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Voxel-based analysis of diffusion MRI data is increasingly popular. However, most white matter voxels
contain contributions from multiple fibre populations (often referred to as crossing fibres), and therefore
voxel-averaged quantitative measures (e.g. fractional anisotropy) are not fibre-specific and have poor
interpretability. Using higher-order diffusion models, parameters related to fibre density can be extracted
for individual fibre populations within each voxel (‘fixels’), and recent advances in statistics enable the
multi-subject analysis of such data. However, investigating within-voxel microscopic fibre density alone
does not account for macroscopic differences in the white matter morphology (e.g. the calibre of a fibre
bundle). In this work, we introduce a novel method to investigate the latter, which we call fixel-based
morphometry (FBM). To obtain a more complete measure related to the total number of white matter
axons, information from both within-voxel microscopic fibre density and macroscopic morphology must
be combined. We therefore present the FBM method as an integral piece within a comprehensive fixel-
based analysis framework to investigate measures of fibre density, fibre-bundle morphology (cross-
section), and a combined measure of fibre density and cross-section. We performed simulations to de-
monstrate the proposed measures using various transformations of a numerical fibre bundle phantom.
Finally, we provide an example of such an analysis by comparing a clinical patient group to a healthy
control group, which demonstrates that all three measures provide distinct and complementary in-
formation. By capturing information from both sources, the combined fibre density and cross-section
measure is likely to be more sensitive to certain pathologies and more directly interpretable.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The importance of white matter axons facilitating microsecond
communication between different brain regions is evident from
the severe brain dysfunction that arises in disconnection syn-
dromes (Catani and Ffytche, 2005). Furthermore, many neurolo-
gical disorders (including Motor Neurone Disease (Kassubek et al.,
2012), Multiple Sclerosis (Haines et al., 2011), Epilepsy (Otte et al.,
2012), and Alzheimer's disease (Radanovic et al., 2013)) involve
reduction or disruption of brain ‘connectivity’ due to pathological
changes to the number and density of white matter axons. In vivo
methods to quantify white matter changes that alter connectivity
are also of interest in relation to psychiatric disorders (Kubicki
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et al., 2007), development (Mills and Tamnes, 2014), aging (Lebel
et al., 2012), individual differences and brain-behaviour correla-
tions (Johansen-Berg, 2010), genetics (Meyer-Lindenberg, 2009),
structural plasticity (Scholz et al., 2009), treatment response
(Szeszko et al., 2014) and neuroscientific efforts to relate structural
and functional connectivity (Calamante et al., 2013; Stephan et al.,
2009; Van Den Heuvel et al., 2009).

Voxel-based analysis (VBA) of diffusion MRI is a common
method for studying white matter, providing evidence of altered
brain connectivity by detecting differences at a local level (Buchs-
baum et al., 1998). By far the most popular approach to VBA of
diffusion MRI is the analysis of diffusion tensor-derived fractional
anisotropy (FA) (Basser and Pierpaoli, 1996), with voxel- or cluster-
level statistical inference using packages such as SPM (http://www.
fil.ion.ucl.ac.uk/spm/) or FSL (www.fmrib.ox.ac.uk/fsl). However,
most white matter voxels are known to contain crossing fibres
(Jeurissen et al., 2012), and voxel-averaged measures such as FA are
not fibre-specific (or even erroneous) in such regions, which con-
founds interpretation of apparent differences (Douaud et al., 2011;
Pierpaoli et al., 2001; Wheeler-Kingshott and Cercignani, 2009).

In recent years, a number of more advanced diffusion MRI
models have been proposed that can resolve multiple fibre po-
pulations in a single voxel (Tournier et al., 2011). A major benefit of
these so-called mixture models (Tournier et al., 2011) is that
quantitative measures can be associated with a single fibre po-
pulation within a voxel (Assaf and Basser, 2005; De Santis et al.,
2016; Dell’Acqua et al., 2013; Raffelt et al., 2012b, 2014; Scherrer
et al., 2016; Scherrer and Warfield, 2012). We refer to such a single
fibre population within a voxel as a fixel,1 as introduced in Raffelt
et al. (2015). Unlike VBA, fixel-based analysis (FBA) can identify
effects in specific fibre pathways even within regions containing
crossing fibres (Raffelt et al., 2015),

In this work, we first discuss from a theoretical viewpoint why
intra-axonal volume (which is a common quantitative measure
derived from diffusion mixture models) is of biological interest in
FBA of white matter. We then discuss possible mechanisms by
which differences in the intra-axonal volume may manifest. This
provides the basis for our assertion that when investigating intra-
axonal volume,macroscopic white matter tract morphology should
also be investigated. We therefore introduce a novel method to
achieve the latter, which we call fixel-based morphometry (FBM).

The proposed FBM method provides information derived ex-
clusively from morphology differences in fibre bundle cross-sec-
tion. However, as demonstrated in our previous work (Raffelt et al.,
2012b), fibre density and cross-section information can be com-
bined to enable a more complete investigation of white matter. We
therefore present the FBM method as an integral piece within a
comprehensive fixel-based analysis framework to investigate
measures of fibre density, fibre-bundle cross-section, and a com-
bined measure of fibre density and bundle cross-section.

To demonstrate that FBM is appropriate for assessing fibre
bundle cross-section, we performed quantitative simulations by
applying a number of linear and non-linear transformations to a
numerical phantom. Finally, to show how all three measures
provide different yet complementary information, we include an
example of a fixel-based analysis of temporal lobe epilepsy pa-
tients compared to a group of healthy control subjects.
1 Previous publications have used the word ‘fibre’ (Assaf and Basser, 2005),
‘fascicle’ (Rokem et al., 2015; Scherrer and Warfield, 2012) or ‘fibre population’
(Behrens et al., 2007; Raffelt et al., 2012b) to refer to a specific population of fibres
within a single voxel. However, these terms can be ambiguous in certain contexts.
For example, when performing statistical analysis of ‘fibres’ or ‘fascicles’, this may
be misinterpreted as belonging analysis of an entire fibre pathway (e.g. a tracto-
graphy-based analysis). Here, we use the word ‘fixel’ to eliminate this ambiguity
when discussing fixel-specific measures and fixel-based analysis (FBA).
2. Background

For a fixel-based analysis to be sensitive to white matter changes
that affect brain ‘connectivity’, quantitative measures should ideally
reflect the local white matter's ‘ability to relay information’. Many
DWI models assume that diffusion within axons is restricted in the
radial orientation (Alexander, 2008; Assaf and Basser, 2005; Bar-
azany et al., 2009; Jespersen et al., 2007; Lu et al., 2006; Raffelt et al.,
2012b; Stanisz et al., 1997; Zhang et al., 2012), and that the exchange
of water between the intra-axonal and extra-axonal space is negli-
gible on the timescale of a diffusion MRI experiment (Quirk et al.,
2003). DWI models that estimate parameters related to the volume
of intra-axonal restricted water are consequently of biological in-
terest since this volume is influenced by the number of axons. It is
therefore reasonable to consider that the intra-axonal volume (of
axons within a given fixel) is a quantity related to the white matter's
local ‘ability to relay information’.

In addition to the number of axons, changes in axon diameter may
also influence the intra-axonal volume assigned to a given voxel or
fixel. Axon diameter plays a role in the ‘ability to relay information’ via
modulating transmission speed, timing and firing rate (Perge et al.,
2012; Waxman, 1980). Accounting for axon diameter distributions
when investigating intra-axonal volume would provide additional
information and potentially more biologically meaningful metrics,
however current approaches to estimate axon diameters using DWI
are not able to assign estimates to individual fixels in crossing fibre
regions (Alexander et al., 2010; Assaf et al., 2008). Furthermore the
vast majority of axons in the human brain are smaller than 2 mm
(Liewald et al., 2014), and are therefore too small to discriminate
between using clinical MRI systems (Drobnjak et al., 2015).

The degree of myelination also influences white matter's ca-
pacity to transfer information. Recent work estimates fixel-specific
myelin content via T1 relaxometry (De Santis et al., 2016), which
would provide useful additional information when investigating
fibre density. However, the current acquisition time for the re-
quired inversion recovery diffusion weighted imaging sequence is
�1 h (for whole-brain coverage), which is not suitable for most
clinical populations.

2.1. Fibre density (FD)

In the last decade there have been numerous DWI models pro-
posed that estimate parameters related to the “intra-axonal restricted
compartment”, and the terminology employed to describe this
compartment varies considerably in the literature (e.g. population
fraction of the restricted compartment (Assaf and Basser, 2005), re-
stricted fraction (De Santis et al., 2014a, 2014b), axonal density (Assaf
et al., 2008; De Santis et al., 2014a, 2014b; Dyrby et al., 2013), partial
volume fraction (Jbabdi et al., 2010), fibre density (Alexander et al.,
2010; Assaf et al., 2013; Reisert et al., 2013, 2014), apparent fibre
density (Dell’acqua et al., 2010; Raffelt et al., 2012b), neurite density
(Jespersen et al., 2010; Zhang et al., 2012), intra-axonal volume frac-
tion (Panagiotaki et al., 2012) fibre volume fraction (Cabeen et al.,
2015), fascicle fraction of occupancy (Scherrer et al., 2016)). While
there are advantages and disadvantages to the different terminolo-
gies, in this work we refer to it as “fibre density” (FD) (see Section 5
for further comment on nomenclature).

Fig. 1 shows different ways that the intra-axonal volume of a
fibre bundle may vary. Fig. 1a illustrates a reduced volume of
restricted water within any given voxel (for example due to dis-
ease-induced axonal loss). This scenario manifests entirely as a
within-voxel change that would be detected as a change in the
diffusion-weighted signal and therefore DWI model-derived esti-
mates of FD. While the simple schematic in Fig. 1 only depicts a
single fibre bundle, we emphasise that the goal of a fixel-based
analysis is to detect fibre density changes belonging to specific

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. A schematic representing a fibre bundle cross-section (grey circles represent
axons, while the grid represents imaging voxels). A change to the intra-axonal
volume (and therefore ‘ability to relay information’) may manifest as: (a) changes
in tissue microstructure that result in a change in within-voxel fibre density (b) a
macroscopic difference in a fibre bundle's cross-section, or (c) a combination of both
fibre density and bundle cross-sectional area.
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pathways, even in voxels containing multiple crossing fibres
(Raffelt et al., 2015).

2.2. Fibre-bundle cross-section (FC)

Fig. 1b depicts a scenario where a difference in a fibre bundle's
intra-axonal volume is manifested as a difference in the number
of voxels the fibre bundle occupies. For example, following axon
loss, the additional extra-axonal space may be persistently filled
with extracellular matrix and cells related to inflammation or
gliosis (as shown in Fig. 1a). However, it's also feasible that after
debris are cleared, the fibre bundle becomes atrophic (white
matter atrophy is a feature of many diseases including Alzhei-
mer's disease and Motor Neurone Disease). Note that Fig. 1b
would apply not only to fibre bundle differences acquired fol-
lowing axonal loss, but also to genetic or developmental differ-
ences in fibre bundle morphology.

Methods such as voxel-based morphometry (VBM) (Ashburner
and Friston, 2000) and tensor-based morphometry (TBM) (Ash-
burner, 2000; Gee, 1999) have been widely used to investigate
grey and white matter morphology. Both methods exploit in-
formation derived from the spatial warps computed during image
registration of each subject towards a common template. At each
voxel in the non-linear warp, the determinant of the Jacobian
matrix (the warp's spatial derivative) describes the local differ-
ences in volume between the subject and template image. The
Jacobian determinant maps can be investigated directly (TBM) or
used to modulate tissue density maps (VBM).

In the analysis of grey matter, changes to the number of neu-
rons (in a local region) will likely lead to a macroscopic volumetric
change (Fig. 2a). However, when investigating white matter, a
difference in volume does not necessarily reflect a difference in the
number of axons (and therefore ‘ability to relay information’),
since the difference in volume relative to the fibre orientation is
important (Raffelt et al., 2010; Zhang et al., 2009). As shown in
Fig. 2b, if two groups differ locally in volume along the length of a
fibre, then it does not imply a difference in the number of axons. In
contrast, if the volume difference is perpendicular to the fibre
orientation (i.e. a difference in fibre-bundle cross-section, FC) as
shown in Fig. 2c, this implies a difference in the number of axons
and therefore the ability to relay information. It is therefore es-
sential that the fibre orientation be taken into account when in-
vestigating the morphology of white matter.

2.3. Fibre density and cross-section (FDC)

It is likely that in many scenarios, white matter differences may
manifest as changes to both within-voxel fibre density and mac-
roscopic fibre-bundle cross-section (Fig. 1c). Therefore, to obtain a
more comprehensive measure related to the total intra-axonal
volume within a pathway, both sources of information need to be
taken into account and ideally be combined. Differences in a
combined measure of fibre density and cross-section are more
likely to reflect differences in ‘the ability to relay information’
compared to fibre density or fibre-bundle cross-section alone.

Investigating a combined measure may be particularly im-
portant for characterising diseases where neurodegeneration oc-
curs (e.g. Alzheimer's disease or motor neuron disease), since
atrophy (i.e. changes to fibre-bundle cross-section) is reflective of
the accumulated axon loss, whereas within-voxel fibre density is
likely to be related to the current state of the remaining white
matter tissue.

The concept of combining density information with morphol-
ogy information is similar in spirit to VBM (Ashburner and Friston,
2000). However, unlike DWI-derived FD metrics, T1-weighed tis-
sue segmentations to not provide metrics that reflect cell packing
density (see Section 5 for further comment).
3. Methods

In this section we outline the steps required to perform a
comprehensive fixel-based analysis of white matter. As a critical
component of this comprehensive analysis, we introduce a
method called fixel-based morphometry (FBM) as a novel ap-
proach to investigate fibre-bundle cross-section (FC). We then
provide quantitative simulations and an in vivo example.

3.1. Spatial correspondence

A key step of both voxel- and fixel-based analysis is the spatial
normalisation of all subject images, ideally to a representative
average study-specific template (Mohammadi et al., 2012; Van
Hecke et al., 2011). This involves deriving a non-linear warp for
each subject that maps each point in the template image to a
corresponding point in the subject image. In this work we esti-
mated warps by registering fibre orientation distribution (FOD)
images towards an unbiased study-specific FOD template (Fig. 3a
and b). This was achieved by iteratively updating the template
using a symmetric diffeomorphic FOD registration algorithm
(Raffelt et al., 2011), which included reorientation of FODs using
apodised delta functions (Raffelt et al., 2012a).

3.2. Fibre density

As listed in the Background section Fibre density (FD), there are
several DW models that aspire to estimate quantitative measures
related to fibre density. Any fixel-based measure can be employed
in a fixel-based analysis; however, in this work we used apparent
fibre density (AFD) (Raffelt et al., 2012b), a quantitative measure
related to FD derived from FOD images computed from single-shell
DWI. As described in Raffelt et al. (2012b), under certain condi-
tions (high b-value, typical diffusion pulse duration, typical axon
diameters 1–4 mm, global intensity normalisation, and a group



Fig. 2. Grey matter morphometry vs white matter morphometry. (a) A local group difference in the volume of grey matter might reflect a difference in the number of
neurons in that region, and therefore the Jacobian determinant is a relevant measure of interest. (b) When investigating white matter morphology, the fibre orientation must
be taken into account. A local difference in the volume along the length of the fibre does not imply a difference in the number of axons. (c) A group difference in volume
perpendicular to the fibre orientation (fibre-bundle cross-section) implies a difference in the number of axons and therefore the ‘ability to relay information’.
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average spherical deconvolution response function) the FOD am-
plitude is proportional to the intra-axonal volume of axons aligned
in that direction. In this work we computed a fixel-specific mea-
sure of FD by integrating the FOD within each lobe (Fig. 3f). Briefly,
FOD lobes are first segmented based on the peaks and troughs of
the FOD, and the apparent FD of each lobe is calculated by non-
parametric numerical integration using a dense sampling of the
FOD over a hemisphere (Smith et al., 2013).

3.3. Angular correspondence

Following estimation of fixel FD, fixel reorientation is per-
formed to ensure the fixel directions remain consistent with their
surrounding anatomy after a non-linear spatial transformation.
The new fixel orientation can be computed using Eq. (4) from
Alexander et al. (2001):
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^
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where ∂x′/∂x is the partial derivative of the transformation (de-
fined as a deformation field where each template voxel contains
the corresponding scanner space position of the subject image)
along the x-axis with respect to dimension x in the template im-
age. We note that performing fixel reorientation as a separate step
in the processing pipeline (as opposed to performing FOD reor-
ientation when transforming FOD images) (Fig. 3) enables any
fixel-based measure of FD to be investigated within this frame-
work (see Section 5 for more details).

To obtain correspondence of fixels across subjects we applied the
method outlined in Raffelt et al. (2015). Briefly, this involves first
identifying fixels of interest (i.e. a fixel template mask, Fig. 3c) by
segmenting each FOD in the template image. As the template is an
unbiased group average, the estimated fixels are representative of the
subjects studied with respect to their locations and orientations. For
each fixel in the fixel template mask, we then assign the FD value
from the corresponding fixel in the subject, which is identified as the
fixel with the closest orientation (within the same voxel location). As
in Raffelt et al. (2015), if no subject fixel is found within a maximum
angle of 30° from the template fixel (e.g. if a patient has a lesion with
edema), then it is assigned a FD value of 0.

3.4. Fixel-based morphometry

At each point in the non-linear warp that maps template po-
sitions to the subject, information about the local scaling,
shearing, and stretching is provided by the Jacobian matrix (Eq.
(2)). The determinant of the Jacobian reflects local volumetric
differences, where values less than one reflect shrinkage and
values greater than one reflect expansion (with respect to the
template). As illustrated by Fig. 2, in the analysis of white matter,
volumetric changes in the plane perpendicular to the fixel or-
ientation are of interest, since they reflect differences in the
number of axons.

Here we propose to estimate a fixel-specific measure based on
morphology differences in the plane perpendicular to the fixel
direction, and compare this measure across subjects as a tech-
nique to investigate variation in local fibre-bundle cross-section
(FC). More precisely, for each fixel f in the template fixel mask
(Fig. 3c), we compute a measure that reflects the change in FC
(with respect to the fixel orientation v̂f ) required to spatially
normalise the subject to the template image. This can be esti-
mated simply as the overall volume change (Jacobian determi-
nant), factoring out the change in scale along the direction of the
fixel, giving the expansion or contraction in the perpendicular
plane:

( )
= ^

( )

J

Jv
FC

det

3
f

f

where det is the matrix determinant, v̂f is the unit vector de-
fining the direction of fixel f, and J is the Jacobian matrix (Eq. (2))



Fig. 3. A comprehensive fixel-based analysis, illustrated for a comparison of a patient group to a control group. (a) Fibre orientation distributions (FOD) were estimated from
diffusion MRI data. (b) FOD images were registered towards a study-specific group-average FOD template. (c) Each FOD in the template was segmented into individual fixels,
and thresholded based on fibre density to yield a fixel-analysis mask (defining the position and orientation of all fixels-of-interest in the analysis). (d) Warps estimated from
registration were used to warp FOD images to template space. (e) Each FOD in the warped images was segmented to estimate a measure of FD per fixel. Angular corre-
spondence between subject and template fixels was obtained. (f) Fibre density was compared between groups, fixel-by-fixel. (g) As per Eq. (3), the change in fibre cross-
section (w.r.t. the fixel direction), FC, was estimated from the Jacobian at each voxel in the warp, and compared between groups. (h) Fibre Density was modulated by the
change in fibre-bundle cross-section to yield a combined measure of fibre density and cross-section, and compared between groups. Fixel based analysis can be performed
on any fixel-based FD measure by replacing steps in red (see Section 5 for more details). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

D.A. Raffelt et al. / NeuroImage 144 (2017) 58–7362
at the fixel's voxel location in the non-linear warp (Fig. 3d). Note
that FC is estimated from the warp field that maps from template
to subject space (i.e. a reverse or pull-back mapping); therefore
fixel FC values 41 imply the encompassing fibre bundle has a
larger cross-section in subject space, while FC values o1 imply a
smaller cross-section. We note that a variation of Eq. (3) was also
used in our previous work to modulate spherical harmonic point
spread functions during FOD reorientation (Raffelt et al., 2012b).
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In Appendix A we also demonstrate that Eq. (3) is mathematically
equivalent to the method used in Zhang et al. (2009) to in-
vestigate white matter morphology using the diffusion tensor.

The process of estimating a FC with respect to each template
fixel is illustrated in Fig. 3c,d and g.

3.5. Combining fibre density and cross-section

As illustrated in Fig. 1c, group differences in the intra-axonal
volume may manifest as changes to both within-voxel density and
macroscopic fibre-bundle cross-section. Therefore, to obtain a
more complete measure related to the total intra-axonal volume,
both sources of information need to be combined.

In previous work (Raffelt et al., 2012b), we developed a method to
combine both FD and FC by “modulating” Fibre Orientation Dis-
tributions (FOD) during spatial normalisation. While this method was
specific to FODs that are continuous over the sphere, the same con-
cept can be applied to any fixel-wise measure of FD. For each fixel, f,
we compute a combined measure of fibre density and cross-section
(FDC) by a multiplication (modulation) of FD by FC (Fig. 3f–h):

= × ( )FDC FD FC 4

As we demonstrate in the following simulations, this can be
thought of as preserving the ‘total FD (i.e. intra-axonal volume)’
across the width of any bundle during a transformation. This is
important for enabling direct interpretation of group differences
(see the Discussion for more details).

3.6. Simulations using a numerical phantom

To demonstrate the FC measure (Eq. (3)) and its appropriate-
ness for computing FDC (Eq. (4)), we applied a range of transfor-
mations (scale, shear, and non-linear warp) to a 2-dimensional
numerical phantom. The phantom represents a straight fibre
bundle with a simulated FD of 1 in all fixels, oriented along the
x-dimension. A linear scaling was applied to alter the length of the
fibre phantom (but not its width), using the transformation:

⎡
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where Tscale is the conventional reverse or pull-back transforma-
tion required to map each voxel in the template to the original
space. Since Tscale is a linear transformation, it was used in place of
the Jacobian matrix to compute FC (Eq. (3)) and reorient the fixel
direction (Eq. (1)). A shearing transformation (applied separately
to the scaling) was also used, defined as:
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To demonstrate FC under a non-linear transformation, a dis-
placement field was simulated to both contract and expand the
fibre bundle's cross-section:
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where ∆y is the displacement of the transformation along the
y-axis, sx is the size of the image along the x-axis (i.e. the length of
the fibre), and x and y define the position of the voxel in the
displacement field. To remove the discontinuity in the warp field
at y¼0 we smoothed the displacement field using a Gaussian
kernel with a standard deviation of 5 voxels. Prior to estimating
the Jacobian matrix, J, at each voxel position (Eq. (2)), we
converted the displacement field to a deformation field (which
stores the corresponding position in the transformed space as
opposed to the displacement from the current voxel position).
Fixel reorientation and estimation of FC was performed as in Eqs.
(1) and (3) respectively. In addition to the transformed FD fixel
image and FC fixel image, we also computed the FDC fixel image
for each transformation as per Eq. (4).

As explained in the section Fixel-based morphometry, FC is a local
measure of the change in fibre cross-section that occurs during spatial
normalisation. However, it is designed to detect group macroscopic
differences in the fibre-bundle's cross-section (which may span
several voxels). In this experiment we indirectly demonstrate that
the FC measure (computed locally) is appropriate to assess group
differences in fibre bundle cross-section by asserting that the sum of
the FDC (which is the product of FD and FC) across the width of the
fibre bundle (at any point along its length), should be equal to the
sum of the FD across the width of the fibre bundle before the
transformation. This is based on the assumption that the sum of the
FD (or FDC) across a bundle's width is proportional to the total
number of axons passing through a bundle's cross-section (and
therefore related to the bundle's capacity to transfer information). If
FC appropriately describes the local expansion or contraction in the
plane perpendicular to the fibre orientation, then modulating FD by
FC should preserve the total information carrying capacity of the
bundle.

We measured the sum of the FD and FDC across the width
(cross-section) of the bundle at many points along the bundle's
length (Fig. 5). Because non-linear transformations may alter the
shape and orientation of the fibre bundle, a fibre bundle's cross-
section that defines its width may not necessarily be a linear
plane. Therefore, to sum the FD and FDC across a bundle's width
we performed a numerical integration by starting at the mid-line
of the fibre bundle and taking sub-voxel steps (0.1) in the direction
perpendicular to the interpolated fixel orientation, until we
reached the bundle edge (in both directions). Results were plotted
as a function of fibre bundle length.

3.7. In vivo example in temporal lobe epilepsy

To demonstrate how a comprehensive fixel-based analysis of
FD, FC and FDC may provide unique yet complementary in-
formation, we have included an example fixel-based analysis
comparing temporal lobe epilepsy patients to healthy controls.

3.7.1. Participants
Patients with temporal lobe epilepsy with hippocampal sclerosis

(HS-TLE: 26 patients, 13 female, 13 left epileptic focus, mean age 39.0,
range 24–55 years) were compared to healthy controls (76 partici-
pants, 36 female, mean age 37.0, range 17–55 years). Hippocampal
sclerosis was identified on the basis of structural MRI (Jackson et al.,
1993), and the diagnosis of unilateral temporal lobe epilepsy was
confirmed based on clinical assessment, video-EEG monitoring, and
congruent nuclear medicine studies (FDG-PET and/or ictal SPECT).
Ethical approval was obtained from the Human Research Ethics
Committee of Austin Health. Written informed consent was obtained
from all participants, or their parents or legal guardians in the case of
minors.

3.7.2. Acquisition and pre-processing
DWI was acquired on a 3T Siemens Trio (Erlangen, Germany)

(60 directions at b¼3000 s/mm2, 8 b¼0 s/mm2, 2.5 mm isotropic).
Pre-processing involved motion and bias field correction, and up-
sampling by a factor of 2 (Raffelt et al., 2012b). We performed a
global intensity normalisation of the DWI across subjects by di-
viding all volumes by the median b¼0 s/mm2 intensity within a
WM mask (Raffelt et al., 2012b). FODs were computed by robust
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Constrained Spherical Deconvolution (rCSD) (Tournier et al., 2013),
with a group average response function (Raffelt et al., 2012b). FOD
images in patients with right-sided epilepsy were flipped left-right
(which included FOD reorientation (Raffelt et al., 2012a)) to align
the epileptic side in all images. The same proportion (50%) of
control participants were randomly selected and flipped left-right
also. Spatial correspondence was obtained as described above by
registering all FOD images to a symmetrical study-specific FOD
template (Raffelt et al., 2011). Registration was performed using
FODs at lmax¼4, 100 equally distributed apodised point spread
functions during FOD reorientation, displacement field smoothing
(Gaussian kernel s2¼1), velocity field smoothing (Gaussian kernel
s2¼3), and an initial gradient step of 0.2.

3.7.3. Fixel-based analysis
We performed a FBA of FD, FC, and FDC as summarised in Fig. 3.

Measures of FD, FC and FDC were computed as described in the
aforementioned sections. We compared measures of FD, FC, and
FDC in all white matter fixels across both groups using a General
Linear Model. For the FC and FDC analysis, we included intra-
cranial volume (as computed using FreeSurfer from T1-weighted
images (Dale et al., 1999)) as a nuisance covariate. To account for
left-right asymmetry, we also included a nuisance covariate to
indicate whether the data were flipped. Connectivity-based
smoothing and statistical inference were performed with Con-
nectivity-based Fixel Enhancement (CFE) using 2 million stream-
lines and default parameters (smoothing¼10 mm FWHM, C¼0.5,
E¼2, H¼3) (Raffelt et al., 2015), where C is a coefficient that
weights how structurally connected fixels (which are thought to
share underlying axons) contribute to the enhancement of others.
Similar to TFCE, the CFE H parameter enables a user to give more
weight to extent (connected fixels) at higher test-statistic thresh-
olds, and E influences how much the extent influences the en-
hancement as it scales in size. For further details please see Raffelt
et al. (2015). Family-wise error corrected p-values were assigned
to each fixel using non-parametric permutation testing (Holmes
et al., 1996; Winkler et al., 2014) with 5000 permutations.

3.8. Visualisation of fixel-based analysis results

Most white matter voxels contain multiple fixels, and therefore
Fig. 4. A method to visualise fixel-based analysis results using streamlines. (a) A 2D slice
fixel significance mask generated by thresholding p-values. (c) Whole-brain tractogram
segments that correspond to significant fixels in (b) only. (e) Fixels coloured by effect siz
(e). (For interpretation of the references to color in this figure legend, the reader is refe
the results of a fixel-based analysis cannot be displayed using stan-
dard 3D image viewing software. We therefore developed a fixel
overlay tool in the ‘mrview’ image viewer that is part of the MRtrix3
software package (www.mrtrix.org). This tool renders each fixel as a
line drawn along the fibre orientation and colour-coded by either
direction or statistic (e.g. p-value, Fig. 4a). Fixels rendered as lines are
appropriate for viewing 2D slices (Fig. 4a, b and e); however to better
appreciate all the fibre pathways affected and to visualise the full
extent of the results in 3D, we developed a visualisation approach
based on the whole-brain template-derived tractogram (Fig. 4c). We
used the tractogram already computed for the aforementioned CFE
statistical inference (Raffelt et al., 2015). All points within each
streamline in the tractogram were assigned to an underlying fixel
based on spatial location and the local streamline tangent. Streamline
points were then ‘cropped’ if they corresponded to fixels that did not
reach significance (p40.05) (Fig. 4d), and the remaining points co-
loured by streamline orientation (left-right: red, inferior-superior:
blue, anterior-posterior: green) (Fig. 4d) or fixel value of interest (e.g.
p-value or effect size, Fig. 4e and f).
4. Results

4.1. Simulations on a numerical phantom

Fig. 5 shows the results of the simulated transformations on the
numerical phantom. The numerical phantom prior to transfor-
mation is shown in Fig. 5a. Fig. 5b–e shows the transformed fibre
bundles with fixels colour-coded by FD, FC and FDC.

As desired, the FC measure is invariant to scale transformation
since the latter only alters the fibre bundle's length, and not its
width (Fig. 5c left). Therefore, the sum of the FD and the sum of
FDC across the width of the bundle remain the same after the
transformation (Fig. 5f left).

In the fibre bundle following a shear, the FC of all fixels is 41
indicating that the bundle width was larger prior to the shear trans-
formation. As shown by the plot in Fig. 5f middle, because the fibre
bundle is thinner after the shear, the sum of the FD across its width is
less than before the transformation. However, because the FDC in-
corporates the change in fibre cross-section at each fixel (FC), it has
the same sum across thewidth as before the transformation. Note that
of fixels rendered as lines along the fibre orientation and coloured by p-value. (b) A
generated using the study-specific template. (d) Streamlines are cropped to display
e. (f) Streamlines cropped by significance and coloured by fixel effect size values in
rred to the web version of this article.)

http://www.mrtrix.org


Fig. 5. Simulations on a numerical phantom. (a) A simulated fibre bundle oriented along the x-dimension with unit FD. Shown right are cross-sections (purple) that were
used to sum the FD across the width of the bundle before transformation. (b) The fibre bundle phantom after a scale, shear and non-linear warp. Fixels are colour coded by
FD. (c) Transformed fibre bundles with fixels coloured by FC. (d) Transformed fibre bundles with fixels coloured by FDC. (e) Green lines indicate the cross-sections used to
compute the sum of FD and the sum of FDC across the width of each fibre bundle. (f) The sum of the FD and the sum of the FDC across the width of the bundles, plotted as a
function of the cross-section position along the fibre's length. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 6. Fixels with a significant (po0.05) decrease in fibre density (FD), fibre-bundle cross-section (FC), and fibre density and cross-section (FDC). Fixels are colour-coded by
family-wise error (FWE) corrected p-values and overlaid on the total voxel-wise FD map. As shown by the zoomed in region, fixel-based analysis enables fibre tract-specific
inference by attributing p-values to each fixel in voxels containing multiple fibre populations. As shown by the FDC result (right column, bottom row), combining FD and FC
enabled the localisation of significant differences in additional fixels (belonging to the arcuate fasciculus). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

D.A. Raffelt et al. / NeuroImage 144 (2017) 58–7366
the subtle variation in the plots (as a function of position) is due to
inaccuracies in the numerical integration introduced by interpolation.

As shown by Fig. 5 right, the non-linear warp changes the width of
the fibre phantom, which is reflected in the FC measure at each fixel
(Fig. 5c right). As shown by the plot in Fig. 5f (right), by accounting for
the change in fibre cross-section, the FDC measure has the same sum
across the bundle's width as the FD before the transformation.

4.2. Fixel-based analysis of temporal lobe epilepsy

Shown in Fig. 6 are fixels with a significant reduction in FD, FC,
and FDC in TLE compared to controls. For each view (axial, coronal
and sagittal), a single 2D slice of fixels is shown, coloured by fa-
mily-wise error corrected p-value and overlaid on the total voxel-
wise FD map (i.e. the l¼0 spherical harmonic coefficient of the
FOD template). As demonstrated by the zoomed in regions
(bottom row), fibre tract-specific inference is achieved by assign-
ing an individual p-value to each fixel, rather than to each voxel.

Results suggest that TLE patients have a decrease in the number
of axons that manifests as a change in both within-voxel fibre
density and macroscopic fibre-bundle cross-section (Fig. 6 left and
middle). As expected, group differences were maximal on the epi-
leptic side. As shown by the FDC result (Fig. 6 right), by combining
information from FD and FC additional fixels were detected as being
significant (e.g. the arcuate fasciculus as shown in the sagittal view).

To better appreciate the extent of the group differences in 3D,
and to enable a better comparison of the three different analyses
(FD, FC, and FDC), we visualised the results using template-derived
streamlines (as detailed in Section 3.8). Shown in Fig. 7 are
streamlines that correspond to all white matter fixels with a sig-
nificant decrease in FD, FC, and FDC, projected on top of the total
voxel-wise FD map. Many of the fibre pathways that connect to the



Fig. 7. White matter pathways that have a significant decrease in FD, FC, and FDC in TLE patients compared to controls. To enable the visualisation of all significant fixels in
3D (i.e. not just a 2D slice), streamlines from the template-derived whole-brain tractogram were ‘cropped’ to include streamline points that correspond to significant fixels
(FWE-corrected p-value o0.05), and coloured by direction (red: left-right, blue: inferior-superior, green: anterior-posterior). While there are significant group differences in
both FD and FC, the combined FDC analysis detects a larger spatial extent. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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affected temporal lobe show a significant decrease in FDC. These
include the cingulum, arcuate fasciculus, uncinate fasciculus, in-
ferior frontal occipital fasciculus, fornix, anterior commissure, ta-
petum of corpus callosum and genu of corpus callosum. The re-
sults suggest that the main area of atrophy is located in the tem-
poral lobe (as shown by the FC results), with reduced FD seen both
in the affected temporal lobe and in tracts beyond this region. The
combined measure of FDC, containing information from both FD
and FC, gives the largest spatial extent of significant difference
between the patient and control groups (Fig. 7).

Fig. 7 suggests that the combined FDC analysis is more sensitive
because differences in both within-voxel fibre density and mac-
roscopic fibre-bundle cross-section contribute to the measured
effect. To investigate the relative effect sizes of FD and FC, and how
they combine to give a larger effect size in the FDC analysis, we
expressed the effect size (group difference) relative to the control
group and displayed the result as colour-coded streamlines
(Fig. 8). To enable a direct comparison of the effect sizes between
FD, FC and FDC, we used the same streamlines to display the result
from each, computed by including streamline points that corre-
spond to significant fixels from any of the three analyses (i.e. we
took the union of significant fixels (po0.05) from FD, FC, and
FDC). As shown in Fig. 8 left, TLE patients have a greater reduction
in FD than FC. In both FD and FC the effect is largest in the
temporal lobe. When FD is modulated by FC the effect size is in-
creased in all pathways shown.
5. Discussion

5.1. Fixel-based morphometry

The majority of diffusion MRI analysis methods and clinical
studies have focused on measures related to within-voxel micro-
structure only. In this work we have introduced a novel approach to
white matter morphology using diffusion MRI. As explained by
Figs. 1 and 2, differences in fibre-bundle cross-section (FC) are of
interest since they suggest a difference in the number of axons,
while differences in the length of fibres should be ignored. Our
numerical simulations (Fig. 5) show that the formulation of FC
correctly computes the desired change in fibre cross-section, which,
when combined with FD, results in a FDC measure that appro-
priately preserves the total FD (and therefore information carrying
capacity) across a bundle's width. As demonstrated by the FC ana-
lysis of TLE patients compared to controls (Fig. 6), by accounting for
the volume change with respect to each fixel's orientation, FBM
enables fixel-based analysis of fibre-bundle cross-section in vivo.

Our novel FBM method has some similarities to a TBM-based



Fig. 8. Effect sizes expressed as a percentage decrease relative to the control group. To enable a direct comparison of effect sizes across FD, FC, and FDC, streamlines shown
correspond to significant fixels from all three analyses combined (i.e. the union of FD, FC, FDC). As shown left, the group differences in FD have a larger effect than FC. In both
FD and FC the effect is largest in the temporal lobe. When FD is modulated by FC the effect size is increased in all pathways shown. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
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approach proposed by Zhang et al. (2009), in which the Jacobian
matrix is decomposed to derive a measure related to changes in
the plane perpendicular to the fibre orientation. However, in that
work a single diffusion tensor was used to characterise each voxel;
therefore, despite the majority of white matter voxels containing
crossing fibres, only a single fibre bundle is estimated in each voxel
(with a potentially erroneous orientation). We also note that our
method for estimating the change in fibre cross-section (FC) is
mathematically equivalent to Zhang et al. (2009) (see Appendix A
for proof), however it is computed in a single step and does not
require the application of a Gram-Schmidt ortho-normalisation
procedure.

To investigate white matter morphology, many previous studies
have used VBM (Mechelli et al., 2005), which can be thought of as a
TBM analysis weighted/masked by the tissue segmentation (note
this is only true for modern VBM methods where images are re-
gistered as accurately as possible and modulated by the Jacobian
determinant). Aside from being a voxel-based analysis, and there-
fore not providing fixel-specific inference, VBM obtains spatial
correspondence by registering the T1-weighted images or tissue
segmentations. As a consequence, registration is primarily driven by
the interface of white matter with grey matter and CSF, and
therefore the localisation of differences in fibre morphology within
deep white matter will be strongly dependent on the registration
model and regularisation parameters (for example, see Section
3.1 and Figs. 3–5 of Ashburner and Ridgway (2013)). In contrast,
registration in FBM is performed using higher order DWI models,
with the additional contrast improving the alignment of individual
white matter bundles and thus enabling more accurate localisation
of effects (the influence of the regularisation is lessened by the
presence of additional information, in analogy with the influence of
the prior in Bayesian analysis reducing with increasing data).

In this work we obtained spatial correspondence (and the
warps used to compute FC) via registration of FOD images. While
FODs benefit from high angular resolution and high b-value DWI
data, FOD registration is best performed using a relatively low
spherical harmonic degree of 4 (Raffelt et al., 2011). It should
therefore be possible to perform FBM using FODs computed from
DWI data typically acquired for diffusion tensor imaging (e.g. 20
directions and a b-value of 1000 s/mm2).

FBM benefits from the use of the recently developed CFE
method for statistical inference (Raffelt et al., 2015). Unlike tradi-
tional cluster-based methods employed in VBM, CFE enables tract-
specific smoothing and cluster-like enhancement, meaning that
blurring across different structures is negligible. CFE is also less
sensitive to user input parameters than other forms of cluster-
based inference or cluster enhancement (Raffelt et al., 2015).

Finally, we also note that for thin white matter structures
(within the scale of the voxel size), differences in fibre morphology
will manifest as changes in within-voxel intra-axonal volume (i.e.
FD). An example of this is shown by the absence of detected dif-
ference in the anterior commissure in the FC results shown in
Figs. 6-8. Since the anterior commissure is only a few mm wide,
group differences in bundle diameter are difficult to detect at the
resolution of data acquired for this study (2.5 mm isotropic).
However, it is likely that a sub-voxel change to the diameter of the
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anterior commissure contributed to the large effect size shown in
the FD results (Fig. 8 left) (see the following discussion on no-
menclature), while any remaining FC effects will have a reduced
statistical significance. This highlights the fact that the image re-
solution (and therefore partial volume effects) influences the ability
to differentiate between changes in FD or FC (see below: Section
5.4). The cross-section of many white matter structures is within
the spatial scale detectable by both methods (e.g. fornix, cingulum,
anterior commissure), which further motivates use of the combined
FDC measure to investigate FD and FC simultaneously.

5.2. Combining fibre density and fibre-bundle cross-section

To obtain a more complete picture of white matter morpho-
metric effects, information from both within-voxel microscopic
fibre density and macroscopic fibre-bundle cross-section can be
combined. In the fixel-based analysis framework this is achieved
via a simple fixel-wise multiplication of FD by FC to estimate a
combined measure FDC (Eq. (4)).

The fixel-based analysis of FDC proposed here is an extension of
our previous work (Raffelt et al., 2012b), where we ‘modulated’
FODs during spatial normalisation and reorientation, and per-
formed statistical analysis on the ‘modulated FOD’ over many or-
ientations within each voxel. However, the benefits of the cur-
rently proposed approach are that it can be applied to fixel-based
measures of FD derived from any DWI model (e.g. CHARMED
(Assaf and Basser, 2005)), and FDC can be analysed using superior
fixel-based statistical methods (Raffelt et al., 2015).

Modulation of FD by FC is similar in concept to VBM where the
total grey matter volume can be preserved during spatial normal-
isation by ‘modulating’ (multiplying) by the Jacobian determinant
(Ashburner and Friston, 2000). However, in FBA, preserving the
white matter intra-axonal volume under transformations that alter
the length of a fibre is inappropriate, since differences in fibre length
are unlikely to influence white matter's ability to relay information
(Fig. 5 left). Here we modulate FD by FC (which is dependent on the
fibre orientation) and therefore we preserve the intra-axonal cross-
sectional area (i.e. ‘total FD’, see the following discussion on
nomenclature) across the width of a fibre bundle during spatial
normalisation to the template (Fig. 5 middle and right). Another
noteworthy difference between VBM and this work is that, as
pointed out in Ashburner and Friston (2000), grey matter tissue
segmentations (sometimes called density or concentration maps)
do not relate to the underlying cell packing density. A possible
modification to VBM would be to use quantitative DWI-derived
grey matter density maps (e.g. (Jeurissen et al., 2014)) instead of
tissue segmentations from T1-weighted images.

In this work we have demonstrated that temporal lobe epilepsy
patients have significantly reduced FD, FC and FDC in pathways
that are concordant with the seizure foci (Figs. 6–8). The detection
of additional significant fixels in the FDC analysis suggests an in-
crease in sensitivity by combining FD and FC. However, we note
that while FDC is likely to provide a more comprehensive assess-
ment of white matter, FD and FC should still be investigated
separately, since these may offer further insight to better char-
acterise the effects under investigation (however see the following
section on interpretation). We also note that the combined FDC
analysis may not always be more sensitive if the effect of interest is
predominantly in either FD or FC, since combining FD and FC also
combines the variance from each source (see also the argument
that modulation in VBM can increase variability, Radua et al.
(2014)).

In related work, Zhang et al. (2010) also proposed a combined
analysis of microscopic measures with macroscopic morphology.
This was achieved by parameterising fibre bundles as 2-dimen-
sional sheets, then projecting FA values onto each sheet (using a
similar approach to Smith et al. (2006)). A morphology-based
measure related to the fibre sheet thickness was estimated using
DTI tractography, and co-analysed with FA using a multi-variate
statistical analysis. The main limitation of this work is the para-
meterisation of white matter bundles using 2D sheets. While some
bundles are sheet-like in shape (or at least appear to be sheet-like
when tractography is based on DTI), most white matter bundles
cannot be accurately modelled as a 2D sheet. Furthermore, as in
TBSS (Smith et al., 2006), this approach is likely to suffer from
inaccurate FA-based projection in regions of crossing fibres (Bach
et al., 2014; De Groot et al., 2013; Schwarz et al., 2014), and lack of
fibre-specific inference when investigating voxel-wise measures
such as FA. We also note that the results from multi-variate sta-
tistics are not as directly interpretable as the univariate analysis of
FDC proposed here.

5.3. Nomenclature

As mentioned in the background section Fibre density, many
names have been used in previous work to describe the intra-
axonal volume, each with its advantages and disadvantages. A
term used in many studies is ‘density’ (Alexander et al., 2010; Assaf
et al., 2013, 2008; De Santis et al., 2014a, 2014b; Dell’acqua et al.,
2010; Dyrby et al., 2013; Jespersen et al., 2010; Raffelt et al., 2012b;
Reisert et al., 2013; Riffert et al., 2014; Zhang et al., 2012). However,
a problem with ‘density’ is that it may be interpreted as being
solely related to a fibre bundle's number of axons per unit area. In
the context of voxel-averaged DWI measures (e.g. Alexander et al.,
2010; Zhang et al., 2012), the ‘density’ of a voxel will also be in-
fluenced by partial volume with cerebral spinal fluid. Furthermore,
when referring to a fixel-specific measure (e.g. Assaf and Basser,
2005; De Santis et al., 2014a, 2014b; Riffert et al. 2014; Raffelt
et al., 2015), the ‘density’ of each fixel is additionally influenced by
the fraction of the voxel volume occupied by other crossing fibre
bundles.

Another commonly used term is ‘volume fraction’ (e.g. Cabeen
et al., 2015; Jbabdi et al., 2010; Panagiotaki et al., 2012; Scherrer
and Warfield, 2012). This is a more exact description, and in the
context of modulation by FC, it makes more sense to preserve the
sum of the ‘fibre volume fractions’ across a bundle's width com-
pared to preserving the sum of the ‘fibre density’ (Fig. 5). However
volume fraction is also not perfect. For example, “fibre or axonal
volume fraction” may not be a true measure of the actual under-
lying volume fractions when the DWI model does not take into
account of the different T2 of the signal arising from different
compartments. Furthermore, while some multi-compartment DWI
models explicitly ensure the volume fractions of all compartments
sum to unity (e.g. Assaf and Basser, 2005), the apparent fibre
density measure used in the present study is proportional to the
measured DW signal, and hence not explicitly a volume fraction
(Raffelt et al., 2012b). Another similar term is “intra-axonal vo-
lume”; however, this is also not ideal since it could be mis-
interpreted by non-technical audiences as being related to changes
in individual axon volumes (i.e. their calibre). The term ‘fixel vo-
lume’ (or even ‘apparent fixel volume’ to flag that each measure
has assumptions and may be dependent on experimental condi-
tions) would be an accurate descriptor, but is too technical and far
removed from the underlying biology.

In this work we opted for the term ‘fibre density’ (FD) in part
because it is already common in the literature, and also since it is
most easily interpretable by non-technical audiences. However,
we qualify here that this should refer to the volume of the intra-
axonal compartment per unit volume of tissue to avoid partial vo-
lume issues.

Our use of the term fibre cross-section (FC) is also not without
limitations. FC may be misinterpreted as being a measurement of a
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particular fibre bundle's cross-section (for example something you
may measure from a bundle of tractography streamlines), when it
is actually measuring the change in fibre cross-section at the fixel
level when undergoing spatial normalisation. Despite these issues,
we believe FC is appropriate. Even if misinterpreted, the FC mea-
sure is at least related to the cross-section of the entire fibre
bundle by the spatially regularised warp field (from which the
Jacobian matrix is computed). It is also easily interpretable by
clinical audiences and convenient when reporting results (e.g.
“patients had a reduced FC in a particular fibre bundle compared to
controls”).

With respect to the combined measure, FDC, we originally used
the term ‘modulated (apparent) fibre density’ to describe a similar
measure computed by modulated FODs (Raffelt et al., 2012b);
however we believe the term FDC is more explicit with respect to
the two separate sources of information and therefore more in-
terpretable, especially alongside separate analyses of its compo-
nent sources.

5.4. Careful interpretation of fibre density and cross-section

As depicted by Fig. 1, and demonstrated by our example ana-
lysis of TLE, differences in a fibre pathway may manifest either as a
difference in within-voxel FD, a difference in macroscopic FC, or
both (FDC).

Importantly, the manifestation of differences in the number of
axons in a fibre pathway may change over time. For example,
changes may acutely be detected as a change in FD, but over time
manifest as a difference in FC (due to subsequent atrophy). In
addition, as discussed above, if the degenerative white matter
structure has a small cross-section with respect to the voxel size,
then decreases in FC may manifest entirely as a change in FD. The
issue of differences in FC being detected as FD relates to the above
definition of FD being intra-axonal compartment per unit volume
(i.e. partial volume). The inter-dependency of FD and FC is further
understood when considering that fixels at the edge of a fibre
bundle may have a smaller FD (partial volume) than those at the
‘core’ of the bundle. The proportion of ‘edge’ fixels with low FD
Fig. 9. Investigating fixel FD and FC in isolation requires careful interpretation. (a) A sch
equal partial volume, crossing at 90°. (b) A scenario where half of the green fibre pathway
(c) If the remaining white matter tissue becomes atrophic as a consequence of axon loss (
the FD of the remaining tissue now contains an increase in the FD of the unaffected blue p
combining FD and FC, modulation ensures the atrophy is accounted for and the result
references to color in this figure legend, the reader is referred to the web version of th
will therefore increase as the FC decreases.
The inherent inter-dependency of FD and FC highlights the

need for careful interpretation when investigating fixel-based
measures of FD or FC on their own. To further illustrate this,
consider a hypothetical scenario where only one fibre in a crossing
fibre region is affected (e.g. Douaud et al., 2011; Groeschel et al.,
2014; Pierpaoli et al., 2001). Shown in Fig. 9a is a voxel that con-
tains two crossing fibre populations with equal FD in each. If half
of the axons in the green fibre were to degenerate, then one would
expect an appropriate decrease in FD (Fig. 9b). However, if de-
generation is subsequently followed by atrophy (i.e. contraction by
0.75 along the left-right direction) then the within-voxel FD for the
remaining tissue now suggests an increase in the FD of the un-
affected blue fibre bundle, and a reduced effect size of the affected
green fibre bundle. If the individual differences in morphometry
(FC) are not accounted for during spatial normalisation (via
modulation), then the FBA results may be falsely interpreted as an
increase in FD. Furthermore, Fig. 9 also highlights that differences
in FC alone should also be interpreted with care. As shown, the
computed FC of both fibres is the same, despite only one fibre
being affected. However, we point out that the FC change in the
blue fibre will only be present in the region where it crosses the
atrophic green fibre, and therefore it will receive less ‘local sup-
port’ than the fixels in the green fibre in the downstream con-
nectivity-based enhancement during statistical analysis (Raffelt
et al., 2015).

As shown by Fig. 9d, when modulation is performed to esti-
mate the combined FDC measure, the correct relative difference
between the green and blue fibre is computed. This illustrates that
the FDC measure may not only be more sensitive for investigating
certain alterations, but also enable a more straightforward inter-
pretation. While investigating FD and FC separately may provide
biologically useful information to help understand the effects
under investigation, analysis should also include the combined
FDC measure to ensure the correct interpretation (Fig. 9).
ematic of a voxel (black square) containing two interdigitating fibre pathways with
axons have degenerated, and therefore the FD of the green fibre bundle is reduced.
as indicated by a 0.75 scale in the left-right direction of the Jacobian matrix, J), then
athway, while the FD of the affected green pathway has a smaller effect size. (d) By
ing FDC of both pathways have the expected effect size. (For interpretation of the
is article.)
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5.5. Fixel-based analysis of other measures

In this work we derived a measure of FD from the FOD; how-
ever the proposed fixel-based analysis framework can be applied
to other DWI models that aim to estimate a fixel-specific measure
related to the intra-axonal volume (e.g. CHARMED (Assaf and
Basser, 2005), DIAMOND (Scherrer et al., 2016)). See the following
section for more details.

This work emphasises the biological relevance of DWI-derived
measures related to intra-axonal volume (i.e. FD). However, we
note that the proposed fixel-based analysis framework can be used
to investigate other measures of interest, such as fixel-specific
diffusivity measures (Scherrer et al., 2016; Scherrer and Warfield,
2012), or relaxometry (De Santis et al., 2016). We clarify that for
measures that do not relate directly to fibre density, modulation of
such measures by FC may not be appropriate.

5.6. Software availability and computation time

We have provided open-source software and step-by-step
documentation on how to perform a complete fixel-based analysis
(from pre-processing to the visualisation of statistical results) as
part of the freely available cross-platform MRtrix3 software
package (www.mrtrix.org). A complete analysis of a typical ima-
ging cohort (o100 subjects) can be can be achieved over several
days, with the most computationally expensive step being the
generation of a study-specific FOD template (e.g. it takes 30 h on a
16-core server to generate a template from 20 subjects with a
1.15 mm isotropic resolution).

The analysis pipeline in MRtrix was designed to enable FBA on
any fixel-based measure. This can be achieved by replacing the
steps indicated by the red boxes in Fig. 3. Instead of warping FODs,
DWI images can be warped (without any reorientation of the DW
gradients since this is performed in a subsequent step), and in-
stead of computing fixel directions and FD from FODs, one could
estimate them from another DWI model (e.g. CHARMED).

One complication whenworking with fixel data is that different
image voxels may have different numbers of fixels. It is therefore
inefficient to store data using 4-dimensional images, since the size
of the 4th dimension must accommodate the voxel with the
highest number of fixels. MRtrix3 uses a custom fixel image format
to handle such sparse data; however, our current work is focused
on developing a more transparent format for storing fixels (i.e.
directions and their values), which will utilise more common
images types (e.g. NIfTI 2.0), and enable other packages to easily
generate fixel data for use in MRtrix and vice versa.
6. Conclusion

We have delineated a framework for a comprehensive fixel-
based analysis that aspires to detect differences in intra-axonal
volume that manifest as differences in within-voxel fibre density
and/or macroscopic fibre bundle morphology. The method handles
the complex fibre-bundle configurations present in many brain
voxels, and builds upon our previous work enabling tract-wise
smoothing and cluster enhancement. As a core component of this
analysis we have presented a novel method to investigate differ-
ences in fibre-bundle cross-section, called fixel-based morpho-
metry, and demonstrated its applicability by identifying reduced
fibre-bundle cross-section in temporal lobe epilepsy. Unlike white
matter analyses using traditional voxel-based morphometry, fixel-
based morphometry is fibre-specific, exploits the superior contrast
provided by DWI models to drive registration, and benefits from
connectivity-based statistical analysis. We therefore anticipate
that FBM will prove to be a useful tool to investigate white matter
morphology in future studies. Finally, we have demonstrated that
by combining fibre density and cross-section, we obtain a more
complete characterisation of white matter pathology that is easier
to interpret than differences in fibre density or cross-section alone.
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Appendix A

Here we demonstrate that the method used for computing FC
in Eq. (3) (derived independently in Raffelt et al. (2010)) is
mathematically equivalent to the method for computing the
change in fibre cross-section in Zhang et al. (2009). In Section
2.4 of Zhang et al. (2009) it states that:

( ) ( )= = × ( )J R s Sdet det det .1 23

where s1 is the scaling along the fibre and ( )Sdet 23 is the change in
fibre cross-section (what we define as FC). From Eq. (3) in our
manuscript:

( ) = ^ ×J J FCvdet f f

It can be shown that s1 is equal to ^Jvf by expanding Eq. (2) in

Zhang et al. (2009):
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And thus:
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From Algorithm 1 or 3 in Zhang et al. (2009):
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Therefore:

=Je s
Je
Je1 1

1

1

=Je s1 1

where e1 is the vector describing the fibre orientation (what we
define as v̂f ). We note that in Zhang et al. (2009), the radial tensor
eigenvectors are required unnecessarily, since the change in cross-
sectional area in the plane defined by the radial eigenvectors is
invariant to their orientation.
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