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Abstract

The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields

of cancer cell biology, intestinal immunity, and inflammation. In the current study, we

describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and

HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells

contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant

because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophos-

phates’ (PP-InsPs)—highly ‘energetic’ and conserved regulators of cellular and organismal

metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines

could have impacted the phenotypic data obtained in previous studies. This difference in

InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and

notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We

also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in

any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and

HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an

increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in

the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of

the newly-designated HCT116NIH and HCT116UCL lines should be considered an important

research opportunity: future studies using these two lines may uncover new features that

regulate InsP8 turnover, and may also yield new directions for studying InsP8 function.

Introduction

The inositol pyrophosphates (PP-IPs; Fig 1) comprise a unique class of cell signalingmolecules;
crammed around a six-carbon inositol scaffold are as many as seven (“InsP7”) or eight
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(“InsP8”) phosphates, including functionally significant and highly ‘energetic’ diphosphate
groups [1,2]. The PP-InsPs regulate many disparate biological processes, although an over-
arching hypothesis has emerged that considers PP-InsPs as highly conserved regulators of cel-
lular and organismal metabolism [1,3].

Yeasts and metazoan cells can synthesize PP-InsPs through two parallel pathways (Fig 1),
which utilize two separate classes of enzymes to form diphosphate groups: the 5-kinases (the
IP6Ks [4,5]) and the 1-kinases (the PPIP5Ks [6,7]). As a consequence, two InsP7 isomers may
be generated, which are distinguished by whether the diphosphate is attached at either the 5-
or 1-position on the inositol ring; InsP8 has both of these diphosphates (Fig 1). A family of
phosphatases—the DIPPs [8]—hydrolyzes both the 1- and 5-diphosphate groups.

Research into the PP-InsPs follows a track that parallels all other investigations into the
properties of intracellular signalingmolecules; analyses of PP-InsP metabolism and function
go hand-in-hand. Much of this work involves cultured cells, in which the levels of PP-InsPs are
critical parameters that must be carefully monitored. However, such measurements can be
technically challenging, due to the low (submicromolar to low micromolar) levels of PP-InsPs
inside yeast and mammalian cells: steady-state concentrations of total InsP7 (i.e. 1-InsP7 plus
5-InsP7) lie within the 1 to 2 μM range; levels of InsP8 are about 10-fold lower [1,9,10]. Such
measurements have traditionally been obtained by pre-labeling cells in culture with [3H]inosi-
tol, following which the cells are lysed, and the individual PP-[3H]InsPs in the soluble fraction
are chromatographed by Partisphere SAX-HPLC [11,12]. To date this has been the most accu-
rate and sensitive methodology available for monitoring cellular PP-InsP turnover. However, it

Fig 1. Synthesis of InsP7s and InsP8 by IP6Ks and PPIP5Ks. The Fig describes the synthesis of 1-InsP7, 5-InsP7 and 1,5-InsP8

in both yeasts and mammalian cells. IP6K1/2/3 = isoforms 1, 2 and 3 of inositol hexakisphosphate kinase (Kcs1 is the single yeast

isoform); PPIP5K1/2 = isoforms 1 and 2 of diphosphoinositol pentakisphosphate kinase (Asp1 and Vip1 are the single isoforms in

Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively).

doi:10.1371/journal.pone.0165286.g001
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does have the disadvantage of being decidedly low-throughput. For example, in order to attain
steady-state labeling of PP-InsPs, mammalian cells must be incubated with [3H]inositol for
several days [12,13]. Additionally, each HPLC run takes almost 2 h, and then the radioactivity
in each individual fraction eluted from the columnmust be assessed by liquid scintillation
counting—a total analysis time of 10 h. or more for, essentially, one experimental point [12].
Dedicated scintillation cocktail is required in order to count HPLC fractions with good effi-
ciency at the high concentrations of salt required to elute PP-InsPs from the Partisphere SAX
column. Such cocktails are expensive, as is the [3H]inositol itself. It is therefore not surprising
that the degree of technological specialization and funding required for these experiments lim-
its the number of laboratories that can utilize them.

Another drawback for Partisphere SAX HPLC is that it does not adequately resolve the two
isomers of InsP7 (1-InsP7 and 5-InsP7) that are synthesized by yeast and mammalian cells [14].
In fact, as far as we are aware, there is no previous study of any mammalian cell-type in which
1-InsP7 has been directly quantified. Instead, the relative levels of the two isomers have only
been assayed indirectly. For example, it was found that total InsP7 decreased about 90% upon
genetic elimination of IP6K2 [15], or by inhibition of IP6K activity by a cell-permeant pan-
IP6K inhibitor, N2-(m-(trifluoromethyl)benzyl) N6-(P-nitrobenzyl)purine [16]. Neither study
confirmed that the synthesis of 5-InsP7 was completely eliminated, but at least it was possible
to conclude that 1-InsP7 comprises no more than 10% of total InsP7. However, there remains a
need to assay cellular 1-InsP7 levels directly, particularly in view of its distinct role as a pro-
inflammatorymediator [17].

Recently, a gel electrophoresis method was developed for assaying cellular PP-InsPs; this
procedure does not rely on [3H]inositol labeling, is far less costly, and has much higher
throughput [18–20]. All of the required equipment should be routinely available in any bio-
chemical research laboratory. Consequently, an increasing number of laboratories now have
the capability to study PP-InsP metabolism. This method does not match the sensitivity of
HPLC, but by using TiO2 beads to concentrate PP-InsPs prior to analysis [19], the cellular lev-
els of total InsP7 can be readily monitored. This methodology can even resolve 5-InsP7 from
1-InsP7 [20], but to date gel electrophoresis has not detected 1-InsP7 in any mammalian cell
line [19], perhaps because its levels are below the limits of sensitivity. Thus, we have developed
an alternative HPLC technique that, for the first time, can directly measure 1-InsP7 levels in
intact cells.

The assay of cellular InsP8 has also proved to be challenging for gel electrophoresis, at least
when using an experimentally convenient number of cells [19]. However, a recent analysis of
an HCT116 human colonic carcinoma cell line revealed it to contain substantially higher levels
of InsP8 than those found in some other mammalian cell lines [19]. We now demonstrate that
there is considerable variability in the cellular levels of InsP8 within two divergent HCT116 cell
lines in our two laboratories. We designate the two lines as HCT116NIH (containing ‘low’ InsP8

levels) and HCT116UCL (containing ‘high’ InsP8 levels). We discuss the wider significance of
this difference in the levels of a key component of the multi-functional PP-InsP signaling cas-
cade in the two HCT116 cell line variants.

Materials and Methods

Cell culture and [3H]inositol radiolabeling

The HCT116 lines that have been used by the NIH and UCL laboratories are designated as
HCT116NIH and HCT116UCL, respectively; both originate from ATCC. The HCT116NIH cells
were provided as frozen stocks that were obtained in 1994 by the laboratory of Dr Thomas
Kunkel at NIEHS [21]. The HCT116UCL cells were provided as frozen stocks that were
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obtained in 2012 by the laboratory of Dr Sibylle Mittnacht at UCL. In addition, a batch of
HCT116 cells was procured directly from ATCC. Cells were cultured for less than 15 passages,
and the data obtained were independent of this time in culture. For experiments that were per-
formed in the NIH laboratory, all cells were cultured under identical conditions in DMEM/F12
medium (ThermoFisher Scientific) supplemented with 10% Fetal Bovine serum (Germini Bio-
product) and 100 U/ml Penicillin-Streptomycin (ThermoFisher Scientific) at 37°C, 5% CO2.
For experiments that were performed in the UCL laboratory, all cells were cultured under iden-
tical conditions in DMEM medium (ThermoFisher Scientific) supplemented with 10% Fetal
Bovine serum (Sigma) at 37°C, 5% CO2. All cultures in both the UCL and NIH laboratories
were tested for mycoplasma using the MycoAlert™ kit; no mycoplasma was detected.

To measure cell growth, 2x105 cells were seeded in 6-well plates with 2 ml culture medium
and cultured for 4 days. Each day, cells in one plate were trypsinizedand counted using a
Countess I (ThermoFisher Scientific).

For the radiolabeling experiments, 1x106 cells were seeded in a 10 cm dish with 7 ml
medium supplemented with 10 μCi/ml [3H]inositol. After 3 days of radiolabeling, at which
point cultures were 60% to 70% confluent, the cells were quenched by removal of the culture
medium and its immediate replacement with 1 ml of ice-cold 1M perchloric acid (the yield of
PP-InsPs is very similar when using alternative, non-acidic quench techniques, i.e. at pH 7.7
[11]). The plates were placed on ice for 15 min, then the soluble portion was taken for HPLC
analysis of the PP-[3H]InsPs (see below). The insoluble cell debris was solubilized in 8 ml of 0.1
M NaOH / 0.1% triton X-100 overnight, after which aliquots were taken to assess total [3H]ino-
sitol lipids, for normalizing the levels of each of the [3H]inositol phosphates.

HPLC analysis of cellular inositol phosphates

Inositol phosphates were resolved by HPLC using either a 4.6 x 125 mm Partisphere SAX
HPLC column (Whatman), or a 3 x 250 mm CarboPac™ PA200 HPLC column (ThermoFisher
Scientific).

Acid-quenched cell extracts that were to be chromatographed on a Partisphere SAX column
were neutralizedwith 675 μl of ice-cold 1M KCO3 / 40 mM EDTA. After 15 min on ice, the per-
chlorate pellet was removed by centrifugation, and the supernatant was diluted 1:1 with 1 mM
Na2EDTA. Samples were loaded onto the HPLC column and eluted with a gradient that was
generated from Buffer A (1 mM Na2EDTA) and Buffer B (Buffer A plus 1.3 M (NH4)2HPO4,
pH 3.85 with phosphoric acid). The gradient (1 ml/min) is as follows: 0–10 min, 0% B; 10–25
min, B increased linearly from 0 to 35%; 25–105 min, B increased linearly from 35 to 100%.
From each run, 1 ml fractions were collected and vigorously mixed with 4 ml MonoFlow 4
(National Diagnostics,Manville NJ), and the [3H] DPM/fractionwas measured with a liquid
scintillation counter.

For acid-quenched cell extracts that were to be chromatographed on a CarboPac™ PA200
HPLC column, 1.5 mg titanium dioxide (TiO2) beads (Titansphere TiO 5 mm; GL Sciences)
were added so as to bind the inositol phosphates [19]; samples were rotated at 4°C for 30 min.
The beads were concentrated by centrifugation, and washed twice with ice-cold water. Inositol
phosphates were eluted from the beads by sequential washes in 1 ml and then 0.5 ml of 1.5 M
ice-cold NH4OH; each time, samples were rotated at 4°C for 20 min. The two supernatants
were combined, and vacuum evaporated to approx. 50 μl. Next, each sample was spiked with 1
nmol of InsP6 (Calbiochem), and 1 nmol each of chemically synthesized 1-InsP7 [22], 5-InsP7

[23], and InsP8 [24]. For some experiments (as indicated below), 20 nmol 5-InsP7 were added.
Samples were made up to 230 μl with Buffer C (1 mM Na2EDTA, 10 mM 1,4-piperazinedipro-
panesulfonic acid, pH 4.7, 5% MeOH), loaded on to the HPLC column and eluted with a
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gradient that was generated from Buffer C and Buffer D (Buffer C plus 0.5 M tetramethylam-
monium nitrate (Sigma-Aldrich)). The gradient (0.5ml/min) is as follow: 0- 10min, 0% D; 10-
15min, D increased linearly from 0% to 30%; 15-60min, D increased linearly from 30% to 55%;
60-70min, D increased linearly from 55% to 65%. From each run 0.25ml fractions were col-
lected,mixed with 3 ml MonoFlow 4, and the [3H] DPM/fractionwas measured with a liquid
scintillation counter.

InsP8 phosphatase activity assay

60%-70% confluent cells in 10 cm dishes were scraped into 10 ml ice-cold PBS. Cell pellets
were lysed for 15 min on ice in 150 μl buffer (20 mM Tris pH7.5, 150 mM NaCl, 5% glycerol,
0.5% Triton X-100) and then homogenized using a Minilys personal homogenizer (Precellys).
Protein concentration was measured using a BCA protein assay kit (ThermoFisher Scientific).
Next, 70 μg cell lysate (10 μl) was incubated with 1 μM [3H]InsP8 in 100 μl assay buffer (1 mM
Na2EDTA, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 100 mM KCl, 2 mM
MgCl2) at 37°C for 0 or 10min. Reactions were quenched with perchloric acid followed by neu-
tralization with K2CO3. After centrifugation, the supernatants were applied to a Partisphere
SAX HPLC using a gradient generated from Buffers A and B as described above, with slight
modificaton: 0–5 min, 0% D; 5–10 min, D increased linearly from 0 to 45%; 10–60 min, D
increased linearly from 45% to 100%. From each run 1 ml fractions were collected and mixed
with 4 ml MonoFlow 4 scintillant.

Gel electrophoresis and visualization of inositol phosphates

For the PAGE experiments, 8 x 106 cells were seeded into 6 x 15 cm dishes with 18 ml
medium. After 3 days of growth, at which point cultures were 90% confluent, the cells were
trypsinised and washed in PBS. Extracts were made from 6 x 107 cells (DAPI staining) or
8 x 107 cells (toluidine staining). Cells were extracted in 1 ml 1 M perchloric acid, as described
previously [19], using 5 mg TiO2 beads per sample. Inositol phosphates were eluted using
2.5% NH4OH, and separated using 35% PAGE and visualizedwith DAPI or toluidine blue as
described [20].

Western blot analysis

Cells that were to be analyzed by Western blotting were seeded (0.4 x 106 cells) into 6-well
plates and harvested 48 later, at which point they were 80% confluent. Cells were lysed in RIPA
buffer containing Halt™ Protease and Phosphatase Cocktail (ThermoFisher Scientific) and fur-
ther homogenized using a Minilys personal homogenizer. Typically, 20 μg of protein was
loaded onto an SDS-PAGE gel for immunoblotting. Primary polyclonal antibodies used: IP6K1
(Prestige HPA040825, 1:1000, Sigma), IP6K2 (sc-10425, 1:1000, Santa Cruz Biotech), PPIP5K2
(ab154046, 1:1000, Abcam), b-actin (sc-1615 HRP, 1:10000, Santa Cruz Biotech). Detection
was performed using Luminata CrescendoWestern HRP Substrate (Millipore) or SuperSignal
West Femto Kit (Thermo Scientific) for IP6K2. The antibodies against IP6K1 and IP6K2 were
validated (see S1 Fig) with the help of mouse embryonic fibroblasts derived from IP6K1-/- mice
[25], and IP6K2-/- HCT116 cells [15]; both of the latter cell-lines were kindly provided by Solo-
mon Snyder. The antibody against PPIP5K2 also cross-reacts with PPIP5K1. To validate this
antibody (see S2 Fig), we created HCT116NIH cell lines in which expression of either PPIP5K1
or PPIP5K2 was eliminated by using CRISPR [26].

InsP8 in HCT116 Cell Line Variants
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Microscopy

For morphology analysis, 8 x 104 cells were seeded onto glass coverslips in a 12 well plate. After
3 days of growth, at which point cultures were 50% confluent, the cells were fixed in 4% formal-
dehyde for 10 min. Cells were then permeabilised in 0.2% Triton-X100 for 10 min, blocked
with 10% goat serum for 1 h, then stained with 0.4 μM FITC-phalloidin (Sigma) and 10 μg/ml
Hoechst 33342 for 1 h. Confocalmicroscopy was performed using a Leica SPE microscope
with a 63x lens. Images shown are maximal projections of Z-stacks.

Quantitative Reverse Transcription PCR

Cells that were to be analyzed by RTq-PCR were seeded (0.4 x 106 cells) into 6-well plates and
harvested 48 later, at which point they were 80% confluent. RNA was extracted from cells
using RNeasy Kit (QIAGEN), and converted to cDNA with SuperScript III First Strand Synthe-
sis System (Invitrogen). The qRT-PCR was performed using MESA Blue qPCR mix (Eurogen-
tec) in a Mastercycler ep Gradient S (Eppendorf).Results were normalized to a standard curve
of purified IP6K CDS of known copy number. The following primer pairs were used: IP6K1,
forward GAGGAGAAAGCCAGCCTGT, reverse TTCTCAAGCAGGAGGAACTTG; IP6K2 forward
AGTCATTGGTGTGCGTGTGT, reverse ACCAGCAGGGAGCTTGAGTA; IP6K3 forward AAGACA
CCAACGGAAACCAG, reverse, AGATCCAGGACACAGGGATG.

Results and Discussion

Analysis of PP-InsP profiles in HCT116 cells using gel electrophoresis

and Partisphere SAX HPLC

In a recent study from the UCL laboratory [19], gel electrophoresis was used to determine the
levels of InsP6, InsP7, and InsP8 in HCT116 cells (re-designated here as HCT116UCL cells). The
levels of InsP8 in these cells (computed as a ratio to InsP6) were shown to be approx. 10-fold
higher than those in several other mammalian cell types: HeLa, CHO, HT29, PC3, and MCF7
[19].

We have now compared the levels of InsP6, InsP7, and InsP8 in HCT116UCL cells with those
in a different batch of HCT116 cells in use in the NIH laboratory (now re-designated as
HCT116NIH cells). Both sets of cells were cultured and analyzed in the UCL laboratory under
identical conditions. Levels of InsP6 and total InsP7 are very similar in both groups of cells, but
the levels of InsP8 are substantially higher in the HCT116UCL cells (Fig 2A). The difference in
InsP8 levels were not quantified precisely by gel electrophoresis, as the signal from the
HCT116NIH cells is below the level of detection (Fig 2A).

We next performed an alternative, and more sensitive assay of cellular PP-InsPs, using Par-
tisphere SAX-HPLC analysis of extracts prepared from [3H]inositol labeled cells. For these
experiments, HCT116UCL and HCT116NIH cells were cultured and analyzed in the NIH labora-
tory under identical conditions. The level of [3H]InsP8 in HCT116UCL cells (Fig 2B) was found
to be about 6-fold higher than its level in HCT116NIH cells (Fig 2C). Again, levels of InsP6 and
total InsP7 were similar in both cell types. Thus, we conclude that these two populations of cells
have diverged in a very specific aspect of PP-InsP turnover: the regulation of InsP8 levels.

Validation of the lineage of the HCT116NIH and HCT116UCL lines

We considered it important to validate that neither batch of HCT116 cells in our two laborato-
ries might be misidentified, such as does occur with surprising frequency, as a consequence of
mislabeling or by contamination with another cell line [27]. Cell line authenticity was interro-
gated by PCR amplification of amelogenin plus tandem DNA repeat sequences (STRs) at eight
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Fig 2. Differences in InsP8 levels between HCT116UCL and HCT116NIH cells. Panel A: extracts of

HCT116NIH and HCT116UCL cells were prepared by using TiO2 to concentrate inositol phosphates, which

were then resolved by electrophoresis on a 35% polyacrylamide gel, and visualized by staining with either

toluidine or DAPI. Panels B,C show Partisphere SAX HPLC analysis of extracts of [3H]inositol-labeled

HCT116UCL cells and HCT116NIH cells, respectively. The DPM in each fraction were normalized to the DPM

(x104) of the [3H]inositol lipids. Fractions 25–50 are re-plotted on an expanded scale (left-hand axis), to

highlight the InsP7 and InsP8 peaks.

doi:10.1371/journal.pone.0165286.g002
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core alleles, using the ATCC profiling service.These data were compared with those for the
HCT116 cell line (catalogue number CCL-247) that is curated by ATCC (Table 1). Both the
HCT116NIH and HCT116UCL lines exceed the 80% allele match that is considered sufficient to
designate common ancestry [27]. The power of discrimination for this analysis has been esti-
mated to be approximately 1 x 10-8 [27]. Thus, we conclude that neither of our two cell lines
have beenmisidentified or contaminated by other lines.

Nevertheless, as neither allele match was 100%, both of the cell lines were deemed to have
undergone some genomic changes. Indeed, it is known (yet frequently ignored [28]) that all
tumor-derived cell lines suffer from varying degrees of inherent genomic instability which
can promote divergence [29,30]. We propose that genomic changes underlie the stable differ-
ences in InsP8 levels between these two HCT116 cell-lines.We therefore investigated if the
HCT116UCL cell-lines might express higher levels of the kinases—IP6Ks and PPIP5Ks—that
synthesize the PP-InsPs. This was not the case according to Western analysis of the expres-
sion of IP6K1, IP6K2, PPIP5K1, and PPIP5K2 (Fig 3A). In fact, there is an indication that the
HCT116UCL cells express slightly lower levels of IP6K1 than do the HCT116NIH cells (Fig
3A); the latter result is opposite to that which might have helped account for the higher levels
of InsP8 in the HCT116UCL line. Specific antibodies against IP6K3 were not available, so we
examined expression of the IP6Ks by qRT-PCR. Neither cell line expressed IP6K3 (Fig 3B).
This analysis also confirmed a slightly lower level of expression of IP6K1 in HCT116UCL

cells.
We also conducted experiments to investigate if the two HCT116 cell line variants might

differ in their rates of InsP8 dephosphorylation. This is a complex topic, for several reasons.
First, there is a group of InsP8 phosphatases in mammals—the DIPPs—that comprise 5 differ-
ent isoforms that each have slightly differing kinetic parameters [14]. We do not have antibod-
ies that can distinguish between all of these different DIPPs. Two of these enzymes—DIPP2α
and DIPP2β—are generated from an array of alternately spliced mRNAs that may have differ-
ential stability and translatability. InsP8 is also dephosphorylated by a phosphatase domain in
the PPIP5Ks [31]. Finally, the discovery of a new PP-InsP phosphatase in yeast [32] raises the
possibility that additional mammalian InsP8 phosphatases remain to be discovered. In such cir-
cumstances, we measured total InsP8 dephosphorylation in cell lysates prepared from
HCT116NIH cells and HCT116UCL cells (Fig 3C), and found no substantial difference between
them.

Table 1. STR profiles of HCT116NIH and HCT116UCL cell-lines, compared with HCT116 cells curated at ATCC. The loci for eight core short tandem

repeats plus Amelogenin were derived by ATCC for their curated HCT116 cell line (catalogue number CCL-247) and the HCT116NIH and HCT116UCL cells.

The HCT116NIH and HCT116UCL cells had an 83% and 89% match with the parental HCT116 line, above the 80% minimum that designates common

lineage.

Repeat number

Alleles HCT116 (ATCC) HCT116NIH HCT116UCL

D5S818 10,11 10,11 10,11,12

D13S317 10,12 10,12 10,12

D7S820 11,12 10,12 11,12

D16S539 11,13 11,13 11,12,13

vWA 17,22 18,19,21 17,22

THO1 8,9 8,9 8,9

AMEL X,Y X,Y X

TPOX 8,9 8,9 8

CSF1PO 7,10 7,10 7,10

doi:10.1371/journal.pone.0165286.t001
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We further found that the HCT116NIH and HCT116UCL cell-lines exhibited identical
growth-rates (Fig 3D), and they exhibit similar morphological organization that could not be
distinguished by phalloidin staining of the actin cytoskeleton (Fig 3E).

Analysis of PP-InsP profiles in HCT116 cells using a CarboPac HPLC

system

There are two parallel pathways to InsP8 synthesis, each of which use different InsP7 isomers as
intermediates: 5-InsP7 and 1-InsP7 (Fig 1). We posited that information on the relative levels
of the two InsP7 precursors may inform on the manner in which InsP8 accumulation is up-reg-
ulated in HCT116UCL cells as compared to HCT116NIH cells. However, it has not previously
been possible to directly compare cellular 5-InsP7 and 1-InsP7 levels: gel electrophoresis is not
sufficiently sensitive, and Partisphere SAX HPLC does not have the resolution capability [14].
There is an alternative, mass-detectionHPLC method that can separate the two InsP7s, but
again it lacks the required sensitivity [6]. In any case, the latter method utilizes an HCl-based
mobile phase that, at ambient temperature, may cause PP-InsP degradation [18,33]. To date,
1-InsP7 levels have only been estimated indirectly, either by using genetic manipulations [15]
or pharmacological tools [16] to reduce, but not definitively eliminate, the synthesis of 5-InsP7.

In the current study we have resolved the 1-InsP7 from 5-InsP7 using an alternative HPLC
protocol (Fig 4) that uses a CarboPac column [31]. Unlike the Partisphere SAX column, the
CarboPac HPLC column has mixed-mode separation characteristics: quaternary amines for
the anion-exchange phase are attached in a low capacity format to poly(styrene-divinylben-
zene) for reverse-phase chromatography [34]. The ability of these columns to resolve inositol
phosphate isomers was first reported in 2003 [35], but that study used an HCl gradient at room
temperature, which likely would degrade PP-InsPs [19,33]. Instead, we eluted at pH 4.7. To
minimize cation interactions with PP-InsPs while maximizing anion-interactions, we eluted
with tetramethylammonium nitrate [36] in the presence of 5% methanol as an organic

Fig 3. Comparisons of HCT116NIH and HCT116UCL cells: expression of IP6Ks and PPIP5Ks, capacity

to dephosphorylate InsP8, cell growth, and phalloidin staining. The following analyses of HCT116NIH

and HCT116UCL cells were performed: Panel A, Western analyses of IP6Ks and PPIP5Ks. Complete gels,

and procedures used to validate the antibodies, are described in S1 and S2 Figs. Panel B, quantitative

RT-PCR analysis of expression of IP6K1, IP6K2 and IP6K3. Panel C, HPLC analysis of 1 μM [3H]InsP8

dephosphorylation by 70 μg cell lysates in 100 μl medium. Panel D, counting of cell growth for the indicated

number of days. Panel E, labeling of the actin cytoskeleton with FITC-phalloidin. Hoechst was used as a

nuclear stain.

doi:10.1371/journal.pone.0165286.g003
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Fig 4. Separation of 1-InsP7 and 5-InsP7 by CarboPac HPLC. Standards of [3H]InsP6, 1-[3H]InsP7, 5-[3H]

InsP7, and [3H]InsP8 (1 nmol of each) were chromatographed on a CarboPac HPLC column. Panels A and B

show HPLC runs in which either 1-[3H]InsP7 or 5-[3H]InsP7 were added individually, while Panel C shows an

HPLC run in which both [3H]InsP7 isomers were added together. Panel D, the mass amount of 5-InsP7 was

increased to 20 nmol.

doi:10.1371/journal.pone.0165286.g004
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modifier. Peak sharpness was enhanced by adding non-radioactive ‘spikes’ of 1-InsP7 and
5-InsP7. The use of individual radioactive standards shows clear separation of InsP6, 1-InsP7,
5-InsP7 and InsP8 (Fig 4A and 4B). Recoveries of each standard exceeded 85%; the small losses
were largely intrinsic to the handling of the materials.

When standards of 1-InsP7 and 5-InsP7 were chromatographed together, their partial sepa-
ration was confirmed (Fig 4C). Furthermore, when the mass of the 5-InsP7 spike was increased,
the resolution of the two InsP7 isomers was significantly improved (Fig 4D). We used this
HPLC protocol to resolve extracts prepared from [3H]inositol-labeledHCT116UCL and
HCT116NIH cells that were radiolabeled in parallel. We were surprised to discover that, for
each cell-line, a distinct 1-InsP7 peak was observed in just one of six HPLC runs. In the experi-
ment describedby Fig 5A and 5B, 1-InsP7 is only discernable in the HCT116NIH cells. S3 Fig
shows a separate experimental pair in which 1-InsP7 was only observed in the HCT116UCL

cells. In each case that 1-InsP7 was clearly distinguished, it amounted to just 1.5 to 2% of total
InsP7.

The rest of the data obtained from the Carbopac column are consistent with those obtained
from the Partisphere SAX column (Fig 2B and 2C) in that the levels of InsP5, InsP6 and
5-InsP7 are very similar in the two cell lines, while the HCT116UCL cells contain approx. 6-fold
higher levels of InsP8 (Fig 5; S4 Fig). We also performedHPLC analysis of a new batch of
HCT116 cells that we acquired direct from ATCC. The levels of InsP8 in these cells, recorded
after 2 and 10 passages, were very similar to those of HCT116NIH cells (S4 Fig).

Concluding Comments

The possibility of diverse phenotypes in a cell line used by multiple laboratories is a subject that
receives little attention in the scientific literature. The current study is therefore unusual in that
it describes two HCT116 cell line variants, designatedHCT116NIH and HCT116UCL, that are
phenotypically distinguishable by virtue of their significantly different levels of InsP8 (Figs 2
and 5). The observationwas confirmed using Partisphere SAX HPLC, CarbopacHPLC, and
gel electrophoresis. This difference in InsP8 levels between two cell lines of common ancestry is
all the more remarkable for being specific; levels of other inositol phosphates, and notably
InsP6, 1-InsP7 and 5-InsP7, are very similar in both cell lines. This divergence has occurred
despite HCT116 cells being among the more genomically stable of colorectal lines [29,30]. Nev-
ertheless, our study underscores how any cell line is potentially susceptible to genetic diver-
gence, as a consequence of subtle differences in culture conditions such as the nature of the
medium, serum concentration, temperature, humidity, and other cell-handling practices.

During the time that has passed since the isolation of a homogeneous culture of HCT116
cells from a single human colonic carcinoma, 35 years ago [37], 9316 articles can be retrieved
from the PubMed archive by using “HCT116 or HCT-116" as a query (as of August 10, 2016).
Moreover, HCT116 cells have been utilized by many cancer cell biologists [38], and are also
employed as a model for studying intestinal immunity and inflammation [39]. These very bio-
logical phenomena are among those known to be regulated by members of the PP-InsP family
[17,40]. That is, the cell line is a particularly appropriate model for PP-InsP research. A key
mechanism by which PP-InsPs regulate cell function is by a non-enzymatic, concentration
dependent pyrophosphorylation of a wide range of proteins [41,42]. The 6-fold disparity in
InsP8 levels betweenHCT116NIH and HCT116UCL cells represents a significant variation in the
pyrophosphorylation capacity of the two different lines. It is very possible that differences in
the cellular levels of InsP8 could alter the phosphorylation profile of multiple proteins, impact-
ing the biological data obtained with the HCT116 cells used in earlier studies. Future work with
HCT116 cells should consider taking this variability into account by profiling PP-InsP levels.
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Nevertheless, the elevated levels of InsP8 in HCT116UCL cells also represent a research
opportunity. Among the members of the PP-InsP signaling family, InsP8 is the one that shows
the most acute changes in cellular levels in response to certain extracellular and intracellular
perturbations. For example, InsP8 levels increase several-fold when cells are subjected to
defined environmental challenges, such as hyperosmotic stress [43], heat stress [44], and cold

Fig 5. CarboPac HPLC analysis of [3H]inositol-labeled inositol phosphates in HCT116NIH and HCT116UCL cells.

Extracts of [3H]inositol-labeled HCT116NIH cells (Panel A) and HCT116UCL cells (Panel B) were prepared in parallel and

analyzed by CarboPac HPLC. The DPM in each fraction were normalized to the DPM of the [3H]inositol lipids. Fractions

30–58 are re-plotted on an expanded scale (left-hand axis), so as to highlight the InsP7 and InsP8 peaks. This experiment

was performed six times. In the experiment shown, 1-InsP7 is only discernable in the HCT116NIH cells. S3 Fig shows a

separate experimental pair in which 1-InsP7 was only observed in the HCT116UCL cells.

doi:10.1371/journal.pone.0165286.g005

InsP8 in HCT116 Cell Line Variants

PLOS ONE | DOI:10.1371/journal.pone.0165286 October 27, 2016 12 / 16



stress [44]. InsP8 also appears to act as a metabolic sensor, since its levels decrease in cells
undergoing relatively mild bioenergetic challenges, even those that can occur in the absence of
a detectable drop in ATP levels [45]. For future studies that investigate PP-InsP metabolism
and function, it may be useful that the elevated levels of InsP8 in HCT116UCL cells bring them
into the range of values that can be readily monitored by gel electrophoresis, which is more
experimentally friendly than is HPLC.

Our study also provides the first direct determination of the cellular level of 1-InsP7 in any
mammalian cell-line. It is of further significance that 1-InsP7 accounts for less than 2% of total
InsP7, a level that was only detected in one of six HPLC runs (Fig 4, S3 Fig). Thus, the 6-fold
higher accumulation of 1,5-InsP8 in HCT116UCL cells is not accompanied by a significantly
increased 1-InsP7 synthesis. That is, it seems unlikely that the 1-kinase activities of PPIP5Ks
(Fig 1) is substantially higher in the HCT116UCL cells compared to the HCT116NIH cells, con-
sistent with there being similar levels of these enzymes in the two groups of cells (Fig 3A). It
remains to be determined how the extremely low levels of 1-InsP7 impact ideas concerning its
proposed signaling activities. For example, it has been reported to have pro-inflammatory
properties [17]; perhaps 1-InsP7 levels increase in response to certain pathogenic challenges. A
wider application of the CarboPac HPLC method would appear to be essential for any future
research that might specifically study the metabolism and function of 1-InsP7. Finally, by dem-
onstrating that the levels of InsP8 are substantially different in two variants of a particular cell
line, our data indicate the importance for future work in the PP-InsP field of validating cellular
PP-InsP content by either HPLC or gel electrophoresis—whichever cell type is used.

Supporting Information

S1 Fig. Full Western blots for IP6Ks, and antibody validation. Panel A, complete blots are
shown for the Western analyses of levels of IP6K1, IP6K2 and actin as depicted in Fig 3A of the
main text. Panel B, validation of the band detected by the anti-IP6K2 antibody (using an extract
prepared from IP6K2-/- HCT116 cells) and the anti-IP6K1 antibody (using an extract prepared
from IP6K1-/- MEF cells).
(PPTX)

S2 Fig. Full Western blots for PPIP5Ks, and antibody validation. Panels A, B, complete
blots are shown for the Western analyses of levels of PPIP5K2, PPIP5K1 and actin as depicted
in Fig 3A of the main text. Panel C, validation of the PPIP5K1 and PPIP5K2 band detected by
the anti-PPIP5K2 antibody, in a single blot with two different exposure times. K1KO and
K2KO lanes show extracts prepared from cells in which either PPIP5K1 or PPIP5K2 expres-
sion, respectively, was eliminated using CRISPR. Single-guideRNAs(sgRNA) with sequences
5’-CCCCTTTCTTATCAATGATCTGG-3’ and 5’-CGGTTCAAAATAGCATAACGAGG-3’
were designed to target PPIP5K1 exon 4 and PPIP5K2 exon 5 respectively. Vector expressing
both cas9 and sgRNA was obtained from Addgene (PX458). PPIP5Ks KO cells were generated
following the protocol as described:Genome engineering using the CRISPR-Cas9 system. Nat
Protoc. 2013 Nov; 8(11): 2281-308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24.
(PPTX)

S3 Fig. Analysis by CarboPacHPLC of [3H]InsP7 and [3H]InsP8 in HCT116NIH and
HCT116UCL cells. Extracts of [3H]inositol-labeledHCT116NIH cells (Panel A) and
HCT116UCL cells (Panel B) were prepared in parallel and analyzed by CarboPac HPLC. The
DPM in each fractionwere normalized to the DPM of the [3H]inositol lipids. Only InsP7 and
InsP8 peaks are shown. This experiment was performed six times. In the experiment shown,
1-InsP7 is only discernable in the HCT116UCL cells. Fig 5 in the main text shows a separate
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experimental pair in which 1-InsP7 was only observed in the HCT116NIH cells.
(PPTX)

S4 Fig. [3H]InsP8 levels in individualHCT116 lines.CarboPac HPLC was used to quantify
[3H]InsP8 levels in extracts prepared from [3H]inositol-labeledHCT116NIH cells, HCT116UCL

cells, and also parental HCT116 cells that were procured directly from ATCC and analyzed
after 2 passages (“2p”) and 10 passages (“10p”). [3H]InsP8 levels are normalized to those of
[3H]InsP6.
(PPTX)
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