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Chapter 1

Syzygies and minimal resolutions
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Department of Mathematics, University College London, Gower Street,
London WC1E 6BT

feaj@math.ucl.ac.uk

The essence of linear algebra over a field resides in the fact that every vector

space is free; that is, has a spanning set of linearly independent vectors. The

study of linear algebra over more general rings attempts to approximate this
situation by the method of free resolutions. When a module M is not free we

make a first approximation to its being free by taking a surjective homomor-

phism ε : F0 →M where F0 is free to obtain an exact sequence

0 → J1 → F0
ε→M → 0.

Repeating the construction we approximate J1 in turn by a free module to

obtain an exact sequence 0 → J2 → F1 → J1 → 0. Iterating and splicing we

obtain a free resolution of M in the sense of Hilbert [2]

- Fn
∂n+1 -

@@R ���

Fn−1

Jn

∂n -∂n−1 . . . . . . -∂2 F1 -

@@R ���

F0

J1

∂1 -ε M- 0

We study the relationship between the intermediate modules Jn, the so-called

syzygies of M , and those free resolutions ofM which are in some sense minimal.

1. Introduction:

The notion of free resolution has its origin in the classical theory of invari-

ants [2] and the study of graded modules over polynomial rings F[x1, . . . , xn]

where F is a field. In this context there is a well defined notion of min-

imal free resolution. Such minimal resolutions have a strong uniqueness

property; not only are they themselves unique up to isomorphism but in

addition any other free resolution is a direct sum of the minimal free resolu-

tion with a free acyclic complex. In [1], Eilenberg gave an extension of this

1
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uniqueness property by essentially formal arguments. However, despite the

elegance of Eilenberg’s approach, its scope remains relatively narrow.

The main technical limitation of Eilenberg’s theory arises from his defi-

nition of minimality. This places so strong a restriction on the class of rings

to which it may be applied as to render it a priori inapplicable to many

cases of interest. Consequently we are forced to reformulate matters in a

rather more general context.

Our primary notion is that of a special class S of projectives in an

abelian category A; the precise formulation is given in §6. Suffice to say

here that S plays a role analogous to that of finitely generated stably free

modules over a ring. For an object M ∈ A we consider S-resolutions of M ,

that is, exact sequences in A of the form

S = (· · · ∂n+1→ Sn
∂n→ · · · → S1

∂1→ S0 →M → 0)

where each Sr ∈ S. To such a resolution we may add a S-resolution of 0

T = (· · · → Tn → · · · → T1 → T0 → 0)

to obtain another S-resolution S⊕T of M thus

S⊕T = (· · · → Sn ⊕ Tn → · · · → S1 ⊕ T1 → S0 ⊕ T0 →M → 0).

S is said to be minimal when, for any S-resolution S′ there exists a com-

mutative diagram · · ·
∂′n+1→ S′n

∂′n→ · · · · · · ∂
′
1→ S′0

η→ M → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

· · · ∂n+1→ Sn
∂n→ · · · · · · ∂1→ S0

ε→ M → 0


where each ϕr is epimorphic. When they exist, minimal resolutions are

unique in the following sense:

Theorem A : Let S and S̃ be S-resolutions of M ; if S is minimal then

S̃ ∼= S⊕T for some S-resolution T of 0. In particular, if S̃ is also minimal

then S̃ ∼= S.

In applications the requirement thatM has an S-resolution is usually a very

strong restriction. We may relax it by considering partial S-resolutions or

n-stems. Thus an n-stem over M is an exact sequence in A of the form

S = (Sn
∂n→ · · · → S1

∂1→ S0 →M → 0)

where each Sr ∈ S. The n-stem S(n) is minimal when, for any n-stem S̃(n)

there exists a commutative diagram
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 S̃n
∂̃n→ · · · · · · ∂̃1→ S̃0

η̃→ M → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

Sn
∂n→ · · · · · · ∂1→ S0

ε→ M → 0


in which each ϕr is epimorphic. For n-stems, Theorem A is modified to:

Theorem B : If S(n), S̃(n) are n-stems over M and S(n) is minimal then

S̃(n−1) ∼=Idm
S(n−1) ⊕T(n−1) for some (n-1)-stem T(n−1) over 0.

If S(n) = (Sn
∂n→ · · · → S1

∂1→ S0 →M → 0) is an n-stem its syzygies are

the intermediate objects (Jr)1≤r≤n obtained via the canonical decomposi-

tion of ∂r as the composition of a monomorphism ir and an epimorphism

pr thus:
-

@
@
@R �

�
��

Sr Sr−1

Jr

∂r

pr ir

Minimality also implies a relation amongst syzygies. If J , J̃ ∈ A we say

that J̃ splits over J when J̃ ∼= J ⊕ T for some T ∈ S; we will prove:

Theorem C : Let S(n) and S̃(n) be n-stems over M having syzygies

(Jr)1≤r≤n (J̃r)1≤r≤n respectively; if S(n) is minimal then J̃r splits over

Jr for 1 ≤ r ≤ n− 1.

2. Some categorical preliminaries :

We assume familiarity with the notions of category and functor ([5]). We

denote by Ab the category of abelian groups and homomorphisms. In what

follows we shall work with subcategories A of Ab which satisfy certain

tameness conditions. These are defined formally below. However, it is

instructive to consider them as they relate to two basic examples; thus

suppose that Λ is a ring and consider

ModΛ : the category of right Λ-modules and Λ-homomorphisms:

By a graded Λ-module we mean a Λ-module M given as a direct sum

M =
⊕
n≥0

Mn where each Mn is a Λ-submodule. A graded homomorphism

f : M → N between two such graded modules is then a Λ-homomorphism

satisfying f(Mn) ⊂ Nn for each n and we may form

G(Λ) : the category of graded right Λ-modules and Λ-homomorphisms.
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Observe thatModΛ may be regarded as the subcategory of G(Λ) consisting

of graded modules in which Mr = 0 for r > 0. In turn, G(Λ) may be

regarded as a subcategory of Ab by forgetting both the grading and the

Λ-structure. In the above examples the following notions are well defined;

(i) Zero ; (ii) Kernels; (iii) Images; (iv) Exact sequences;(v) Quotients.

In either case the nature of ‘zero’ should be obvious. Any module has a

zero and hence a zero submodule. When f : M → N is a Λ-homomorphism

Ker(f) = {x ∈M | f(x) = 0} ; Im(f) = {f(x) | x ∈M}.

Then Ker(f) is a submodule of M and Im(f) a submodule of N . Moreover

if f is a graded homomorphism then Ker(f) and Im(f) are graded by

Ker(f)n = Ker(f) ∩Mn ; Im(f)n = Im(f) ∩Nn.

A sequence of morphisms A1
α1→ A2

α2→ . . .
αn−1→ An

αn→ An+1 is said to

be exact when Ker(αr+1) = Im(αr) for 1 ≤ r ≤ n− 1. If K ⊂ M is a Λ-

submodule the quotient group M/K admits a natural Λ-module structure.

Moreover, if K is a graded submodule of the graded module M then M/K

is graded by (M/K)n = Mn/Kn. One may also construct

(vi) Pullbacks ; (vii) Direct products ; (viii) Pushouts ; (ix) Direct sums

We first recall the definitions. If A is a category and fi : Mi → N are

morphisms in A (i = 1, 2) then by a pullback for f1, f2 we mean an object

lim←−(f1, f2) in A together with morphisms πi : lim←−(f1, f2) → Mi such that

f1 ◦ π1 = f2 ◦ π2 which possess the following universal property:

If αi : X → Mi are morphisms in A such that f1 ◦ α1 = f2 ◦ α2 then

there exists a unique morphism α : X → lim←−(f1, f2) making the following

diagram commute

HH
HH

HHj

PPPPPPPPPPPPPPq

@
@
@
@
@
@
@
@
@R ? ?

-

-

α1

α
α2

π1 f2

π2

f1

lim←−(f1, f2)

X

M1

M2

N

When lim←−(f1, f2) exists the uniqueness condition on α guarantees that

lim←−(f1, f2) is unique up to isomorphism in A. We say that A has pullbacks
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when lim←−(f1, f2) exists for any pair of morphisms fi : Mi → N (i = 1, 2).

In ModΛ pullbacks are defined by

lim←−(f1, f2) = {(m1,m2) ∈M1 ×M2 | f1(m1) = f2(m2)}

where πi : lim←−(f1, f2) → Mi is the obvious projection map. Moreover, in

the special case where N = 0 the pullback construction simply yields the

direct product M1×M2 showing that any pullback lim←−(f1, f2) is a submodule

of M1×M2. Note that in G(Λ) a direct product M×M ′ of graded modules

admits a grading given by (M ×M ′)r = Mr ×M ′r which in turn induces

a grading on any pullback contained therein.

Pushout is the dual notion to pullback. Here it is useful to recall that if

A is a category the dual category A∗ has the same objects and morphisms

as A but with the direction of all arrows reversed. One says that A has

pushouts when the dual category A∗ has pullbacks. Thus if fr : N → Mi

(r = 1, 2) are morphisms in A by a pushout for f1, f2 we mean an object

lim−→(f1, f2) in A together with morphisms ir : Mr → lim−→(f1, f2) such that

i1 ◦ f1 = i2 ◦ f2 which possess the universal property which is dual

to pullback. When lim−→(f1, f2) exists the uniqueness condition on α again

guarantees that lim−→(f1, f2) is unique up to isomorphism. In the special case

where N = 0 the pushout construction yields the direct sum M1⊕M2. In

both ModΛ and G(Λ) the direct sum M1 ⊕M2 coincides with the direct

product M1 ×M2 with the canonical injections ir : Mr →M1 ⊕M2

i1(x) = (x, 0) ; i2(x) = (0,x).

In ModΛ lim−→(f1, f2) = (M1 ⊕M2)/Im(f1 ⊕−f2). Note that this module

has a natural grading when f1, f2 are graded homomorphisms so that G(Λ)

also has pushouts.

In what follows we work with categories A in which the above notions

(i) - (ix) are all present. Recall that a category A is said to be abelian (cf

[4], [5]) when the following properties (I), (II). (III) hold†:

(I) A has a zero object;

(II) A has pullbacks and every monomorphism is a kernel;

(III) A has pushouts and every epimorphism is a cokernel.

In any abelian category A we define an addition on all HomA(A,B) thus:

+ : HomA(A,B) × HomA(A,B) → HomA(A,B) ; f+g = (f, g)◦δ

where δ : A→ A⊕A is the diagonal and the morphism (f, g) : A⊕A→ B

†We note (cf [5] Chapter 1) that there are many apparently different, though equivalent,

ways of defining the notion of abelian category.
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is induced from f : A→ B and g : A→ B by regarding A⊕A as a pushout.

When A is an abelian category we have the following additivity property

whose proof is left as an exercise:

(x) HomA(A,B) is naturally an abelian group for any A,B ∈ A.

Recall that a category A is said to be small when its objects form a set

rather then merely a class. In this context, we note the following theorem

of Lubkin ([4], [5])

Theorem 2.1 : If A is a small abelian category there is a functor

ι : A → Ab which preserves addition, exact sequences and for which

HomA(A,B)
i∗
� HomAb(ι(A), ι(B)) is injective for all A,B ∈ A .

Lubkin’s Theorem has the practical consequence that diagrams in any

abelian category can be regarded simply as diagrams of additive abelian

groups and homomorphisms; we take advantage of this in what follows.

By a tame category we mean one which is equivalent to a small sub-

category of Ab and which is abelian in the above sense. In consequence

we see that every small abelian category is tame. Evidently ModΛ and

G(Λ) are abelian categories. However, without some size restriction on the

objects neither category is tame. One especially convenient restriction is

to consider only rings Λ which are countable. We then denote by Mod∞Λ
the full subcategory of ModΛ consisting of countably generated modules.

Likewise G∞(Λ) will denote the full subcategory of G(Λ) whose underlying

modules are countably generated. It follows easily that:

Proposition 2.2: If Λ is a countable ring then Mod∞Λ and G∞(Λ) are

tame abelian categories.

3. Splitting and projectives :

In what follows, A will denote a tame abelian category. We recall the

following basic result, the Five Lemma which, via Lubkin’s Theorem, it

suffices to prove in Ab.

(3.1) Suppose given a commutative diagram in A with exact rows

A1
α1→ A2

α2→ A3
α3→ A4

α4→ A5

f1 ↓ f2 ↓ f3 ↓ f4 ↓ f5 ↓
B1

β1→ B2
β2→ B3

β3→ B4
β4→ B5

If f1, f2, f4 and f5 are all isomorphisms then f3 is also an isomorphism.
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Given objects A, C ∈ A there are a canonical morphisms iA : A → A ⊕ C
and πC : A⊕C → C allowing the construction of the trivial exact sequence

T = (0→ A
iA−→ A⊕ C πC−→ C → 0).

An exact sequence E = (0→ C
i→ B

p→ A→ 0) in A is said to split when

it is isomorphic to the trivial exact sequence by means of a commutative

diagram as follows:

0→ A
i−→ B

p−→ C → 0

↓ IdA ↓ ψ ↓ IdC

0→ A
iA−→ A⊕ C πC−→ C → 0.

It follows from the Five Lemma that such a splitting ψ is necessarily an

isomorphism. We say that E splits on the left when there exists a morphism

r : B → A such that r ◦ i = IdA. Finally we say that E splits on the right

when there exists a morphism s : A→ B such that p ◦ s = IdC . If ψ is a

splitting of E then r = πA◦ψ is a left splitting of E . Conversely if r : B → C

is a left splitting of E then ψ =
(
r
p

)
: B → A⊕ C is a splitting. If ψ is a

splitting of E then s = ψ−1◦iC : C → B is a right splitting. Conversely if s

is a right splitting then by the Five Lemma, (i, s) : A⊕C → B is necessarily

an isomorphism and ψ = (i, s)−1 is then a splitting. To summarise:

(3.2) E splits ⇐⇒ E splits on the left ⇐⇒ E splits on the right.

We say that an object Q ∈ A is projective when every exact sequence of the

form 0→ C
i→ B

p→ Q→ 0 splits. The following is fundamental:

Proposition 3.3: (Schanuel’s Lemma) Let (0 → Dr
ir→ Pr

fr→ M → 0)

be exact sequences in ModΛ (r = 1, 2); if P1 and P2 are projective then

D1 ⊕ P2
∼= D2 ⊕ P1.

Proof : Form the pullback Q = lim←−(f1, f2) Then there is a short exact

sequence 0 → D2 → Q
π1→ P1 → 0 which splits as P1 is projective. Hence

Q ∼= D2 ⊕ P1. Likewise the short exact sequence 0→ D1 → Q
π2→ P2 → 0

splits as P2 is projective. Thus D1 ⊕ P2
∼= Q ∼= D2 ⊕ P1 as claimed. �
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4. Some standard diagrams :

Consider the following commutative diagram in a tame abelian category A

in which it is assumed that all rows and columns are exact.

(4.1)



0

↓

S−
î−→ S

p̂−→ S+

↓ j− ↓ j ↓ j+
K̃

ĩ−→ F̃
p̃−→ J̃

↓ ϕ− ↓ ϕ ↓ ϕ+

0 −→ K
i−→ F

p−→ J → 0

↓
0

By Lubkin’s Theorem we may replace it by an equivalent diagram in Ab.

A straightforward diagram chase then shows that, in (4.1):

(4.2) ϕ and p̂ are both epimorphic ⇐⇒ p̃ and ϕ− are both

epimorphic.

Consider likewise

(4.3)



0 0 0

↓ ↓ ↓
C2

γ2→ C1
γ1→ C0

↓ j2 ↓ j1 ↓ j0
B3

β3→ B2
β2→ B1

β1→ B0

↓ ϕ3 ↓ ϕ2 ↓ ϕ1 ↓ ϕ0

A3
α3→ A2

α2→ A1
α1→ A0

↓ ↓ ↓ ↓
0 0 0 0

(4.4) Suppose in (4.3) that the columns are all exact; if the rows

(A3
α3→ A2

α2→ A1
α1→ A0) and (B3

β3→ B2
β2→ B1

β1→ B0) are exact then

(C2
γ→ C1

γ→ C0) is also exact.

In the following commutative diagram C over A we assume all rows and

columns are exact:
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(4.5) C =



0 0 0

0 C2 C1 C0 0

0 B2 B1 B0 0

0 A2 A1 A0 0

0 0 0

-

-

-

-

-

-

-

-

-

?

?

?

?

?

?

?

?

?

?

?

?

-

-

-

iC

iB

iA

pC

pB

pA

j2 j1 j0

ϕ2 ϕ1 ϕ0

We say that the diagram C of (4.5) splits completely when there are mor-

phisms rt : Bt → Ct for t = 0, 1, 2 such that rt ◦ jt = IdCt
and such that

the following diagram commutes

C2 C1 C0

B2 B1 B0

-

-

-

-

6 6 6

iC

iB

pC

pB

r2 r1 r0

The triple (r0, r1, r2) is then called a complete splitting of C. Evidently r0

is a (left) splitting of the exact sequence

0→ C0
j0→ B0

ϕ0→ A0→0

and we say the complete splitting (r0, r1, r2) extends the splitting r0.

Theorem 4.6: Assume in (4.5) above that all rows and columns are exact

and that A1 and C0 are projective; then any (left) splitting r0 of the right

hand column extends to a complete splitting (r0, r1, r2) of C.
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5. A comparison theorem for resolutions:

Given an integer n ≥ 0 and an object M ∈ A, by an n-resolution we mean

an exact sequence in A of the form

E(n) = (En
∂n→ En−1

∂n−1→ . . . · · · ∂2→ E1
∂1→ E0

ε→M → 0).

We allow ourselves to write E−1 = M and ∂0 = ε whenever it is

notationally convenient to do so. Whilst later we shall require the resolving

objects Er to be projective of a special type, here we impose no restriction

other than exactness. We denote by A(n) the category whose objects are

such sequences and in which morphisms are commutative ladders

Ẽ(n)

ϕ ↓
E(n)

=

 Ẽn
∂̃n→ Ẽn−1

∂̃n−1→ · · · · · · ∂̃1→ Ẽ0
ε̃→ M̃ → 0

ϕn ↓ ϕn−1 ↓ ϕ0 ↓ ↓ ϕ−
En

∂n→ En−1
∂n−1→ · · · · · · ∂1→ E0

ε→ M → 0


We also allow the limiting case n =∞ in the obvious way. If ϕ− : M̃ →M

is an epimorphism we say that ϕ is a dominating morphism over ϕ− when

each ϕr is also an epimorphism. We agree to write E(n) � Ẽ(n) in the

special case where ϕ− = IdM : M →M .

For the rest of this section we pick a specific dominating morphism

ϕ : Ẽ(n) → E(n) over IdM . Defining Tr = Ker(ϕr) , jr : Tr → Ẽr
will denote the ‘inclusion’ and ∂̂r : Tr → Tr−1 the ‘restriction’ giving a

commutative diagram:

(5.1)



Tn
∂̂n→ Tn−1

∂̂n−1→ · · · ∂̂1→ T0 → 0 → 0

jn ↓ jn−1 ↓ j0 ↓ ↓

Ẽn
∂̃n→ Ẽn−1

∂̃n−1→ · · · ∂̃1→ Ẽ0
ε̃→ M → 0

ϕn ↓ ϕn−1 ↓ ϕ0 ↓ ↓
En

∂n→ En−1
∂n−1→ · · · ∂1→ E0

ε→ M → 0.

Although ∂̂n−1 ◦ ∂̂n = 0 it is not, in general, true that Ker(∂̂n−1) is the

same as Im(∂̂n). Noting this loss of information at the top left hand corner,

it nevertheless follows, by induction from (4.4), that the following portion
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of (5.1) has exact rows and columns:

(5.2)



0 0 0 0

↓ ↓ ↓ ↓

Tn−1
∂̂n−1→ Tn−2

∂̂n−2→ · · · ∂̂1→ T0 → 0 → 0

jn−1 ↓ jn−2 ↓ j0 ↓ ↓

Ẽn
∂̃n→ Ẽn−1

∂̃n−1→ Ẽn−2
∂̃n−2→ · · · ∂̃1→ Ẽ0

ε̃→ M → 0

ϕn ↓ ϕn−1 ↓ ϕn−2 ↓ ϕ0 ↓ ↓
En

∂n→ En−1
∂n−1→ En−2

∂n−2→ · · · ∂1→ E0
ε→ M → 0

↓ ↓ ↓ ↓ ↓
0 0 0 0 0

In the above we define Jr = Ker(∂r−1) for 1 ≤ r ≤ n + 1. When r ≤ n

then it is also true that Jr = Im(∂r) and we then write ∂r = ir ◦ pr for

the canonical decomposition of ∂r through its image with ir monomorphic

and pr epimorphic:

-

@
@@R �

���

Er Er−1

Jr

∂r

pr ir

Likewise we consider the corresponding decompositions for the ∂̃r to obtain

commutative diagrams as follows:

(5.3)

-

? ?

PPPPPq ��
��
�1

?

-

PPPPPq��
��
�1

Ẽr+1 Ẽr
∂̃r+1

J̃r+1

Jr+1

Er+1 Er
∂r+1

ϕr+1 ϕ+
r+1 ϕrϕ−r

p̃r+1 ĩr

pr+1 ir

-

?

PPPPPq ��
��
�1

?

-

PPPPPq��
��
�1

Ẽr−1
∂̃r

J̃r

Jr

Er−1
∂r

ϕr ϕ+
r ϕr−1ϕ−r−1

p̃r ĩr−1

pr ir−1

where, depending on context, both ϕ−r and ϕ+
r−1 denote the restriction

ϕr−1|J̃r : J̃r → Jr. Now taking the corresponding decompositions for the

∂̂r we get commutative diagrams
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(5.4)

-

? ?

PPPPPq ��
��
�1

?

-

PPPPPq��
��
�1

Tr+1 Tr
∂̂r+1

Vr+1

J̃r+1

Ẽr+1 Ẽr
∂̃r+1

jr+1 j+
r+1 jrj−r

p̂r+1 îr

p̃r+1 ĩr

-

?

PPPPPq ��
��
�1

?

-

PPPPPq��
��
�1

Tr−1
∂̂r

Vr

J̃r

Ẽr−1
∂̃r

jr j+
r jr−1j−r−1

p̂r îr−1

p̃r ĩr−1

where both j−r and j+
r−1 both denote the ‘inclusion’ Vr → J̃r. We assemble

(5.3) and (5.4) into commutative diagrams D(r) for 1 ≤ r ≤ n− 2;

D(r) =



0 0 0

↓ ↓ ↓

0→ Vr+1
îr→ Tr

p̂r→ Vr −→ 0

↓ j+
r ↓ jr ↓ j−r

0 −→ J̃r+1
ĩr→ Ẽr

p̃r−→ J̃r −→ 0

↓ ϕ+
r ↓ ϕr ↓ ϕ−r

0 −→ Jr+1
ir→ Er

pr−→ Jr −→ 0

↓ ↓ ↓
0 0 0

In the special case r = 0 we obtain

D(0) =



0 0

↓ ↓
0→ V1 = T0 → 0

↓ j+
0 ↓ j0 ↓

0→ J̃1
ĩ0−→ Ẽ0

ε̃−→ M → 0

↓ ϕ+
0 ↓ ϕ0 || Id

0→ J1
i0−→ E0

ε−→ M → 0

↓ ↓ ↓
0 0 0

As ε̃ ◦ j0 = ε ◦ ϕ0 ◦ j0 = 0 then the ‘inclusion’ j+
0 : V1 → J̃1 = Ker(ε̃) and

‘restriction’ ϕ+
0 : ϕ1|J̃1 : J̃1 → J1 are both well defined. We note:

Proposition 5.5: All the rows and columns of D(0) are exact.
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Proof : Exactness of the rows and of the right hand and middle columns

is tautological. Thus it suffices to show that:

(a) ϕ+
0 is epimorphic and (b) Ker(ϕ+

0 ) = Im(j+
0 ).

For (a), observe that in the following subdiagram of D(0) all rows and

columns are exact.

T0
p̂0−→ 0

↓ j0 ↓

J̃1
ĩ0
↪→ Ẽ0

ε̃−→ M

↓ ϕ+
0 ↓ ϕ0 || Id

0 −→ J1
i0→ E0

ε−→ M → 0

↓ ↓
0 0

As both ϕ0 and p̂0 are epimorphic then ϕ+
0 is epimorphic by (4.2).

To prove (b) we may again, by Lubkin’s Theorem, assume that the diagram

consists of abelian groups and homomorphisms in which monomorphisms

become inclusions thus:

0 0

↓ ↓
0→ V1 = T0 → 0

∩j+
0 ∩j0 ↓

0→ J̃1
ĩ0
↪→ Ẽ0

ε̃−→ M → 0

↓ ϕ+
0 ↓ ϕ0 || Id

0→ J1
i0
↪→ E0

ε−→ M → 0

↓ ↓ ↓
0 0 0

The inclusion Im(j+
0 ) ⊂ Ker(ϕ+

0 ) then follows by restriction from ϕ0◦j0 = 0.

Thus suppose x ∈ J̃1 satisfies ϕ+
0 (x) = 0 ; then ĩ0(x) ∈ Ker(ϕ0) = T0 = V1,

completing the proof. �

Before proceeding we first note:

(5.6) the rows of each D(r) are exact ;

(5.7) the middle column of each D(r) is exact ;

(5.8) the right hand column of D(r) is identical to the left hand column

of D(r − 1) for 1 ≤ r ≤ n− 1.
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We arrive at the following ‘weak comparison’ theorem:

Theorem 5.9: Let ϕ : Ẽ(n) → E(n) be a dominating morphism over IdM
where n ≥ 2; then the rows and columns of D(r) are exact for 0 ≤ r ≤ n−2.

Proof : For n = 2 this is simply a restatement of (5.5). Thus we may

suppose that n ≥ 3. Let C(r) be the statement that the rows and columns

of D(r) are exact. As C(0) is true, again by (5.5), it suffices to show that

C(r − 1) =⇒ C(r) for 1 ≤ r ≤ n− 2.

Via the Lubkin imbedding it suffices to prove the statement for the cor-

responding diagram of abelian groups and homomorphisms. By induction

the right hand column of D(r) is exact as it coincides with the left hand

column of D(r − 1). As observed in (5.7) the middle column of D(r) is

exact so it suffices to show the left hand column of D(r) is exact. As j+
r is

a monomorphism it suffices to show:

(a) ϕ+
r is epimorphic and (b) Ker(ϕ+

r ) = Im(j+
r ).

To show (a), note that in the following subdiagram of D(r) all rows and

columns are exact;
0

↓
Tr

p̂r→ Vr −→ 0

↓ jr ↓ j−r
J̃r+1

ĩr→ Ẽr
p̃r−→ J̃r −→ 0

↓ ϕ+
r ↓ ϕr ↓ ϕ−r

Jr+1
ir→ Er

pr−→ Jr −→ 0

↓ ↓
0 0

As ϕr and p̂r are epimorphic it follows by (4.2) that ϕ+
r is epimorphic.

To prove (b) suppose x ∈ J̃r+1 = Ker(∂̃r) satisfies ϕ+
r (x) = 0. We must

produce an element y ∈ Vr+1 = Ker(∂̂r) such that jr(y) = x. Consider

the following portion of the diagram established in (5.2). Observe that as

r ≤ n− 2 this subdiagram is well defined.
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Tr+1
∂̂r+1→ Tr

∂̂r→ Tr−1

jr+1 ↓ jr ↓ jr−1 ↓

Ẽr+2
∂̃r+2→ Ẽr+1

∂̃r+1→ Ẽr
∂̃r→ Ẽr−1

ϕr+2 ↓ ϕr+1 ↓ ϕr ↓ ϕr−1 ↓
Er+2

∂r+2→ Er+1
∂r+1→ Er

∂r→ Er−1

↓
0

The conditions on x ∈ Ẽr are ∂̃r(x) = 0 and ϕr(x) = 0. By exactness

of the middle row we may choose w ∈ Ẽr+1 such that ∂̃r+1(w) = x. Then

ϕr ◦ ∂̃r+1(w) = 0 so that ∂r+1 ◦ ϕr+1(w) = 0. By exactness of the bottom

row choose z ∈ Er+2 such that ∂r+2(z) = ϕr+1(w).

As ϕr+2 : Ẽr+2 → Er+2 is epimorphic, choose ζ ∈ Ẽr+2 such that

ϕr+2(ζ) = z; then ∂r+2 ◦ϕr+2(ζ) = ϕr+1(w). Put µ = w− ∂̃r+2(ζ) ∈ Ẽr+1

so that ϕr+1(µ) = 0. Choose η ∈ Tr+1 such that

jr+1(η) = µ = w − ∂̃r+2(ζ).

Then ∂̃r+1 ◦ jr+1(η) = ∂̃r+1(w) − ∂̃r+1∂̃r+2(ζ). Put y = ∂̂r+1(η). Then

y ∈ Vr+1 and jr(y) = x. This completes the proof. �

The statement of (5.9) extends to the limiting case n =∞ as follows:

Corollary 5.10: Let ϕ : Ẽ(∞) → E(∞) be a dominating morphism over

IdM ; then the rows and columns of D(r) are exact for all r ≥ 0.

6. Finiteness conditions and stability:

Let A be a tame abelian category. By a special class in A we mean a class

of objects S ⊂ A satisfying the following properties S(1)-S(3) :

S(1) : Each S ∈ S is projective and 0 ∈ S;

S(2) : If 0→ X → Y → S → 0 is exact in A and S ∈ S then

X ∈ S⇐⇒ Y ∈ S.

Finally we have a ‘finiteness’ property. If S, T ∈ S let e(S, T ) denote the

set of integers k for which there exists an epimorphism S → T ⊕ · · · ⊕ T︸ ︷︷ ︸
k

.

S(3) : If S, T ∈ S and T 6= 0 then e(S, T ) is bounded above.

It follows from S(1) and S(2) that S is closed with respect to coproducts;
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(6.1). X ∈ S and Y ∈ S =⇒ X ⊕ Y ∈ S.

Likewise S is closed with respect to isomorphism;

(6.2) X ∈ S and X ∼=A Y =⇒ Y ∈ S.

Recall that a finitely generated module M over a ring Λ is said to be stably

free when M ⊕ Λm ∼= Λm+n for some integers m, n.

(6.3) The class SF of finitely generated stably free Λ-modules is a special

class in ModΛ.

Similarly we define a class GSF of objects in G(Λ) as follows:

M ∈ GSF ⇐⇒ each Mr is finitely generated stably free over Λ.

(6.4) The class GSF is a special class in G(Λ).

There is a relation, S-equivalence, defined on the objects of A by

X ∼ X ′ ⇐⇒ X ⊕ S ∼= X ′ ⊕ S′ for some S, S′ ∈ S.

We define a class F(0) of objects in A as follows; M ∈ F(0) when there

exists an epimorphism η : S →M for some S ∈ S.

Proposition 6.5 : Let M ∈ F(0); if T ∈ S is such that M ⊕ T ∼= M

then T = 0.

Proof : Let ϕ : S → M be an epimorphism where S ∈ S, and suppose

that there is an isomorphism ψ1 : M → M ⊕ T where T ∈ S. Then for

each positive integer k we obtain an isomorphism ψk : M → M ⊕ T (k) on

putting ψk = (ψk−1⊕ IdT ) ◦ψ1 for k ≥ 2. Hence for each positive integer k

we obtain an epimorphism ηk : S → T (k) on putting ηk = πk ◦ψk ◦ϕ. This

contradicts property S(3) unless T = 0. �

Corollary 6.6 : Let S ∈ S; if ϕ : S → S is an epimorphism then ϕ is an

isomorphism.

Proof : Suppose that ϕ : S → S is an epimorphism. As S is projective

then from the exact sequence

0→ Ker(ϕ)→ S
ϕ→ S → 0

there is an isomorphism ψ1 : S → S ⊕ Ker(ϕ) and Ker(ϕ) ∈ S. By (6.5)

Ker(ϕ) = 0, so that ϕ is monomorphic and hence an isomorphism. �
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We first introduce a general definition; if M1,M2 ∈ F(0) we say that

M2 splits over M1, written M1 a M2, when there is an isomorphism

M1 ⊕ T ∼= M2 in which T ∈ S. Evidently one has:

Proposition 6.7 : If M1 aM2 then M1 ∼M2.

It is straightforward to see that the relation ‘a’ is transitive; that is :

(6.8) If M1 aM2 and M2 aM3 then M1 aM3.

More subtly, ‘a’ is also anti-symmetric in the sense that, forM1,M2 ∈ F(0),

Proposition 6.9 : M1 aM2 ∧ M2 aM1 =⇒ M1
∼= M2.

Proof : The hypothesis allows us to write M2
∼= M1⊕T1 and M1

∼= M2⊕T2

for some T1, T2 ∈ S. Thus M1
∼= M1 ⊕ T where T = (T1 ⊕ T2) ∈ S. It

follows from (6.6) above that T = 0. Hence T2 = 0 and M1
∼= M2. �

Corollary 6.10 : If Ω is an S-class of type F(0) then the relation ‘a’

induces a partial ordering on the isomorphism types of Ω.

If X is an object in A the S-class [X] is defined to be the collection of

isomorphism classes of objects Y in A which are S-equivalent to X:

[X] = {Y ∈ A | Y ∼ X}/∼=

As A is equivalent to a small subcategory of Ab it follows that

(6.11) [X] is a set for each object X ∈ A.

We denote by S(n) the full subcategory of A(n) consisting of exact se-

quences of the form

S(n) = (Sn
∂n→ Sn−1

∂n−1→ . . . · · · ∂2→ S1
∂1→ S0

ε→M → 0)

in which S0, . . . , Sn ∈ S. Such a sequence will be called an n-stem over

M . Moreover Jr+1 = Ker(∂r) is called the (r+ 1)st syzygy of S(n). We say

that M is of type F(n) when there exists an n-stem over M . In general

this condition is a nontrivial restriction on M .

Theorem 6.12 : Let M ∈ A and S ∈ S; then

M ∈ F(n) ⇐⇒ M ⊕ S ∈ F(n).

Proof : Let P(n) be the statement of the theorem; we first prove P(0).

Suppose that ε : S0 →M is an epimorphism. Then ε⊕Id : S0⊕S →M⊕S
is also an epimorphism so that if M ∈ F(0) then M⊕S ∈ F(0). Conversely

suppose that M ⊕ S ∈ F(0) and let η : S0 → M ⊕ S be an epimorphism.
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Taking π1 : M ⊕ S →M , π2 : M ⊕ S → S to be the canonical projections,

put S′ = Ker(π2 ◦ η). Applying τ we obtain an exact sequence

0→ τ(S′)→ τ(S0)
τ(π1◦η)−→ τ(S)→ 0.

It follows that the sequence 0→ S′ → S0
π1◦ε→ S → 0 is also exact so that

S′ ∈ S by property S(3). However, τ(π1 ◦η) : τ(S′)→ τ(M) is epimorphic

so that π1 ◦ η : S′ → M is epimorphic and hence M ∈ F(0). This proves

P(0). Now suppose that P(n− 1) is true for n ≥ 1, let M ∈ F(n) and let

Sn
∂n→ · · · ∂1→ S0

ε→M → 0

be an n-stem. Letting i : S0 → S0 ⊕ S be the canonical morphism define

δr =

{
i ◦ ∂1 r = 1

∂r r > 1

We see that Sn
δn→ · · · δ1→ S0 ⊕ S

ε⊕Id→ M ⊕ S → 0 is exact. As S0 ⊕ S ∈ S

then M ⊕ S ∈ F(n).

Conversely suppose that Sn
δn→ · · · δ1→ S0

η→ M ⊕ S → 0 is an n-stem

where M⊕S ∈ F(n). We may decompose this into a pair of exact sequences

(*) Sn
δn→ · · · δ2→ S1

p→ K → 0

(**) 0→ K
i→ S0

η→M ⊕ S → 0

where δ1 = i◦p. Take π1 : M⊕S →M , π2 : M⊕S → S to be the canonical

projections and put S′ = Ker(π2 ◦ ε). As in the proof of P(0), S′ ∈ S

and π1 ◦ ε : S′ → M is epimorphic. Moreover there is an isomorphism of

K ′ with Ker(π1 ◦ η : S′ →M) giving an exact sequence

(***) 0→ K ′ → S′
π1◦η→ M → 0.

Splicing (***) with (*) gives an n-stem Sn
δn→ · · · δ1→ S′

π1◦η→ M → 0; hence

M ∈ F(n). This completes the proof. �

It follows immediately that:

Corollary 6.13 : If M ∼M ′ then M ∈ F(n) ⇐⇒ M ′ ∈ F(n).

In view of (6.13) we extend the condition F(n) from objects in A to S-

classes by saying that the S-class [K] satisfies F(n) when K satisfies F(n).
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7. A strong comparison theorem for syzygies :

Given an n-stem S(n) = (Sn
∂n→ Sn−1

∂n−1→ . . . · · · ∂2→ S1
∂1→ S0

ε→M → 0)

over M put Jr+1 = Ker(∂r). Suppose given another n-stem over M

S̃(n) = (S̃n
∂̃n→ S̃n−1

∂̃n−1→ . . . · · · ∂̃2→ S̃1
∂̃1→ S̃0

ε̃→M → 0)

with J̃r+1 = Ker(∂̃r) and suppose that ϕ : S̃(n) → S(n) is a dominating

homomorphism. From the results of §5, for 0 ≤ r ≤ n − 2 we obtain

commutative diagrams D(r) in which all rows and columns are exact

D(r) =



0 0 0

↓ ↓ ↓

0→ Vr+1
îr
↪→ Tr

p̂r→ Vr −→ 0

↓ j−r ↓ jr ↓ j+
r

0 −→ J̃r+1
ĩr
↪→ S̃r

p̃r−→ J̃r −→ 0

↓ ϕ−r ↓ ϕr ↓ ϕ+
r

0 −→ Jr+1
ir
↪→ Sr

pr−→ Jr −→ 0

↓ ↓ ↓
0 0 0

and in which V0 = 0 and J0 = J̃0 = M . As 0 → Tr → S̃r → Sr → 0 is

exact and Sr, S̃r ∈ S it follows that S̃r ∼= Tr ⊕ Sr and hence:

(7.1) Each Tr ∈ S.

As V0 = 0 then V1 = T0 so that :

(7.2) V1 ∈ S.

From the exact sequences 0 → Vr+1
îr−→ Tr

p̂r−→ Vr → 0 it follows from

S(2) that

(7.3) Vr ∈ S for 1 ≤ r ≤ n− 1.

Consequently;

(7.4) 0→ Vr+1
îr−→ Tr

p̂r−→ Vr → 0 splits for 0 ≤ r ≤ n− 2.

Hence:

(7.5) Tr ∼= Vr+1 ⊕ Vr for 0 ≤ r ≤ n− 2.

Theorem 7.6 : Let M be an object in F(n) and let S(n), S̃(n) be

n-stems over M ; if S(n) � S̃(n) then J̃r splits over Jr for 1 ≤ r ≤ n− 1.

Proof : By (5.9) we have diagrams D(r) with exact rows and columns for

0 ≤ r ≤ n− 2. First consider D(0)
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D(0) =



0 0 0

↓ ↓ ↓
0→ V1 = T0

p̂0−→ 0 −→ 0

↓ j−0 ↓ j0 ↓

0 −→ J̃1
ĩ0
↪→ S̃0

ε̃−→ M −→ 0

↓ ϕ−0 ↓ ϕ0 || Id

0 −→ J1
i0
↪→ S0

ε−→ M −→ 0

↓ ↓ ↓
0 0 0

By hypothesis we have that S0 ∈ S so that the middle column splits. If

ρ : S̃0 → T0 is a left splitting of the middle column then ρ ◦ ĩ0 is a left

splitting of the left-hand column and J̃1
∼= J1 ⊕ V1. Suppose, inductively,

that 0→ Vr
j+r→ J̃r

ϕ+
r→ Jr → 0 splits for t ≤ r ≤ n− 2 and consider

D(r) =



0 0 0

↓ ↓ ↓

0→ Vr+1
îr
↪→ Tr

p̂r→ Vr −→ 0

↓ j−r ↓ jr ↓ j+
r

0 −→ J̃r+1
ĩr
↪→ S̃r

p̃r−→ J̃r −→ 0

↓ ϕ−r ↓ ϕr ↓ ϕ+
r

0 −→ Jr+1
ir
↪→ Sr

pr−→ Jr −→ 0

↓ ↓ ↓
0 0 0

As r ≤ n−2 then we see from (7.3) that Vr, Vr+1 ∈ S. Moreover Sr ∈ S so

that both Sr and Vr are projective. It follows from (4.6) that the sequence

0 → Vr+1 → J̃r+1 → Jr+1 → 0 splits and so J̃r+1
∼= Jr+1 ⊕ Vr+1. As

Vr+1 ∈ S this completes the proof. �

Corollary 7.7 : Let S(n) and S̃(n) be n-stems over M with syzygies

(Jr)1≤r≤n (J̃r)1≤r≤n respectively; if S(n) is minimal then J̃r splits over

Jr for 1 ≤ r ≤ n− 1.

Thus we have proved Theorem C of the Introduction.

In the limiting case an∞-stem will be called a complete S-resolution of M .

The statement of (7.7) is then modified to:
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Corollary 7.8 : Let S and S̃ be complete S-resolutions of M with syzygies

(Jr)1≤r, (J̃r)1≤r; if S is minimal then J̃r splits over Jr for all r.

8. Uniqueness of minimal resolutions :

Let M ∈ F(n) and let S(n) be an n-stem over M

S(n) = (Sn
∂n→ Sn−1

∂n−1→ . . . · · · ∂2→ S1
∂1→ S0

ε→M → 0).

We say that S(n) is a minimal n-stem when, given any other n-stem S̃ over

M , there is a dominating morphism ϕ : S̃(n) → S(n) over IdM thus

S̃(n)

ϕ ↓
S(n)

=

 S̃n
∂̃n→ · · · · · · ∂̃1→ S̃0

ε̃→ M → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

Sn
∂n→ · · · · · · ∂1→ S0

ε→ M → 0


In particular, ϕr is epimorphic for each r. A straightforward deduction

from (7.7) and (6.6) then shows:

Proposition 8.1 : If S(n), S̃(n) are both minimal n-stems over M then

S(n) ∼=IdM
S̃(n).

This is easily strengthened to allow variation of the differentials as follows:

Proposition 8.2 : Suppose given n-stems over M as follows:

S(n) = (Sn
∂n→ . . . · · · ∂1→ S0

ε→M → 0);

Ŝ(n) = (Sn
δn→ . . . · · · δ1→ S0

η→M → 0);

if S(n) is minimal then so also is Ŝ(n).

Let M,M ′ ∈ F(n) and let S(n), T(n) be n-stems over M , M ′ respectively:

S(n) = (Sn
∂n→ Sn−1

∂n−1→ . . . · · · ∂2→ S1
∂1→ S0

ε→M → 0);

T(n) = (Tn
∂′n→ Tn−1

∂′n−1→ . . . · · · ∂
′
2→ T1

∂′1→ T0
η→M ′ → 0).

We may form an n-stem S(n) ⊕T(n) over M ⊕M ′ thus

Sn ⊕ Tn
δn→ Sn−1 ⊕ Tn−1

δn−1→ . . . · · · δ2→ S1 ⊕ T1
δ1→ S0 ⊕ T0

ε⊕η→ M ⊕M ′ → 0

where δr =

(
∂r 0

0 ∂ ′r

)
. An n-stem T(n) over 0 is simply an exact

sequence T(n) = (Tn → Tn−1 → . . . · · · → T1 → T0 → 0) where each
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Tr ∈ S. Moreover, S(n) ⊕ T(n) is then an n-stem over M ⊕ 0 ∼= M . We

now have the following which is Theorem B of the Introduction:

Theorem 8.3 : If S(n), S̃(n) are n-stems over M and S(n) is minimal then

S̃(n−1) ∼=IdM
S(n−1) ⊕T(n−1) for some (n-1)-stem T(n−1) over 0.

Proof : Given a dominating homomorphism ϕ : S̃(n) → S(n) we construct,

as in (5.2), a commutative diagram in which all rows and columns are exact



0 0 0 0

↓ ↓ ↓ ↓

Tn−1
∂̂n−1→ Tn−2

∂̂n−2→ · · · ∂̂1→ T0 → 0 → 0

jn−1 ↓ jn−2 ↓ j0 ↓ ↓

S̃n
∂̃n→ S̃n−1

∂̃n−1→ S̃n−2
∂̃n−2→ · · · ∂̃1→ S̃0

ε̃→ M → 0

ϕn ↓ ϕn−1 ↓ ϕn−2 ↓ ϕ0 ↓ ↓
Sn

∂n→ Sn−1
∂n−1→ Sn−2

∂n−2→ · · · ∂1→ S0
ε→ M → 0

↓ ↓ ↓ ↓ ↓
0 0 0 0 0

In particular we have an (n− 1)-stem over the zero object, namely

T = (Tn−1
∂̂n−1→ Tn−2

∂̂n−2→ · · · ∂̂1→ T0 → 0→ 0).

For 0 ≤ k ≤ n − 2 we obtain commutative diagrams D(k) as in §5 in

which all rows and columns are exact. As the right hand column of D(0) is

trivially split and both S̃0 and 0 are projective we may, by (4.6) construct

a complete splitting (r+
0 , r0, 0) of D(0) as follows:

V1 T0 0

J̃1 S̃0 M

=

-

-

-

6 6 6

ĩ0 ε̃

r+
0 r0

Next consider D(1), recalling that the right hand column of D(1) is identical

with the left hand column of D(0). Defining r−1 = r+
0 we see that r−1 is a

(left) splitting of the right hand column of D(1). As V1 and S1 are projective

then, by (4.6), r−1 extends to a complete splitting (r−1 , r1, r
+
1 ) of D(1).

Suppose inductively that for t ≤ k − 1 we have constructed complete

splittings (r+
t , rt, r

−
t ) of D(t) in such a way that r−t = r+

t−1. Defining
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r−k = r+
k−1 gives a splitting of the right hand column of D(k). Now

Sk ∈ S by hypothesis and we have seen in (7.3) that Vk ∈ S; thus both Sk
and Vk are projective. It again follows from (4.6) that we may extend r−k
to a complete splitting (r+

k , rk, r
−
k ) of D(k).

Inductively, for k in the range 0 ≤ k ≤ n − 2, we construct complete

splittings (r+
k , rk, r

−
k ) of D(k) such that r−k = r+

k−1 when k ≥ 1. Finally,

applying (4.6) to

E =


0→ Tn−1

j1→ S̃n−1
ϕ1→ Sn−1 → 0

p̂n−1 ↓ p̃n−1 ↓ pn−1 ↓
0→ Vn−1

j0→ J̃n−1
ϕ0→ Jn−1 → 0

we may construct a left splitting rn−1 : S̃n−1 → Tn−1 of the exact sequence

0→ Tn−1
jn−1→ S̃n−1

ϕn−1→ Sn−1 → 0

making the following diagram commute;

Tn−1
r1← S̃n−1

↓ p̂n−1 ↓ p̃n−1

Vn−1
r0← J̃n−1

It follows that we have constructed a morphism of exact sequences

S̃(n−1)

r ↓
T

=


S̃n−1

∂̃n−1→ S̃n−2
∂̃n−2→ · · · ∂̃1→ S̃0

ε̃→ M → 0

rn−1 ↓ rn−2 ↓ r0 ↓ ↓

Tn−1
∂̂n−1→ Tn−2

∂̂n−2→ · · · ∂̂1→ T0 → 0 → 0

Then
(
ϕ
r

)
: S̃(n−1) → S(n−1) ⊕T(n−1) is the required isomorphism. �

In the case of complete S-resolutions we may continue the construction of

the complete splittings (r+
k , rk, r

−
k ) indefinitely to obtain Theorem A of the

Introduction, namely:

Theorem 8.4 : Let S and S̃ be complete S-resolutions of M ; if S is

minimal then S̃ ∼= S⊕T for some complete S-resolution T of 0.

9. The structure of the stable syzygies Ωn(M) :

If M ∈ F(0) then there is an exact sequence 0 → J → S → M → 0 with

S ∈ S. We write



December 7, 2015 7:17 World Scientific Review Volume - 9in x 6in Syzygies*and*minimal*resolutions page 24

24 F.E.A. Johnson

Ω1(M) = [J ].

Ω1(M) is called the first stable syzygy of M relative to S. It is well defined

as, by (3.3), the S-class [J ] depends only upon M . Moreover:

(9.2) Let M , M ′ ∈ F(0); if M ∼M ′ then Ω1(M) = Ω1(M ′).

More generally, if M,M ′ ∈ F(n) then there are exact sequences

0→ J → Sn → · · · → S0 →M → 0

0→ J ′ → S′n → · · · → S′0 →M ′ → 0

with Si, S
′
j ∈ S; (9.2) now generalizes straightforwardly to give:

(9.3) If M ∼M ′ then J ∼ J ′.

If (0→ J → Sn → · · · → S0 →M → 0) is an n-stem over M we write

Ωn+1(M) = [J ].

Ωn+1(M) is the (n + 1)st-stable syzygy of M relative to S; to uniformize

notation we shall write the stable class [M ] of M as [M ] = Ω0(M). From

(9.3) we now obtain:

(9.4) Let M , M ′ ∈ F(n); if M ∼M ′ then Ωn+1(M) = Ωn+1(M ′).

One sees easily that:

(9.5) If M ∈ F(n) then Ωr(M) satisfies F(n− r) for 1 ≤ r ≤ n.

If M satisfies F(n) then although Ωn+1(M) is defined, it need not, in

general, satisfy F(0). In this context, for M ∈ F(n) we see that:

(9.6) Ωn+1(M) satisfies F(0) ⇐⇒ M satisfies F(n+ 1).

10. Realizing elements of Ωn(M) as syzygies :

We say that M ∈ A is 1-coprojective when, for any S ∈ S, any exact

sequence of the form 0→ S → X →M → 0 splits; then:

(10.1) If M ∼M ′ then M is 1-coprojective ⇐⇒ M ′ is 1-coprojective.

We have the following ‘realization lemma’ (cf [3] p. 107) :

(10.2) If M is a 1-coprojective of type F(0) then any J ∈ Ω1(M) occurs

in an exact sequence 0→ J → S →M → 0 in which S ∈ S.

More generally, we say that M ∈ A is (n + 1)-coprojective when Ωr(M) is

defined and 1-coprojective for 0 ≤ r ≤ n.
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Proposition 10.3 : Suppose that M ∈ F(n) is (n+ 1)-coprojective; then

for any sequence (Jr)1≤r≤n+1 with Jr ∈ Ωr(M) there exists an n-stem

S = (Sn
∂n→ Sn−1

∂n−1→ . . . · · · ∂1→ S0
ε→M → 0)

in which Jr ∼= Ker(∂r−1) for 1 ≤ r ≤ n+ 1.

Proof : By induction on n. Taking J1 = J and putting ∂0 = ε then the

statement for n = 0 is simply (10.2). Thus suppose that n = 1 and let

J1 ∈ Ω1(M), J2 ∈ Ω2(M); by (10.2) there is an object S0 ∈ S and an

exact sequence 0→ J1
i0→ S0

ε→M → 0. The hypothesis M ∈ F(1) implies

that J1 ∈ F(0). As Ω2(M) = Ω1(J1) then J2 ∈ Ω1(J1) so we may apply

(10.2) to obtain an exact sequence 0→ J2
i1→ S1

π1→ J1 → 0 where S1 ∈ S.

Splicing these two sequences together by putting ∂1 = i0 ◦ π1 we obtain an

exact sequence (0 → J2
i1→ S1

∂1→ S0
ε→ M → 0) where S0, S1 ∈ S. Then

(S1
∂1→ S0

ε→M → 0) is a 1-stem with the stated properties.

In general, suppose proved for n − 1 where n ≥ 2 and let (Jr)1≤r≤n+1

be a sequence with Jr ∈ Ωr(M). By hypothesis there exists an n− 1-stem

S′ = (S′n−1

∂n−1→ . . . · · · ∂1→ S0
ε→M → 0)

in which S0 . . . Sn−1 ∈ S and Jr ∼= Ker(∂r−1) for 1 ≤ r ≤ n. We may write

this in co-augmented form as

S′ = (0→ Jn
in−1→ S′n−1

∂n−1→ . . . · · · ∂1→ S0
ε→M → 0)

The hypothesis M ∈ F(n) implies that Jn ∈ F(0). As Ωn+1(M) = Ω1(Jn)

we see that Jn+1 ∈ Ω1(Jn). Apply (10.2) again to obtain an exact sequence

0→ Jn+1
in→ Sn

πn→ Jn → 0

where Sn ∈ S. Splicing these last two sequences together gives an n-stem

with the stated properties

(*) 0→ Jn+1
in→ Sn

∂n→ . . . · · · ∂1→ S0
ε→M → 0.

where ∂n = in−1 ◦ πn. �

We say that Ωr(M) is relatively straight when there exists N0 ∈ Ωr(M)

such that any other N ∈ Ωr(M) may be written in the form N ∼= N0 ⊕ T
for some T ∈ S. We note the following consequence of minimality.

Theorem 10.4 : Suppose that M ∈ F(n+1) admits a minimal (n+1)-stem

S(n+1). If Ωn−1(M) is 1-coprojective then Ωn(M) is relatively straight.
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Proof : Write S(n+1) = (Sn+1
∂n+1→ Sn

∂n→ . . . · · · ∂1→ S0
ε→ M → 0) and

for 1 ≤ r ≤ n + 1 put Jr = Im(∂r). Choose J ∈ Ωn(M). We must show

there exists T ∈ S such that J ∼= Jn⊕ T . Write the truncation S(n−2) in

co-augmented form

S(n−2) = (Jn−1
in−2→ Sn−2

∂n−2→ . . . · · · ∂1→ S0
ε→M → 0).

Clearly J ∈ Ω1(Jn−1) as Ωn(M) = Ω1(Jn−1) and, by hypothesis, Jn−1 is

1-coprojective. Thus by (10.1), there exists an exact sequence

E = (0→ J → E0 → Jn−1 → 0)

where E0 ∈ S. As M ∈ F(n+ 1) and J ∈ Ωn(M) then J ∈ F(1) so there

exists a 1-stem F = (F1 → F0 → J → 0). Yoneda product F ◦ E ◦ S(n−2)

gives an n+ 1-stem

S̃(n+1) = (F1
δn+1→ F0

δn→ E0
δn−1→ . . . · · · δ1→ S̃0

ε→M → 0)

where S̃r = Sr for r ≤ n− 2 and where J = Im(δn). As S(n+1) is minimal

it follows from (7.7) that J splits over Jn = Im(∂n). Thus, as claimed,

there exists T ∈ S such that J ∼= Jn ⊕ T. �

11. Minimal epimorphisms :

We define a category S(−) in which the objects are pairs (S, ε) where S ∈ S

and where ε is an epimorphism in A with domain S and whose codomain

is some, as yet unspecified, object in A. Morphisms in S(−) are then

commutative squares of morphisms in A thus:

S′
ε′−→ M ′

ϕ ↓ ↓ ϕ−
S

ε−→ M.

In this case we say that ϕ is a morphism over ϕ−. In practice we shall

only consider the case where ϕ− is an isomorphism and usually, though not

always, we shall take ϕ− to be the identity morphism. For M ∈ A we define

a subcategory SM of S(−) by restricting morphisms to be commutative

squares of the form

S′
ε′−→ M

ϕ ↓ ↓ IdM
S

ε−→ M.

If (S, ε), (S′, ε′) are objects in SM we write (S, ε) � (S′, ε′) whenever there

exists a morphism ϕ : (S′, ε′) → (S, ε) in which ϕ : S′ → S is an epimor-

phism in A. It is straightforward to observe that:
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(11.1) If (S, ε) � (S′, ε′) and (S′, ε′) � (S′′, ε′′) then (S, ε) � (S′′, ε′′).

Slightly more subtle is :

(11.2) (S, ε) � (S′, ε′) ∧ (S′, ε′) � (S, ε) ⇐⇒ (S, ε) ∼= (S′, ε′).

It follows that :

(11.3) The relation ‘�’ induces a partial ordering on the isomorphism

classes of SM .

For E ∈ S we define the base stabilisation functor βE : SM → SM⊕E thus:

βE

 S′
ε′−→ M

ϕ ↓ ↓ IdM
S

ε−→ M

 =

 S′ ⊕ E ε′⊕Id−→ M ⊕ E
ϕ⊕ IdE ↓ ↓ IdM

S ⊕ E ε⊕Id−→ M ⊕ E

 ;

that is, βE acts on objects by βE(S, ε) = (S ⊕ E, ε ⊕ IdM ) and on

morphisms by βE(ϕ) = ϕ⊕ IdE . Observe thatβE is order preserving:

(11.4) (S, ε) � (S′, ε′) =⇒ βE(S, ε) � βE(S′, ε′).

Write (S, ε) ∈ SM⊕E as an exact sequence 0 → K ↪→ S
ε−→ M ⊕ E → 0

and put T = Ker(πE ◦ ε) where πE : M ⊕ E → E is the canonical

projection. We obtain a pair of exact sequences

0→ T → S → S/T → 0 ; 0→ T/K → S/K → S/T → 0.

and a Noether isomorphism S/T ∼= (M ⊕ E)/M ∼= E. In particular,

S/T ∈ S. We may assemble the above into a commutative diagram with

exact rows and columns

(*)



0 0

↓ ↓
0→ K = K → 0

↓ ↓ ↓
0 −→ T → S

π̃−→ S/T −→ 0

↓ ν′ ↓ ν || Id

0 −→ T/K → S/K
π−→ S/T −→ 0

↓ ↓ ↓
0 0 0

in which ν, ν′, π̃ and π are all canonical morphisms. As S and S/T ∼= E

are both in S it follows from the middle row of (*) and property S(2)

that T ∈ S. As S/T ∼= E is projective we may choose a morphism
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σ̃ : S/T → S which splits the middle row of (*) on the right. Now define

σ = ν ◦ σ̃ : S/T → S/K. As π ◦ ν = π̃ we see that

(**) π ◦ σ = IdS/T .

That is, σ splits the bottom row of (*) on the right. Taking the correspond-

ing left splittings λ̃ = IdS − σ̃π̃ ; λ = IdS − σπ, one verifies easily that

λ ◦ ν = ν′ ◦ λ̃. In addition to (*) we have another commutative diagram

with exact rows and columns

(***)



0 0

↓ ↓
0← K = K ← 0

↓ ↓ ↓

0←− T
λ̃←− S

σ̃←− S/T ←− 0

↓ ν′ ↓ ν || Id

0←− T/K
λ←− S/K

σ←− S/T ←− 0

↓ ↓ ↓
0 0 0

Thus there exists a Noether isomorphism \1 : (S, ν)
'−→ (S, ε) for some

(S, ν) ∈ SS/K . As T and S/T are both in S then (T, ν′) ∈ ST/K and

βS/T (T, ν′) is well defined. Now consider the isomorphisms

h̃ : S → T ⊕ S/T ; h : S/K → T/K ⊕ S/T

h̃(x) = (λ̃(x), π̃(x) ; h(x) = (λ(x), π(x).

Then h̃ defines an isomorphism h̃ : (S, ν)
'−→h βS/T (T, ν′) over h and

there is another Noether isomorphism \2 : βS/T (T, ν′)
'−→ βE(T, η) where

η = ε|T : T →M . The composition \2 ◦ h̃ ◦ \−1
1 : (S, ε)

'−→ βE(T, η) is an

isomorphism over IdM⊕E . We have shown:

Theorem 11.5 : βE : SM → SM⊕E is surjective on isomorphism classes.

For (S, ε), (S′, ε′) in SM consider morphisms ϕ : βE(S′, ε′) → βE(S, ε) in

SM⊕E . Any such morphism is, at least, a morphism ϕ : S′ ⊕ E → S ⊕ E
in A and so may be described as a matrix of A-morphisms

ϕ =

A B

C D

 where


A : S′ → S ; B : E → S ;

C : S′ → E ; D : E → E.

A straightforward calculation shows there is a 1− 1 correspondence
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HomS(−)
(βE(S′, ε′), βE(S, ε))

'←→


A B

0 IdE

 | A ∈ HomS(−)
((S′, ε′), (S, ε))

B ∈ HomA(E,Ker(ε))

 .

Suppose given an A-morphism ϕ =

(
A B

0 IdE

)
: S′ ⊕ E → S ⊕ E . If A

is epimorphic then so is ϕ. Conversely if ϕ is epimorphic, then since S⊕E
is projective there exists an A-morphism σ : S ⊕ E → S′ ⊕ E such that

ϕ ◦ σ = IdS⊕E . Writing σ =

(
σ11 σ12

σ21 σ22

)
it follows easily that σ21 = 0

and A◦σ11 = IdS ; hence A is also epimorphic. From this it follows that

βE(S, ε) � βE(S′, ε′) =⇒ (S, ε) � (S′, ε′).

As a consequence we see that:

Corollary 11.6 : For any E ∈ S, βE induces an order preserving

bijection on isomorphism types βE : SM
'−→ SM⊕E .

An epimorphism (S, ε) in SM is said to be absolutely minimal when

(S, ε) � (S′, ε′) for each (S′, ε′) ∈ SM . We may verify directly that:

(11.7) If (S, ε), (S′, ε′) are both absolutely minimal over M then

(S, ε) ∼= (S′, ε′).

We say that Abs(M) holds precisely when there exists an absolutely min-

imal epimorphism (S, ε) in SM . By (11.6) satisfaction of this condition

depends only upon the S-class of M ; that is:

Corollary 11.8 : If M ∼M ′ then Abs(M) holds ⇐⇒ Abs(M ′) holds.

This condition may be reformulated to say:

(11.9) Abs(M) holds ⇐⇒ M admits a minimal 0-stem.

12. An existence criterion :

When M ∈ A we define a subcategory S(n)M of S(n) by restricting mor-

phisms to be commutative diagrams of the form

S̃

ϕ ↓
S

=

 S̃n
∂̃n→ · · · · · · ∂̃1→ S̃0

η̃→ M → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

Sn
∂n→ · · · · · · ∂1→ S0

ε→ M → 0

 .
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For S, S′, S′′ in S(n)M we may generalize the results of §11 as follows:

(12.1) If S � S′ and S′ � S′′ then S � S′′.

(12.2) If S � S′ and S′ � S then S ∼= S′.

(12.3) The relation ‘�’ induces a partial ordering on the isomorphism

classes of SM (n).

For E ∈ S there is a base stabilisation functor βE : S(n)M → S(n)M⊕E
which transforms

S̃

ϕ ↓
S

=

 S̃n
∂̃n→ · · · · · · ∂̃1→ S̃0

η̃→ M → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

Sn
∂n→ · · · · · · ∂1→ S0

ε→ M → 0


to

βE(S̃)

βE(ϕ) ↓
β(S)

=

 S̃n
∂̃n→ · · · ĩ◦∂̃1→ S̃0 ⊕ E

η̃⊕Id→ M ⊕ E → 0

ϕn ↓ ϕ0 ↓ ↓ IdM

Sn
∂n→ · · · i◦∂1→ S0 ⊕ E

ε⊕Id→ M ⊕ E → 0


where ĩ : S̃0 → S̃0 ⊕ E and i : S0 → S0 ⊕ E are the canonical morphisms.

(12.4) βE is order preserving; that is, S � S′ =⇒ βE(S) � βE(S′).

(12.5) βE : S(n)M → S(n)M⊕E is surjective on isomorphism classes.

(12.6) If S, S̃ are objects in S(n)M then βE(S) � βE(S̃) =⇒ S � S̃.

(12.7) βE induces an order preserving bijection on isomorphism types

βE : S(n)M
'−→ S(n)M⊕E .

We have the following useful consequence of (12.7):

(12.8) If S is a minimal n-stem over M then βE(S) is a minimal n-stem

over M ⊕ E.

We say that Minn(M) holds when M admits a minimal n-stem. Note that

the conditionMin0(M) is simply a re-statement ofAbs(M). Moreover from

(12.7) it follows immediately that :

(12.9) If M ∼M ′ then Minn(M) holds ⇐⇒ Minn(M ′) holds.

Thus satisfaction of the conditionMinn(M) depends only upon the S-class

[M ] of M ∈ A. Observe that for M ∈ F(n) we have:

Theorem 12.10 : Abs(M) ∧ Minn−1(Ω1(M)) =⇒ Minn(M).
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Proof : Let S(0) = (0 → K
i→ S0

ε→ M → 0) be a minimal 0-stem over

M and let S′ = (S′n−1

δn−1→ · · · · · · δ1→ S′0
η→ K → 0) be a minimal

(n− 1)-stem over K. After re-indexing thus Sr+1 = S′r ; ∂r+1 = δr we

may splice S′ with S(0) to obtain an n-stem

S = S′ ◦ S(0) =
(
Sn

∂n→ · · · · · · ∂2→ S1
∂1→ S0

ε→M → 0
)

where ∂1 = i ◦ η. We claim that S is minimal; that is, given an n-stem

S̃ over M we must produce a dominating morphism Ψ : S̃ → S over IdM .

Thus write S̃ as a Yoneda product S̃ = S̃′ ◦ S̃(0) where

S̃′ =

(
S̃n

∂̃n→ · · · · · · ∂̃2→ S̃1
η̃→ K̃ → 0

)
; S̃(0) =

(
0→ K̃

ĩ→ S̃0
ε̃→M → 0

)
.

Then there is a dominating morphism of 0-stems ψ0 : S̃(0) → S(0)

(∗) =



0 0

↓ ↓
0→ E ∼= E −→ 0

↓ j− ↓ j0 ↓

0 −→ K̃
ĩ→ S̃0

ε̃−→ M −→ 0

↓ ψ− ↓ ψ0 || Id

0 −→ K
i→ S0

ε−→ M −→ 0

↓ ↓
0 0

Observe that E ∈ S and, in (4.8), (4.17), K̃ ∼= K ⊕ E. Thus by (12.8)

βE(S′) is a minimal (n − 1)-stem over K̃ ∼= K ⊕ E. Hence there exists a

dominating morphism ψ′ : S̃′ → βE(S′). Composition with the canonical

morphism π : βE(S′)→ S′ then takes the form

π ◦ψ′ =

 S̃n
∂̃n→ · · · S̃2

∂̃2→ S̃1
p̃1→ K ⊕ E → 0

ψ′n ↓ ψ′2 ↓ π ◦ ψ′1 ↓ π ↓
Sn

∂n→ · · · S2
∂2→ S1

p1→ K → 0


Rewriting K̃ ∼= K⊕E we may splice π ◦ψ′ with ψ(0) to obtain a morphism

over IdM

Ψ =

 S̃n
∂̃n→ · · · S̃1

∂̃1→ S̃0
ε̃→ M → 0

Ψn ↓ Ψ1 ↓ Ψ0 ↓ Id ↓
Sn

∂n→ · · · S1
∂1→ S0

ε→ M → 0


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where Ψr = π ◦ ψ′r for r = 1 and Ψr = ψ′r otherwise. Thus each Ψr is

epimorphic and Ψ is a dominating morphism. �

From (12.10) we deduce our criterion for the existence of a minimal n-stem:

Theorem 12.11 : Let M ∈ F(n) and suppose that Abs(Ωr(M)) holds

for 0 ≤ r ≤ n; then M admits a minimal n-stem.

In conclusion, we point out that Eilenberg’s results from [1] can all be

accommodated under the aegis of (12.11). For example, when Λ is a local

ring, we take A to be the category of finitely generated Λ-modules and

S ⊂ A to be the subclass of finitely generated free modules. Likewise, when

Λ is semisimple, we take A to be the category of locally finitely generated

graded Λ-modules and S ⊂ A to be the subclass of quasi-free modules. In

either case, every such module M belongs to F(∞) and satisfies Abs(M).

Hence every such module has a complete minimal resolution. However,

as we shall show elsewhere, there are many more examples of minimal

resolutions which are excluded a priori from Eilenberg’s framework.
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