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Group Sparse Recovery via the `0(`2) Penalty:
Theory and Algorithm

Yuling Jiao, Bangti Jin, Xiliang Lu

Abstract—In this work we propose and analyze a novel ap-
proach for group sparse recovery. It is based on regularized least
squares with an `0(`2) penalty, which penalizes the number of
nonzero groups. One distinct feature of the approach is that it has
the built-in decorrelation mechanism within each group, and thus
can handle challenging strong inner-group correlation. We pro-
vide a complete analysis of the regularized model, e.g., existence
of a global minimizer, invariance property, support recovery,
and properties of block coordinatewise minimizers. Further,
the regularized problem admits an efficient primal dual active
set algorithm with a provable finite-step global convergence.
At each iteration, it involves solving a least-squares problem
on the active set only, and exhibits a fast local convergence,
which makes the method extremely efficient for recovering group
sparse signals. Extensive numerical experiments are presented to
illustrate salient features of the model and the efficiency and
accuracy of the algorithm. A comparative study indicates its
competitiveness with existing approaches.

Index Terms—group sparsity, block sparsity, blockwise mutual
incoherence, global minimizer, block coordinatewise minimizer,
primal dual active set algorithm, `0(`2) penalty

I. INTRODUCTION

SPARSE recovery has received much attention in many
areas, e.g., signal processing, statistics, and machine learn-

ing recently. The key assumption is that the data y ∈ Rn is
generated by a linear combination of a few atoms of a given
dictionary Ψ ∈ Rn×p, p � n, where each column represents
an atom. In the presence of noise η ∈ Rn (with a noise level
ε = ‖η‖), it is formulated as

y = Ψx† + η, (1)

where the vector x† ∈ Rp denotes the signal to be recovered.
The most natural formulation of the problem of finding the

sparsest solution is the following `0 optimization

min
x∈Rp

1
2‖Ψx− y‖

2 + λ‖x‖`0 , (2)

where ‖ · ‖ denotes the Euclidean norm of a vector, ‖ · ‖`0
denotes the number of nonzero entries, and λ > 0 is a reg-
ularization parameter. Due to discontinuity of the `0 penalty,
it is challenging to find a global minimizer of problem (2).
In practice, lasso / basis pursuit [1], [2], which replaces the
`0 penalty with its convex relaxation, the `1 penalty, has been
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very popular. Many deep results on the equivalence between
the `0 and `1 problems and error estimates have been obtained
[3], [4], based on the concepts mutual coherence (MC) and
restricted isometry property (RIP).

A. Group sparse recovery

In practice, in addition to sparsity, signals may exhibit
additional structure, e.g., nonzero coefficients occur in clus-
ters/groups, which are commonly known as block- / group-
sparsity. In electroencephalogram (EEG), each group encodes
the information about the direction and strength of the dipoles
of each discrete voxel representing the dipole approximation
[5]. Other applications include multi-task learning [6], wavelet
image analysis [7], [8], gene analysis [9], [10] and multichan-
nel image analysis [11], [12], to name a few. The multiple
measurement vector problem is also one special case [13].
In these applications, the focus is to recover all contributing
groups, instead of one entry from each group. The group
structure is an important piece of a priori knowledge about the
problem, and should be properly accounted for in the recovery
method in order to improve interpretability and accuracy of the
recovered signal.

There have been many important developments of group
sparse recovery. One popular approach is group lasso, ex-
tending lasso using an `1(`2)-penalty [14]–[17]. A number
of theoretical studies have shown many desirable properties
of group lasso, and its advantages over lasso for recovering
group sparse signals [18]–[23] under suitable MC or RIP
type conditions. To remedy the drawbacks of group lasso,
e.g., biasedness and lack of the oracle property [24], [25],
nonconvex penalties have been extended to the group case,
e.g., bridge, smoothly clipped absolute deviation (SCAD), and
minmax concavity penalty (MCP) [17], [26], [27]. A number
of efficient algorithms [16], [28]–[34] have been proposed for
convex and nonconvex group sparse recovery models. Like in
the sparse case, several group greedy methods have also been
developed and analyzed in depth [20], [35], [36].

However, in these interesting works, the submatrices of
Ψ are assumed to be well conditioned in order to get esti-
mation errors. While this assumption is reasonable in some
applications, it excludes the practically important case of
strong correlation within groups. For example, in microar-
ray gene analysis, it was observed that genes in the same
pathway produce highly correlated values [37]; in genome-
wide association studies, SNPs are highly correlated or even
linearly dependent within segments of the DNA sequence
[38]; in functional neuroimaging, identifying the brain regions
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involved in the cognitive processing of an external stimuli is
formalized as identifying the non-zero coefficients of a linear
model predicting the external stimuli from the neuroimaging
data, where strong correlation occurs between neighboring
voxels [39]; just to name a few.

In the presence of strong inner-group correlation, an in-
advertent application of standard sparse recovery techniques
is unsuitable. Numerically, one often can only recover one
predictor within each contributing group, which is undesirable
when seeking the whole group [40]. Theoretically, the corre-
lation leads bad RIP or MC conditions, and thus many sparse
recovery techniques may perform poorly.

B. The `0(`2) approach and our contributions

In this work, we shall develop and analyze a nonconvex
model and algorithm for recovering group-sparse signals with
potentially strong inner-group correlation. Our approach is
based on the following `0(`2) optimization

min
x∈Rp

{
Jλ(x) = 1

2‖Ψx− y‖
2 + λ‖x‖`0(`2)

}
, (3)

where the `0(`2) penalty ‖ · ‖`0(`2) (with respect to a given
partition {Gi}Ni=1) is defined below in (6), and the regular-
ization parameter λ > 0 controls the group sparsity level of
the solution. The `0(`2) penalty is to penalize the number of
nonzero groups. To the best of our knowledge, this model has
not been systematically studied in the literature, even though
the `0(`2) penalty was used in several prior works; see Section
I-C below. We shall provide both theoretical analysis and
efficient solver for the model.

The model (3) has several distinct features. The regularized
solution is invariant under full rank column transformation,
and does not depend on the specific parametrization within the
groups. Thus, it allows strong inner-group correlation and mer-
its a built-in decorrelation effect, and admits theoretical results
under very weak conditions. Further, both global minimizer
and block coordinatewise minimizer have desirable properties,
e.g., support recovery and oracle property.

The main contributions of this work are three-folded. First,
we establish fundamental properties of the model (3), e.g.,
existence of a global minimizer, local optimality, necessary
optimality condition, and transformation invariance, which
theoretically substantiates (3). For example, the invariance
implies that it can be equivalently transformed into a problem
with orthonormal columns within each group, and thus it
is independent of the conditioning of inner-group columns,
which contrasts sharply with most existing group sparse re-
covery models. Second, we develop an efficient algorithm
for solving the model (3), which is of primal dual active set
(PDAS) type. It is based on a careful analysis of the necessary
optimality system, and represents a nontrivial extension of the
PDAS algorithm for the `1 and `0 penalties [41], [42]. It is
very efficient when coupled with a continuation strategy, due
to its Newton nature [41]. Numerically, each inner iteration
involves only solving a least-squares problem on the active
set. The whole algorithm converges globally in finite steps
to the oracle solution. Third, we present extensive numerical
experiments to illustrate the features of our approach, and

to show its competitiveness with start-of-art group sparse
recovery methods, including group lasso and greedy methods.

C. Connections with existing works and organization

The proposed model (3) is closely related to the following
constrained nonconvex optimization

min ‖x‖`0(`q) subject to y = Ψx, (Pq)

in the absence of noise η. This model was studied in [20],
[36], [43], [44]. In the case of q = 2, Eldar and Mishali
[43] discussed unique group sparse recovery, and Eldar et
al [20] developed an orthogonal matching pursuit algorithm
for recovering group sparse signals and established recovery
condition in terms of block coherence. See also [36] for related
results for subspace signal separation. Elhamifar and Vidal
[44] derived the necessary and sufficient conditions for the
equivalence of problem (Pq) with a convex `1(`q) relaxation,
and gave sufficient conditions using the concept cumulative
subspace coherence. Further, under even weaker conditions,
they extended these results to the Ψ-weighted formulation

min

N∑
i=1

‖ΨGi
xGi
‖0`q subject to y = Ψx, (P ′q)

which is especially suitable for redundant dictionaries. The
models (Pq) and (P ′q) are equivalent, if the columns within
each group are of full column rank. Our approach (3) can
be viewed as a natural extension of (Pq) with q = 2 to the
case of noisy data using a Lagrangian formulation, which,
due to the nonconvexity of the `0(`2) penalty, is generally
not equivalent to the constrained formulation. In this work,
we provide many new insights into analytical properties and
algorithm developments for the model (3), which have not
been discussed in these prior works. Surprisingly, we shall
show that the model (3) has built-in decorrelation effect for
redundant dictionaries, similar to the model (P ′q).

The rest of the paper is organized as follows. In Section II,
we describe the problem setting, and derive useful estimates. In
Section III, we provide analytical properties, e.g., the existence
of a global minimizer, invariance property, and optimality
condition. In Section IV, we develop an efficient group primal
dual active set with continuation algorithm, and analyze its
convergence and computational complexity. Finally, in Section
V, several numerical examples are provided to illustrate the
mathematical theory and the efficiency of the algorithm. All
the technical proofs are given in the appendices.

II. PRELIMINARIES

In this section, we describe the problem setting, and derive
useful estimates.

A. Problem setting and notations

Throughout, we assume that the sensing matrix Ψ ∈ Rn×p
with n� p has normalized columns ‖ψi‖ = 1 for i = 1, ..., p,
and the index set S = {1, ..., p} is divided into N non-
overlapping groups {Gi}Ni=1 such that 1 ≤ si = |Gi| ≤ s
and

∑N
i=1 |Gi| = p. For any index set B ⊆ S, we denote
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by xB (respectively ΨB) the subvector of x (respectively the
submatrix of Ψ) which consists of the entries (respectively
columns) whose indices are listed in B. All submatrices ΨGi ,
i = 1, 2, . . . , N , are assumed to have full column rank. The
true signal x† is assumed to be group sparse with respect
to the partition {Gi}Ni=1, i.e., x† = (x†G1

, ..., x†GN
), with T

nonzero groups. Accordingly, the group index set {1, . . . , N}
is divided into the active set A† and inactive set I† by

A† = {i : ‖x†Gi
‖ 6= 0} and I† = (A†)c. (4)

The data vector y in (1), possibly contaminated by noise, can
be recast as y = Ψx† + η =

∑
i∈A† ΨGix

†
Gi

+ η. Given the
true active set A† (as if it were provided by an oracle), we
define the oracle solution xo by the least squares solution on
A† to (1), i.e.,

xo = argmin
supp(x)⊆∪

i∈A†Gi

‖Ψx− y‖2. (5)

The oracle solution xo is uniquely defined provided that
Ψ∪

i∈A†Gi
has full column rank. It is the best approximation

for problem (1), and will be used as the benchmark.
For any vector x ∈ Rp, we define an `r(`q)-penalty (with

respect to the partition {Gi}Ni=1) for r ≥ 0 and q > 0 by

‖x‖`r(`q) =

 (
∑N
i=1 ‖xGi

‖r`q )1/r, r > 0,
]{i : ‖xGi‖`q 6= 0}, r = 0,
maxi{‖xGi‖`q}, r =∞.

(6)

When r = q > 0, the `r(`q) penalty reduces to the usual
`r penalty. The choice r = 0 (or r = ∞) and q = 2 is
frequently used below. Further, we shall abuse the notation
‖ · ‖`r(`q) for any vector that is only defined on some sub-
groups (equivalently zero extension).

For any r, q ≥ 1, the `r(`q) penalty defines a proper norm,
and was studied in [45]. For any r, q > 0, the `r(`q) penalty
is continuous. The `0(`2) penalty, which is of major interest
in this work, is discontinuous, but still lower semi-continuous.

Proposition 1: The `0(`2) penalty is lower semicontinuous.
Proof: Let {xn} ⊂ Rp be a convergent sequence to some

x∗ ∈ Rp. By the continuity of the `2 norm, ‖xnGi
‖ converges

to ‖x∗Gi
‖, for i = 1, . . . , N . Now the assertion follows from

‖x∗Gi
‖`0 ≤ lim inf ‖xnGi

‖`0 [46, Lemma 2.2].
Now we derive the hard-thresholding operator x∗ ∈ Hλ(g)

for one single group for an s-dimensional vector g ∈ Rs as

x∗ ∈ arg min
x∈Rs

1
2‖x− g‖

2 + λ‖x‖`0(`2),

where the ‖·‖`0(`2) penalty is given by ‖x‖`0(`2) = 1 if x 6= 0,
and ‖x‖`0(`2) = 0 otherwise. Then it can be verified directly

x∗ =


g, if ‖g‖ >

√
2λ,

0, if ‖g‖ <
√

2λ,

0 or g, if ‖g‖ =
√

2λ.

For a vector x ∈ Rp, the hard thresholding operator Hλ (with
respect to the partition {Gi}Ni=1) is defined groupwise. For
s = 1, it recovers the usual hard thresholding operator, and
hence it is called a group hard thresholding operator.

B. Blockwise mutual coherence

We shall analyze the model (3) using the concept blockwise
mutual coherence (BMC). We first introduce some notation:

Ψ̄Gi
= (Ψt

Gi
ΨGi

)
1
2 and Di,j = Ψ̄−1

Gi
Ψt
Gi

ΨGj
Ψ̄−1
Gj
. (7)

Since ΨGi has full column rank, Ψ̄Gi is symmetric positive
definite and invertible.

The main tool in our analysis is the BMC µ of the matrix
Ψ with respect to the partition {Gi}Ni=1, which is defined by

µ = max
i 6=j

µi,j , where µi,j = sup
u∈Ni\{0}
v∈Nj\{0}

〈u, v〉
‖u‖‖v‖

, (8)

where Ni is the subspace spanned by the columns of ΨGi
, i.e.,

Ni = span{ψl, l ∈ Gi} ⊆ Rn. The quantity µi,j is the cosine
of the minimum angle between two subspaces Ni and Nj .
Thus the BMC µ generalizes the concept mutual coherence
(MC) ν, which is defined by ν = maxi 6=j |〈ψi, ψj〉| [47], and
is widely used in the analysis of sparse recovery algorithms
[42], [48], [49]. The concept BMC was already introduced
in [36] for separating subspace signals, and [44] for analyzing
convex block sparse recovery. In linear algebra, one often uses
principal angles to quantify the angles between two subspaces
[50], i.e., given U, V ⊆ Rn, the principal angles θl for l =
1, 2, ...,min(dimU,dimV ) are defined recursively by

cos(θl) = max
u∈U,‖u‖=1, u⊥span{ui}l−1

i=1

v∈V,‖v‖=1, v⊥span{vj}l−1
j=1

〈u, v〉.

By the definition of principal angles, µi,j = cos(θ1) for
(U, V ) = (Ni,Nj); see Lemma 2 below and [50, pp. 603–
604] for the proof. Principal angles (and hence BMC) can be
computed efficiently by QR and SVD [50], unlike RIP or its
variants [51].

Lemma 2: Let Ui ∈ Rn×si and Vj ∈ Rn×sj be two
matrices whose columns are orthonormal basis of Ni and Nj ,
respectively, and {θl}

min(si,sj)
l=1 be the principal angles between

Ni and Nj . Then, µi,j = cos(θ1) = σmax(U ti Vj).
The next result shows that the BMC µ can be bounded from

above by the MC ν; see Appendix A for the proof. Hence,
the BMC is sharper than a direct extension of the MC, since
the BMC does not depend on the inner-group correlation.

Proposition 3: Let the MC ν of Ψ satisfy (s − 1)ν < 1.
Then for the BMC µ of Ψ, there holds µ ≤ νs

1−ν(s−1) .
Below we always assume the following condition.
Assumption 2.1: The BMC µ of Ψ satisfies µ ∈ (0, 1/3T ).
We have a few comments on Assumption 2.1.
Remark 2.1: First, if the group sizes do not vary much, then

the condition µ < 1/3T holds if ν < 1/C‖x†‖`0 . The latter
condition with C ∈ (2, 7) is widely used for analyzing lasso
[52] and OMP [49], [53]. Hence, the condition in Assumption
2.1 generalizes the classical one. Second, it allows strong
inner-group correlations (i.e., ill-conditioning of ΨGi ), for
which the MC ν can be very close to one, and thus it has
a built-in mechanism to tackle inner-group correlation. This
differs essentially from existing approaches, which rely on
certain pre-processing techniques [54], [55].
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Remark 2.2: A similar block MC, defined by µB =
maxi 6=j ‖Ψt

Gi
ΨGj‖/s, was used for analyzing group greedy

algorithms [20], [35] and group lasso [22] (without scaling
s). If every submatrix ΨGi

is column orthonormal, i.e.,
Ψt
Gi

ΨGi
= I , then µB and µ are identical. However, to

obtain the error estimates in [20], [35], the MC ν within each
group is still needed, which excludes inner-group correlations.
The estimates in [22] were obtained under the assumption
maxi ‖Ψt

Gi
ΨGi−I‖ ≤ 1/2, which again implies that ΨGi are

well conditioned [22, Theorem 1]. Group restrict eigenvalue
conditions [18], [21] and group RIP [23] were adopted for
analyzing the group lasso. Under these conditions, strong
correlation within groups is also not allowed.

Now we give a few useful estimates. The proofs can be
found in Appendix B.

Lemma 4: For any i, j, there hold

‖Ψ̄−1
Gi

Ψt
Gi
y‖ ≤ ‖y‖, ‖ΨGi

Ψ̄−1
Gi
xGi
‖ = ‖xGi

‖,

‖Di,jxGj
‖
{
≤ µ‖xGj‖ i 6= j,
= ‖xGj

‖ i = j.

Lemma 5: For any distinct groups Gi1 , · · · , GiM , 1 ≤
M ≤ T , let

D =

 Di1,i1 · · · Di1,iM
...

...
...

DiM ,i1 · · · DiM ,iM

 and x =

 xGi1

...
xGiM

 .

There holds ‖Dx‖`∞(`2) ∈ [(1 − (M − 1)µ)‖x‖`∞(`2), (1 +
(M − 1)µ)‖x‖`∞(`2)].

Lemma 5 directly implies the uniqueness of the oracle
solution xo; see Appendix C for the proof.

Corollary 6: If Assumption 2.1 holds, then xo is unique.

III. THEORY OF THE `0(`2) OPTIMIZATION PROBLEM

Now we analyze the model (3), e.g., existence of a global
minimizer, invariance property, support recovery, and block
coordinatewise minimizers.

A. Existence and property of a global minimizer

First we show the existence of a global minimizer to
problem (3); see Appendix D for the proof.

Theorem 7: There exists a global minimizer to problem (3).
It can be verified directly that the `0(`2) penalty is in-

variant under group full-rank column transformation, i.e.,
‖Ψ̄Gi

xGi
‖`0 = ‖xGi

‖`0 for nonsingular Ψ̄Gi
, i = 1, 2, . . . , N .

Thus problem (3) can be equivalently transformed into

1
2‖

N∑
i=1

ΨGi
Ψ̄−1
Gi
x̄Gi
− y‖2 + λ‖x̄‖`0(`2). (9)

with x̄Gi = Ψ̄GixGi . This invariance does not hold for other
group sparse penalties, e.g., group lasso and group MCP.
Further, the BMC µ is invariant under the transformation, since
span({ψl : l ∈ Gi}) = span({(ΨGi

Ψ̄−1
Gi

)l}).
Remark 3.1: Most existing approaches do not distinguish

inner- and inter-group columns, and thus require incoherence
between the columns within each group in the theoretical
analysis. For strong inner-group correlation, a clustering step

is often employed to decorrelate Ψ [54], [55]. In contrast,
our approach has a built-in decorrelation mechanism: it is
independent of the conditioning of the submatrices {ΨGi}Ni=1.

For a properly chosen λ, a global minimizer has nice
properties, e.g., exact support recovery for small noise and
oracle property; the proof is given in Appendix E.

Theorem 8: Let Assumption 2.1 hold, x be a global mini-
mizer of (3) with an active set A, and x̄†Gi

= Ψ̄Gi
x†Gi

.

(i) Let Λ = |{i ∈ A† : ‖x̄†Gi
‖ < 2

√
2λ+ 3ε}|. If λ > ε2/2,

then |A \ A†|+ |A† \ A| ≤ 2Λ.
(ii) If η is small, i.e., ε < mini∈A†{‖x̄

†
Gi
‖}/5, then for

any λ ∈ (ε2/2, (mini∈A†{‖x̄
†
Gi
‖} − 2ε)2/8), the oracle

solution xo is the only global minimizer to Jλ.

B. Necessary optimality condition

Since problem (3) is highly nonconvex, there seems no
convenient characterization of a global minimizer that is
amenable with numerical treatment. Hence, we resort to the
concept of a block coordinatewise minimizer (BCWM) with
respect to the group partition {Gi}Ni=1, which is minimizing
along each group coordinate xGi

[56]. Specifically, a BCWM
x∗ to the functional Jλ satisfies for i = 1, 2, . . . , N

x∗Gi
∈ arg min

xGi
∈Rsi

Jλ(x∗G1
, · · · , x∗Gi−1

, xGi , x
∗
Gi+1

, · · · , x∗GN
).

We have the following necessary and sufficient condition
for a BCWM x∗; see Appendix F for the proof. It is also the
necessary optimality condition of a global minimizer x∗.

Theorem 9: The necessary and sufficient optimality condi-
tion for a BCWM x∗ ∈ Rp of problem (3) is given by

x̄∗Gi
∈ Hλ(x̄∗Gi

+ d̄∗Gi
), i = 1, . . . , N, (10)

where x̄∗Gi
= Ψ̄Gix

∗
Gi

, and the dual variable d∗ is d∗ = Ψt(y−
Ψx∗) and d̄∗Gi

= Ψ̄−1
Gi
d∗Gi

.
Remark 3.2: The optimality system is expressed in terms of

the transformed variables x̄ and d̄ only, instead of the primary
variables x and d. This has important consequences for the
analysis and algorithm of the `0(`2) model: both should be
carried out in the transformed domain. Clearly, (10) is also the
optimality system of a BCWM x̄∗ for problem (9), concurring
with the invariance property.
Notation. In the discussions below, given a primal variable x
and dual variable d, we will use (x̄, d̄) for the transformed vari-
ables, i.e., x̄Gi = Ψ̄GixGi and d̄Gi = Ψ̄−1

Gi
dGi , i = 1, ..., N .

Using the group hard-thresholding operator Hλ, we deduce

‖x̄∗Gi
+ d̄∗Gi

‖ <
√

2λ⇒ x̄∗Gi
= 0 (⇔ x∗Gi

= 0),

‖x̄∗Gi
+ d̄∗Gi

‖ >
√

2λ⇒ d̄∗Gi
= 0 (⇔ d∗Gi

= 0).

Combining these two relations gives a simple observation

‖x̄Gi
‖ ≥
√

2λ ≥ ‖d̄Gi
‖. (11)

Next we discuss interesting properties of a BCWM x∗. First,
it is always a local minimizer, i.e., Jλ(x∗ + h) ≥ Jλ(x∗) for
all small h ∈ Rp; see Appendix G for the proof.

Theorem 10: A BCWM x∗ of the functional Jλ is a local
minimizer. Further, with its active set A, if Ψ∪i∈AGi has full
column rank, then it is a strict local minimizer.
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Given the active set A of a BCWM x∗, if |A| is controlled,
then A provides information about A†; see Theorem 11 below
and Appendix H for the proof. In particular, if the noise η is
small, with a proper choice of λ, then A ⊆ A†.

Theorem 11: Let Assumption 2.1 hold, and x∗ be a BCWM
to the model (3) with a support A and |A| ≤ T . Then the
following statements hold.
(i) The inclusion {i : ‖x̄†Gi

‖ ≥ 2
√

2λ+ 3ε} ⊆ A holds.
(ii) The inclusion A ⊆ A† holds if ε is small:

ε ≤ t min
i∈A†
{‖x̄†Gi

‖} for some 0 ≤ t < 1−3µT
2 . (12)

(iii) If the set {i ∈ A† : ‖x̄†Gi
‖ ∈ [2

√
2λ− 3ε, 2

√
2λ+ 3ε]} is

empty, then A ⊆ A†.

IV. GROUP PRIMAL-DUAL ACTIVE SET ALGORITHM

Now we develop an efficient, accurate and globally conver-
gent group primal dual active set with continuation (GPDASC)
algorithm for problem (3). It generalizes the algorithm for the
`1 and `0 regularized problems [41], [42] to the group case.

A. GPDASC algorithm

The starting point is the necessary and sufficient optimality
condition (10) for a BCWM x∗, cf. Theorem 9. The following
two observations from (10) form the basis of the derivation.
First, given a BCWM x∗ (and its dual variable d∗ = Ψt(y −
Ψx∗)), one can determine the active set A∗ by

A∗ = {i : ‖x̄∗Gi
+ d̄∗Gi

‖ >
√

2λ}

and the inactive set I∗ its complement, provided that the
set {i : ‖x̄∗Gi

+ d̄∗Gi
‖ =

√
2λ} is empty. Second, given the

active set A∗, one can determine uniquely the primal and dual
variables x∗ and d∗ by (with B = ∪i∈A∗Gi){
x∗Gi

= 0 ∀i ∈ I∗ and Ψt
BΨBx

∗
B = Ψt

By,

d∗Gj
= 0 ∀j ∈ A∗ and d∗Gi

= Ψt
Gi

(y −Ψx∗) ∀i ∈ I∗.

By iterating these two steps alternatingly, with the current
estimates (x, d) and (A, I) in place of (x∗, d∗) and (A∗, I∗),
we arrive at an algorithm for problem (3).

The complete procedure is listed in Algorithm 1. Here
Kmax ∈ N is the maximum number of inner iterations, λ0

is the initial guess of λ. The choice λ0 = 1
2‖y‖

2 ensures
that x0 = 0 is the only global minimizer, cf. Proposition 12
below, with a dual variable d0 = Ψty. The scalar ρ ∈ (0, 1) is
the decreasing factor for λ, which essentially determines the
length of the continuation path.

The algorithm consists of two loops: an inner loop of
solving problem (3) with a fixed λ using a GPDAS algorithm
(lines 6–10), and an outer loop of continuation along the
parameter λ by gradually decreasing its value.

In the inner loop, it involves a least-squares problem:

xk+1 = argmin
supp(x)⊆∪i∈Ak

Gi

‖Ψx− y‖,

which amounts to solving a (normal) linear system of size
| ∪i∈Ak

Gi| ≤ |Ak|s. Hence, this step is very efficient, if the
active set Ak is small, which is the case for group sparse

Algorithm 1 GPDASC algorithm

1: Input: Ψ ∈ Rn×p, {Gi}Ni=1, Kmax, λ0 = 1
2‖y‖

2, and
ρ ∈ (0, 1).

2: Compute Ψ̄Gi
= (Ψt

Gi
ΨGi

)1/2.
3: Set x(λ0) = 0, d(λ0) = Ψty, A(λ0) = ∅.
4: for s = 1, 2, ... do
5: Set λs = ρλs−1, x0 = x(λs−1), d0 = d(λs−1), A−1 =

A(λs−1).
6: for k = 0, 1, . . . ,Kmax do
7: Let x̄kGi

= Ψ̄Gi
xkGi

and d̄kGi
= Ψ̄−1

Gi
dkGi

, and define

Ak = {i : ‖x̄kGi
+ d̄kGi

‖ >
√

2λs}.

8: Check the stopping criterion Ak = Ak−1.
9: Update the primal variable xk+1 by

xk+1 = argmin
supp(x)⊆∪i∈Ak

Gi

‖Ψx− y‖.

10: Update the dual variable by dk+1 = Ψt(y−Ψxk+1).
11: end for
12: Set the output by x(λs), d(λs) and A(λs).
13: Check the stopping criterion

‖Ψx(λs)− y‖ ≤ ε. (13)

14: end for

signals. Further, since the inner iterates are of Newton type
[41], the local convergence should be fast. However, in order
to fully exploit this nice feature, a good initial guess of the
primal and dual variables (x, d) is required. To this end, we
apply a continuation strategy along λ. Specifically, given a
large λ0, we gradually decrease its value by λs = ρλs−1,
for some decreasing factor ρ ∈ (0, 1), and take the solution
(x(λs−1), d(λs−1)) to the λs−1-problem Jλs−1 to warm start
the λs-problem Jλs

.
There are two stopping criteria in the algorithm, at steps 8

and 13, respectively. In the inner loop, one may terminate the
iteration if the active set Ak does not change or a maximum
number Kmax of inner iterations is reached. Since the stopping
criterion Ak = Ak−1 for convex optimization may never be
reached in the nonconvex context [42], it has to be terminated
after a maximum number Kmax of iterations. Our convergence
analysis holds for any Kmax ∈ N, including Kmax = 1, and
we recommend Kmax ≤ 5 in practice. The stopping criterion
at step 13 is essentially concerned with the proper choice of
λ. The choice of λ stays at the very heart of the model (3).
Many rules, e.g., discrepancy principle, balancing principle
and information criterion, have been developed for variational
regularization [57]. In Algorithm 1, we give only the discrep-
ancy principle (13), assuming that a reliable estimate on the
noise level ε is available. The rationale behind the principle
is that the reconstruction accuracy should be comparable with
the data accuracy. Note that the use of (13) (and other rules)
does not incurred any extra computational overheads, since the
sequence of solutions {x(λs)} is already generated along the
continuation path.

Now we justify the choice of λ0: for large λ, 0 is the only
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global minimizer to Jλ. The proof is given in Appendix I.
Proposition 12: The following statements hold.

(i) For any λ > 0, x∗ = 0 is a strict local minimizer to Jλ;
(ii) For any λ > λ0 := 1

2‖y‖
2, x∗ = 0 is the only global

minimizer of problem (3).

B. Convergence analysis

Now we state the global convergence of Algorithm 1.
Theorem 13: Let Assumption 2.1 and (12) hold. Then for a

proper choice of ρ ∈ (0, 1), and for any Kmax ≥ 1, Algorithm
1 converges to xo in a finite number of iterations.

We only sketch the main ideas, and defer the lengthy proof
to Appendix J. The most crucial ingredient of the proof is to
characterize a monotone decreasing property of the “energy”
during the iteration by some auxiliary set Γs defined by

Γs =
{
i : ‖x̄†Gi

‖ ≥
√

2s
}
. (14)

The inclusion Γs1 ⊆ Γs2 holds trivially for s1 > s2. If Ak
is the active set at the kth iteration, the corresponding energy
Ek is defined by Ek = E(Ak) = maxi∈Ik ‖x̄

†
Gi
‖. Then with

properly chosen s1 > s2, there holds Γs21λ ⊆ Ak ⊆ A
† ⇒

Γs22λ ⊆ Ak+1 ⊆ A†. This relation characterizes the evolution
of the active set Ak, and provides a crucial strict monotonicity
of the energy Ek. This observation is sufficient to show the
convergence of the algorithm to the oracle solution xo in a
finite number of steps; see Appendix J for details.

Remark 4.1: The convergence in Theorem 13 holds for any
Kmax ∈ N, including Kmax = 1. According to the proof in
Appendix J, the smaller are the factor µT and the noise level
ε, the smaller is the decreasing factor ρ that one can choose
and thus Algorithm 1 takes fewer outer iterations to reach
convergence on the continuation path. We often taken ρ = 0.7.

C. Computational complexity

Now we comment on the computational complexity of
Algorithm 1. First, we consider one inner iteration. Steps 7-
8 take O(p) flops. At Step 9, explicitly forming the matrix
Ψt
Bk

ΨBk
, Bk = ∪i∈Ak

Gi, takes O(n|Bk|2) flops, and the cost
of forming Ψty is negligible since it is often precomputed.
The Cholesky factorization costs O(|Bk|3) flops and the
back-substitution needs O(|Bk|2) flops. Hence step 9 takes
O(max(|Bk|3, n|Bk|2)) flops. At step 10, the matrix-vector
product takes O(np) flops. Hence, the the overall cost of
one inner iteration is O(max(|Bk|3, pn, n|Bk|2)). Since the
GPDAS is of Newton type, a few iterations suffice conver-
gence, which is numerically confirmed in Section V. So with
a good initial guess, for each fixed λ, the overall cost is
O(max(|Bk|3, pn, |Bk|2n)). In particular, if the true solution
x† is sufficiently sparse, i.e., |Bk| � min(n,

√
p), the cost of

per inner iteration is O(np).
Generally, one can apply the well-know low-rank Cholesky

up/down-date formulas [58] to further reduce the cost. Specif-
ically, with Bk = ∪i∈Ak

Gi, we down-date by removing the
columns in Bk−1 but not in Bk at the cost of O(|Bk−1 \
Bk||Bk−1|2) flops, and update by appending the columns in
Bk but not in Bk−1 in O(|Bk \ Bk−1|(|Bk−1|2 + n|Bk−1|))

flops. Then the Cholesky factor of Ψt
Bk

ΨBk
is O((|Bk−1 ∪

Bk|− |Bk−1∩Bk|)|Bk−1|(n+ |Bk−1|)). Along the continua-
tion path, (|Bk−1∪Bk|− |Bk−1∩Bk|) is small, as confirmed
in Fig. 5 below, and thus the overall cost is often of O(np).

V. NUMERICAL RESULTS AND DISCUSSIONS

Now we present numerical results to illustrate distinct
features of the proposed `0(`2) model and the efficiency and
accuracy of Algorithm 1. All the numerical experiments were
performed on a four-core desktop computer with 3.16 GHz
and 8 GB RAM. The MATLAB code (GPDASC) is available
at http://www0.cs.ucl.ac.uk/staff/b.jin/software/gpdasc.zip.

A. Experimental setup

First we describe the problem setup of the numerical ex-
periments. In all the numerical examples, the group sparse
structure of the true signal x† is encoded in the partition
{Gi}Ni=1, which is of equal group size s, with p = Ns, and
x† has T = |A†| nonzero groups. The dynamic range (DR) of
the signal x† is defined by

DR =
max{|x†i | : x

†
i 6= 0}

min{|x†i | : x
†
i 6= 0}

.

We fix the minimum nonzero entry at min{|x†i | : x
†
i 6= 0} = 1.

The sensing matrix Ψ is constructed as follows. First we
generate a random Gaussian matrix Ψ̃ ∈ Rn×p, n � p,
with its entries following an independent identically distributed
(i.i.d.) standard Gaussian distribution with a zero mean and
unit variance. Then for any i ∈ {1, 2..., N}, we introduce
correlation within the ith group Gi by: given ΨGi ∈ Rn×|Gi|

by setting ψ1 = ψ̃1, ψ|Gi| = ψ̃|Gi| and

ψj = ψ̃j + θ(ψ̃j−1 + ψ̃j+1), j = 2, ..., |Gi| − 1,

where the parameter θ ≥ 0 controls the degree of inner-group
correlation: The larger is θ, the stronger is the correlation.
Finally, we normalize the matrix Ψ to obtain Ψ such that all
columns are of unit length. The data y is formed by adding
noise η to the exact data y† = Ψx† componentwise, where
the entries ηi follow an i.i.d. Gaussian distribution N(0, σ2).
Below we shall denote by the tuple (n, p,N, T, s,DR, θ, σ)
the data generation parameters, and the notation N1 : d : N2

denotes the sequence of numbers starting with N1 and less
than N2 with a spacing d.

B. Comparison with existing group sparse models

First we compare our `0(`2) model (3) (and Algorithm 1)
with three state-of-the-art group sparse recovery models and
algorithms, i.e., group lasso model

min
x∈Rp

‖x‖`1(`2) subject to ‖Ψx− y‖ ≤ ε

(solved by the group SPGl1 method [29], available at http:
//www.cs.ubc.ca/∼mpf/spgl1/, last accessed on December 23,
2015), group MCP (GMCP) model [17], [26], [27] (solved
by a group coordinate descent (GCD) method [34]), and
group OMP (GOMP) [20], [35]. We refer to these refer-
ences for their implementation details. Since the algorithm
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Fig. 1: The probability of exact support recovery.

essentially determines the performance of each method, we
shall indicate the methods by the respective algorithms, i.e.,
SPGl1, GCD, GOMP and GPDASC. In the comparison, we
examine separately support recovery, and computing time and
reconstruction error. All the reported results are the average
of 100 independent simulations of the experimental setting.

First, to show exact support recovery, we consider the
following two problem settings: (800, 2 × 103, 500, 10 :
10 : 100, 4, 10, 0, 10−3) and (800, 2 × 103, 500, 10 : 10 :
100, 4, 10, 3, 10−3), for which the condition numbers of the
submatrices ΨGi

are O(1) and O(102), respectively, for the
case θ = 0 and θ = 3, respectively. Given the group size
s = 4, the condition number O(102) is fairly large, and thus
the latter is numerically far more challenging than the former.
The numerical results are presented in Fig. 1, where the exact
recovery is measured by A∗ = A†, with A† and A∗ being the
true and recovered active sets, respectively.

Numerically, it is observed that as the (group) sparsity level
T and correlation parameter θ increase, the `0(`2) model and
GMCP are the best performers in the test. Theoretically, this is
not surprising: the `0(`2) model represents the golden-standard
for group sparse recovery, like the `0 model for the usual
sparsity, and GMCP is a close nonconvex proxy to the `0(`2)
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Fig. 2: Computing time and relative error for GPDASC,
GOMP, SPGl1, and GCD for the problem setting (2×103, 1×
104, 2.5 × 103, 150 : 50 : 350, 4, 100, 1, 10−2). All computa-
tions were performed with the same continuation path.

model. Note that GMCP as implemented in [17] is robust
with respect to the inner-group correlation, since it performs
a preprocessing step to decorrelate Ψ by reorthonormalizing
the columns within each group. However, unlike the `0(`2)
penalty, this step generally changes the GMCP objective
function, due to a lack of transform invariance, and thus may
complicate the theoretical analysis of the resulting recovery
method. Meanwhile, as a greedy approximation, GOMP does
a fairly good job overall: for small θ, it can almost perform
as well as the `0(`2) model, but deteriorates greatly for large
θ. By its very construction, GOMP from [20] does not take
care of the inner-group correlation directly. Surprisingly, group
lasso fails most of the time. A closer look at the recovered
signals shows that it tends to choose a slightly larger active
set than A† in the noisy case, and this explains its relatively
poor performance in terms of the exact recovery probability,
although the relative error is not too large. Intuitively, this
concurs with the fact that the convex relaxation often trades the
computational efficiency by compromising the reconstruction
accuracy.

Next we compare their computing time and reconstruction
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error on the following two problem settings: (2 × 103, 1 ×
104, 2.5 × 103, 200 : 25 : 400, 4, 100, 1, 10−2) and (5 ×
103, 2 × 104, 5 × 103, 500 : 50 : 800, 4, 100, 10, 10−3), for
which the condition number of the submatrices ΨGi

is of
O(10) and O(103), respectively. The case θ = 10 involves
very strong inner-group correlation, and it is very challenging.
The numerical results are presented in Figs. 2 and 3.
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Fig. 3: Computing time and relative error for GPDASC,
GOMP, SPGl1, and GCD for the problem setting (5×103, 2×
104, 5× 10−3, 500 : 50 : 800, 4, 100, 10, 10−3). All computa-
tions were performed with the same continuation path.

For θ = 1, the proposed GPDASC for the `0(`2) model
is at least three to four times faster than GCD and GOMP,
cf. Fig. 2. The efficiency of GPDASC stems from its Newton
nature and the continuation strategy, apart from solving least-
squares problems only on the active set. We shall examine
its convergence more closely below. Group lasso is also
computationally attractive, since due to its convexity, it admits
an efficient solver SPGl1. The coupling with a continuation
strategy is beneficial to the efficiency of SPGl1 [41]. Mean-
while, the reconstruction errors of the `0(`2) and GMCP are
comparable, which is slightly better than GOMP, and they are
much accurate than that of group lasso, as observed earlier. In
the case of strong inner-group correlation (i.e., θ = 10), the
computing time of GPDASC does not change much, but that
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Fig. 4: The number of iterations along the continuation path,
for each fixed regularization parameter λs.

of other algorithms has doubled. Further, the relative error
by the `0(`2) model does not deteriorate with the increase
of the correlation parameter θ, due to its inherent built-in
decorrelation mechanism, cf. Section III, and thus it is far
smaller than that by other methods, especially when the group
sparsity level T is large. In summary, these experiments show
clearly that the proposed `0(`2) model is very competitive
in terms of computing time, reconstruction error and exact
support recovery.

C. Superlinear local convergence of Algorithm 1

We illustrate the convergence behavior of Algorithm 1
with two problem settings: (500, 103, 250, 50, 4, 100, 0, 10−3)
and (500, 103, 250, 50, 4, 100, 3, 10−3). To examine the local
convergence, we show the number of iterations for each fixed
λs along the continuation path in Fig. 4. It is observed that
the stopping criterion at the inner iteration, i.e., Step 8 of
Algorithm 1, is usually reached with one or two iterations,
irrespective of the inner-group correlation strength or the
regularization parameter λs. Hence, Algorithm 1 converges
locally supperlinearly, like that for the convex `1 penalty [41],
and the continuation strategy can provide a good initial guess
for each inner iteration such that the fast local convergence of
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Fig. 5: The variation of the active set size measured by |As \
As+1| and |As+1 \As| along the continuation path, where As
denotes the active set at the regularization parameter λs.

the GPDAS is fully exploited. This confirms the complexity
analysis in Section IV-C. The highly desirable θ-independence
convergence is attributed to the built-in de-correlation effect
of the `0(`2) model.

To gain further insights, we present in Fig. 5 the variation
of the active set along the continuation path using the setting
as that of Fig. 4. It is observed that the interesting mono-
tonicity relation As ⊂ As+1 holds along the continuation
path. The difference of active sets between two neighboring
regularization parameters λs is generally small (less than five,
and mostly one or two), and thus each GPDAS update is
efficient, with a cost comparable with that of one step gradient
descent, if using the low-rank Cholesky up/down-date [58],
cf. Section IV-C. Further, the empirical observation that each
inner iteration often takes only one iteration corroborates
the convergence theory in Theorem 13, i.e., the algorithm
converges globally even if each inner loop takes one iteration.

Correspondingly, the variation of the relative `2 error with
respect to the oracle solution xo along the continuation path
is given in Fig. 6. For large regularization parameters λs,
the regularized solution is zero, and thus the relative error is
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Fig. 6: The relative `2 error of the iterates along the contin-
uation path, for each fixed regularization parameter λs, with
respect to the oracle solution xo.

unit. Then the error first increases slightly, before it starts to
decrease monotonically. Upon convergence (i.e., the discrep-
ancy principle is satisfied), the iterate converges to the oracle
solution xo, as indicated by the extremely small error. It is
noteworthy that the convergence behavior is almost identical
for both the uncorrelated and correlated sensing matrices,
further confirming the advantage of the `0(`2) approach.

D. Multichannel image reconstruction

In the last set of experiments, we consider recovering 2D
images from compressive and noisy measurement.

The first example is taken from [59]. The target signal is
a color image with three-channels I = (Ir; Ig; Ib), with Ic ∈
Rl2 , c ∈ {r, g, b}. In the computation, we reorder I into one
vector such that the pixels at the same position from the three
channels are grouped together. The observational data y is
generated by y = ΨI + η where Ψ is a random Gaussian
matrix (with correlation within each group) and η is Gaussian
noise, following the procedure outlined in Section V-A with
the following parameters: n = 1152, p = 6912, N = 2304,
T = 152, s = 3, θ = 10, σ = 1e-3. The condition number
within each group is O(102).
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The numerical results are presented in Fig. 7 and Table I,
where the PSNR is defined by

PSNR = 10 · log
V 2

MSE
,

where V and MSE is the maximum absolute value and the
mean squared error, respectively, of the reconstruction, It is
observed that GPDASC, GOMP and GCD produce visually
equally appealing results, and they are much better than that of
SPGl1. This observation is also confirmed by the PSNR values
in Table I: the PSNR of GPDASC is slightly higher than that
of GOMP and GCD. The convergence of GPDASC is much
faster than GOMP and GCD. The SPGl1 is the most efficient
one, but greatly compromises the reconstruction quality.

Fig. 7: Reconstruction results of the two-dimensional image.

TABLE I: Numerical results for the two-dimensional image:
n = 1152, p = 6912, N = 2304, T = 152, s = 3, θ = 10,
σ = 1e-3.

algorithm CPU time (s) PSNR
GPDASC 5.70 48.2

GOMP 10.9 47.9
SPGl1 2.85 22.2
GCD 33.9 48.1

Last, we consider multichannel MRI reconstruction. The
sampling matrix Ψ is the composition of a partial FFT with an
inverse wavelet transform, with a size 3771×12288, where we
have used 6 levels of Daubechies 1 wavelet. The three channels
for each wavelet expansion are organized into one group, and
the underlying image I = (Ir; Ig; Ib) has 724 nonzero group
coefficients (each of group size 3) under the wavelet transform.
Hence, the data is formed as y = Ψc+η, where c is the target
coefficient with a group sparse structure and η is the Gaussian
noise with a noise level σ = 1e-2. The recovered image I is
then obtained by applying the inverse wavelet transform to the
estimated coefficient c. The numerical results are presented in
Fig. 8 and Table II.

Original GPDASC GOMP

SPGl1 GCD

Fig. 8: Reconstructions for the 2D MRI phantom image.

TABLE II: Numerical results for the 2D MRI phantom image:
n = 3771, p = 12288, N = 4096, T = 724, s = 3, θ = 0,
σ = 1e-2.

algorithm CPU time (s) PSNR
GPDASC 48.5 38.7

GOMP 203 37.3
SPGl1 14.3 20.1
GCD 212 38.2

The observations from the preceding example remain
largely valid: the reconstructions by GPDASC, GOMP and
GCD are close to each other visually and have comparable
PSNR values, and all are much better than that by SPGl1.
However, GPDASC is a few times faster than that by GOMP
and GCD.

VI. CONCLUSIONS

In this work we have proposed and analyzed a novel
approach for recovering group sparse signals based on the
regularized least-squares problem with an `0(`2) penalty. We
provided a complete theoretical analysis on the model, e.g.,
existence of global minimizers, invariance property, support
recovery, and properties of block coordinatewise minimizers.
One salient feature of the approach is that it has built-in
decorrelation mechanism, and can handle very strong inner-
group correlation. Further, these nice properties can be numer-
ically realized efficiently by a primal dual active set solver,
for which a finite-step global convergence was also proven.
Extensive numerical experiments were presented to illustrate
the salient features of the `0(`2) model, and the efficiency
and accuracy of the algorithm, and the comparative study
with existing approaches show its competitiveness in terms of
support recovery, reconstruction errors and computing time.

There are several avenues deserving further study. First,
when the column vectors in each group are ill-posed in the
sense that they are highly correlated / nearly parallel to each
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other, which are characteristic of most inverse problems [60],
the propose `0(`2) model (3) may not be well defined or
the involved linear systems in the GPDAS algorithm can be
challenging to solve directly. One possible strategy is to apply
an extra regularization. This necessitates a refined theoretical
study. Second, in practice, the true signal may have extra
structure within the group, e.g., smoothness or sparsity. It
remains to explore such extra a priori information.
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APPENDIX

A. Proof of Proposition 3

Proof: Let N1 = span{p1, ..., ps1} and N2 =
span{q1, ..., qs2} be two subspaces spanned by two distinct
groups, where pi, qj are column vectors of unit length. By the
definition of the MC ν, |〈pi, qj〉| ≤ ν for any i = 1, . . . , s1

and j = 1, . . . , s2. For any u ∈ N1 and v ∈ N2, let u =∑s1
i=1 cipi and v =

∑s2
j=1 djqj . Then with c = (c1, ..., cs1)

and d = (d1, ..., ds2),

‖u‖2 =

s1∑
i,j=1

cicj〈pi, pj〉 ≥
s1∑
i=1

c2i − ν
∑
i 6=j

|ci||cj |

≥ (1− (s1 − 1)ν)‖c‖2 ≥ (1− (s− 1)ν)‖c‖2,

and similarly ‖v‖2 ≥ (1− (s− 1)ν)‖d‖2. Hence we have

|〈u, v〉|
‖u‖‖v‖

≤
ν
∑s1
i=1

∑s2
j=1 |cidj |

(1− ν(s− 1))‖c‖‖d‖
≤ νs

1− ν(s− 1)
,

by the inequality
∑s1
i=1

∑s2
j=1 |cidj | =

∑s1
i=1 |ci|

∑s2
j=1 |dj | ≤√

s1s2‖c‖‖d‖ ≤ s‖c‖‖d‖.

B. Proof of Lemmas 4 and 5

Proof: [of Lemma 4] First, recall that for any matrix
A, AtA and AAt have the same nonzero eigenvalues. Upon
letting A = Ψ̄−1

Gi
Ψt
Gi

, we have AAt = I , and

‖ΨGiΨ̄
−1
Gi
xGi‖2 = xtGi

AAtxGi = ‖xGi‖2,

and likewise

‖Ψ̄−1
Gi

Ψt
Gi
y‖2 = ytAtAy ≤ λmax(AtA)‖y‖2 = ‖y‖2,

giving the first two estimates. If i = j, Di,j is an identity
matrix, and thus ‖Di,jxGj

‖ = ‖xGj
‖. For i 6= j, Ui =

(Ψ̄−1
Gi

Ψt
Gi

)t ∈ Rn×|si|, Vj = (Ψ̄−1
Gj

Ψt
Gj

)t ∈ Rn×|sj |, then

Di,j = U ti Vj , U tiUi = I, V tj Vj = I.

Thus by Lemma 2, there holds

‖Di,jxGj
‖ = ‖U ti VjxGj

‖ ≤ ‖U ti Vj‖‖xGj
‖ ≤ µ‖xGj

‖,

showing the last inequality.

Proof: [of Lemma 5] Since Di,i = I , we have

y = Dx =

 xGi1
+
∑
j 6=i1 Di1,ijxGij

...
xGiM

+
∑
j 6=iM Di1,ijxGij

 =

 yGi1

...
yGiM

 .

By Lemma 4, ‖Dk,ijxGij
‖ ≤ µ‖xGij

‖ for any k 6= ij . Let
k∗ be the index such that ‖y‖`∞(`2) = ‖yGk∗ ‖. Then

‖y‖`∞(`2) = ‖yGk∗‖ ≤ ‖xGk∗‖+
∑
ij 6=k∗

‖Dk∗,ijxGij
‖

≤ ‖xGk∗ ‖+ µ
∑
ij 6=k∗

‖xGij
‖ ≤ (1 + (M − 1)µ)‖x‖`∞(`2).

To show the other inequality, let j∗ be the index such that
‖x‖`∞(`2) = ‖xGj∗‖. Then by Lemma 4, we deduce

‖y‖`∞(`2) ≥ ‖yGj∗‖ ≥ ‖xGj∗‖ −
∑
ij 6=j∗

‖Dj∗,ijxGij
‖

≥ ‖xGj∗‖ − µ
∑
ij 6=j∗

‖xGij
‖ ≥ (1− (M − 1)µ)‖x‖`∞(`2).

This completes the proof of the lemma.

C. Proof of Corollary 6

Proof: Since ΨGi
has full column rank, problem (5) is

equivalent to x̄o|∪
i∈A†Gi

= argmin ‖
∑
i∈A† ΨGi

Ψ̄−1
Gi
x̄Gi
−

y‖2, x̄o|∪
i∈I†Gi

= 0, where x̄Gi
= Ψ̄Gi

xGi
. The normal

matrix involved in the least-squares problem on ∪i∈A†Gi is
exactly the matrix D in Lemma 5, with {i1, ..., iM} = A†.
Then the uniqueness of xo follows from Lemma 5.

D. Proof of Theorem 7

Proof: Let S = {B : B = ∪i∈IGi, I ⊆ {1, 2, ..., N}}.
Then the set S is finite. For any nonempty B ∈ S, the problem
minsupp(x)⊆B ‖Ψx − y‖ has a minimizer x∗(B). Let T ∗B =
1
2‖Ψx

∗(B)− y‖2 +λ‖x∗(B)‖`0(`2), and for B = ∅, let T ∗B =
1
2‖y‖

2 and x∗(B) = 0. Then we denote T ∗ = minB∈S T
∗
B ,

with the minimizing set B∗, and x∗ = x∗(B∗). We claim that
Jλ(x∗) ≤ Jλ(x) for all x ∈ Rp. Given any x ∈ Rp, let B ∈ S
be the smallest superset of supp(x). Then ‖x∗(B)‖`0(`2) ≤
‖x‖`0(`2), and further by construction ‖Ψx∗(B)−y‖ ≤ ‖Ψx−
y‖ and hence Jλ(x) ≥ Jλ(x∗(B)) ≥ Jλ(x∗).

E. Proof of Theorem 8

Proof: Since x∗ is a global minimizer of Jλ, we have

λT + 1
2ε

2 = Jλ(x†) ≥ Jλ(x∗) ≥ λ|A|.

This and the choice of λ imply |A| ≤ T . Since any global
minimizer is also a BCWM, by Theorem 11(i) below, we
deduce {i ∈ A† : ‖x̄†Gi

‖ ≥ 2
√

2λ + 3ε} ⊆ A. This gives
part (i). Next, for λ ∈ (ε2/2, (mini∈A†{‖x̄

†
Gi
‖} − 2ε)2/8),

there holds A† ⊆ A and hence A† = A. Hence the only
global minimizer is the oracle solution xo.
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F. Proof of Theorem 9

Proof: A BCWM x∗ is equivalent to the following:

x∗Gi
∈ argmin
xGi
∈Rsi

1
2‖ΨGixGi +

∑
j 6=i

ΨGjx
∗
Gj
− y‖2 + λ‖xGi‖`0(`2)

for i = 1, . . . , N , is equivalent to

x∗Gi
∈ argmin
xGi
∈Rsi

{ 1
2‖ΨGi

(xGi
− x∗Gi

)‖2 + λ‖xGi
‖`0(`2)

− 〈xGi − x∗Gi
,Ψt

Gi
(y −Ψx∗)〉}.

Using the matrices Ψ̄Gi
= (Ψt

Gi
ΨGi

)1/2 and the identities
‖ΨGi

(xGi
− x∗Gi

)‖ = ‖Ψ̄Gi
(xGi

− x∗Gi
)‖,

〈xGi
− x∗Gi

,Ψt
Gi

(y −Ψx∗)〉 = 〈Ψ̄Gi
(xGi

− x∗Gi
), Ψ̄−1

Gi
dGi
〉,

‖xGi
‖`0(`2) = ‖Ψ̄Gi

xGi
‖`0(`2),

and recalling x̄Gi
= Ψ̄Gi

xGi
, x̄∗Gi

= Ψ̄Gi
x∗Gi

, and d̄∗Gi
=

Ψ̄−1
Gi
d∗Gi

etc., we deduce

x̄∗Gi
∈ argmin
x̄Gi
∈Rsi

1
2‖x̄Gi

− (x̄∗Gi
+ d̄∗Gi

)‖2 + λ‖x̄Gi
‖`0(`2).

Using the hard-thresholding operator Hλ, we obtain (10).

G. Proof of Theorem 10

Proof: It suffices to show Jλ(x∗ + h) ≥ Jλ(x∗) for all
small h ∈ Rp. Let B = ∪i∈AGi. Then

x∗B ∈ arg min 1
2‖ΨBx

∗
B − y‖2. (15)

Now consider a small perturbation h ∈ Rp to x∗. If hS\B = 0,
since ‖x∗ + h‖`0(`2) = ‖x∗‖`0(`2) for small h, by (15), the
assertion holds. Otherwise, if hS\B 6= 0, then

Jλ(x∗ + h)− Jλ(x∗) ≥ λ− |(h, d∗)|, (16)

which is positive for small h, since ‖d∗‖`∞(`2) ≤
√

2λ, cf.
(11). This shows the first assertion. Now if ΨB has full column
rank, then problem (15) is strictly convex. Hence, for small
h 6= 0 with hS\B = 0 ‖x∗ + h‖`0(`2) = ‖x∗‖`0(`2) and
‖Ψ(x∗ + h) − y‖2 > ‖Ψx∗ − y‖2. This and (16) show the
second assertion.

H. Proof of Theorem 11

First, we derive crucial estimates on one-step primal-dual
iteration. Here the energy E associated with an active set A
is defined by

E(A) = max
j∈A†\A

{‖x̄†Gj
‖}. (17)

These estimates bound the errors in x̄ on A by the energy E
and the noise level ε, and similarly d̄ on I.

Lemma 14: Let Assumption 2.1 hold, and A be a given
index set with |A| ≤ T , and I = Ac. Consider the following
one-step primal-dual update (with B = ∪i∈AGi)

xB = Ψ†By, xS\B = 0, d = Ψt(y −Ψx), (18)

where Ψ†B = (Ψt
BΨB)−1Ψt

B is the pseudo-inverse of ΨB .
Then with P = A ∩ A†, Q = A† \ A and R = A \ A†,
E = E(A), for the transformed primal variable x̄, there holds

‖x̄Gi − x̄
†
Gi
‖ ≤ 1

1− |A|µ
(|Q|µE + ε) ∀i ∈ P ∪R, (19)

and for the transformed dual variable d̄, there holds

‖d̄Gi
‖ ≤ C|A|,µ (ε+ µ|Q|E) + |Q|µE + ε, i ∈ I ∩ I†,

‖d̄Gi
‖ ≥ ‖x̄†Gi

‖ − (C|A|,µ (ε+ µ|Q|E) (20)

+ (|Q| − 1)µE + ε), i ∈ I ∩ A†.

with C|A|,µ = |A|µ/(1− µ(|A| − 1)).
Proof: First, the least squares update step in (18) can be

rewritten as

xB = (Ψt
BΨB)−1Ψt

B(ΨBx
†
B +

∑
i∈Q

ΨGi
x†Gi

+ η).

Hence, there holds

xB − x†B = (Ψt
BΨB)−1Ψt

B(
∑
i∈Q

ΨGix
†
Gi

+ η). (21)

Let m = |P| ≤ T , ` = |R|, then k = |Q| = T −m. Further,
we denote the sets P , Q and R by P = {p1, . . . , pm}, Q =
{q1, . . . , qk} and R = {r1, . . . , r`}. Then (21) can be recast
blockwise, using Di,j = Ψ̄−1

Gi
Ψt
Gi

ΨGj
Ψ̄−1
Gj

etc, cf. (7), as

e :=



x̄Gp1
− x̄†Gp1

...
x̄Gpm

− x̄†Gpm

x̄Gr1

...
x̄Gr`


=

[
DP,P DP,R
DR,R DR,R

]

•



[
DP,Q
DR,Q

]
x̄†Gq1

...
x̄†Gqk

+



Ψ̄−1
Gp1

Ψt
Gp1

...
Ψ̄−1
Gpm

Ψt
Gpm

Ψ̄−1
Gr1

Ψt
Gr1

...
Ψ̄−1
Gr`

Ψt
Grk


η


,

where the matrices DP,R etc. are defined by

DP,R =

 Dp1,r1 · · · Dp1,r`
...

...
...

Dpm,r1 · · · Dpm,r`

 .
Next we estimate the two terms in the curly bracket, denoted
by I and II below. By Lemma 4, we deduce

‖II‖`∞(`2) ≤ ‖η‖. (22)

For the first term I, we denote its rows by zi =∑k
j=1Di,qj x̄

†
Gj

, for any i ∈ P ∪R. Since (P ∪R) ∩Q = ∅,
we have for i ∈ P ∪R

‖zi‖ = ‖Di,q1 x̄
†
Gq1

+ · · ·+Di,qk x̄
†
Gqk
‖ ≤ kµ max

1≤j≤k
{‖x̄†Gqj

‖}.



IEEE TRANSECTION ON SIGNAL PROCESSING,VOL. , NO. , ,2015 13

Since the “energy” E = max1≤j≤k{‖x̄†Gqj
‖},

‖z‖`∞(`2) ≤ |Q|µE. (23)

By Lemma 5, (22) and (23) and the triangle inequality,

‖e‖`∞(`2) ≤
1

1− µ(|P|+ |R| − 1)
(ε+ µ|Q|E) . (24)

Notice that |P| + |R| = |A|, we show (19). Next we turn
to the transformed dual variable d̄. By the definition, d =
Ψt(y −Ψx), and thus for any i ∈ I, we have

dGi
= Ψt

Gi
(
∑

j∈P∪R
ΨGj

(xGj
− x†Gj

)−
∑
i∈Q

ΨGi
x†Gi
− η),

which upon some algebraic manipulations yields

d̄Gi =
∑

j∈P∪R
Di,j(x̄Gj − x̄

†
Gj

)−
∑
j∈Q

Di,j x̄
†
Gj
− Ψ̄−1

Gi
Ψt
Gi
η.

For any i ∈ I ∩ I†, by Lemma 4 and (24), we have

‖d̄Gi‖ ≤ ‖
∑

j∈P∪R
Di,j(x̄Gj − x̄

†
Gj

)‖

+ ‖
∑
j∈Q

Di,j x̄
†
Gj
‖+ ‖Ψ̄−1

Gi
Ψt
Gi
η‖

≤
∑

j∈P∪R
µ‖x̄Gj

− x̄†Gj
‖+

∑
j∈Q

µ‖x̄†Gj
‖+ ε

≤ (|P|+ |R|)µ
1− µ(|P|+ |R| − 1)

(ε+ µ|Q|E) + |Q|µE + ε.

The estimate for i ∈ I ∩ A† = Q follows analogously.
Now we can present the proof of Theorem 11.

Proof: First we derive two preliminary estimates using
the notation P , Q and R from Lemma 14. Since |A| ≤ T and
|Q| ≤ T , Lemma 14 and the triangle inequality yield

‖x̄Gi
‖ ≤ 1

1− Tµ
(TµE + ε) ∀i ∈ A ∩ I†. (25)

Likewise, using the inequality |A|µ
1−µ(|A|−1) (ε+ µ|Q|E) +

|Q|µE + ε ≤ 1
1−Tµ (TµE + ε), we deduce from Lemma 14

‖d̄Gi
‖ ≥ ‖x̄†Gi

‖ − 1

1− Tµ
(TµE + ε) ∀i ∈ I ∩ A†. (26)

Now we can proceed to the proof of the theorem. For Q = ∅,
A = A† and assertions (i) and (ii) are trivially true. Otherwise,
let i∗ = {i ∈ Q : ‖x̄†Gi

‖ = ‖x̄†Q‖`∞(`2)}. Then E = ‖x̄†Gi∗
‖.

By (26) and inequality (11) with i = i∗, we have
√

2λ ≥ ‖d̄Gi∗ ‖ ≥ E −
Tµ

1− Tµ
E − ε

1− Tµ
.

Consequently, by Assumption 2.1, we deduce

E ≤ 1− Tµ
1− 2Tµ

√
2λ+

1

1− 2Tµ
ε < 2

√
2λ+ 3ε, (27)

i.e., assertion (i) holds. Next we show assertion (ii) by con-
tradiction. If A 6⊆ A†, we can choose j ∈ A\A†, and apply
(25) and (26), together with (11), to obtain

1

1− Tµ
(TµE+ε) ≥ ‖x̄Gj

‖ ≥ ‖d̄Gi∗‖ ≥
1− 2Tµ

1− Tµ
E− ε

1− Tµ
,

which contradicts (12), thereby showing assertion (ii). Last, we
show assertion (iii). Assume that A 6⊆ A†. Then (27) holds.
Meanwhile, sinceA∩I† 6= ∅, using (25) and (26) (by choosing
x̄Gi

by i ∈ A ∩ I† and d̄Gi∗ ) and inequality (11), we have

E − 1

1− µT
(TµE + ε) ≤

√
2λ ≤ 1

1− Tµ
(TµE + ε) .

Under Assumption 2.1, simple computation gives E ≥
2
√

2λ − 3ε and E ≤ 2
√

2λ + 3ε. This contradicts with the
assumption in (iii), and thus the inclusion A ⊆ A† follows.

I. Proof of Proposition 12

Proof: Recall the identity Jλ(x) = 1
2‖Ψx − y‖2 +

λ‖x‖`0(`2) = Jλ(0)+R(x), with R(x) = 1
2‖Ψx‖

2−〈Ψx, y〉+
λ‖x‖`0(`2). Also for any x 6= 0, ‖x‖`0(`2) ≥ 1. Hence, for
any x ∈ Br(0) \ {0}, where Br(0) denotes a ball centered
at the origin with a radius r = λ/(‖Ψty‖ + 1), there holds
R(x) ≥ −‖x‖‖Ψty‖ + λ > 0. This shows the first assertion.
For λ > λ0, for any nonzero x, we have ‖x‖`0(`2) ≥ 1, and
thus Jλ(x) = 1

2‖Ψx − y‖2 + λ‖x‖`0(`2) ≥ λ > 1
2‖y‖

2 =
Jλ(0), i.e., x∗ = 0 is the only global minimizer.

J. Proof of Theorem 13

Proof: The lengthy proof is divided into four steps.
Step 1. First we give the proper choice of the decreasing factor
ρ. By (12), we have

0 <
1− µT

1− 2µT − t
<

1− µT
µT + t

.

Then for any s1 ∈ ((1 − µT )/(1 − 2µT − t), (1 −
µT )/(µT + t)), letting s2 = µT+t

1−µT s1 + 1, we deduce
(1− µT )/(1− 2µT − t) < s2 < s1 < (1− µT )/(µT + t).
Combining with the monotonicity of the function f(s1) =
s2/s1 over the interval ((1 − µT )/(1 − 2µT − t), (1 −
µT )/(µT + t)), it implies that for any ρ ∈ ((2µT + 2t)2/(1−
µT )2, 1), we can find such s1 with s2/s1 =

√
ρ. Next we will

choose ρ ∈ ((2µT + 2t)2/(1− µT )2, 1).
Step 2. Next we show an important monotonicity relation:

Γs21λ ⊆ Ak ⊆ A
† ⇒ Γs22λ ⊆ Ak+1 ⊆ A†. (28)

For short, we denote by A = Ak, I = Ik, and Q = A† \ A.
By the assumption A ⊆ A†, we have R = ∅ in Lemma 14.
Then it follows from (24) in the proof of Lemma 14 that the
updates x̄k+1 and d̄k+1 satisfy

‖x̄k+1
Gi
‖ ≥ ‖x̄†Gi

‖ − 1

1− µT
(TµEk + ε) ∀i ∈ A,(29)

‖d̄k+1
Gi
‖ ≤ 1

1− µT
(TµEk + ε) ∀i ∈ I†, (30)

‖d̄k+1
Gi
‖ ≥ ‖x̄†Gi

‖ − 1

1− µT
(TµEk + ε) ∀i ∈ Q.(31)

By the assumption Γs21λ ⊆ Ak, we deduce Ek < s1

√
2λ;

and by assumption (12), ε < tmini∈A†{‖x̄
†
Gi
‖} ≤ tEk ≤

ts1

√
2λ. Hence, using (30), we deduce for any i ∈ I†

‖d̄k+1
Gi
‖ ≤ 1

1− µT
(Tµ+ t)Ek ≤

µT + t

1− µT
s1

√
2λ <

√
2λ,
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where the last inequality follows from the choice of s1. This
and the relation (11) imply that i ∈ Ik+1, and thus Ak+1 ⊆
A†. Meanwhile, by (31), for any i ∈ I ∩ Γs22λ, we have

‖d̄k+1
Gi
‖ ≥ s2

√
2λ− 1

1− µT
(µT + t)s1

√
2λ

≥ (s2 −
µT + t

1− µT − t
s1)
√

2λ >
√

2λ.

which by the relation (11) yields i ∈ Ak+1. It remains to show
A ∩ Γs22λ ⊆ Ak+1. Clearly, if A = ∅, the assertion is true.
Otherwise, for any i ∈ A ∩ Γs22λ, by (29), there holds

‖x̄Gi
‖ ≥ ‖x̄†Gi

‖ − |Q|µ+ t

1− (T − 1)µ
‖x†Q‖`∞(`2)

> s2

√
2λ− (T − 1)µ+ t

1− Tµ
s1

√
2λ ≥

√
2λ.

Like before, this and (11) also imply i ∈ Ak+1. Hence the
inclusion Γs22λ ⊆ Ak+1 holds.
Step 3. Now we prove that the oracle solution xo is achieved
along the continuation path, i.e., A(λs) = A† for some λs. For
each λs-problem Jλs

, we denote by As,0 and As,� the active
set for the initial guess and the last inner step (i.e., A(λs) in
Algorithm 1) of the sth iterate of the outer loop, respectively.
Since s1 > s2, the inclusion Γs21λs

⊆ Γs22λs
holds. Next we

claim that the following inclusion by mathematical induction

Γs21λs
⊆ A(λs) ⊆ A†

holds for the sequence active sets A(λs) from Algorithm 1.
From (28), for any index s before the stopping criterion at
step 13 of Algorithm 1 is reached, there hold

Γs21λs
⊆ As,0 and Γs22λs

⊆ As,�. (32)

Note that for s = 0, by the choice of λ0, Γs21λ0
= Γs22λ0

= ∅,
and thus (32) holds. Now for s > 0, it follows by mathematical
induction and the relation As,� = As+1,0. By (32), during the
iteration, the active set As,� always lies in A†. This shows the
desired claim. For large s, we have Γs21λs

= A†, and hence
A(λs) = A†, and accordingly x(λs) is the oracle solution xo.
Step 4. Last, at this step we show that if A(λs) $ A†, then
the stopping criterion at step 13 of Algorithm 1 cannot be
satisfied. Let P = A(λs) $ A† and Q = A†\A, and denote
by i∗ = arg maxi∈Q{‖x̄†Gi

‖} and E = ‖x̄†Gi∗
‖. Then with the

notation Ψ̄Gi
and Di,j etc. from (7), we deduce

‖Ψx− y‖2 = ‖
∑
i∈P

ΨGi
(xGi

− x†Gi
)−

∑
j∈Q

ΨGj
x†Gj
− η‖2

≥ ‖ΨGi∗x
†
Gi∗
‖2 + 2

∑
j∈Q\{i∗}

〈ΨGj
x†Gj

,ΨGi∗x
†
Gi∗
〉

− 2
∑
i∈P
〈ΨGi

(xGi
− x†Gi

),ΨGi∗x
†
Gi∗
〉+ 2〈η,ΨGi∗x

†
Gi∗
〉.

Now recall the elementary identities ‖ΨGi∗xGi∗‖ = ‖x̄Gi∗‖
and 〈ΨGj

x†Gj
,ΨGi∗x

†
Gi∗
〉 = 〈Di∗,ix̄

†
Gi
, x̄†Gi∗

〉 and then ap-

pealing to Lemma 5, we arrive at

‖Ψx− y‖2 ≥ ‖x̄†Gi∗
‖2 + 2

∑
j∈Q\{i∗}

〈Di∗,j x̄
†
Gj
, x̄†Gi∗

〉

− 2
∑
i∈P
〈Di∗,i(x̄Gi

− x̄†Gi
), x̄†Gi∗

〉+ 2〈η,ΨGi∗x
†
Gi∗
〉

≥ E2 − 2µ(|Q| − 1)E2 − 2µ|P|Emax
i∈P
‖x̄Gi − x̄

†
Gi
‖ − 2εE.

By repeating the proof of Lemma 14, we deduce

max
i∈P
‖x̄Gi

− x̄†Gi
‖ ≤ ε+ µTE

1− µT
.

By assumption (12), ε ≤ tE, it suffices to show

E2−2µ(|Q|−1)E2−2µ(T−|Q|) t+ µT

1− µT
E2−2tE2 > t2E2,

(33)
which implies that the stopping criterion (13) at step 13 of
Algorithm 1 cannot be satisfied. The left hand side of (33) is
a function monotonically decreasing with respect to the length
|Q|, and when |Q| = T , we have 1−µ(T − 1)− 2t > t > t2,
which completes the proof.
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[5] W. Ou, M. S. Hämäläinen, and P. Golland, “A distributed spatio-temporal
EEG/MEG inverse solver,” NeuroImage, vol. 44, no. 3, pp. 932–946,
2009.

[6] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature
learning,” Mach. Learn., vol. 73, no. 3, pp. 243–272, 2008.

[7] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Proc., vol. 41, no. 12, pp. 3445–3462,
1993.

[8] A. Antoniadis and J. Fan, “Regularization of wavelet approximations,”
J. Amer. Stat. Assoc., vol. 96, no. 455, pp. 939–967, 2001.

[9] Z. He and W. Yu, “Stable feature selection for biomarker discovery,”
Comput. Biol. Chem., vol. 34, no. 4, pp. 215–225, 2010.

[10] S. Ma, X. Song, and J. Huang, “Supervised group lasso with applications
to microarray data analysis,” BMC Bioinform., vol. 8, no. 1, pp. 60, 17
pp., 2007.

[11] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction:
Compressed sensing for analog signals,” IEEE Trans. Signal Proc.,
vol. 57, no. 3, pp. 993–1009, 2009.

[12] ——, “From theory to practice: Sub-nyquist sampling of sparse wide-
band analog signals,” IEEE J. Sel. Topics Signal Proc., vol. 4, no. 2, pp.
375–391, 2010.

[13] J. Chen and X. Huo, “Theoretical results on sparse representations
of multiple-measurement vectors,” IEEE Trans. Signal Proc., vol. 54,
no. 12, pp. 4634–4643, 2006.

[14] S. Bakin, “Adaptive Regression and Model Selection in Data Mining
Problems,” Ph.D. dissertation, The Australian National University, 1999.
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