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Abstract 

 

Oxytocin appears beneficial for autism spectrum disorder (ASD), and more than 20 single-nucleotide 

polymorphisms (SNPs) in oxytocin receptor (OXTR) are relevant to ASD. However, neither biological 

functions of OXTR SNPs in ASD nor critical OXTR SNPs that determine oxytocin’s effects on ASD 

remain unknown. Here, using a machine-learning algorithm that was designed to evaluate collective 

effects of multiple SNPs and automatically identify most informative SNPs, we examined 

relationships between 27 representative OXTR SNPs and six types of behavioral/neural response to 

oxytocin in ASD individuals. The oxytocin effects were extracted from our previous placebo-

controlled within-participant clinical trial administering single-dose intranasal oxytocin to 38 high-

functioning adult Japanese ASD males. Consequently, we identified six different SNP sets that could 

accurately predict the six different oxytocin efficacies, and confirmed the robustness of these SNP 

selections against variations of the datasets and analysis parameters. Moreover, major alleles of 

several prominent OXTR SNPs—including rs53576 and rs2254298—were found to have dissociable 

effects on the oxytocin efficacies. These findings suggest biological functions of the OXTR SNP 

variants on autistic oxytocin responses, and implied that clinical oxytocin efficacy may be genetically 

predicted before its actual administration, which would contribute to establishment of future precision 

medicines for ASD.  
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Introduction  

 

Autism spectrum disorder (ASD), a prevalent neurodevelopmental disorder characterized by impaired 

socio-communicational interactions and repetitive restricted behaviors, have polygenetic backgrounds 

ranging from heritable genetic variations to de novo mutations and copy number variants (Devlin and 

Scherer, 2012; Meyer-Lindenberg and Tost, 2012). Variations in the oxytocin receptor gene (OXTR) 

are among such key genetic factors (LoParo and Waldman, 2015; Meyer-Lindenberg and Tost, 2012; 

Yamasue, 2013), and previous researches reported associations between ASD and more than 20 

single-nucleotide polymorphisms (SNPs) in OXTR (Jacob et al., 2007; Lerer et al., 2008; Liu et al., 

2010; LoParo and Waldman, 2015; Wermter et al., 2010; S. Wu et al., 2005; Yamasue, 2013; 

Ylisaukko-oja et al., 2006; Yrigollen et al., 2008). 

 

This ASD-OXTR relationship is supported by empirical evidence for seemingly beneficial effects of 

oxytocin on this developmental disorder. Although further confirmatory studies with a large-scale 

sample are necessary (Shen, 2015), clinical trials reported that single-dose intranasal oxytocin 

administration mitigated autistic social behaviors and neural responses to socio-communicative 

information (Aoki et al., 2014; Auyeung et al., 2015; Domes et al., 2014; Guastella et al., 2010; 

Hollander et al., 2007; Watanabe et al., 2014a). Moreover, behavioral and neuroimaging studies 

employing neurotypical individuals added indirect evidence through identification of 

behavioral/neural links between several OXTR SNPs and ASD-associated social tendencies (Furman 

et al., 2011; Guastella et al., 2012; Inoue et al., 2010; Kumsta and Heinrichs, 2013; Rodrigues et al., 

2009; Tost et al., 2010; Yamasue et al., 2011). Collectively, these observations suggest that some 

OXTR variants in ASD individuals would alter their oxytocin-related neural circuits and partly induce 

their socio-communicational dysfunctions (LoParo and Waldman, 2015; Meyer-Lindenberg and Tost, 

2012; Yamasue, 2013)  

 

However, which OXTR SNPs crucially induce such biological effects on neural mechanisms 

underlying atypical social cognitions in ASD is still unclear (Brüne, 2012), and thus it remains 
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unknown which OXTR SNPs significantly regulate oxytocin’s effects on the social symptoms of the 

disorder. Although a recent study examined associations between three OXTR SNPs and oxytocin 

response in neurotypical adults (Montag et al., 2013), no previous study employing ASD individuals 

has examined such relationships between oxytocin efficacy and genetic variability. In addition to such 

a biological significance, given a large variety of autistic responses to continual oxytocin 

administration (Anagnostou et al., 2012; Dadds et al., 2014; Guastella et al., 2015; Watanabe et al., 

2015; Yatawara et al., 2015), it is also clinically essential to identify genetic variants of OXTR that 

enhance/deteriorate oxytocin’s beneficial effects on ASD (Kumsta and Heinrichs, 2013; Yamasue, 

2013). 

 

Here, we attempted to determine such biologically and clinically crucial OXTR SNPs that 

significantly affect oxytocin efficacy in ASD by applying a machine-learning algorithm to original 

datasets consisting of individual genetic information and behavioral/neural responses to the 

neuropeptide. The dataset about the oxytocin efficacy was extracted from our previous reports about a 

randomized, double-blind, placebo-controlled, cross-over within-participant trial (Watanabe et al., 

2014a; Aoki et al., 2015). We employed not a univariate but multivariate analysis because it is crucial 

to evaluate collective effects of multiple SNPs in investigation of multigene disorders including ASD 

(Li et al., 2012; Miao-Xin Li, 2011; M. C. Wu et al., 2011). The machine-learning-based approach 

(here, support vector regression, SVR) was selected because, compared to a conventional general 

linear model, the technique can yield results that are more robust against noise and outliers, and have 

larger generalization capability (Drucker et al., 1997; Thissen et al., 2004). Moreover, like deep 

learning methods (Hinton and Salakhutdinov, 2006), the current algorithm was designed to 

automatically select the most informative SNP sets without specific a priori assumptions. 

 

Using these data and algorithm, we examined a hypothesis whether the behavioral and neural efficacy 

of oxytocin was predicted by patterns of specific OXTR SNP sets. Consequently, we identified the 

most informative combinations of OXTR SNPs for different types of oxytocin efficacy, and confirmed 
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the different SNP sets could predict different oxytocin responses. The results implied distinct 

biological functions between several prominent OXTR SNPs.  

 

Materials and Methods 

 

Overall analysis design 

 

The current analysis procedure mainly consisted of the following six steps. [1] First, we excluded 

OXTR SNPs whose patterns were inappropriate for regression analysis (Figure 1A). [2] Second, we 

prepared six indices of behavioral and neural oxytocin effects that had been already measured in our 

previous clinical trial (Watanabe et al., 2014a; Aoki et al., 2015). [3] Third, using the machine-

learning-based regression analysis (i.e., SVR), we calculated the associations between the oxytocin 

efficacy and all the possible sets of the OXTR SNPs, and searched for the most informative SNP sets 

(Figure 1C). [4] Afterwards, we tested the robustness of the SNP selections by changing several 

analysis parameters. [5] Fifth, based on the selected informative SNP sets, we directly examined how 

accurately the SNP sets could predict the oxytocin efficacy. [6] Finally, we evaluated the weight 

values assigned to the selected SNPs in the regression analysis, and examined whether the SNPs 

enhanced or deteriorated beneficial effects of oxytocin in high-functioning Japanese adult ASD males.  

 

Participants 

 

The current participants were the same as those in our previous clinical trials (Watanabe et al., 2014a) 

(i.e., ethnically homogeneous 38 high-functioning ASD males with age ≥20 and FIQ >80, 35 of which 

were non-medicated). The original ample size of the trial (N = 40) was determined by a power 

analysis based on our previous study about the relationship between an OXTR SNP (rs2254298) and 

the amygdalar volume in ethically the same cohort as the current study (Inoue et al., 2010; see 

Supplementary Methods). Two of the 40 original participants were excluded because their behavioral 

responses were not recorded due to technical problems in the trial.  
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Their ASD diagnoses were made by experienced psychiatrists (HY/HK) with the strict criteria of 

DSM-R IV after more than 2 months of follow-up examinations, and were validated by certified 

psychiatric psychologists with Japanese version of ADI-R (HK) (Lord et al., 1994) and/or ADOS (Dr. 

Miho Kuroda) (Lord et al., 1989). All the participants had sufficiently high IQs ranging from average 

to above average in the full scale of WAIS-R, Japanese version. The study protocol was registered in 

University Hospital Medical Information Network clinical trial registry 

(UMIN000002241/000004393). Written informed consent was obtained from all the participants.  

 

OXTR genotyping 

 

Among 27 OXTR SNPs of interest, 21 SNPs were selected based on Affymetrix Genome-Wide 

Human SNP Array 6.0 (Affymetrix, Santa Clara, CA; non-* SNPs in Supplementary Table 1), 

whereas the other six SNPs were included according to previous reports (LoParo and Waldman, 2015; 

Yamasue, 2013; * SNPs in Supplementary Table 1). TaqMan genotyping platform was used to 

genotype these SNPs (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA; see 

Supplementary Methods). 

 

Step 1: Exclusion of SNPs inappropriate for regression analysis 

 

First, we excluded OXTR SNPs whose distribution patterns across participants could induce 

inaccurate calculations in the following analyses (Figure 1A). Technically, SNPs whose across-

participant distributions were too biased (here, a major allele is seen in >80% of the sample) were 

removed because they could cause overfitting in machine-learning procedures (Bishop, 2006). This 

threshold is more conservative than those adopted in previous machine-learning-based studies 

(Johnson et al., 2009; Watanabe et al., 2011).  
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Second, we examined multicollinearity (Kumar, 1975) between the remaining SNPs by calculating 

the difference in the across-participants SNP patterns, which was defined as min(|SNPi –SNPj|, 

Nparticipant – |SNPi – SNPj|), where Nparticipant denotes the number of participants. SNPs whose 

differences were ≤2 were summarized into one of them (Figure 1B). Consequently, allelic information 

of 15 OXTR SNPs was used in the following analysis (Table 1).  

 

Step 2: Identification of six oxytocin efficacy 

 

The data for the six types of oxytocin efficacy (Figure 1C) were extracted from our previous studies 

(Watanabe et al., 2014a; Aoki et al., 2015).  

 

Five of the six responses were measured using a social cognition task that was designed to recruit 

cognitive ability to smoothly resolve conflicts between verbal and nonverbal social information 

(Watanabe et al., 2012; 2014b). This ability is implicitly used to understand jokes and satires in 

typically-developing (TD) individuals.  

 

In this task, participants were presented with a series of short videos. In each video, a professional 

actor spoke an emotional phrase (positive/negative verbal information) with emotional facial and 

vocal expression (positive/negative nonverbal information), and the participants were asked to judge 

whether the actor in the video felt like a friend or foe.  

 

By focusing on responses to movie stimuli whose verbal information was incongruent with nonverbal 

information (e.g., a positive phrase was spoken with negative facial and voice expression), we first 

characterized individual social behaviors. For example, a ‘friend’ judgment for an actor speaking a 

negative phrase with positive facial and vocal expressions was regarded to be a decision mainly based 

on nonverbal information, whereas a ‘foe’ judgment for the same actor was regarded as verbal-

information-based judgments. Afterwards, we estimated brain activity specific to such nonverbal-
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information-based judgments (NVJs), and identified brain mechanisms underlying atypical social 

behaviors in ASD individuals.   

 

In fact, this social cognitive task enabled us to detect ASD-specific behavioral and neural responses 

that were linked with the severity of the social symptoms of autism (Watanabe et al., 2012). 

Compared to TD individuals, ASD individuals were more likely to emphasize verbal information 

during such friend/foe judgments. The number of NVJs was significantly less in ASD group than in 

TD group, and the reaction time for NVJs was also longer in ASD individuals. In addition, during this 

NVJ behavior, ASD individuals showed significantly less brain activity in two medial prefrontal 

regions than TD individuals (anterior cingulate cortex, ACC; dorsomedial prefrontal cortex, dmPFC). 

Notably, these behavioral and neural responses were correlated with the severity of the socio-

communicational symptoms of ASD.  

 

Moreover, this task allowed us to detect five behavioral and neural effects of single-dose intranasal 

oxytocin (24IU) on social symptoms of autism (Watanabe et al., 2014b). Compared to placebo, 

single-dose oxytocin significantly increased the number of NVJs and reduced the reaction time for 

NVJs with recovering brain activity of the two brain regions (ACC and dmPFC) and bidirectional 

functional connectivity between the two regions. Furthermore, using this task, we have recently 

reported significant behavioral and neural effects of oxytocin even in a long-term continual 

administration (Watanabe et al., 2015).  

 

Note that in our previous clinical trial (Watanabe et al., 2014b), we had attempted to reduce 

behavioral and neural effects of practice in this type of stroop task by (i) introducing sufficient 

training sessions before the MRI scanning and (ii) randomizing the order of drug administration. 

Regarding (i), the participants were asked to undergo more than 20 “friend or foe” judgment trials 

with movie stimuli that were not included in the following MRI experiments. This training sessions 

were expected to saturate behavioral/neural responses to the tasks in each participant, and hence 

reduce the practice effects within day and within participant. Regarding (ii), practice effects over the 
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different experiment days were supposed to be controlled by randomizing drug administration days 

across participants (i.e., randomization of oxytocin and placebo days in a crossover design). 

 

Given these previous observations, it is reasonable to assume that these five types of behavioral and 

neural response are sensitive and specific enough to represent oxytocin’s efficacy on autistic social 

symptoms. To reduce confounding effects of selection bias, we used all of them as outcome measures 

to investigate relationships between types of OXTR SNP and oxytocin efficacy as follows (Figure 

1C): [1] nonverbal communication score = increased number of NVJs (oxytocin–placebo); [2] 

response smoothness = decreased reaction time for NVJ (placebo–oxytocin); [3,4] ACC/dmPFC 

activity = increased brain activity for NVJs in ACC/dmPFC (oxytocin–placebo); [5] dmPFC–ACC 

connectivity = increased NVJ-specific functional connectivity from dmPFC to ACC (oxytocin–

placebo).  

 

In addition, because oxytocin affected the neurochemical substance level (Aoki et al., 2015), [6] 

increased level of N-acetylaspartate (NAA) in ACC (oxytocin–placebo) was adopted as the sixth 

oxytocin efficacy. To reduce effects of outliers on the following regressions, these oxytocin efficacy 

values were normalized. 

 

Step 3: Search for informative SNP sets with support vector regression 

 

We then searched for the informative SNP sets that accurately predicted each oxytocin efficacy by 

implementing a SNP ranking algorithm based on a ν-linear SVR (Bishop, 2006; Long et al., 2011) 

(Figure 1C, Supplementary Figure 1) in MATLAB R2014b (MathWorks) with LIBSVM package 

(www.csie.ntu.edu.tw/∼cjlin/libsvm/). We used a linear SVR rather than non-linear one to avoid 

overfitting and enable straight-forward interpretation of weight values later (Bishop, 2006).  
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First, the SNP information was binarized (major/minor allele as 2/1; Table 1). After choosing one of 

the six oxytocin efficacy indices, we divided the SNP and response data to test data (consisting of one 

participant data) and training data (consisting of the others’ data) in a leave-one-out-cross-validation 

(LOOCV) manner (Bishop, 2006). 

 

Second, using the training data, we fitted the binary information of certain N SNPs (1≤ N ≤15) to the 

oxytocin efficacy using a SVR, and calculated the mean square error (MSE) of the regression (Figure 

1D; Long et al., 2011). In each SNP number (N), we repeated this fitting and MSE calculation for all 

the possible 15!/N!(15–N)! SNP sets, and ranked the SNP sets according to the MSE ascending order 

(“SNP Ranking” in Supplementary Figure 1).  

 

We did not directly adopt the SNP set with the smallest MSE as the most informative SNP 

combination, because the MSE calculations can be noisy owing to the current limited dataset size and 

may be simply a result of overfitting (Bishop, 2006). Instead, we first calculated the probability of 

how often each SNP appeared in the Top10% most informative SNP sets (i.e., Top10% of rankings; 

Figure 1E). Moreover, to reduce effects of inaccurate calculations due to so-called ‘curse of 

dimension’ (i.e., here, imprecise estimations at a large N; Bishop, 2006), we focused on a range whose 

MSE calculations were relatively stable (i.e., 1≤ N ≤10; Figures 1E and 2A), and averaged the 

appearance probability within the range. We finally selected sets of the most informative SNPs based 

on this average appearance probability (“SNP Selection” in Supplementary Figure 1). These selection 

procedures were anticipated to improve the robustness of the SNP selection.  

 

Distributions of the appearance probability were evaluated by chi-squared tests and post-hoc residual 

tests, which was further validated by permutation tests with 10000 random permutations.  

 

Statistical evaluations were corrected in Bonferroni manner (for the chi-squared tests across six 

oxytocin effects, α = 0.05/6; for the post-hoc residual test across 15 SNPs, α = 0.05/15; for the 

permutation tests across six oxytocin effects, α = 0.05/6). This Bonferroni correction may be too 
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conservative because the five oxytocin efficacy indices were likely to be correlated with each other 

(absolute value of Fisher-transformed correlation coefficients: ∣Z∣= 0.47±0.22, mean ± std). 

However, given the current relatively limited sample size, we attempted to reduce the risk of 

overestimation by adopting this conservative correction method.  

 

Step 4: Tests of the robustness of the informative SNPs selections  

 

We then examined the robustness of the SNP selections by changing [1] the definition of the top 

informative SNP sets and [2] the SNP number (N) used to calculate the average appearance 

probability. To test [1], we repeated the SNP selection procedure by changing the definition of the top 

informative SNP groups from Top5% to Top20% by one point (Supplementary Figure 3A). To test 

[2], we repeated the same analysis by changing the range of N from 1≤ N ≤10 to 5≤ N ≤10 

(Supplementary Figure 4A) and moving the range from 1≤ N ≤5 to 6≤ N ≤10 (Supplementary Figure 

5A).  

 

Step 5: Direct evaluation of predictability of the selected SNPs  

 

We then directly evaluated how accurately the selected SNP sets predicted the oxytocin efficacy. The 

predictability was estimated in a LOOCV manner. For each oxytocin efficacy, we determined 

regression weights of the informative SNPs using training data (datasets recorded from 37 

individuals), applied the weights to the test SNP data (a dataset derived from the remaining one 

individual), and calculated the predicted value of the oxytocin efficacy. We repeated these procedures 

for every training dataset (i.e., 38 different datasets), and obtained efficacy prediction for all the 38 

individuals. We then evaluated the similarity between these predicted and real responses by 

performing F tests on the fitness of the regressions and by calculating Pearson correlation coefficients 

between them.  
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We also examined the accuracy in distinguishing individuals with high oxytocin sensitivity from 

those with relatively less sensitivity by counting the number of the participants for whom predicted 

responses had the same directions as empirically observed responses (i.e., both >0 or both <0; 

participants in the light gray areas in Figure 3B). Such classification using “zero” as a threshold was 

justified because the data were normalized prior to the SVR calculations.  

 

These statistical evaluations were corrected in Bonferroni method (α = 0.05/6).  

 

Step 6: Examination of functionality of the selected SNPs 

 

Finally, we examined weights assigned in the linear SVR. To ensure the independence between the 

estimated weights, we first randomly divided the 38 participants into four groups (N = 9, 9, 10, and 

10). Within each group, we performed the same SNP selections for the six oxytocin efficacy. After 

confirming that the appearance probability of the originally-selected informative SNPs was above a 

chance level in every group, we estimated regression weights for the selected SNPs. Using these 

independently-calculated four weights for each informative SNP, we conducted one-sample t-tests 

and examined whether each weight was significantly different from zero.  

 

Multiple comparisons in these tests were corrected in Bonferroni method (α = 0.05/[number of the 

informative SNPs for each type of oxytocin efficacy]). 

 

Results  

 

Exclusion of SNPs inappropriate for regression analysis 

 

We first excluded six of the 27 OXTR SNPs whose major allele types were too dominant across 

participants (>80% of the sample) and could cause inaccurate regression analysis (Figure 1A, 

Supplementary Table 1). Then, we summarized 11 of the remaining 21 SNPs into five patterns 
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because of their high multicollinearity, and obtained 15 SNPs (Table 1; see also legends for Figure 

1A), whose distributions were relatively unbiased and sufficiently different from each other 

(difference ≥7, variance inflation factor <1.9; Figure 1B). This procedure to avoid high 

multicolinearity is qualitatively equivalent to a protocol to assure linkage disequilibrium between the 

SNPs (Supplementary Figure 2). In the following analysis, we investigated associations between the 

oxytocin efficacy and patterns of these 15 OXTR SNPs.  

 

Selection of the most informative SNP sets 

 

Next, using the 15 SNPs, we searched for the most informative SNP combinations that could robustly 

and accurately predict individual oxytocin efficacies. For this purpose, we evaluated the probability of 

each SNP appearing in Top10% informative SNP sets (Figure 1C, Supplementary Figure 1). Because 

the regression errors (i.e., minimum MSEs) were relatively stable when using 1–10 SNPs for all the 

oxytocin effects in all the patterns of the training datasets (Figures 2A and 2B), we calculated the 

appearance probability based on these stable results of the regressions analysis. 

 

As a result, we first confirmed that the distributions of the appearance probability across 15 SNPs 

were significantly skewed compared with a uniform distribution for every oxytocin efficacy 

(�2
(14)>118, PBonferroni-corrected < 0.001 in chi-squared tests; Figure 2C). Then, we found that the 

appearance probabilities of several specific SNPs were significantly higher than the chance level 

(SNPs indicated with colored bars in Figure 2C; Z > 4.1, PBonferroni-corrected < 0.05 in post-hoc residual 

tests; P < 0.0075, PBonferroni-corrected < 0.05 in post-hoc permutation tests). These results suggest that such 

SNPs with significant high appearance probability can be regarded as the most informative SNP sets.  

 

To avoid circular analysis, these entire SNP selection procedures were conducted after dividing the 

dataset to training and test datasets according to a LOOCV manner  (Figure 1C, Supplementary 

Figure 1). Notably and coincidently, the informative SNP sets showing significantly high appearance 
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probability were the same across all the 38 different training datasets for every oxytocin response 

(color boxes in Figure 2C). 

 

Examination of robustness of SNP selections  

 

We then examined the robustness of these SNP selections by changing several analysis parameters. 

First, we repeated the SNP selection procedure with changing the definition of “top informative 

groups” from Top5% to Top20% lowest MSE groups by one point (Supplementary Figure 3A). 

Consequently, for every oxytocin efficacy, all of the most informative SNPs originally selected in 

Figure 2C were consistently identified as being significantly informative (PBonferroni-corrected < 0.05 in 

residual tests) in >85% of the parameter changes, whereas the other SNPs were not selected so often 

(≤50% of the changes; Supplementary Figures 3B and 3C). These results show the robustness of the 

original SNP selections against changes of the definition of “top informative groups”. 

 

Second, we also confirmed the robustness of the SNP selections by changing the SNP number range 

(N) used for calculations of the appearance probability (Supplementary Figure 4A). Even after the 

range width was changed from 10 to five, all the original informative SNPs shown in Figure 2C were 

always selected as informative ones, whereas the other SNPs were not so consistently chosen (≤40% 

of the changes; Supplementary Figures. 4B and 4C). Moreover, this robustness was still observed 

when we moved the window for the target SNP number form 1≤ N ≤5 to 6≤ N ≤10 (Supplementary 

Figure 5A): for every oxytocin efficacy, the originally-selected SNPs were almost always 

significantly informative (>83% of the changes), whilst the other SNPs were not so consistently 

selected (<32% of the changes; Supplementary Figures 5B and 5C). These results suggest the 

robustness of the original SNP selections against modification of the manners to calculate 

“appearance probability”. 

 

Direct estimation of prediction accuracy  
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Next, using these robustly selected informative SNP selections, we directly examined how accurately 

these SNP sets could predict oxytocin efficacy. We first found that the regressions using the selected 

SNP sets were well fitted to every type of oxytocin response (PBonferroni-corrected < 0.05 in F tests, 

adjusted R2 > 0.27; Supplementary Table 2), and confirmed that the effects predicted in the 

regressions were significantly correlated with the empirically observed effects (r ≥0.61, PBonferroni-

corrected < 0.05; Figure 3A). Note that the independence between the training and test data was 

preserved here, because the same SNP sets were selected as the most informative SNP sets across all 

different training datasets for each oxytocin response (Figure 2C). 

 

Moreover, these informative SNP sets enabled us to distinguish individuals who were above-average 

responsive to oxytocin from those who were below-average responsive to the neuropeptide (>71% 

accuracy, PBonferroni-corrected<0.05 in binominal tests; Figures 3B and 3C, Supplementary Table 3). 

Furthermore, such accurate predictions of the oxytocin efficacies were consistently achieved 

regardless of the order of the administration of oxytocin and placebo (r ≥0.57; Supplementary Figure 

6).  

 

Taken together, these results show that the selected OXTR SNP sets can accurately predict behavioral 

and neural oxytocin responses in high-functioning adults with ASD. 

 

Functional dissociations between different OXTR SNPs  

 

Finally, we investigated biological functions of individual OXTR SNPs in terms of oxytocin’s effects 

in autism by examining the weights assigned to the SNPs in the regression analysis (e.g., if a SNP is 

assigned a positive regression weight, the SNP is supposed to enhance oxytocin efficacy).   

 

As a result, we first found that all the weight values were significantly different from zero (t(3) > 7.6, 

PBonferroni-corrected < 0.05 in one-sample t-tests). Notably, despite the independence between different 
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types of oxytocin effects, the weight directions were the same across the different oxytocin efficacy 

(Figure 3D, Table 2), providing biological validation to the current observations.  

 

In particular, the weights assigned to rs53576 were consistently positive in all the regressions for 

every oxytocin response, whereas weights for rs2254298 were always negative. These results suggest 

that individuals with the major allele type (GG) in rs53576 were generally more responsive to 

oxytocin than those with the minor alleles (GA/AA), whilst individuals with the minor alleles for this 

SNP (GA/AA) are more responsive to the neuropeptide in both behavioral and neural manners than 

those with the major allele (GG).  

 

This distinct difference in the effects on oxytocin responsiveness between these two prominent OXTR 

SNPs was also confirmed by conventional univariate analyses (F(1, 221) >6.9, P <0.009 in repeated-

measures two-way ANOVA; t(226) >2.7, P <0.008 in post-hoc two-sample t-tests; Figure 4). These 

results imply dissociable biological functions of different OXTR SNPs when oxytocin affects autistic 

social symptoms (see Discussions). 

 

 

Discussions 

 

In the current study, we identified specific OXTR SNP combinations that could robustly and 

accurately predict the magnitude of behavioral and neural effects of oxytocin on social impairments in 

Japanese high-functioning adult males with ASD. Moreover, these observations were qualitatively 

reproduced when we used the data recorded from 35 drug-free participants (Supplementary Results, 

Supplementary Figures 7 and 8). Although these findings should be tested in a larger sample size in 

future studies, the current results provide new biological insights into the functions of several 

prominent OXTR variants, and this analysis procedure would contribute to establishment of future 

tailor-made precision medicines for ASD.  
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Biological implication  

 

The current observations imply biological functions of several OXTR SNPs in ASD. In particular, the 

results summarized in Table 2 suggest seemingly distinct biological functions of two prominent 

OXTR SNPs, rs2254298 and rs53576, whose associations with ASD and their social behaviors have 

been repeatedly reported (Guastella et al., 2012; Kanat et al., 2014; Kumsta and Heinrichs, 2013; 

Yamasue, 2013). Although such associations may depend on ethnicity (Brüne, 2012; Tost et al., 2011; 

Yamasue et al., 2011), previous studies suggested that AA/AG allele types of rs2254298 and rs53576 

(minor alleles for both SNPs) are relevant to atypical brain anatomy and relatively impaired social 

skills (Inoue et al., 2010; Meyer-Lindenberg et al., 2011; Rodrigues et al., 2009; Tost et al., 2011; 

2010), and are more likely to be observed in individuals with ASD than in controls (Liu et al., 2010; 

LoParo and Waldman, 2015; S. Wu et al., 2005; Yamasue, 2013). Such relationships between specific 

OXTR SNP and impairment of social skills in ASD were also seen in the current dataset 

(Supplementary Figure 9): if baseline responses to the current social task are close to behavioral and 

neural responses to placebo, ASD individuals with AA/AG allele in rs2254298 and rs53576 showed 

more severely impaired social behaviors and less neural activity in the medial prefrontal cortex than 

those with GG allele (F(1,221) ≥ 7.3, P < 0.008 in repeated-measures two-way ANOVA).  

 

Considering these previous findings and current observations, this study appear to indicate (i) that 

individuals with rs2254298A tend to have atypical neural systems for social cognition, show autistic 

symptoms, and be responsive to intranasal oxytocin administration, (ii) whilst those with rs53576A 

also tend to have atypical social cognition and be found in the autistic population, but they are likely 

to be less responsive to oxytocin than those with rs53576GG. This dissociation may also imply that, at 

least in the current Japanese participants, rs53576A might induce more severe functional impairments 

in oxytocin receptor than rs2254298A. 

 

Comparison between the six markers  
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The adjusted R2s for neurobiological responses were larger than those for behaviors (Supplementary 

Table 2), and Akaike Information Criteria for these regressions (Supplementary Table 4) were lower 

in the neurobiological biomarkers than in behaviors. These comparisons suggest that genetic 

information more suitably fits to neural responses than to behavioral ones (Anagnostou et al., 2014), 

which is reasonable if we assume that genetic variations first induce neurobiological changes that 

thereby result in behavioral alterations. Given such high sensitive neural responses, drug trials might 

need to include neurobiological indices as their outcomes (Yamasue, 2015). 

 

Clinical implication and significances 

 

Clinically, the current results could help developments of precision medicines for ASD. In contrast to 

single-dose oxytocin administration (Aoki et al., 2015; 2014; Domes et al., 2014; Gordon et al., 2013; 

Guastella et al., 2009; Watanabe et al., 2014a), trials that continually administered oxytocin to ASD 

individuals appear to have experienced difficulty in detecting sufficient behavioral oxytocin effects 

(Anagnostou et al., 2012; Dadds et al., 2014; Guastella et al., 2015). This discrepancy may indicate 

that continual administration of oxytocin amplifies the individual variability in sensitivity to the 

neuropeptide. Therefore, for practical clinical application of oxytocin, it is increasingly necessary to 

identify personal characteristics that determine individual oxytocin efficacy. In this regard, our results 

suggest that, at least in the Japanese population, examining specific OXTR SNPs in Table 2 prior to 

actual oxytocin administration may help us to infer their oxytocin efficacy and to prevent ineffective 

pharmaceutical intervention.  

 

Limitation  

 

The generalization capability of the current results may be restricted by the participants’ ethnicity 

(i.e., Japanese). Previous studies suggested ethic differences in the ASD–OXTR associations (Brüne, 

2012; Yamasue, 2013) and in relationships between OXTR variants and brain architecture (Tost et al., 
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2011; Yamasue et al., 2011). Therefore, we need to be cautious when generalizing the current 

observations to non-Asian groups.  

 

Another limitation is the sample size. Previous pharmacogenetics studies shown some strong genome-

wide associations in a relatively small sample size (Cirulli and Goldstein, 2010), and the current 

findings were robust against changes in analysis parameters and datasets. However, it is also the case 

that the current sample size may be insufficient for accurate regression analyses using a larger number 

of SNPs. Therefore, to examine more SNPs with sufficiently small inter-SNP multicollinearity, future 

studies will need to use larger sample. 

 

Conclusion  

 

We have examined associations between OXTR SNP variations and oxytocin efficacy in autism, and 

identified specific SNP sets that accurately predicted behavioral/neural responses to oxytocin in ASD. 

Although larger studies using different ethnic populations are necessary, the current findings and 

approach provide novel insight into neurobiological functions of ASD-related genetic variants, and 

would help the development of future precision medicines for ASD.  
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Figure legends 

Figure 1 

 

 

A. Selection of SNPs of interest.  

Based on an established database (Affymetrix Genome-Wide Human SNP Array 6.0) and previous 
studies (LoParo and Waldman, 2015; Yamasue, 2013), 27 OXTR SNPs were identified for 38 
participants with ASD (Supplementary Table 1). First, six SNPs were excluded because of their 
unbalanced ratios between their major and minor alleles across participants (more biased than 2:8), 
which could cause inaccurate machine-learning-based analysis. This 2:8 threshold is more 
conservative than that in previous literature (Johnson et al., 2009; Watanabe et al., 2011). Second, we 
examined multicollinearity between the remaining 21 SNPs, and 11 SNPs were summarized to 5 
patterns. The patterns of rs2268495 and rs4686302 were summarized to that of rs2268495 because the 
rs2268495 pattern was less biased than the rs4686302 pattern. Using this logic, the patterns of 
rs237877 and rs237878 were summarized to that of rs237878. Finally, 15 OXTR SNPs were selected 
(Table 1). 
 

B. Difference in across-participant SNP patterns 
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The remaining 15 OXTR SNPs showed ≥7 differences from each other, which is supposed to assure 
sufficient independency of these SNP patterns for the following regression analysis. 
 
C, D and E. Analysis procedure.  

Using the 15 OXTR SNPs, we performed machine-learning-based regression analyses to determine 
specific SNP sets with sufficient information to predict behavioral and neural oxytocin efficacy, 
which had been measured in our previous trials (Aoki et al., 2015; Watanabe et al., 2014a). Six types 
of oxytocin efficacy was defined as [1] nonverbal communication score = increased number of NVJ 
(oxytocin–placebo); [2] response smoothness = decreased reaction time for NVJ (placebo–oxytocin); 
[3,4] ACC/dmPFC activity = increased brain activity for NVJ in ACC/dmPFC (oxytocin–placebo; 
ACC, anterior cingulate cortex; dmPFC, dorsomedial prefrontal cortex); [5] dmPFC–ACC 
connectivity = increased NVJ-specific functional connectivity from dmPFC to ACC (oxytocin–
placebo); [6] NAA level in ACC = increased level of NAA in ACC (oxytocin–placebo).; NAA, N-
acetylaspartate.  
 
For each of the six types of oxytocin response, we conducted machine-learning-based automatic 
selections of the most informative SNP sets, and examined its predictability using an independent test 
dataset. Briefly, we ranked SNPs based on mean square errors (MSE) of the regressions using them 
(panel D), and extracted the most informative SNPs based on the probability of each SNP appearing 
in top10% least MSE SNP groups (panel E; see Supplementary Figure 1 for details). 
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Figure 2 
 

 

 

Informative SNPs. 

A and B. Minimum error and size of SNP sets.  
Panel A shows representative relationships between the number of SNPs used for the support vector 
regression (SVR) (N) and the minimum (min) MSE, which were estimated using data excluding those 
obtained from Participant #1 (Pt1). Panel B shows associations between the SNP number and min 
MSE in all patterns of training data sets. The vertical axes show ID of the participants whose data 
were excluded from the training data. For all the six types of oxytocin efficacy, the min MSE was 
relatively stable between N=1 and 10, whereas in N>10, the min MSE gradually increased. MSE, 
mean square error. 
 
C. Probability of SNP appearance in the Top10% informative SNP sets.  
The bar graphs show how often each SNP was included in the Top10% informative SNP groups when 
the analysis used data excluding those of Pt1. The neighboring color boxes show the appearance 
probability patterns in all the training data sets. The appearance probabilities were calculated as an 
average across 1 ≤ N ≤ 10. * and ** represent Bonferroni-corrected P values (*, < 0.05; **, < 0.01) in 
residual tests following chi-squared tests. † shows that the distribution of the appearance probability is 
significantly rare in post-hoc permutation tests (PBonferroni-corrected < 0.05). The dash lines represent the 
value of by-chance appearance probability (i.e., 1/15 = 0.067). Colored bars indicate the significantly 
informative SNPs. For every type of the oxytocin efficacy, the informative SNP sets with significantly 
high appearance probability were the same across all the 38 different training datasets 
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Figure 3 

 

 

Prediction of oxytocin efficacy based on OXTR SNPs 

A. Regression accuracy. 

The X axes show predicted oxytocin efficacy calculated by support vector regression (SVR) using the 
most informative SNP sets (colored SNPs in Figure 2C), whereas the Y axes show normalized values 
of the empirically observed effects. Each circle represents a participant. For all the oxytocin effects, 
we observed significantly high correlations between the predicted and empirical values (PBonferroni-

corrected <0.05; Supplementary Table 2). To reduce the effect of outliers, all the indices of oxytocin 
efficacy were normalized prior to the regression analysis.  
B and C. Based on these regression analyses, we calculated accuracy of this machine-learning 
technique for classifying participants into an oxytocin-responsive group and a relatively irresponsive 
group. As schematically shown in panel B, participants plotted in the light gray areas are regarded as 
correctly classified ones, whereas those in the dark gray areas are not. For all six types of oxytocin 
efficacy, the classification accuracy was significantly higher (*, PBonferroni-corrected < 0.05, **, PBonferroni-

corrected < 0.01 in binominal tests; panel C). 
C. Weight values assigned to the informative SNPs 
We examined the weight values assigned to the informative SNPs by the SVR analyses. The Y axes 
represent weight values averaged across four independent SVR calculations using four independent 
datasets. Notably, all the informative SNPs show consistent directions across different types of 
oxytocin efficacy (e.g., weights assigned to rs53576 are significantly positive in all the responses). *, 
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PBonferroni-corrected < 0.05; **, PBonferroni-corrected < 0.01, in one-sample t-tests. Error bars, s.e.m. See also 
Table 2.  
Figure 4 

 

 
 
 
Comparison of oxytocin efficacy based on variations of a specific SNP. 

For the two prominent OXTR SNPs (rs2254298 and rs53576), we also performed univariate simple 
comparisons of the oxytocin efficacy between individuals with major allele and those with minor 
alleles. The overall trends that were evaluated as a main effect of SNP patters support the results of 
the original multivariate analyses (F(1, 221) > 6.9, P < 0.009 in two-way ANOVA of normalized 
oxytocin responses: [major homozygous allele, combined minor alleles] × [six types of oxytocin 
response]). Error bars, standard deviation. 
 
  

 at U
niversity C

ollege L
ondon on N

ovem
ber 17, 2016

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

http://scan.oxfordjournals.org/


Page 26 of 31 

Table 1. SNPs of interest 

SNP 
Allele 
assigned to 2 

Allele 
assigned to 1 

rs11914920/rs10490801 AA/TT G carrier/C carrier 

rs2270463 GG A carrier 

rs2072582 GG A carrier 

rs4686302 CC T carrier 

rs237877/rs237878 CC/TT T carrier/C carrier 

rs2139184 CC T carrier 

rs11706648 AA G carrier 

rs237887 GG A carrier 

rs2254295/rs2254298/rs2268491 TT/GG/CC C carrier/A carrier/T carrier 

rs11131149 GG A carrier 

rs53576 GG A carrier 

rs237895 TT C carrier 

rs2268495/rs4686302 GG/CC A carrier/T carrier 

rs237900 GG A carrier 

rs17049528/rs6777726 GG/GG A carrier/A carrier 
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Table 2. Effects of OXTR SNPs on oxytocin efficacy 

 

  
Effects of major alleles on oxytocin efficacy: increase (+) or decrease (–) 

 

SNP 
Major 

allele 

Nonverbal 

communication 

score 
Response 

smoothness 
ACC 

activity 
dmPFC 

activity 

dmPFC–

ACC 

connectivity 

NAA 

level 

in ACC 

 

rs4686300 CC      + 
 

rs237877/rs237878 CC/TT      – 
 

rs11706648 AA +  + +  + 
 

rs237887 GG  –      

rs2254295/rs22542
98/rs2268491 

TT/GG/
CC – – – – –  

 

rs11131149 GG –  –     

rs53576 GG + + + + + + 
 

rs2268495/rs46863
02 

GG/CC –  –  –   

rs237900 GG  +      

rs17049528/rs6777
726 

GG/GG  +    + 
 

 
ACC, anterior cingulate cortex; dmPFC, dorsal medial prefrontal cortex; NAA, N-acetylaspartate. 
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