Y (€ RV*T).
Output: Coupled dictionaries ¥, ¥, ®,, ® (€ RV*K),
Initialization:
1: Initialize ¥., ¥, &, and P.
2: Set sparsity constraints s.
3: Set main iteration M ainlter and sub-iteration Sublter.
Optimization:
4: for p = 1to Mainlter do
5. for ¢ = 1to Sublter do
6: // Fix ¥, ® and only train ¥, ®.. in the loop.
7: Global Sparse Coding. Fix all the dictionaries,
then use any off-the-shelf sparse coding algorithms
to solve (3) to obtain updated sparse representations

Z,Uand V.
2
min X _|¥. ¥ O IZJ
Z, UV Y . 0 @ v 3)
st lzillo + [[uillo + [[villo < s, Vi.
8: Partial Dictionary Update. Fix ¥, ®, Z, U and
V, then only update ¥, and ®. via solving
2
. X -9vU v,
PR [t O
9: end for
10:  for g = 1to Sublter do
11: // Fix ¥, ®. and only train ¥, ® in the loop.
12: Global Sparse Coding. The same as step 7.
13: Partial Dictionary Update. Fix ¥, ®_., Z, U and
V, then only update ¥ and @ via solving
. 2
min (X - ®.2)-¥UL 5
. 2
min (Y- 2.2)- V|2 ()

14:  end for
15: end for

Problem (2) is a highly non-convex dictionary learning
problem with particular requirement on the structure, which
can not be solved directly using conventional DL algorithms.
To address this structural dictionary learning problem, we
propose the sequential recursive optimization (SRO) algo-
rithm to sequentially learn these coupled dictionaries part by
part, as described in Algorithm 1 (see also Fig.1). Note that,
(3), (4),(5) and (6) are convex. As problem (2) is non-convex,



our SRO algorithm can not guarantee the convergence on a
global optimum. But, given good initialization for dictio-
naries, SRO will converge to a reasonable local optimum,
leading to a satisfactory approximate solution for (2).

3.3. Multimodal Image Super-resolution

By capitalizing on the previous coupled dictionary learning
framework, which learns dictionaries that couple a pair of
data modalities, it is now possible to conceive a multimodal
image super-resolution approach.

Let X" € RV¥XT and Y" € RV*T denote two classes
of HR images with different modalities. Let X! € RM*T
(M < N) denote the LR image derived from X" as follows:

X' = AX", 7
where the measurement matrix A € RM*¥ denotes an ob-
servation operator that extracts a low-resolution version from
X" Then, according to the data model (1), X!, X", Y” can
be expressed as follows:

X'=wlzZ+9"U, ®)
X =9¢'Z+9'U, )
Y'=o"Z +®"V, (10)

where ¥! = AW" and ¥! = AW". This suggests immedi-
ately an approach to super-resolve a single LR image modal-
ity aided by another HR data modality. In particular, let us
assume that the coupled dictionaries have been learnt for both
data modalities as a priori using the proposed SRO algorithm.
Let us also assume that we are given a new LR image x!__,
and the corresponding HR image y,. Then, we can super-
resolve the LR image modality x!,, via solving the optimiza-
tion problem (11) and then obtaining the estimation x/ _, im-
mediately from x7 ., = ¥'z + ¥hu.

min  [|z[jo + [[ullo + [Ivlo
z,u,v

st xb, =Wz 4+ Pl an
yzzst = @gz + th :

4. PERFORMANCE RESULTS

We now conduct a series of simulation and experiments to
verify the effectiveness of the proposed SRO algorithm and
CDL based multimodal image SR approach. In our SRO al-
gorithm, orthogonal matching pursuit (OMP) algorithm [29]
is used for the global sparse coding and K-SVD [16] is modi-
fied for the partial dictionary update.

4.1. Simulation with Synthetic Data

Here, we show a certain simulation setting. Four Gaussian
random matrices ¥, ¥, ®_. and P (E RNxK ) are generated
as the true dictionaries, where N = 64 and K = 256. Three
sparse random matrices Z, U and V (€ R¥*T) are gener-
ated as sparse representations, in which the sparsity of each
column is set to be s, = 4, s, = 2 and s,, = 2, respectively,
thus s = s, + s, + s, = 8. T is set as 10000. The train-
ing dataset is synthesized via our model (1). Mainlter and
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Fig. 2: Simulation results for Coupled Dictionary Learning
using the SRO algorithm. 50 trials were conducted and their
results were averaged. The "mean" in sub-figure (a) denotes
the average ratio of the four dictionaries.

Sublter are set to be 10 and 20, respectively. Dictionaries are
initialized with random matrices. We adopt the atoms recov-
ery ratio! and root-mean-square error (RMSE) as the criterion
to evaluate the performance of the proposed algorithm. They
are defined as

__t(¢eDnD) X - Dal

t(d € D) ixy

where D and D denote the true and the learned dictionary,
respectively, X and o are the data and sparse representation,
respectively, d denotes any one atom, £ (-) counts the number
of elements in the set. Two atoms from D and D are con-
sidered identical when their Euclidean distance is less than a
defined threshold € with € = 0.01 by default.

Fig. 2 shows the results averaged on 50 trials. It illustrates
that the proposed SRO algorithm achieves satisfactory atoms
recovery ratio (> 94%) with reasonable RMSE (< 0.02) .
This indicates that the coupled dictionaries learned by our
algorithm are very good approximations to the true coupled
dictionaries.

RMSE =

4.2. Multimodal image SR Experiments

Setup. In the multimodal image SR experiments, multi-
spectral images are the signals of interest and corresponding
RGB images serve as the side information. Our CDL based
SR approach is also compared to the bicubic interpolation
and the DL based SR approach. The magnification factor is
set to be 2. The practical experiment data is obtained from
the Columbia multispectral database?. In the experiments,
28 scenes are separated into two groups: the training image
group consisting of 20 scenes and the testing image group for
the remaining 8 scenes. For each scene, both modalities are
already aligned with each other. The multispectral images of
given wavelength and corresponding RGB images from the
training image group are subdivided into many 8 X 8 patches
which are then vectorized to form two training matrices X
and Y with dimension 64 x 13000. DCT matrices are used
as the initialization of dictionaries during the training.

'Please refer to Ron Rubinstein’s K-SVD package for more details.
’http://www.cs.columbia.edu/CAVE/databases/
multispectral/



Table 1: PSNR results of multispectral image super-resolution via Bicubic interpolation, DL based SR, and CDL based SR.

wave Img No.1 Img No.2 Img No.3 Img No.4 Img No.5 Img No.6 Img No.7 Img No.8
/mm | Bic DL CDL| Bic DL CDL| Bic DL CDL| Bic DL CDL| Bic DL CDL| Bic DL CDL| Bic DL CDL| Bic DL CDL
440 30.0 32.7 37.1 | 31.2 33.6 37.8 | 38.2 41.2 45.0 | 31.0 34.1 37.6| 28.0 31.5 35.0 | 29.8 31.8 359 | 32.2 36.5 38.8 | 31.9 35.0 404
490 30.9 33.6 39.8 | 31.7 33.2 41.4 | 41.6 444 499 | 339 35.1 42.2/| 30.5 32.3 38.9 | 30.5 32.3 38.1 | 30.4 34.5 38.2| 30.4 34.1 39.5
540 30.7 33.4 39.1 | 32.0 32.4 41.8 | 40.1 43.6 49.7 | 33.3 37.1 42.5| 30.3 32.1 40.3 | 30.5 30.7 38.6 | 31.7 355 41.6 | 29.8 33.9 39.2
590 30.2 32.8 38.8 | 30.2 32.8 40.1 | 38.7 42.5 48.1 | 33.1 37.3 42.6| 29.5 33.1 39.0 | 29.6 33.3 38.4 | 31.3 352 41.0| 31.2 33.0 414
640 30.8 36.3 39.3 | 29.2 31.6 35.7 | 37.7 41.7 453 | 32.2 349 40.6 | 28.4 32.1 37.0 | 29.0 32.1 37.0| 32.0 36.4 39.3 | 33.3 35.5 43.7
690 31.5 36.9 389 | 29.8 33.2 34.0| 37.0 39.7 43.8 | 31.5 35.2 38.8 | 27.8 32.2 35.9 | 29.1 33.8 359 | 33.8 37.6 41.6 | 34.6 40.8 43.7
mean | 30.7 34.3 38.8 | 30.7 32.8 38.4 | 38.9 42.2 47.0 | 32.5 35.6 40.7 | 29.1 32.2 37.7| 29.7 32.3 37.3 | 31.9 36.0 40.1 | 31.9 354 41.3
. . . Dict ¥_c Dict ¥
During the image SR phase, the testing dataset X;.s; and 103
Y., are constructed in a similar manner. Images from the o
. . . . . . 9
testing group are subdivided into overlapping patches with g 9
overlap stride equal to 1 pixel’. In the experiments, the mea- Eg S
surement matrix A is a down-sampling matrix which is as- Dict @ ¢ S
sumed to be known in advance for both dictionary learning g 8
and coupled dictionary learning. Accordingly, the LR dic- “7 s
tionaries can be exactly derived from the corresponding HR N0 50 100 150 200

dictionaries. Thus, there exists no mismatch between LR and
HR dictionaries which may interfere the fair comparison be-
tween coupled dictionaries and uncoupled ones.

Results. Fig. 3 shows the learned coupled dictionaries
and overall training error convergence for the multispectral
images of wavelength 590 nm and the corresponding RGB
images. We can find that there exists resemblance between
learned coupled HR dictionaries ¥, and ®., which indi-
cate that they capture the similarities between the two image
modalities. In contrast, ¥ and ® represent the discrepan-
cies and therefore rarely exhibit resemblance. Fig. 4 gives
the multispectral image SR results for a certain scene with
different wavelength versions. As we can see, proposed CDL
based SR approach is able to reliably recover more image de-
tails, e.g., edges, textures, and in the meanwhile substantially
suppress ringing artifacts than the counterparts. The overall
comparison of the image SR performance in terms of Peak-
SNR (PSNR) is shown in Table 1 which demonstrates that our
SR approach outperforms the bicubic interpolation and the
DL based image SR approach with PSNR gains of average
8.2 dB and 5.1 dB, respectively. The good performance of our
approach is attributed to the beneficial information extracted
from the RGB images by the learned coupled dictionaries.
Limited to the space, more detailed results can be found in
our website*.

On the other hand, despite of good performance, our al-
gorithm pays a price on the computational complexity, due to
the time-consuming sparse coding for more dictionaries. On
the same 3.4 GHZ PC, DL and CDL take average 3.82 and
34.88 minutes to learn a group of dictionaries, respectively.
During the image SR phase, bicubic interpolation, DL based
SR and CDL based SR take average 0.0035s, 59.89s, 259.5s

3The overlap stride denotes the distance between corresponding pixel lo-
cations in adjacent image patches.
4http://www.ee.ucl.ac.uk/~uceeong/

iteration

(a) Learned coupled HR dictio-
naries

Fig. 3: Coupled dictionary learning for multispectral images
of wavelength 590nm and RGB images.
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(b) Training error convergence

(LR (b) Bicubic  (c) DL (d) CDL
Fig. 4: Visual comparison of multispectral image SR perfor-
mance of 3 methods: bicubic interpolation, DL based SR ap-
proach and proposed CDL based SR approach. RGB images
serve as the side information.

(e) True HR (e) Side info

for processing one 512 x 512 image, respectively.

5. CONCLUSION

In this paper, we propose a new data model to characterize
the correlation between multimodal data via the sparse rep-
resentations with respect to a group of coupled dictionaries.
In order to learn these coupled dictionaries, we propose the
sequential recursive optimization (SRO) algorithm to solve a
non-convex structural dictionary learning problem. Then, we
establish a multimodal image SR scheme. Simulations with
synthetic data and practical experiments with multispectral
images demonstrate the good performance of our approach
over conventional image SR approaches.
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