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Quantifying muscle water T2 (T2‐water) independently of intramuscular fat content is essential in

establishing T2‐water as an outcome measure for imminent new therapy trials in neuromuscular

diseases. IDEAL‐CPMG combines chemical shift fat–water separation with T2 relaxometry to obtain

such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL‐CPMG T2‐water

and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to

quantify T2‐water variation in diseased muscle displaying varying degrees of fatty infiltration.

The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an

inter‐scan interval of 4 weeks using IDEAL‐CPMG, and 12 patients with hypokalemic periodic

paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal

decay of the separated water and fat components to determine T2‐water and the fat signal ampli-

tude muscle regions manually segmented.

Overall mean calf‐level muscle T2‐water in healthy subjects was 31.2 ± 2.0 ms, without significant

inter‐muscle differences (p = 0.37). Inter‐subject and inter‐scan coefficients of variation were 5.7%

and 3.2% respectively for T2‐water and 41.1% and 15.4% for f.f. Bland–Altman mean bias and ±95%

coefficients of repeatability were for T2‐water (0.15, −2.65, 2.95) ms and f.f. (−0.02, −1.99, 2.03)%.

There was no relationship between T2‐water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and

B1 error or any correlation between T2‐water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40).

In HypoPP there was a measurable relationship between T2‐water and f.f. (ρ = 0.59, p < 0.001).

IDEAL‐CPMG provides a feasible way to quantify T2‐water in muscle that is reproducible and

sensitive to meaningful physiological changes without post hoc modeling of the fat contribution.

In patients, IDEAL‐CPMG measured elevations in T2‐water and f.f. while showing a weak

relationship between these parameters, thus showing promise as a practical means of quantifying

muscle water in patient populations.
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1 | INTRODUCTION

The accurate quantification of muscle‐water transverse magnetiza-

tion relaxation time (T2) as a potential treatment‐trial outcome

measure is an important challenge.1 As trials of important new
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therapies in muscle diseases commence, there is a need for out-

come measures to quantify disease progression and treatment

effects that are more responsive than existing functional tests.2

Muscle fat infiltration and edema are both common pathological

manifestations in neuromuscular diseases, and may in principle

occur concurrently or independently; changes in muscle‐water T2

(T2‐water) may thus be hypothesized to occur prior to, independently

of, or in conjunction with muscle infiltration by fat. T2 measurement

methods that do not discriminate between fat and water signal

contributions yield a combined T2 value that has been termed the

global T2.
1 The T2 of fat is longer than T2‐water in healthy muscle,

and therefore, unless the fat and water signal contributions can

be separated, increased fat content and increased T2‐water both

elevate the apparent global T2, complicating the interpretation of

such a finding. Methods to obtain muscle T2‐water independently

of fat content are therefore needed in order to assess the

potential of T2‐water as a marker of disease progression or treat-

ment response providing pathological specificity beyond that that

provided by muscle‐fat measurement alone.

Conventionally, T2 is measured in MRI by collecting multiple

spin‐echo images and fitting the signal decay with echo time (TE)

to a theoretical model of the expected signal behavior. The respec-

tive independent contributions of fat and water to the decay signal

can be obtained by two approaches: by modifying the acquisition

sequence to provide selective relaxation‐time or chemical‐shift

based signal separation, where the fat signal is suppressed with

spectrally selective saturation or inversion recovery methods leaving

a signal that is dominated by the water component,3 or by

attempting to fit an appropriate multi‐component model to the

combined signal time course, assuming the measured signal is the

sum of two or more independent decay functions attributable to

water and fat.4,5 This latter method may be augmented by chemi-

cal‐shift fat–water signal separation techniques such as three‐point

Dixon imaging implemented in a separate additional acquisition,

providing an independent measurement of the fat–water ratio that

can be used to constrain a multi‐exponential fit to the non‐fat‐

suppressed spin‐echo decay.6 The IDEAL‐CPMG pulse sequence7

combines IDEAL (iterative decomposition with echo asymmetry

and least‐squares estimation) fat–water chemical shift separation8

with Carr–Purcell–Meiboom–Gill (CPMG) multi‐spin‐echo T2 mea-

surement, thus permitting independent measurements of T2‐water

and T2‐fat in a single acquisition.

To date, the feasibility of IDEAL‐CPMG muscle T2 relaxometry

has been demonstrated in five healthy volunteers and in a single

representative patient, with methodological validity evaluated

in vitro.7 Here we evaluate the performance of IDEAL‐CPMG T2‐

water relaxometry in healthy and diseased muscle. We present nor-

mative 3 T T2‐water values for calf‐level muscles, and assess in a

group of healthy adults scan–scan stability, and the relationship

between T2‐water estimates and transmit B1 variation. This relation-

ship is important because B1 variation has been identified as a major

determinant of T2‐water estimation accuracy in multi‐component

modeling of conventional CPMG data.4 Finally, in a cohort of patients

with hypokalemic periodic paralysis (HypoPP),9,10 a muscle ion

channelopathy causing periodic attacks of weakness in which
patients present with a spectrum of both edematous and fatty‐muscle

pathology, the relationship between measured T2‐water and muscle fat

content is investigated to determine how effectively IDEAL‐CPMG

decouples T2‐water measurements as fat content varies.
2 | METHODS

2.1 | Image acquisition

Both calves were imaged at 3 T (Siemens TIM Trio, Erlangen, Germany)

in a feet‐first supine position with surface matrix coils for signal recep-

tion. The IDEAL‐CPMG pulse sequence was implemented

(TR = 3000 ms, 3 × 5 mm slices, 10 mm gap, 192 × 96 matrix,

41 × 20.5 cm2 field of view (FOV)) with three gradient‐echo (GRE) shifts

at (−1.02, 0.61, 2.25) ms around each of 16 spin echoes with spin‐echo

times (TE) from 12 ms with a 12 ms interval with a bandwidth of

2003 Hz/pixel. The central slice was prescribed at a fixed distance of

15 cm below the knee joint in all cases. To independently assess muscle

T2‐weighted signal change patterns, short‐tau inversion recovery fat‐

suppressed (STIR) images (TR/TE/TI = 5500/56/220 ms, 9 × 10 mm

slices, 256 × 120 matrix) were also acquired. A high‐resolution GRE

image was acquired to provide a reference for muscle segmentation

(TR/TE = 100/3.45 ms, flip angle =10°, matrix 512 × 240, FOV

44 × 20.6 cm2). B1 maps were acquired with the double angle method11

(TE/TR = 11/7000 ms, FOV 44 × 20.6 cm2, 40 × 10 mm slices, nominal

flip angles 60° and 120°), with B1 error expressed as the percentage

deviation of the actual flip angle from that nominally prescribed.

11 healthy volunteers (eight male, mean age ± standard deviation

(s.d.) 40.5 ± 10.2 y, range 26.5–61.3 y) with no known muscle

pathology were scanned at baseline (Scan A) and again after four

weeks (Scan B) (mean interval 27.4 ± 3.5 days) to assess the stability

of muscle T2 measurements. 12 HypoPP patients (nine male,

42.3 ± 11.5 y, range 23.2–58.5 y) were scanned once with the same

acquisition protocol as the healthy subjects. Inclusion criteria were

genetically confirmed diagnosis with mutations in the CACNA1S gene

or SCN4A gene and clinical evidence of active disease, with either

patient report of attacks of weakness, or progressive fixed weakness

on examination. Patients had a mean disease duration of 30.8 ± 11.4 y,

range 15–53 y. At the time of scanning, nine patients were on regular

medication, one patient on as‐required medication and two patients on

no medication for HypoPP. Most commonly used medications were

Sando‐K in eight patients and acetazolamide in five patients.
2.2 | Data processing and analysis

Imaging data were exported from the scanner and processed offline

using the Python programming language (www.python.org) and

Wolfram Mathematica 10 (Champaign, IL, USA). A radiologist

performed manual muscle segmentation on the GRE images using

the ITK‐SNAP software,12 outlining six separate muscles (tibialis ante-

rior (TA), peroneus longus (PL), lateral gastrocnemius (LG), medial gas-

trocnemius (MG) and soleus (S), and a deep posterior compartment

(DP) (encompassing tibialis posterior, flexor digitorum longus and

flexor hallucis longus) in each limb at a single level on the middle slice

http://www.python.org


FIGURE 1 A, Example high‐resolution GRE image of a volunteer with muscle segmentations overlaid. B–F, The separation of water and fat with
IDEAL‐CPMG in a 53‐year old patient with HypoPP. B, B0 offset map obtained in the IDEAL decomposition. C,D, The raw signal is separated into
the water (C) and fat (D) components with the IDEAL algorithm to produce 16 such pairs of images for each spin echo. Mono‐exponential functions
are fitted to the signal decays. E, The T2 of the water component (T2‐water) is determined from the decay rate of the signal fitted to the water
component. F, The f.f. is calculated as the ratio of the fitted proton‐density amplitudes at t = 0. G, The χ2 goodness of fit for the water component.
H, The B1‐error map
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(Figure 1A)), excluding major vessels and nerves. The segmentations

were resampled to match the IDEAL‐CPMG acquisition matrix and

the borders eroded to reduce contamination from subcutaneous fat

at the region of interest (ROI) edges. The IDEAL fat–water separation

algorithm was implemented13 with the NumPy Python package, using

a seven‐peak model of the fat spectrum7 to derive fat and water‐only

images for each spin echo, and a map of static field (B0) variation.
To estimate tissue T2 values and proton densities, mono‐

exponential decay functions were fitted to the fat and water signals

separately using a least‐squares Levenberg–Marquardt algorithm. In

all cases the first echo was excluded from the fit to ensure consistent

stimulated‐echo coherence contributions. The amplitude (A), T2 and

signal offset (c) were determined for the water (w) and fat (f) compo-

nents respectively on a pixel‐wise basis by fitting to the function
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S =A exp (‐t/T2) + c. The unreduced χ2 sum of squares was used to

assess goodness of fit.

To determine the fat to MRI‐visible proton‐density ratio (apparent

f.f.) the sum of the total signal extrapolated to TE = 0 was used in order

to minimize T2‐weighting bias7 such that f.f. = Af/(Aw + Af).

The Scan A–Scan B reproducibility for the healthy subjects was

evaluated using the two s.d. limits of agreement and intra‐class

correlation coefficients, with signed rank tests for paired comparisons.

The individual source data points for this analysis were obtained as the

ROI mean of each muscle segmentation applied to the respective

IDEAL‐CPMG T2 maps. Coefficients of variation (CoVs) were

calculated according to Reference 14. Inter‐muscle variation was inves-

tigated by analysis of variance (ANOVA) with a significance level of

0.05. Left–right differences in B1 were compared on a muscle‐wise

basis with paired t‐tests. The relationship between T2‐water and f.f.

was evaluated with Spearman rank coefficients, with p < 0.05 consid-

ered significant. Patient–control group differences were evaluated

using the Mann–Whitney test.
3 | RESULTS

3.1 | IDEAL‐CPMG fat–water separation and fitting

IDEAL‐CPMG successfully separated the water and fat signal for each

spin echo. Examples of IDEAL‐CPMG fat–water separation and fitting

are shown in Figure 1. The B0 map derived from the IDEAL algorithm is

shown in Figure 1B, with the accompanying water and fat separated

images in Figure 1C,D respectively. Figure 1E,F shows the derived

T2‐water and f.f. maps for this subject. Figure 1G,H shows the χ2

map for the water component and the B1‐error map respectively.
FIGURE 2 Mono‐exponential fits and accompanying residual plots for the
ject and a patient. Fits are expressed as dashed lines. Insets denote the nat
signal and the fits are plotted in the panels beneath. The first sampled echo
A, water (Aw = 1020.5, T2w = 31.6 ms, cw = 8.1), fat (Af = 18.6, T2f = 200 ms
fat (Af = 279.4, T2f = 67.0 ms, c = 55.3) and f.f. = 35.4%
Examples of mono‐exponential fits to the T2‐decay signals with

accompanying residual differences between the fits and the data are

shown in Figure 2 for representative single pixels in the soleus muscles

of a healthy subject with low muscle‐fat content, yielding f.f. of 1.8%

(Figure 2A), and a patient with f.f. of 35.4% (Figure 2B).
3.2 | T2‐water and f.f. in healthy subjects

The healthy volunteer data are tabulated by muscle in Table 1. The

mean (±s.d.) T2‐water across all muscles in Scan A was 31.2 ± 2.0 ms.

ANOVA did not reveal any significant inter‐muscle differences

(p = 0.37). The greatest variance was observed in the lateral and medial

gastrocnemii muscles, attributable to two subjects displaying transient

elevated water content in these muscles.

Mean f.f. across all muscles in Scan A was 4.6 ± 1.9%. The

individual muscle with the highest mean f.f. was the PL, and that with

the lowest the TA (Table 1), with ANOVA indicating that inter‐muscle

f.f. differences were significant (p = 0.004).
3.3 | Stability of T2‐water and f.f. measured in
healthy subjects

Table 1 gives theCoVs for inter‐subject and4week inter‐scan differences

for each muscle and for all muscles combined. T2‐water inter‐subject

variation was higher than the inter‐scan variation (5.7% compared with

3.2%). Similarly, inter‐subject f.f. variation (41.1%) was higher than the

inter‐scan variation (15.4%). Overall intra‐class correlation coefficients

for the 4 week scan differences were 0.70 (T2‐water) and 0.86 (f.f.),

with paired sign‐rank tests for 4 week differences non‐significant for

all muscles (p = 0.92 T2‐water and p = 0.12 f.f.) Bland–Altman plots

for all muscles are shown for (A) T2‐water and (B) f.f. in Figure 3 with
water and fat signals for a single pixel in the S muscle of a healthy sub-
ural logarithm of the data and fit. The residual differences between the
is not included in the fit optimization function. Fitted parameters were
, c = 1.9), f.f. = 1.8%, and B, water (Aw = 509.6, T2w = 33.1 ms, c = 10.8),



TABLE 1 The group mean and s.d. values for T2‐water and f.f. for each muscle examined in the healthy subjects. Scan A and Scan B denote the
4 week separated scans. Mean values across all muscles are given in the final row. CoVs for inter‐subject and inter‐scan differences are given
(expressed as a percentage of the respective mean value)

Muscle

T2‐water (ms) f.f. (%)

Mean CoV (%) Mean CoV (%)

Scan A Scan B Inter‐subject Inter‐scan Scan A Scan B Inter‐subject Inter‐scan

Right TA 30.4 ± 1.3 30.3 ± 1.0 3.7 1.3 3.8 ± 0.9 3.6 ± 1.0 24.5 10

Right PL 30.3 ± 0.9 30.5 ± 1.1 3.2 2.3 6.3 ± 1.5 6.2 ± 1.9 26.3 12.3

Right LG 31.8 ± 2.9 31.1 ± 2.0 7.9 4.8 5.1 ± 1.8 5.8 ± 2.4 41.0 26.2

Right MG 31.2 ± 2.2 30.4 ± 1.2 5.7 4.2 4.3 ± 1.2 4.2 ± 1.3 27.9 6.3

Right S 32.0 ± 1.1 32.0 ± 0.8 3.0 2.3 4.5 ± 1.5 4.3 ± 1.4 31.3 6.1

Right DP 31.3 ± 1.0 31.5 ± 1.2 3.4 2.0 4.0 ± 2.1 3.9 ± 1.7 45.7 16.7

Left TA 30.8 ± 0.7 31.1 ± 1.0 2.7 2.0 3.5 ± 1.0 3.5 ± 0.7 23.8 12.9

Left PL 30.3 ± 1.6 30.7 ± 1.9 5.7 2.6 5.8 ± 2.2 5.4 ± 2.0 35.1 10.5

Left LG 31.1 ± 3.3 30.4 ± 2.0 8.7 4.5 4.2 ± 1.4 5.1 ± 1.7 37.8 31.2

Left MG 31.6 ± 3.4 30.9 ± 2.3 9.0 4.1 5.4 ± 3.1 5.1 ± 2.8 53.3 8.9

Left S 31.5 ± 1.2 31.4 ± 1.0 3.3 2.7 4.5 ± 2.0 4.5 ± 2.0 44.1 7.1

Left DP 31.9 ± 0.9 32.0 ± 1.6 4.1 2.8 3.7 ± 1.3 3.3 ± 1.1 32.3 14.4

Mean all muscles 31.2 ± 2.0 31.0 ± 1.6 5.7 3.2 4.6 ± 1.9 4.6 ± 1.9 41.1 15.4

FIGURE 3 Bland–Altman plots for 4 week

repeat measurements (Scans A and B) of T2‐
water and f.f. in the healthy subjects. Dashed
lines represent the mean bias and ±2 s.d. limits
of agreement (0.15, −2.65, 2.95) ms and (0.02,
−1.99, 2.03)% respectively. Symbols represent
the individual muscles. No systematic cluster-
ing by muscle can be observed
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respective mean bias and limits of agreement of (0.15, −2.65, 2.95) ms

and (−0.02, −1.99, 2.26)% depicted by dashed lines.

Figure 4 shows a healthy individual at Scan A and Scan B,

demonstrating an initially elevated right MG T2‐water (Figure 4A)

that had returned to a normal level after 4 weeks (Figure 4D).

There was no appreciable change in f.f. (Figure 4B,E), while MG

and LG muscle STIR image hyper‐intensity at Scan A (Figure 4C)

corroborates the presence of true water‐related changes in this

muscle at that time.
3.4 | T2‐water versus f.f. in healthy subjects

Mean muscle T2‐water is plotted against f.f. for each muscle in the

healthy subjects in Figure 5. There was no significant correlation

between T2‐water and f.f. (Spearman’s ρ =0.07, p = 0.40).

3.5 | Influence of B1 transmit homogeneity

An example of a B1‐error map in a healthy subject is shown in

Figure 6A, with the B1‐error color‐scale range of −20 to +40%



FIGURE 4 Elevated T2‐water in the gastrocnemius muscles of a healthy subject. A, The T2‐water map displays elevated values in the LG and MG
muscles (white arrow). B,C, The f.f. map does not display any abnormality (B) but the STIR images confirm the genuine fluid changes (C). D–F, After
4 weeks the region of elevated T2‐water (D) has decreased, with corresponding f.f. map (E) and STIR image (F)

FIGURE 5 T2‐water plotted against IDEAL f.f.
for the 11 healthy subjects (Scan A). Symbols
denote the muscle ROI. There is no linear
gradient denoting a relationship between f.f.
and T2‐water in these subjects
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chosen to emphasize B1 deviation across the image. T2‐water signal

decays are shown for two different pixel regions in Figure 6B,C,

denoted by asterisks in Figure 6A. The relationship between ROI‐

mean T2‐water and B1 error is plotted for all healthy subject ROIs in

Figure 6D and between f.f. and B1 error in Figure 6E on a muscle‐

by‐muscle basis. There was no relationship between T2‐water and B1

error (Spearman’s ρ 0.16, p = 0.07) and no significant correlation

between f.f. and B1 error (Spearman’s ρ 0.03, p = 0.77).
3.6 | T2‐water versus f.f. in HypoPP patients

The overall mean T2‐water and f.f. in the HypoPP patient group were

34.5 ± 6.6 ms and 14.7 ± 16.9% respectively, and both were elevated

compared with the healthy volunteer group (p < 0.001). ROI mean T2‐

water and f.f. are given for the left‐limb individual muscles of the 12

patients in Table 2. ANOVA did not indicate significant inter‐muscle

differences for T2‐water (p = 0.40) or f.f. (p = 0.38).
3.7 | Relationship between T2‐water and f.f. in patients

A plot of individual muscle ROI mean T2‐water versus f.f. is shown for

the patient group in Figure 7, where there was a greater spread of both

T2‐water and f.f. (Table 2) than in healthy volunteers. The equivalent

correlations, gradients and intercepts were (ρ = 0.59, p < 0.001),
0.31 ms/% (95% confidence interval (C.I.) 0.26–0.36 ms/%) and

30.3 ms (95% C.I. 29.3–31.3 ms) respectively. Figure 7B shows the

same data as in A in the range 0–15% f.f.

Figure 8 shows individual pixel plots to illustrate how the range of

scatter in Figure 7 arises from the behavior in given individual muscles,

demonstrating the pixel‐level relationship between T2‐water and f.f. in

a number of different conditions. Figure 8A,B shows healthy volunteer

S and MG muscles respectively where no (A) and moderate (B) T2‐

water elevations are observed without corresponding increase in mea-

sured f.f. In Figure 8C there are substantial increases in f.f. of the PL

muscle of a HypoPP patient while the T2‐water values remain in the

normal range. In the LG muscle of the HypoPP patient in Figure 8D,

both quantities are elevated in a heterogeneous manner.
4 | DISCUSSION

In this work we aimed to address practical and technical considerations

concerning the use of IDEAL‐CPMG to quantify the T2 of muscle water

in the presence of fat infiltration, and demonstrate the sensitivity of

the measurements in a group of healthy subjects and in a representa-

tive disease. We observe that IDEAL‐CPMG imaging provides stable

measures of calf‐level muscle T2‐water in repeated measurements in

healthy individuals (Figure 3 and Table 1), with sufficient sensitivity



FIGURE 6 A, Example B1‐error map in a
healthy subject, scaled to the range of −20 to
+40% deviation from the prescribed flip angle.
B,C, T2‐water signal for the pixels in different
B1 regions denoted by the asterisks in A,
yielding fits of Aw = 1104.5, T2w = 32.6 ms,
cw = 16.1 and Aw = 782.0, T2w = 32.4 ms,
cw = 4.2 respectively. D,E, The mean T2‐water
and f.f. against B1 error for each muscle in the
healthy subjects. Spearman’s rank coefficients
were non‐significant, indicating that there was
no measurable relationship between these
measured quantitative parameters and B1
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to detect minor T2 elevations, even in healthy subjects (Figure 4) and

without correlation with transmit field B1 inhomogeneity (Figure 6).

The method can determine T2‐water in a variety of muscle tissue

states. In terms of muscle ROI mean values, at low f.f. levels T2‐water

is not influenced by fat infiltration in either healthy subjects or patients

(Figure 5, Figure 7). When fat is present in greater quantities in

patients, mean muscle T2‐water is elevated in some cases (Figure 7).
At the individual pixel level, a range of scenarios of T2‐water and f.f.

relationships can be discriminated, as illustrated by the pixel‐wise plots

in individual muscles (Figure 8), which may contribute to the observed

overall ROI mean effects.

There is an important need to be able to quantify the water com-

ponent of muscle in neuromuscular conditions, which this work aims to

address. Effective muscle water T2 measurement is a valuable tool for
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probing normal muscle functional physiology and for tracking disease

processes, which may be amenable to therapeutic intervention. It is

well known that exercise challenges elevate the MRI‐visible water load

in normal muscle.15 In conditions where the normal function of muscle

is affected by molecular dystrophic deficiencies16 or deficiencies in ion

channel transport,17 water changes such as edema and inflammation

are important markers of disease activity. Crucially, these can occur

before significant fat infiltration or atrophy is present, and alterations

in water load may offer markers indicating successful application of a

therapy to its target. Indeed, for novel therapies that may involve exer-

cise itself,18 quantifying such muscle changes under these circum-

stances is essential. Therefore methods to detect water changes

sensitively at an early stage by quantifying T2, in early disease and then

progressively as fat begins to encroach simultaneously with evolving

water changes, have been receiving increased attention. This work

evaluates IDEAL‐CPMG as a practical method for measuring muscle

water T2 in the presence of fat.
4.1 | T2‐water and f.f. in healthy subjects

The mean T2‐water obtained in healthy lower‐limb muscles,

31.2 ± 2.0 ms, was consistent with values recently reported in other

3 T studies using different strategies to obtain fat‐independent T2‐

water in thigh muscles,19,20 and with a 32 ms‐centered T2 component

observed in the soleus muscle from a localized 1000 TE CPMG acqui-

sition.21 Using standard non‐fat‐suppressed CPMG MRI, Forbes

et al.22 reported a soleus T2 of 32.2 ± 1.9 ms in healthy boys, compared

with a slightly lower value (28.1 ± 0.81 ms) using a spectrally resolved

multi‐echo MRS method.

The distribution of T2‐water values in healthy subjects was low

compared with plausible increases due to disease (Table 2), indicating

that small pathological perturbations should be readily detectable with

IDEAL‐CPMG. In circumstances of disease or exercise‐driven T2‐water

changes, defining the normal range as 1.96 s.d. around the mean would

imply an upper threshold of 35.1 ms for overall T2‐water abnormality.

The pattern of highest f.f. in PL and lowest f.f. in TA is consistent with

previously reported patterns.23,24
4.2 | Stability and sensitivity in healthy subjects

An important property of any quantitative method is good reproduc-

ibility under typical clinical acquisition conditions, which we assessed

here by repeat scanning of healthy subjects at a 4 week interval. The

overall indices of reproducibility in healthy subjects were high

(indicated by the Bland–Altman limits of agreement (Figure 3) and

CoVs (Table 1). Moreover, sensitivity was sufficient to observe a gen-

uine serendipitous change in T2‐water in isolated muscles in a healthy

subject over a 4 week period (Figure 4). The origin of these changes is

not clear, although transient sequelae of a physical exertion, resolved

over the timescale of weeks, seem a likely cause. Importantly, refer-

ence to qualitative normalized STIR images corroborated these

changes, providing independent qualitative verification of T2‐water

elevations representing and quantifying genuine fluid‐driven effects

in this healthy individual. The sensitivity of IDEAL‐CPMG to detect

small T2‐water changes such as those associated with everyday activity



FIGURE 7 A, Mean T2‐water plotted against
mean f.f. for all muscle ROIs in the HypoPP
patients. B, The same data plotted in the range
0–15% f.f. There are examples of highly ele-
vated f.f. without corresponding T2‐water
elevation and cases where both are elevated
simultaneously

FIGURE 8 Pixelwise plots of T2‐water versus f.f. in individual subjects. A, Plot of pixel values in the left soleus muscle of a healthy subject that dis-
plays neither T2‐water nor f.f. elevation. B, Pixel values in the right MG muscle in a healthy subject illustrating elevation of T2‐water without sub-
stantial fat infiltration. C, f.f. in the PL muscle in a HypoPP patient is substantially elevated while T2‐water values remain within the normal range. D,
Both T2‐water and f.f. are elevated in the left LG muscle of a HypoPP patient. White arrows indicate the respective muscle plotted in each case
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is an important advantage, and highlights the need to control for

such factors in patient studies where both pathology‐ and everyday‐

activity‐related effects may induce parallel T2‐water changes.

When assessing the stability of T2‐water measurements, it is instruc-

tive to consider the changes expected due to disease, exercise or injury.

In the case of changes expected in disease, mean skeletal muscle T2‐

water increases between patient and control groups have been reported
to be around 10–15% in Duchenne muscular dystrophy25,26,22 and

Pompe disease.27 Themetabolic sequelae of exercise immediately before

measurement may increase muscle T2 by around 5 ms (16%),28 with

recovery within 45 minutes to baseline values.29 Eccentric exercise of

sufficient intensity to result in muscle injury causes longer‐term T2

changes, with for example a 2 ms increase detectable after 24 h,30 rising

to a peak value up to 20 ms above baseline 3–5 days after injury.31
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4.3 | B1 insensitivity

A common finding in quantitative MRI is errors arising under non‐ideal

measurement conditions such as static or RF magnetic field homoge-

neity. Such errors must be understood or corrected to permit proper

interpretation of observed variations. In this work we used the double

angle method to measure the B1‐transmit RF inhomogeneity. The B1

variation (Figure 6A) over the imaging slice was marked, and typical

of that commonly observed in calf muscles using conventional circu-

larly polarized transmission at 3 T.32 However, our T2‐water and f.f.

measurements did not demonstrate any significant dependence on

B1 error (Figure 6D,E), indicating for the first time that the

IDEAL‐CPMG method is fairly robust to the influence of transmit field

variation. This is in contrast to findings reported when fitting multi‐

exponential functions to non‐fat‐suppressed CPMG data that may be

to some extent influenced by B1,
4 and may represent a major

advantage of IDEAL‐CPMG in this context. This may in part be a con-

sequence of the performance of IDEAL fat–water separation being to a

large extent independent of B1‐driven source‐image amplitude varia-

tions, whereas methods dependent on estimating both fat and water

amplitudes, as well as their respective T2 values, by fitting a single

multi‐component model to a combined CPMG decay signal, may result

in both B1‐dependent apparent f.f. and T2 errors. The IDEAL‐CPMG

approach may compliment other recently reported methods with

reduced sensitivity to B1 effects by implicitly including B1 field in a

multi‐parameter extended phase graph modeling of the signal decay.20
4.4 | Measurements in HypoPP

The HypoPP patient group showed statistically elevated T2‐water

compared with healthy subjects, as well as f.f. elevation (Table 1,

Table 2), supporting the value of IDEAL‐CPMG muscle T2 as an index

of pathology in this condition. 23.6% of the patient ROI mean T2‐water

values were outside the 1.96 s.d. range of the healthy volunteers. The

majority of the group mean muscle values in the HypoPP group,

although elevated, were therefore not outside the range of normality.

Although not observed in our data set, sensitivity to reductions in

T2‐water may also be important in other neuromuscular conditions,

particularly in the light of recent reports that measured T2 may in fact

decrease in Duchenne muscular dystrophy.23,24

HypoPP is an autonomic dominant disorder associated with

mutations in the CACNA1S or SCN4A genes causing periodic serum

potassium changes and muscle weakness without myotonia.9 The

effect of treatment with acetazolamide over 4 weeks has been previ-

ously measured using STIR imaging.33 Fat‐suppressed T2‐weighted

imaging has previously been used to investigate imaging characteristics

in a group of Asian subjects with HypoPP and healthy controls before

and after exercise.34 These reports of T2‐weighted contrast changes

suggest that the ability to quantify T2 changes in HypoPP may provide

an important tool for monitoring this condition.
4.5 | Measuring T2‐water in the presence of fat

In skeletal muscle, myocellular fat replacement and changes in the

intra‐ and extra‐myocellular water distribution can hypothetically

occur independently or simultaneously within a tissue volume
depending on the underlying disease process. There is no a priori

assurance that a region of muscle displaying substantive fat infiltration

will not also exhibit simultaneous related or independent water‐driven

T2 changes. Indeed it seems probable that a given tissue volume under-

going active pathological processes is likely to encompass a spectrum

of simultaneously evolving T2‐influencing features, both fat and water

based. This should be considered when assessing the effectiveness of

any technique that aims to measure T2‐water prolongation indepen-

dently of fat, because the scenario of absolute independence may

often be hypothetical; apparently associated T2‐water and f.f. increases

may reflect genuine T2‐water elevation temporally correlated with f.f.

as two facets of disease progression with physically distinct substrates.

This is a situation in direct contrast to the apparent coupling of tissue

T2 and f.f. obtained in a non‐separated global T2 measurement.

The relationship between mean muscle T2‐water and f.f. is shown

for each of 12 muscles in the 12 patients in Figure 7, and for illustrative

pixel‐wise examples in individual muscles in Figure 8. When f.f. is

elevated (>5%), there are examples where T2‐water remains close to

normal values (e.g. Figure 8C) and others where the T2‐water is sub-

stantially elevated (Figure 8B,D). Despite the range of physical scenar-

ios presented in Figure 8, it is nonetheless conceivable that incomplete

decoupling of water and fat could still be present to some extent due

to residual T1 or T2 weighting or an inadequate model for the fat

spectrum. In addition, since the apparent f.f. is strictly the fat–water

ratio determined by the fitted amplitudes Aw and Af, any coupling

between Aw and T2‐water will also contribute to bias in the f.f.–T2‐

water relationship. It is not typical to find a neuromuscular disease

model where either fat or water changes occur definitively in isolation

of each other that would allow these scenarios to be fully tested,

although further investigation of exercise‐based water changes in

healthy subjects may provide further insight.
4.6 | Alternative methods to determine T2‐water

Imaging methods that measure T2‐water while accounting for concur-

rent fat infiltration are predominantly based either on post hoc

numerical modeling or on attempts to eliminate the fat signal at the

point of acquisition. For numerical stability, post hoc processing usually

requires an independent measure of the f.f., or a priori fat T2 values, to

constrain the amplitudes of multi‐exponential fitting of the raw decay

signal or by investigating multi‐exponential models with some fit

parameters fixed based on an understanding of the system. Recently

Marty et al. have successfully used a full extended phase graph

approach to obtain T2‐water fitting to a more comprehensive model.20

Fat suppression techniques at the point of acquisition include several

varieties of spectral fat pre‐saturation of multi‐echo T2‐weighted

sequences. In contrast, in IDEAL‐CPMG the acquisition pulse

sequence is designed to acquire separate T2‐decay signals at several

GRE phase‐shifts so that chemical‐shift fat–water separation can be

used to decouple the fat and water signals in post‐processing, allowing

the fat and water signal decays to be captured independently in a sin-

gle acquisition. Indeed, the fat signal can be discarded if quantifying

water T2 is the primary interest.

Previous treatments of composite T2‐decay signals have in most

cases considered these to comprise a linear sum of mono‐exponential
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decay functions representing water and various triglyceride lipid spec-

tral components. When the water signal is available in isolation, as it is

here, it is important to be confident that a mono‐exponential T2‐decay

description is appropriate. The example mono‐exponential decay

functions fitted to the representative single pixel data in Figure 2

described the signal well. However, no attempt was made in this work

to establish a meaningful description of the time‐domain behavior of

the fat signal. Rather, a pragmatic approach was used to estimate the

proton‐density at t = 0 by fitting a mono‐exponential function to the

fat signal decay. The spectrum of fat has multiple components,35 each

with a different characteristic decay time.4 The dominance of a long

T2‐decay component, which is often observed in the fat signal decay,

is most likely ascribable to the large constant offset cf. For the current

purpose, an exponential function allows determination of the y‐axis

crossing Af in order to estimate the fat–water proportion with minimal

bias due to T2 weighting.

Volume‐localized MRS may also be a useful tool to obtain T2‐

water unambiguously separated from lipid resonance signals, and

future work correlating MRS and IDEAL‐CPMG findings may shed light

on the origin of elevated muscle water T2 in the presence of fat.
4.7 | Considerations for IDEAL‐CPMG
implementation

A key advantage of IDEAL‐CPMG is that the f.f. and T2‐water are

obtained in the same acquisition. Although obtaining fat–water ratios

from a separate acquisition has been demonstrated to provide an

effective way to constrain multi‐component fits,6 in contrast IDEAL‐

CPMG does not require an alignment or registration step to ensure

that fat and water pixels coincide, a process vulnerable to error due

to subject motion or misalignment.

In common with most full CPMG‐based acquisitions, the slice

coverage achieved in a given repetition time is limited by the long echo

train and the consequent overall burden of RF energy absorption. The

in‐slice spatial resolution is also limited for the same reasons, and the

requirement to fit multiple GREs in the IDEAL‐CPMG implementation

imposes further constraints. Nonetheless, this approach allows an

overall survey of the muscle bulk at multiple levels with sufficient spa-

tial resolution to quantitatively assess patterns of fat and fluid infiltra-

tion in all key lower‐limb muscles (Figure 1). 2D or 3D three‐point

Dixon acquisitions may be better suited for specific measurements of

f.f. where high spatial resolution is required, but IDEAL‐CPMG is

unique in permitting both T2‐water and co‐localized f.f. determination,

albeit at the cost of lower coverage.

The relatively low spatial resolution and restricted anatomical

coverage in terms of the number of slices attainable within a rea-

sonable TR are a potential limitation of the current implementation

of the method. While these restrictions may be mitigated to a cer-

tain extent in the future by implementing further acceleration

methods, they are likely to limit applications requiring high spatial

resolution, such as in the pediatric population. Nevertheless, numer-

ous studies have successfully demonstrated the responsiveness of

MRI biomarkers in neuromuscular diseases with analyses based on

large ROIs, or whole muscle cross‐section means, from only a single

slice.
The acquisition bandwidth is necessarily higher in IDEAL‐CPMG

than in standard CPMG acquisitions, resulting in decreased signal to

noise using this method. The SNR in the left soleus muscle in the

first GRE measured about the first spin echo was in the range 50–

100. Standard CPMG acquisitions are capable of yielding substan-

tially higher SNR, and this should be taken into consideration when

evaluating the suitability of this method. While there was no evi-

dence in the data we present of any clear relationship between

regional SNR and precision of the T2‐water estimate, for acquisitions

with substantially lower SNR this aspect may become an important

consideration.

To improve the quality of the separation and fitting itself, further

improvements may be possible. Clearly, stimulated echoes and

coherences manifest as periodic oscillations are visible in the water

signal (e.g. residuals in Figure 2), and these are not taken into

account in the mono‐exponential fitting process that discards the

first echo. There are strategies available to more fully model the

signal behavior based on knowledge of the slice RF profile.36,20 This

approach could be applied here and may improve the precision of

the fitted T2 (or f.f. via a more precise estimation of the amplitudes

Aw, Af, cw and cf). A seven‐peak model of the fat spectrum was used

in the IDEAL separation, with spectral components determined from

the literature. There may be opportunity to refine the parameters of

the spectral model further by acquiring custom spectra to more pre-

cisely define the frequency and relative amplitudes of the spectral

components.
5 | CONCLUSION

Practical and efficient quantitative MRI protocols for tracking muscle

pathologies are urgently required. Trials of recently available genetic

and stem‐cell‐based experimental therapies for conditions such as

Duchenne muscular dystrophy37 demand outcome measures with

far greater responsiveness to temporal changes than any existing

clinical measures of strength or function. In the range of neuromus-

cular diseases, inflammation, edema, fat and fibrosis are the com-

mon mechanisms that can be identified on ex vivo pathology and

that give rise to the clinical deficit in muscle strength and function.

The challenge in this field is to track these changes directly, sensi-

tively, in vivo and repeatedly over time to unequivocally determine

the statistical efficacy of experimental treatments in cohorts of a

realistic size. Finding appropriate ways to use MRI to effectively

quantify muscle fibrosis remains an unsolved problem. However,

tracking water and fat changes is more immediately tractable and

much work has been conducted to date to demonstrate the suitabil-

ity of chemical‐shift‐based fat quantification in this context.38

Methods have also been proposed to measure water changes in

the presence of fat, a challenge that IDEAL‐CPMG addresses

directly.

In this work the reliability of IDEAL‐CPMG was demonstrated in

healthy individuals, and pathological sensitivity examined in a group

with HypoPP, a condition where muscle fluid and fat changes are both

present. The method was shown to be capable of reproducibly measur-

ing T2‐water in healthy subjects and identifying T2 elevations
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independently of fat in HypoPP patients, with general insensitivity to

transmit field variations. In HypoPP, and in other conditions where

water‐driven pathologies are important, IDEAL‐CPMG offers an

effective acquisition‐based approach to quantifying muscle water T2

independently of fat. The longitudinal responsiveness of T2‐water

thus obtained as a marker of disease progression, and the compara-

tive time courses of muscle f.f. and T2‐water changes, are now impor-

tant avenues of research.
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