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Significance statement: Access to a diversity of behavioral choices makes social dynamics rich and
difficult to analyze. Individuals are rarely constrained to a binary choice between “cooperate” or “defect”,
as many theoretical treatments assume. Here we use game theory to ask what social behaviors will emerge
in populations as the number of behavioral choices grows. We show that simple strategies, where players
do not vary their behavior much at all, can nonetheless be successful, and that access to a broader range
of behavioral choices can cause a population to evolve towards lower levels of cooperation. Finally, we
show that access to greater choice in rock-paper-scissors games inevitably leads to behavioral diversity,
with players using strategies that make use of all possible choices.

Iterated games provide a framework to describe social interactions among groups of in-
dividuals. This body of work has focused primarily on individuals who face a simple binary
choice, such as “cooperate” or “defect”. Real individuals, however, can exhibit behavioral
diversity, varying their input to a social interaction both qualitatively and quantitatively.
Here we explore how access to a greater diversity of behavioral choices impacts the evolu-
tion of social dynamics in populations. We show that, in public goods games, some simple
strategies that choose between only two possible actions can resist invasion by all multi-
choice invaders, even while engaging in relatively little punishment. More generally, access
to a larger repertoire of behavioral choices results in a more ”rugged” fitness landscape,
with populations able to stabilize cooperation at multiple levels of investment. As a result,
increased behavioral choice facilitates cooperation when returns on investments are low,
but it hinders cooperation when returns on investments are high. Finally, we analyze iter-
ated rock-paper-scissors games, whose non-transitive payoff structure means that unilateral
control is difficult to achieve. Despite this, we find that a large proportion of multi-choice
strategies can invade and resist invasion by single-choice strategies — so that even well-mixed
populations will tend to evolve and maintain behavioral diversity.
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Diversity in social behaviors, not only in humans but across all domains of life, presents a daunting
challenge to researchers who work to explain and predict individual social interactions or their evolution
in populations. Iterated games provide a framework to approach this task, but determining the outcome
of such games under even moderately complex, realistic assumptions — such as memory of past interac-
tions [1-7], signalling of intentions, indirect reciprocity or identity [9-16], or a heterogeneous network of
interactions [17-25] — is exceedingly difficult.

Developing models that capture complex and diverse social behaviors is an important step towards
quantitative, falsifiable predictions about a host of problems, such as the emergence and stability of
cooperation, policing, and social institutions in human populations; and the de novo evolution of social
hierarchies in natural populations [7,9,10,26-29]. Recent work has expanded the reach of game-theoretic



models to describe ever more sophisticated forms of social interactions [3,30-39]. This work has begun to
unravel the evolutionary and behavioral dynamics that determine the long-term stability of cooperation
in a group. It has allowed researchers to explore the role of memory in social dynamics [40-44], and it has
shown that, even with multiple players [33,38] and arbitrary action spaces [36], an individual can often
unilaterally influence the outcome of social interactions across a broad range of contexts.

Here we study the evolutionary dynamics of social interactions under the quite general setting of
all “memory-1” strategies — that is, strategies that specify the choice a player makes in each round of
a repeated game depending on the choices made in the preceding round. We study the evolutionary
dynamics of memory-1 strategies in a population of players with access to multiple behavioral choices,
including games where unilateral control through so-called ”zero-determinant” (ZD) strategies [30] is
impossible.

Many game-theoretic studies of social behavior, although by no means all [36,45,46], constrain players
to a binary behavioral choice such as “cooperate” or “defect” [47,48]. Other studies, particularly those
looking at social evolution, constrain players to a single type of behavioral strategy, but allow for a con-
tinuum of behavioral choices — e.g. the option to contribute an arbitrary amount of effort to an obligately
cooperative interaction [45,46]. In general, and especially in the case of human interactions, individuals
have access to both a wide variety of behavioral choices, and to a complex decision making process among
these choices. Here we bridge this gap and study how the diversity of behavioral choices impacts the
evolution of decision making in a replicating population, focusing on the prospects for cooperation and
for the maintenance of behavioral diversity.

We develop a framework for analyzing iterated two-player games in which players can access an
arbitrary number of behavioral choices and use an arbitrary memory-1 strategy for choosing among them.
We apply this framework to study the effect of a large behavioral repertoire on the evolution of cooperation
in public goods games. We show that increasing the number of investment levels available to a player
can either facilitate or hinder the evolution of cooperation in a population, depending on the ratio of
individual costs to public benefits in the game. We apply the same framework to study games with non-
transitive payoff structures, under which no hierarchical ordering of payoffs is possible — e.g. the game
of rock-paper-scissors in which scissors cuts paper, and paper covers rock, but rock crushes scissors. We
show that non-transitive payoff structures generally preclude unilateral control through ZD strategies,
but that nonetheless there exist memory-1 strategies that ensure the maintenance of behavioral diversity,
in which players make use of all the choices available to them.

Methods and Results

Players in an iterated game repeatedly choose from a fixed set of possible actions. Depending on the choice
she makes, and the choices her opponents make, a player receives a certain payoff each round. The process
by which a player determines her choice each round is called her strategy. A strategy may in general take
into account a wide variety of information about the environment, memory of prior interactions between
players, an opponent’s identity, or his social signals etc [1-6,11,13-16,20-25]. Here we restrict our analysis
to two-player, simultaneous iterated games in which a player chooses from among d possible actions each
round using a memory-1 strategy, which takes into account only the immediately preceding interaction
between her and her opponent. We consider games that are discounted at rate §, where 0 < § < 1 can
be understood either as the probability each round that the game is repeated for another round, or as a
factor that reduces the payoff received with each additional round [36,37]. Although memory-1 strategies
may seem restrictive, in fact a strategy that is a Nash equilibrium against all memory-1 strategies is also
robust against all longer memory strategies as well (see SI Appendix and [3,30, 35, 38]).

A memory-1 strategy is specified by choosing d? probabilities for each possible action i, denoted pé- s
which specify the chance the player executes that action in a round of play, given that she made choice j
and her opponent made choice k in the preceding round. The strategy must also specify d probabilities p)
for a player to execute action 7 in the first round of play. Each probability can be chosen independently,



save for the constraint that the sum across actions Zgzl pék = 1 must hold. We study the evolution
of social behavior by analyzing the composition of such strategies in a replicating population over time.
In an evolving population the reproductive success of a player depends on the total payoff she receives
in pairwise interactions with other members of the population [49]. We study how strategy evolution is
affected by the number and by the types of behavioral choices available to individuals.

We study two qualitatively different behavioral choices that players can make: different sizes of
contributions and different types of contributions to social interactions (Figure 1). If players can vary the
size of the contribution they make to a social interaction, this means that they alter the degree of their
participation but not the qualitative nature of the interaction. For example, in a public goods game, a
player may choose to contribute an amount C' to the public good, or 2C, or 3C etc. In contrast, when
players can vary the type of contribution they make, this can change the qualitative nature of the social
interaction. For example, unicellular organisms may produce pathogens, social signals, public goods, or
all three [50-53]. In a game of rock-paper-scissors the different behavioral choices result in qualitatively
different social interactions — rock beats scissors, but scissors beats paper, etc. Such qualitative differences

can lead to non-transitive payoffs and correspondingly complex social and evolutionary dynamics [50, 54—
59].
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Figure 1: Two ways to expand the behavioral repertoire in iterated games. (Top) In a public goods game a player
contributes to a public pool at some cost to herself, and she receives a benefit based on the contributions of all
players in the game. In a simple two-choice game, such as the Prisoner’s Dilemma, players face a binary choice, to
cooperate and contribute cost C' or to defect and contribute nothing. At the other extreme, in a continuous game,
players have an unlimited number of options and may contribute any amount. What happens to the evolution of
social behavior as the numbers of choices increases? Is it beneficial for a population to have access to more choices
in a public goods game? (Bottom) Players may also choose between qualitatively different types of contributions
to social interactions. Qualitatively different behavioral options produce complex payoff structures, such as the
non-transitive rock-paper-scissors interactions [50,54-56]. What happens to the evolution of social behavior as the
types of contributions to social interactions expand? Is it better to maintain a diversity of behavioral options, or
to restrict to a single type of contribution?

Here we study both kinds of behavioral choice, differences in size and type, and their effects on the
evolution of strategies in a population. We analyze well-mixed, finite populations of N players reproducing
according to a copying process or pairwise comparison rule [8], in which a player X copies her opponent



Y’s strategy with probability 1/(1 + exp [0(S; — Sy)]) where o scales the strength of selection and S,
is the average payoff received by player X from her social interactions with each of the N — 1 other
members of the population [47,49]. The average payoffs correspond to the fitnesses associated with each
strategy, given the current composition of the population. For a single invader Y in a population otherwise
composed of strategy X, we have the average payoffs S, = S, and S, = %SM + ﬁSx‘y. Throughout
we consider the case of strong selection, so that the stability of a resident strategy in a population can
be determined by its ability to resist selective invasion by a rare mutant. We define a resident strategy
to be evolutionary robust if it resists selective invasion by any rare mutant (see Eq. 2 below).

The outcome of an iterated d-choice game:

To analyse social evolution in multi-choice iterated games we must first calculate the expected longterm
payoff Sz, of an arbitrary player X facing an arbitrary opponent Y. To do this, we will generalize an
approach used for two-choice two-player games, in which a player’s memory-1 strategy p is represented
in an alternate coordinate system [31] so that the outcome of the repeated game can be determined with
relative ease. For a d-choice two-player game, the probability that a focal player chooses action ¢, given
that she played action j and her opponent action k in the preceding round, is denoted pzk For each
action 1 < i < d there are d? independent probabilities, corresponding to each possible outcome of the
preceding round. In the alternate coordinate system we construct (see SI Appendix), the probabilities
p;'-k are written as linear combinations of the payoff R the focal player received in the preceding round,
times a coefficient x*; the payoff Ry;; her opponent received, times a coefficient ¢'; the number of times
she played action ¢ within her memory (which is one or zero for a memory-1 strategy); a baseline rate
of playing action 4, denoted %; and d> — 3 additional terms that depend on the specific outcome of
the preceding round, denoted /\;k This choice of coordinate system enforces the following relationship
between the longterm average payoffs received by the two players:
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where ¢§ is the rate of discounting, pg is the probability of playing action 7 in the first round, and vj
denotes the equilibrium rate of action jk, and where we fix the values of three of the /\é.k to ensure a
system of d? coordinates (see SI Appendix). Note there are d — 1 such equations, one for each behavioral
choice 1 < ¢ < d. A ZD strategy of the type studied in [36] can be recovered by setting all )\;-k = 0.
However the constraint that pz-k € [0, 1] implies that the ZD condition does not always produce a viable
strategy, as in the case of a rock-paper-scissors game discussed below.

Choosing how much to contribute to a public good:

We will use the relationship between two players scores (Eq. 1) to analyse the evolution and stability of
cooperative behaviors in multi-choice public goods games, played in a finite population. In the two-player
public goods game each player chooses an investment level, C, which produces a corresponding amount of
public benefit that is then shared equally between both players, regardless of their investment choices. In
general, if a player invests C; and her opponent C}, the public benefit produced is determined by a function
B(Cj+ C}), so that her net payoff is B(Cj +C})/2 — C; while her opponent’s payoff is B(C; + C)/2 — Cs,.
Two-choice public goods games have been studied extensively, producing a clear understanding of the
cooperative equilibria that exist in populations [3,31,32,35,40-42].

A wide variety of evolutionary robust memory-1 strategies exist for two-choice public goods games.
The character and evolvability of these strategies have been explored in detail [3,35,40,42,60-62]. But the
assumption of only two investment levels — of two behavioral choices — is unrealistic for many applications.
Even if a player adopts such a two-choice strategy, there is in general no reason for her opponent to



do the same. Thus we begin our analysis by asking whether a two-choice, memory-1 strategy that
stabilizes investment at the maximum level when resident in a population (and is therefore considered a
“cooperative” two-choice strategy) can resist invasion against players who are allowed to make arbitrary
investment choices.

For simplicity, we will focus here on a linear relationship between costs and benefits of investment
in the public good, so that B = rC where values 1 < r < 2 produce a social dilemma in which mutual
cooperation is beneficial but each player has an incentive to defect. The more general case, with non-linear
functional relationships, is described in the SI Appendix.

For linear benefits, a two-choice strategy is related to our alternate coordinate system according to
p1i =—((¢ —)(r(C1 + Ci) /2 — k) — ¢C; + xC1 + A1i) and pa; = 1—((¢ — Xx)(r(C2 + C;) /2 — k) — ¢C; + xC2 + Aa;)
where the index 4 corresponds to an opponent who invests C;, which in general can take any non-negative
value (for a detailed description of this coordinate transform see SI Appendix section 3). Here we choose
the boundary conditions A1;1 = 9o = 0 and Aj2 = A91, and from Eq. 1 we obtain the following relationship
between two players’ longterm payoffs
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When player Y is constrained to the same two choices as player X, then this relationship reduces to
the relationship for a two-player, two-choice game discussed in [30,31,35,42]. However, we will consider
the more general case when player Y has access to different, and possibly more, investment choices than
player X. In general, a strategy X resident in a population of size N can resist selective invasion by a
mutant Y iff

N -2 1
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where S, is the longterm payoff of the resident strategy against itself. This condition is closely related
to the ESSy condition [47] which defines the evolutionary stability of a resident strategy in terms of its
ability to resist both invasion and replacement by a mutant. In the large space of memory-1 strategies we
study here, no two-choice resident is strictly ESSy [35], since any strategy can be invaded and replaced
neutrally. Thus we look for strategies that can resist selective invasion by any rare mutant, which we call
evolutionary robustness [42] A cooperative two-choice strategy by definition has S, = (r — 1)Cq, i.e. it
stabilizes cooperative behavior when resident so that both players choose to invest the maximum public
good they can contribute. To produce such a strategy we must set pae = p9 = 1, i.e. the strategy must
invest Cs in the first round, and must always invest C if both players invested C5 in the preceding round.

Using the relationships above we can derive conditions for a two-choice cooperative strategy to be
universally robust to invasion — that is, robust against all invaders Y, who can make an arbitrary number
of different investment choices, including values above Cy or below C; (see SI Appendix). This in turn
allows us to derive the following necessary and sufficient condition for the existence of a two-choice strategy
that is universally robust:

G _ (r—1)(26 — 1)
Cy " 654055 —(1=0)(r—1)
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If (and only if) Eq. 3 is satisfied, then there exists a two-choice strategy that enforces cooperation at
some level Cy when resident in a population, and that resists invasion by any invader, regardless of the
invader’s ability to choose different investment levels or memory.



Eq. 3 offers insight into the degree of punishment that a resident cooperative strategy must be prepared
to wield, in order to remain robust against all invaders (Figure 2). Setting 6 = 1 (i.e. no discounting),
a resident strategy can punish a non-cooperative invader by reducing her investment in the public good
from Cs to C1. If C is only slightly smaller than Cy then the resident strategy has a limited capacity
to punish invaders. Wheres if C is much less than C5 the resident strategy has a greater capacity for
punishment. The critical question is how much capacity for punishment, quantified by the ratio of C'; and
(', is required to ensure that the resident two-choice cooperator can be robust against all invaders, who
can make arbitrary investments outside of those available to the resident. The answer to this question
is shown in Figure 2, which quantifies the minimum reduction in public investment that a cooperative
two-choice strategy must make in order to be universally robust. As might be expected from Eq. 3, larger
ratios of public benefit to individual cost r and larger population sizes N mean that smaller reductions
in public investment are sufficient for universal robustness of the resident cooperator. And as Figure
2 shows, for a wide range of parameters a population can enjoy robust cooperation using a two-choice
strategy with only moderate threat of punishment, e.g. C1 no less than than one-half of Cs.

We can also investigate whether strategies that stabilize behavior at the lower investment level, C,
can be robust against invasion (see SI Appendix). We find that, indeed, such strategies can also be
robust, but such strategies are never of the “extortion” type [30], which is perhaps unsurprising given
that extortion strategies are unstable even when invaders are limited to only two choices [39].
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Figure 2: When are simple two-choice strategies robust against all multi-choice invaders in public goods games?
We considered the evolutionary robustness of two-choice strategies, in which players iteratively choose to invest
amount C7 or Cy > C1 to produce a public benefit B proportional to the total investment of both players, B = rC.
Cooperative strategies limited to two investment choices can be evolutionary robust against all invaders, who may
invest an arbitrary amount C' # C4, Cs, provided the strategy has sufficient opportunity to punish a defector — that
is, provided C} is sufficiently smaller than Cy. We determined (Eq. 2) the largest ratio of investment levels, Cy/Ca,
that permits universally robust cooperative two-choice strategies, as a function of the the population size, NV, and
the public return on individual investment, r in the absence of discounting (§ = 1). Colors are gradated in 10%
intervals, so that the light blue region indicates a two-choice player can choose a strategy that maintains robust
cooperation while engaging in relatively little punishment, by reducing her investment to only 90% of its maximum.
The bright red region indicates that a two-choice player must have access to a high degree of punishment, C; much
less than Cs, in order to maintain cooperation and be robust against all invaders. As described in Eq. 3, the
figure can alternatively be interpreted as the proportion of pairs of investment levels used by a d-choice player that
produce a robust sub-optimal fitness peak, and thus represents a lower bound on the “ruggedness” of the fitness
landscape experienced by a population of d-choice players.

Perception of novel actions:

In our analysis so far we have considered players that employ a strategy composed of probabilities p1; and
p2j, corresponding to a player who always invests either C or Cp faced with an opponent’s investment of
any amount C;. However, a player who is restricted to investment levels C'; and C2 may also be restricted
in her ability to perceive investments C; # {C1,C2} by her opponent. The exact nature and extent of
such a constraint will depend on the specific system of interest, but any such constraint in perception can
be studied using our analytical framework. In this section we apply the general results derived above to a
very natural case of limited perception: a player who uses a strategy composed of just four probabilities,
p = {pi1,p12,p21,p22}. We assume that such a player uses a threshold Cr such that she perceives her
opponents’ investment C; < Cr as an investment of C and she perceives C; > Cr as an investment of
Cs.

For a resident strategy that stabilizes investment at the higher level, Cy, such a strategy can always
be invaded by some mutant if her threshold satisfies Cr < Cs. However for thresholds Cp > (s, such
resident two-choice strategies can be universally robust (see SI Appendix). Indeed, if we make the natural
threshold choice Cr = (5, so that any decline in investment below the norm for the resident population
is treated as defection, the condition for the existence of a universally robust strategy in the absence of



discounting is
T, _1
Cs 35 + N3

which is precisely the same as Eq. 3 (with 6 = 1).

We have verified the condition above by numerical simulation (SI Appendix, Figure S1), and we find
that not only do simple, universally robust strategies of this type exist, but when they exist they are
typically very common.

Evolutionary consequences of multiple investment choices:

We now turn our attention to the implications of these results for an evolving population of players who
can make d > 2 choices for investment in the public good. We assume a discrete series of d+ 1 investment
levels, from 0 to the maximum Cj,,,, so that subsequent levels of investment differ by Cp,q./d. When
d is large, players have more options for investment, between the fixed minimum value zero and fixed
maximum value Cp,qqz-

Because all two-choice strategies form a subset of d-choice strategies, an evolving population of d-choice
players has access to, at minimum, all evolutionary robust two-choice strategies. Thus, unlike in the two-
choice case, where there are only three qualitatively distinct types of evolutionary robust strategies [35], a
d-choice population may result in many different classes of evolutionary robust outcomes, most of which
are sub-optimal in the sense that they produce less public good than the global maximum, rC),q.

We can place a lower bound on how many such sub-optimal, but evolutionary robust, outcomes are
possible when players have d+1 choices. Any given pair of investment levels C; and C}, with ¢ > j, can be
a robust two-choice strategy provided C; and Cj satisfy Eq. 2. Thus when there is no discounting (§ = 1)
all pairs of investment levels j < %%%z have viable robust two-choice strategies associated with them:;
and for a d + 1-choice game the total number of such evolutionary robust but sub-optimal strategies, P,

satisfies
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Thus the number of sub-optimal evolutionary robust outcomes grows at least quadratically with the
number of investment levels available to individuals.

Figure 2 can now be re-interpreted as showing the proportion of pairs of investment levels that can
produce a robust, sub-optimal two-choice strategy for a population of d + 1-choice players. To put these
results in perspective, if players are allowed d = 100 investment choices, with return on investment
r = 3/2, then in a population size N = 1,000 there are at least 3.6 x 103 robust strategies that fail
to maximize the total public good — resulting in an extremely “rugged” fitness landscape and a large
number of sub-optimal evolutionary outcomes. By contrast, with only d = 2 choices, there are at most
two sub-optimal evolutionary robust outcomes [35].

We have seen that increasing the number of available choices to players, between a fixed minimum and
maximum investment level, has the potential to produce sub-optimal but evolutionary robust outcomes.
To test how the number of available choices impacts evolutionary dynamics in a population, we ran
evolutionary simulations under weak mutation [42], with mutants drawn uniformly from all d-choice
memory-1 strategies. We compared the mean payoffs received by populations constrained to d = 2
choices, to the mean payoffs in populations with access to d = 11 choices (Figure 3). The results are
striking: when the ratio of public benefit to individual cost are low, so that robust strategies are rare
(Egs. 3-4), the population that has d = 11 investment choices evolves a higher mean payoff than the d = 2
choice population — because a greater number of robust cooperative strategies provides an advantage.
But when the ratio of public benefit to individual cost are higher, so that robust strategies are more



common, the 11-choice population evolves a lower mean payoff than the 2-choice population — because
the huge number of sub-optimal robust strategies causes the 11-choice population to “get stuck” and fail
to maximize its evolutionary potential. Thus, increasing the number of investment options, between a
fixed minimum and maximum, can either facilitate or hinder cooperative interactions in a population.
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Figure 3: Does a larger behavioral repertoire make cooperation easier to evolve? We evolved a well-mixed popula-
tion of N = 100 haploid, asexual individuals reproducing according to the copying process [49] with an individual’s
fitness determined by playing pairwise iterated public goods games with selection strength ¢ = 10, with each game
played for 1000 rounds. We calculated ensemble mean fitness across 10° replicate populations, each evolved under
weak mutation for at least 10° fixation events. We compared populations with only two investment choices avail-
able, C; = 0 and Cs = 1, versus populations in which players could choose among 11 levels of investment, between
0 and 1 in increments of 0.1. In both cases evolution occurred on the full set of memory-1 strategies. When the
ratio of public benefit to individual cost is small, two-choice populations evolve to low mean fitness and exhibit
little cooperation, whereas 11-choice populations evolve higher fitness and higher levels of investment in the public
good. However, when the ratio of public benefit to individual cost is higher two-choice populations evolve strategies
that maximize the public good, whereas 11-choice populations are less cooperative and receive roughly 10% payoff
reduction compared to the two-choice case. Thus, a larger repertoire of behavioral options can either facilitate or
impede the evolution of cooperation, depending upon the public return on individual investment.

Non-transitive payoff structures:

So far we have focused on multiple options for investment and its impact on the evolution of cooperative
behaviors in public goods games. But the co-ordinate system we have introduced for studying multi-choice
iterated games, and the resulting relationship between two players’ scores (Eq. 1), applies generally, and so
it can be applied to study many other questions in evolutionary game theory. Among the most interesting
questions occur with only d = 3 choices, but with non-transitive payoffs, where the evolutionary dynamics
are complex and the impact of repeated interactions remains unclear [50,54-59].

Games with non-transitive payoff structures, such as rock-paper-scissors, describe social dynamics
without any strict hierarchy of behaviors. Individuals can invest in qualitatively different types of behavior,
which dominate in some social interactions but lose out in others. Such non-transitive interactions have
been observed in a range of biological systems, from communities of Escherichia coli species [50], to mating
competition among male side-blotched lizards Uta stansburiana [54]. Rock-paper-scissors interactions are
well known in ecology as having important consequences for the maintenance of biodiversity: in well
mixed populations playing the one-shot game, diversity is often lost, whereas in spatially distributed
populations multiple strategies can be stably maintained [55,56]. Here we analyse the equivalent problem
for the maintenance of diversity in evolving populations of players who engage in iterated non-transitive
interactions.



We will assess the potential for maintaining behavioral diversity in a population playing an iterated
rock-paper-scissors game — that is, we look for strategies that can resist invasion by players who employ a
single behavioral choice (1=rock, 2=paper or 3=scissors). We assume that, in any given interaction, a fixed
benefit B is at stake, and players invest a cost C1, Cy or C3 to execute the corresponding behavioral choice.
Under the rock-paper-scissors game we then have payoffs Ri3 = B — C1, Re1 = B — (s, R3o = B — (s,
R31 = —C3, Ris = —C'1 and Ro3 = —C5. When two players make the same choice we assume they receive
equal payoﬁ: R11 = B/2 - Cl, R22 = B/2 — CQ and R33 = B/2 - Cg.

We first consider the case of a completely symmetric game of rock-paper-scissors, with C; = Cy =
C3 = C. In this case a given round of the game has only three distinct outcomes for a player: win (+),
lose (-) or draw (0). A player’s memory-1 strategy can be thought of as the probability that she plays,
for example, a move that would have won in the preceding round, given that she lost. We write this
probability pT. Similarly p_ is the probability she plays the same move that lost the preceding round;
and p? is the probability that she plays the move that would have resulted in a draw. This symmetric
strategy is thus composed of 9 probabilities, which are written in our alternative coordinate system in
section 4 of the SI Appendix. From this co-ordinate system we see immediately that there exists no viable
ZD strategy, with the sole exception of the singular “repeat” strategy [30]. Despite the absence of ZD
strategies, we can still analyse the outcome of iterated rock-paper-scissors games using this coordinate
System.

Maintaining behavioral diversity in a game of rock-paper-scissors:

The symmetric, iterated rock-paper-scissors game is simple to analyse, because payoff is conserved, mean-
ing that the sum of two interacting players’ payoffs is constant, Sz, + Sy, = B — 2C. Thus the expected
fitness of a population is independent of the strategy that is resident, and S,, = B/2 — C holds for all
strategies X. It might seem unlikely, then, that behavioral diversity offers any advantage in this situation.
After all, a player who uses a strategy that employs only rock, paper or scissors produces no higher mean
fitness at the population level than a player who always uses rock. To determine whether this intuition
is correct, and non-transitive payoffs lead inevitably to a loss of behavioral diversity, we evaluated the
conditions for a strategy to resist selective invasion by a player who always uses the same move. Such
strategies do indeed exist, and satisfy the following inequality:

py (L—p- —p7) >pi(1—pf —ph). (5)

As one might hope, strategies that tend to switch to the move that would have won in the preceding
round — corresponding to larger values of pJ, pt, pi and smaller values of p,, p_, pI — tend to be
evolutionary robust. However Eq. 5 also provides a more valuable insight, as it allows us to calculate
the overall robustness of memory-1 strategies to the loss of behavioral diversity. To do this we calculate
the probability that a randomly drawn memory-1 strategy satisfies Eq. 5, which reveals that fully 50%
of such strategies maintain behavioral diversity in the completely symmetric rock-paper-scissors game
(Figure 4). Furthermore, due to symmetry, the condition for a new strategy to invade a resident is simply
Syaz > Szy (see SI Appendix). And so if a resident can resist invasion against a particular invader, it can
also invade a population in which that invader is resident. Thus 50% of strategies can successfully invade
in a population that lacks behavioral diversity — so that behavioral diversity is both highly evolvable and
easy to maintain in the iterated rock-paper-scissors game, even in a well-mixed population — in sharp
contrast to the one-shot game.

We can also assess the robustness of behavioral diversity when the symmetry of the game is broken,
so that C1 # Cy # C5. In Figure 4a we numerically calculate the overall robustness of randomly drawn
strategies as a function of the costs C1/C3 and Co/C5 keeping B and Cj fixed. We find that, for a wide
range of costs, including in some cases with B < C, behavioral diversity can be maintained with relative
ease in an evolving population (Figure 4).
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Figure 4: Can behavioral diversity be maintained under non-transitive payoff structures? We considered a rock-
paper-scissors type game in which players could employ up to three different behaviors, at a cost Cy, Cy and Cs, in
an attempt to obtain a fixed benefit B. The payoff structure was non-transitive so that action 1 dominates action
2, action 2 dominates action 3, and action 3 dominates action 1. We determined whether a memory-1 strategy
that employs all three behaviors can resist invasion by a player who uses a single action exclusively (either 1, 2,
or 3). (a) With fixed benefit B = 2 and cost C3 = 1 we systematically varied costs C; and Cs, and we calculated
the percentage of memory-1 strategies that could successfully maintain behavioral diversity. Behavioral diversity
can indeed be maintained for a wide range of costs. The highest level of robust diverse strategies occurs in the
symmetric case, when C7 = Cy = C3. But diverse behaviors are also observed across a broad range of parameters
including, surprisingly, when both C; > B and Cy > B. This is seen more clearly in (b) which shows the percentage
of robust strategies as a function of C; with Cs = Cs.

Discussion

We have studied how the repertoire of behavioral options influences the prospects for cooperation, and
the maintenance of behavioral diversity, in evolving populations. Our analysis has relied on the theory of
iterated games and, in particular, on a coordinate system we developed to describe strategies for multi-
choice games and their effects on long-term payoffs. In the context of public goods games, we have shown
that simple strategies that use only two levels of investment can nonetheless stabilize cooperative behavior
against arbitrarily diverse mutant invaders, provided the simple strategy has sufficient opportunity to pun-
ish defectors. More generally, a greater diversity of investment options can either facilitate or hinder the
evolution of cooperation, depending on the ratio of public benefit produced to an individual’s investment
cost. We have applied the same analytical framework to study more complicated multi-choice iterated
games with non-transitive payoffs, such as the rock-paper-scissors game. In this case, behaviorally diverse
strategies that employ multiple actions are often evolutionary robust, even in a well-mixed population,
and they can likewise invade populations that lack diverse behaviors. Overall, the view emerges that
simple behavioral interactions are sometimes surprisingly robust against diverse alternatives, and yet, in
many circumstances, diverse behavior serves the mutual benefit of a population and is a likely outcome
of evolution.

Our results on the impact of multiple behavioral choices should be compared to those of McAvoy &
Hauert [36], who studied ZD strategies in two-player games with arbitrary action spaces. Those authors
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established that ZD strategies exist even in this general setting. They focused especially on extortion
strategies, whereby one player unilaterally sets the ratio of scores against her opponent. McAvoy &
Hauert found, remarkably, that extortion strategies exist with support on only two actions, even against
an opponent who can choose from an uncountable number of actions. Our results form a intriguing
contrast to those of McAvoy & Hauert. Instead of studying ZD strategies and extortion in the classical
context of two players, we have studied all memory-1 strategies and the prospects for robust cooperation
in a population of N > 2 players. We find that behaviorally depauperate strategies that rely on only two
actions can nonetheless sustain cooperation in a population facing diverse invaders; and yet diversity can
either hinder or facilitate cooperation, depending upon the ratio of public benefit to individual cost. These
results were derived for well-mixed finite populations; the impact of behavioral diversity on evolution in
structured populations, including graphs [21,22], remains to be explored.

We have analyzed the entire space of memory-1 strategies for iterated multi-choice games. Our ability
to do so rests on a key mathematical result: the outcome of iterated games can be easily understood when
players’ strategies, even those of startling complexity [3,33,38], are viewed in the right coordinate system.
This coordinate system was suggested by the discovery of ZD strategies and developed fully by Akin [31]
and others [3,33,35-37]. The purview of our analysis can be put in context by comparison to the yet wider
space of long-memory strategies, on the one hand, and the smaller space of ZD strategies, on the other
hand. As discussed here and elsewhere, strategies that are evolutionary robust against the full space of
memory-1 strategies are also robust against all longer-memory strategies [30,38] (also see SI Appendix),
making this a natural strategy space to consider from an evolutionary perspective. Nonetheless, memory
can have an important impact on the relative success of different types of robust strategies, by making
them more or less evolvable [3], or by allowing qualitatively different types of decision-making via tagging
or kin recognition [39,63]. Conversely, it is important to consider the full space of memory-1 strategies in
the context of multi-choice games because, as we have shown, such games may contain no ZD strategies
at all, as in the case of iterated rock-papers-scissors.

It is unsurprising, perhaps, that games with non-transitive payoffs do not generally admit the oppor-
tunity for one player to exert unilateral control over the game’s outcome via ZD strategies. After all,
a player cannot successfully extort an opponent whose behavior is so diverse that it cannot be pinned
down. Yet our analysis also offers a novel perspective on the problem of diversity maintenance in evolving
populations. One-shot rock-paper-scissors games have long been studied in the context of evolutionary
ecology as a system that cannot easily maintain diversity without spatial structure or other exogenous
population heterogeneity [50,54-59]. Here, by contrast, we have shown that behaviorally diverse strate-
gies in the iterated game can easily emerge and resist invasion by behaviorally depauperate mutants, an
observation that is relevant to behavioral interactions within a single population and also to interactions
between species.

Overall we have seen that, as players gain access to more behavioral choices, either due to environ-
mental shifts or evolutionary innovation, the dynamics of social evolution can be profoundly altered. This
view is reflected by empirical studies, which have found that greater behavioral choice, via factors such
as the ability to communicate or signal to others, has a significant impact on the level of cooperation
in a group [9-15]. Moving forward, we must connect the insights drawn from complex behavioral and
evolutionary models of the type described here to empirical studies, where we can now seek quantitative
predictions for the dynamics of group behavior in real populations.
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