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We report on a measurement of the DT-meson production cross section as a function of transverse
momentum (p7) in proton-antiproton (p p) collisions at 1.96 TeV center-of-mass energy, using the full data
set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb~! of
integrated luminosity. We use D™ — K~z"z" decays fully reconstructed in the central rapidity region
|y] < 1 with transverse momentum down to 1.5 GeV/c, a range previously unexplored in pp collisions.
Inelastic p p-scattering events are selected online using minimally biasing requirements followed by an
optimized offline selection. The K~z 7" mass distribution is used to identify the D signal, and the D™
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transverse impact-parameter distribution is used to separate prompt production, occurring directly in the
hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D" signal
of 2950 candidates corresponding to a total cross section o(D",1.5 < pp < 14.5 GeV/c,|y| < 1) =
71.9 + 6.8(stat) + 9.3(syst) ub. While the measured cross sections are consistent with theoretical
estimates in each py bin, the shape of the observed p; spectrum is softer than the expectation from
quantum chromodynamics. The results are unique in pp collisions and can improve the shape and

uncertainties of future predictions.

DOI: 10.1103/PhysRevD.95.092006

Measurements of cross sections for the production of
hadrons containing bottom or charm quarks (heavy flavors)
in hadron collisions offer fundamental information to test
and refine phenomenological models of the strong inter-
action at small momentum transfer, a regime in which
perturbative expansions are challenging. In addition, in
searches for astrophysical neutrinos, knowledge of charm
production cross sections has been demonstrated [1] to
improve estimates for background rates from neutrinos
produced in decays of charm hadrons from cosmic-ray
interactions with atmospheric nuclei.

The first studies of heavy-flavor production performed at
the Tevatron proton-antiproton (pp) collider in 1992—-1996
[2] yielded cross sections significantly larger than the
predicted values [3] and prompted a dedicated effort in
refining calculations [4], which resulted in reduced dis-
crepancies. The program continued during Tevatron Run II
(2001-2011), including first measurements of charm-
meson cross sections using p p collisions at center-of-mass
energy /s = 1.96 TeV [5]. Since 2010, CERN’s LHC
pp collider has replaced the Tevatron as the most prolific
charm-meson source, allowing the ALICE and LHCb
experiments to report measurements of charm cross sec-
tions at /s = 2.76-13.00 TeV [6].

Measurements based on pp collisions, and probing
different collision energies, remain essential to extend
the understanding of QCD, because differing admixtures
of parton-level processes contribute at different energies
and initial states. Previous measurements in pp collisions
[5] were restricted to mesons with transverse momentum
pr > 6.0 GeV/c because of the transverse-momentum
thresholds used in the online event selection (trigger).
The transverse momentum is the momentum component
in the plane transverse to the beam. Extending the reach to
lower pz, hence further into the nonperturbative regime,
provides novel and unique constraints to improve QCD
phenomenological models.

In this paper, we report on a measurement of the
production cross section for D' mesons down to
1.5 GeV/c pp, a range unexplored in pp collisions, and
unlikely to be explored in the foreseeable future with this
initial state. The measurement is performed as a function
of meson transverse momentum using DT — K~ztz"
decays reconstructed in the full CDF Run II data set,

corresponding to 10 fb~! of integrated luminosity.
Throughout this paper, charge-conjugate decays are
implied. Candidate D" signal events are selected from a
minimum-bias sample, collected by imposing minimal
requirements on the event features in order to minimize
biases on the physics properties of charm decays. Events
are divided into independent subsamples (p bins) accord-
ing to the D™ candidate py. In each, we apply a data-driven
optimization of the offline selection and perform a two-
dimensional simultaneous fit of the resulting distributions
of the K~z"z" mass and D" impact parameter, defined
as the minimum transverse distance between a particle’s
trajectory and the beam. The fit determines, for each py
bin, the prompt D yield (D' mesons directly produced in
the pp interaction or originating from charm resonances)
by statistically subtracting secondary D* candidates (D™
mesons originating from b-hadron decays). Each prompt
yield is combined with the corresponding reconstruction
and selection efficiencies, derived using simulation, to
determine the cross section,

N;/2
R T S— 1
7T TLdt-e;-B (1)

where N; is the observed number of prompt Dt and D~
mesons in the ith py bin. The factor 1/2 is included
because both D' and D™ mesons contribute to N; and we
report results solely for DT, assuming charge-symmetric
production of charm quarks in the strong pp interaction.
The integrated luminosity [ Ldr is normalized to an
inelastic cross section of 6,; = 60.7+2.4 mb [7], and
€; 1s the global detection, reconstruction, and selection
efficiency. The branching fraction used for the DT —
K ntnt decay is B = (9.46 £ 0.24)% [8].

The CDF 1I detector is a multipurpose magnetic spec-
trometer surrounded by calorimeters and muon detectors
[9]. It is roughly cylindrically symmetric around the beams
and is described in a cylindrical coordinate system with
the z axis along the incident proton beam direction. The
detector components relevant for this analysis are as
follows. A silicon microstrip vertex detector and a cylin-
drical open-cell drift chamber immersed in a nearly uniform
1.4 T axial magnetic field allow the reconstruction of
charged-particle trajectories (tracks) in the pseudorapidity
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range |n| < 1. The vertex detector contains seven concen-
tric layers of single- and double-sided silicon sensors at
radii between 1.5 and 22 cm, each providing a position
measurement with up to 15(70) ym resolution in the
azimuthal (longitudinal) direction [10]. The drift chamber
has 96 measurement layers, located between 40 and 137 cm
in radius, organized into alternating axial and 42° stereo
superlayers [11]. The transverse momentum is determined
with a resolution of ¢, /p} ~0.07% (GeV/c)™', corre-
sponding to a typical mass resolution of 6.0 MeV/c? for a
D" — K-ztzxt decay. Gas Cherenkov detectors (CLC)
covering the symmetric regions at a small polar angle
around the interaction region 3.7 < || < 4.7 are used to
detect hard-scatter interactions and measure luminosity
[12]. CDF has a three-level trigger system. We use events
collected by the zero- and minimum-bias triggers, which
are designed to collect events while introducing minimal
bias in the properties of the particles produced in the
collision. The zero-bias trigger applies no selection require-
ments and accepts a 107 fraction (prescale factor) of pp
crossings, randomly chosen. At the first trigger level, the
minimum-bias trigger accepts a 107> prescale fraction of
the events in which a time coincidence between signals in
the CLC at opposite sides of the interaction region is
detected, which enriches the sample in pp crossings that
yield inelastic interactions. At the second (third) trigger
level, the minimum-bias trigger applies no requirements
and accepts events with 3 (1) Hz maximum rates. The large
prescale factors and accept-rate reductions avoid saturation
of the data-writing rate. The resulting samples contain
183 million zero-bias and 133 million minimum-bias
events. Of these, 409 events are common to both samples
and used only once in the analysis.

The offline reconstruction of D™ — K~z "z candidates
is based solely on tracking information without using
particle identification. The same-charge particles are
assigned the pion mass. Three good-quality tracks, asso-
ciated with drift-chamber and silicon-detector information
and consistent with a K~z"z" decay, are combined in a
kinematic fit to a common decay vertex to form a D™ signal
candidate. Additional selection criteria are applied on the
vertex-fit quality; the minimum azimuthal separation of any
pair of signal tracks; the product of their impact parameters;
and the minimum value of DT transverse decay length
projected onto the direction of its pr, L. These criteria are
fully efficient for signal and reduce backgrounds from
combinations of random charged particles (combinatorics).
No events are observed with more than one reconstructed
candidate. We further improve the signal-to-background
ratio by optimizing the selection, separately for events
restricted to each of the five D candidate p; bins, 1.5-2.5,
2.5-3.5, 3.54.5, 45-6.5, and 6.5-14.5 GeV/c. First,
we apply an upper threshold of 100 yum on the impact
parameter of the D™ candidates. This suppresses secondary
DT candidates, which are less likely to point back to the pp

PHYSICAL REVIEW D 95, 092006 (2017)
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FIG. 1. Distribution of K~z"z" mass for the whole sample
with the fit overlaid.

vertex because of the combined effect of the long lifetime
of b hadrons and the energy released in their decay. This
requirement is applied only for the optimization (see
below) but is lifted in further analysis, where a fit of the
D impact-parameter distribution separates statistically the
signal of prompt D' candidates from the secondaries.
Then, we divide the sample randomly into two subsamples.
In each, we conduct an independent optimization by
maximizing the quantity S/+/S + B over 1000 possible
configurations of requirements on the minimum p7 (p7 in)
of any two final-state particles, minimum L,,, and maxi-
mum value of the vertex-fit y>. The signal (background)
yields S (B) are estimated from fits of the K=zt 7" mass
distributions with a Gaussian model for the signal and a
smooth empirical function for the background. Finally, the
optimal configuration resulting from each subsample is
applied on the complementary subsample. The use of a
data-driven optimization avoids the modeling uncertainties
of simulation-driven methods. Biases due to statistical
fluctuations are avoided by applying selection criteria
identified on one subsample to the other half of the
sample. The optimized criteria vary in the ranges pr nin >
0.6-1.1 GeV/e, L,, > 600-700 yum, and »* <2-7,
depending on the subsample and p; bin. The K~ztz™
mass distribution of the resulting sample, summed over the
full py range, is shown in Fig. 1. A prominent narrow peak
of approximately 3400 D™ — K~z z" decays, comprising
both prompt signal and secondary charm candidates, over-
laps a smooth background dominated by combinatorics. In
each p; bin, we determine the yield of prompt D" decays
using a simultaneous maximum-likelihood fit to the
unbinned distributions of K~z "z mass, to separate D™
decays from combinatorics, and DT impact parameter, to
separate prompt from secondary D™ decays. The fit model
is a linear combination of probability density functions
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FIG. 2. Distributions of (a) the K~z z" mass for candidates with 2.5 < p; < 3.5 GeV/c and (b) the D™ impact parameter for those
candidates, further restricted to have K~z " mass within three standard deviations from the peak value. Fits are overlaid. Panels (c)
and (d) show the same distributions for candidates with 6.5 < p; < 14.5 GeV/c.

(PDFs) for a prompt D™ signal, secondary D%, and
combinatorial background, each consisting of the product
of mass and impact-parameter PDFs. In the mass PDF,
prompt and secondary components are modeled jointly
with a Gaussian function determined from simulation; the
background PDF is a second-order polynomial function
derived empirically from regions with D™ mass in 1.7-1.8
or 1.9-2.0 GeV/c? (sidebands). In the impact-parameter
PDF, the prompt (secondary) component is modeled with
the sum of three narrow (broad) Gaussian distributions
determined using simulation, whereas the background is
modeled with a combination of Gaussian shapes that
empirically reproduce the impact-parameter distribution
of sideband events. The only free parameters in the fit
are the numbers of prompt D' (signal) decays and
secondary D™ decays. Tests on simplified simulated
experiments show that the fit estimates are unbiased and
have proper Gaussian uncertainties. Figure 2 shows exam-
ples of fits in two py bins, 2.5 < pr < 3.5 GeV/c¢ and
6.5 < pr < 14.5 GeV/c. A total signal of approximately
2950 prompt D decays is obtained. The observed fraction
of secondary decays is typically 15% of the total D™ yield
but ranges between 0% and 40% with large uncertainties,
depending on pr. We vary the signal and background
models, and their parameters, and attribute systematic
uncertainties on prompt-signal yields accordingly. The
uncertainties associated with the impact-parameter model,

resulting from individual variations of primary, secondary,
and background shapes, are in the range 0.9%-1.5%,
depending on the candidate py. These dominate over the
0.10%—0.3% variations associated with the mass resolu-
tion-shape model.

We factorize the reconstruction efficiency e;, relative to
the ith p; bin, into the product of the trigger efficiency, the
offline efficiency for reconstructing three tracks that meet
the quality and fiducial requirements in the drift chamber,
the offline efficiency for assigning the information from the
silicon detector to these tracks, and the efficiency of the
offline selection requirements. The zero-bias trigger effi-
ciency is 100% by construction. The minimum-bias trigger
efficiency is determined to be (98.87)7)% from the ratio of
D signal yields observed in zero-bias events that meet,
or fail, the minimum-bias requirements. All offline effi-
ciencies are known to be reproduced accurately by the
simulation [13] except for the term associated with the
silicon detector. We therefore use efficiencies derived
from simulation as inputs for the measurement and use
control samples of data to obtain systematic uncertainties
that cover potential data-simulation discrepancies in the
silicon-related efficiency. Offline efficiencies ranging from
0.27% to 7.5% are determined from simulated events
containing D™ — K~z z" decays, in which distributions
are weighted so that the multiplicity of prompt vertices
reproduces the distribution observed in data. Control

092006-6



MEASUREMENT OF THE D*-MESON PRODUCTION ...

TABLE 1. Prompt D*-meson cross section results. All cross
section values are integrated over the range |y| < 1. The second
column (“effective p7”) lists the pr values at which the differ-
ential cross section equals its average over that p; bin, as
determined using Ref. [14]. Values in the third (fourth) column
are averaged (integrated) over each p7 bin. The first contribution
to the uncertainties is statistical, and the second is systematic.

prrange EBff. pr  do(D".|y| <1)/dpr  o;(D*.|y[ < 1)
(GeV/c) (GeV/e) (ub/GeV/c) (ub)
1.5-2.5 2.04 327+£65+42 327+£65+42
2.5-35 2.98 20.6 £ 1.8 £2.7 20.6 £ 1.8 £2.7
3.5-4.5 3.97 95+08=+1.2 95+08=£1.2
4.5-6.5 5.38 32+£03+£04 6.5£05£0.38
6.5-14.5 9.19 0.34+£0.03 £0.04 2.69+0.22+0.35

samples of muons from J/w — utu~ decays and low-
momentum pions from D** — D%(— K~z*")z* decays, in
which only drift-chamber information is used to select and
reconstruct the charged particle, are used to determine
silicon efficiencies as functions of charged-particle p; and
data-taking time from the fraction of charged particles that
also meet the silicon requirements. The results are com-
pared with silicon efficiencies determined in simulation,
and the maximum observed deviation, 3.7%, is used as the
systematic uncertainty on the per-track efficiency, resulting
in an 11.5% uncertainty common to all D" transverse-
momentum bins. This is the largest systematic uncertainty.
Additional systematic uncertainties associated with imper-
fect descriptions of multitrack efficiency correlations,
ionization energy loss, and hadronic interactions in the
inner tracker material are negligible. Repeating the meas-
urement on independent subsamples of data split according
to data-taking time and the D candidate charge shows no
evidence of residual biases.

The measured differential cross sections, averaged over
each p; bin and integrated over the rapidity range |y| < 1,
are shown in Table I and displayed in Fig. 3. The observed
cross sections are compatible with those predicted in recent
calculations [14] and with those determined in early Run II
using an independent data set [5]. The total cross section
for the production of D' mesons in the kinematic range
1.5 < py <145 GeV/c and |y| < 1, obtained by sum-
ming over all pr bins, is 71.9 £ 6.8 £ 9.3 ub, where the
first contribution to the uncertainty is statistical and the
second is systematic.

In summary, we report on a measurement of the prompt
D" -meson production cross section, as a function of
transverse momentum, in proton-antiproton collisions at
/s = 1.96 TeV, using the full data set collected by the
CDF experiment in Tevatron Run II, and corresponding
to 10 fb~! of integrated luminosity. We use prompt
DT — K~ztn" decays with transverse momenta down
to 1.5 GeV/c fully reconstructed in the central rapidity
region |y| < 1. The differential cross section is averaged in
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FIG. 3. Differential cross section as a function of py for prompt

D" mesons with pr > 1.5 GeV/c, compared with predictions
from Ref. [14]. In each bin, the data point is displayed at the pr
value at which the differential cross section equals its average
over that py bin, as determined using predictions from Ref. [14].
These “‘effective p;” values are also listed in Table I.

each pr bin and integrated over the D™ rapidity interval
ly] < 1. The total cross section is o(D",1.5<pr<
14.5GeV/c,|y| <1)=71.9+£6.8(stat) £9.3(syst) ub. The
results are unique in that they probe strong-interaction
dynamics in a low-p; regime unexplored in charm-meson
production from proton-antiproton collisions. At higher
transverse momentum, where previous measurement are
available, the current measurements agree with earlier
results [5]. While the individual measurement points lie
within the band of theoretical uncertainty, the experimental
spectrum is systematically shifted to high p; values as
compared with theory. This motivates the calculation of
theoretical cross sections that include next-to-next-to-
leading-order corrections, which are missing in current
predictions thus contributing a large fraction of their
uncertainty. Comparison of our results with higher-order
predictions will further refine the shape of the theoretical
cross section as a function of transverse momentum and
reduce its uncertainty. The results are also helpful for
understanding backgrounds in astrophysical ultra-high
energy neutrino experiments, where the contributions from
charm hadrons produced in the interaction of cosmic rays
and atmospheric nuclei are the dominant background.
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