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Abstract 

Coronary heart disease (CHD) is the most common cause of the death worldwide, 

presenting a considerable burden to both individual and public health. The genetics of CHD 

was investigated in two contexts in this thesis - risk prediction and the identification of 

functional mechanisms through which associated loci affect CHD pathophysiology.  

 

The use of a 19 single nucleotide polymorphism (SNP) CHD gene score (GS) was assessed in 

three ethnic groups (European, South Asian and Afro-Caribbean), but there was no strong 

evidence of clinical utility. A systematic literature search identified all variants robustly 

associated with CHD. Most of these variants were from the meta-analysis performed by the 

CARDIoGRAMplusC4D consortium. The GS was updated using effect sizes from this meta-

analysis, resulting in improved performance. Overall, there was evidence of potential 

clinical utility in the European and Afro-Caribbean groups and in those with type 2 diabetes 

(T2D) (all p<0.05). However, results from the Pakistani cohorts were inconsistent. T2D-

specific GSs were also assessed and were associated with CHD in the T2D group only 

(p<0.05).  

 

Functional analysis of two risk loci was performed. Firstly, rs10911021, previously 

associated with CHD in T2D and this result was supported by the findings of this thesis. 

Counterintuitively, the CHD “protective” allele was associated with lower high density 

lipoprotein (HDL) cholesterol (p=5x10-4) and lower large HDL traits (false discovery rate 

adjusted p-values p<0.05) in T2D only, indicating a complex relationship between CHD, T2D 

and HDL. Secondly, the CHD risk locus on chromosome 21q22 (lead SNP rs9982601) was 

not associated with any CHD risk factors. Using bioinformatics tools and in vitro functional 

assays, a candidate functional SNP - rs28451064 - was identified (which showed allele-

specific protein binding and the minor allele had 12 % higher expression p=4.82x10-3). 

Further investigation is required to define the underlying molecular pathways.  
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1 General Introduction 
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1.1 Cardiovascular disease – a global problem 

Cardiovascular disease (CVD) encompasses a number of different conditions including 

coronary heart disease (CHD) and stroke. It was the most common cause of death in the 

world between 2000 and 2012 (Figure 1). World Health Organisation (WHO) data for 2012 

(the most recent year where data is available) showed that approximately 30% of all deaths 

were caused by CVD and the highest proportion of these was due to CHD 

(http://www.who.int/mediacentre/factsheets/fs310/en/). This is despite significant 

improvements in the treatments available (Nabel and Braunwald 2012). Reducing the 

number of individuals affected by CVD, and CHD in particular, is therefore an important 

healthcare issue worldwide.  

 

Figure 1: Comparison of the leading causes of death worldwide between 2000 and 2012 

 

Data collected by and image adapted from the World Health Organisation 
(http://www.who.int/mediacentre/factsheets/fs310/en/). COPD = Chronic Obstructive Pulmonary 
Disease. HIV= Human Immunodeficiency Virus. AIDS=Acquired Immune Deficiency Syndrome.  

http://www.who.int/mediacentre/factsheets/fs310/en/
http://www.who.int/mediacentre/factsheets/fs310/en/
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1.2 Pathophysiology of CHD 

CHD is characterised by the narrowing of the blood vessels which supply the heart, usually 

caused by the chronic inflammatory process, atherosclerosis (Figure 2).  Atherosclerosis is 

initiated by endothelial dysfunction where the endothelial cells lining the arterial wall 

irreversibly lose their homeostatic capabilities (Mudau, Genis et al. 2012). This does not 

occur uniformly throughout the vasculature, but preferentially at regions with disturbed 

blood flow such as branch points (VanderLaan, Reardon et al. 2004). The vessel wall 

becomes more permeable at these sites, allowing low-density lipoprotein (LDL) to 

accumulate in the arterial wall (Weber and Noels 2011). Oxidisation of lipids in the vessel 

wall stimulates the dysfunctional endothelial cells to express chemokines, leukocyte 

adhesion molecules and endothelial adhesion molecules. This promotes the attachment of 

leukocytes and their transmigration into the arterial wall (Libby and Theroux 2005; Weber 

and Noels 2011). Monocytes entering the vessel wall can then differentiate into 

macrophages. Oxidised LDL can interact with these macrophages, causing the release of 

cytokines, further contributing to the inflammatory process (Businaro, Tagliani et al. 2012). 

Moreover, the macrophages can become lipid-rich foam cells though phagocytosis of the 

lipids present in the arterial wall (Nakashima, Fujii et al. 2007). The build-up of monocytes, 

foam cells and T-lymphocytes forming “fatty streaks” on the vessel wall is usually the first 

visible manifestation of atherosclerosis. Subsequent accumulation of immune cells, lipids, 

debris and apoptotic cells results in the development of an atherosclerotic plaque (Ross 

1999). Such plaques are covered by a fibrous cap and may have a necrotic core (Weber and 

Noels 2011). Expansion of the plaque does not necessarily result in a reduction in the 

diameter of the vessel lumen. The vessel walls can “remodel” to compensate for the 

presence of the plaque, maintaining the blood carrying capacity of the artery (Glagov, 

Weisenberg et al. 1987). Most plaques will remain subclinical and the difference between 

plaques that do and those that do not cause symptoms has been the focus of much 

research (Falk, Nakano et al. 2013). It is well established that plaques with uniformly dense 

caps tend to be much more stable. However, thinning of the fibrous cap, usually due to 

infiltration of immune cells at the “shoulder” of the plaque, can result in rupture. The 

resultant release of the plaque contents into the coronary artery can occlude the vessel, 

causing myocardial infarction (MI) (Ross 1999; Weber and Noels 2011). 
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Figure 2: Schematic representation of the progression of an atherosclerotic plaque.  

 

Reproduced with permission from (Ross 1999). Copyright Massachusetts Medical Society. A) 
Endothelial dysfunction characterised by increased permeability results in the uptake of plasma 
constituents (most notably LDL particles) into the intima, promoting a pro-inflammatory response. 
This leads to adhesion of blood leukocytes and ultimately their migration into the intima. B) The 
“fatty streak” progresses due to migration of smooth muscle cells (SMCs) into the intima along with 
T-cell activation, platelet aggregation and formation of foam cells through the uptake of oxidised LDL 
particles by macrophages. C) With the continued inflammatory response and accumulation of cells 
and debris, a complicated atherosclerotic lesion can develop, covered by a fibrous cap. Within the 
lesion, the build-up of extracellular lipids derived from apoptotic or necrotic macrophages and SMCs 
can result in the formation of a necrotic core. D) Thinning of the lesion’s fibrous cap can ultimately 
lead to its rupture and thrombus formation with complete occlusion of the blood vessel (Ross 1999; 
Libby, Ridker et al. 2011).  
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1.3 Risk factors for CHD 

1.3.1 Identification of CHD risk factors 

CHD and atherosclerosis are commonly thought of as issues of later life. However, it has 

become clear that atherogenesis can begin early in life. “Fatty streaks” - the precursors of 

atherosclerotic plaques - have been found in the arteries of teenagers (Strong, Malcom et 

al. 1999). As the atherosclerotic process can begin many decades before clinical 

manifestation, this provides a window of time where preventative measures can be 

employed to avoid its escalation (Falk, Nakano et al. 2013). In order to do this, it is vital to 

understand the factors that predispose individuals to the development of CHD. From the 

middle of the last century onwards, numerous prospective studies have been performed to 

investigate this (and indeed are on-going). One of the most well-known of these is the 

Framingham Heart Study which started in 1948, following over 5000 residents of 

Framingham, Massachusetts (Dawber, Meadors et al. 1951). An early publication from the 

Framingham study reported an association between increased blood pressure and blood 

cholesterol levels and CHD and MI incidence (Kannel, Kagan et al. 1961). Since then a 

number of important so-called “conventional risk factors” (CRFs) for CHD have been 

identified and are shown in Table 1. CHD risk factors can be divided into two categories, 

those that cannot be modified such as age, family history of early CHD and sex, and those 

that can be, such as smoking status, LDL-cholesterol levels and blood pressure. It is these 

modifiable risk factors that clinicians seek to target in order to reduce the incidence of 

CHD. This strategy has been shown to be effective. From the 1980s onwards CHD mortality 

fell has fallen in the USA and Western Europe and more than half of this reduction has 

been due to preventative measures, particularly smoking cessation and reduction of 

saturated fat in the diet (Capewell and O'Flaherty 2011; Perk, De Backer et al. 2012). 

 Table 1: Conventional risk factors for CHD 

Risk Factor Epidemiological Evidence 

Age (Jousilahti, Vartiainen et al. 1999) 

Sex (Lloyd-Jones, Larson et al. 1999) 

Smoking (Nyboe, Jensen et al. 1991) 

Diabetes (Huxley, Barzi et al. 2006) 

Blood Pressure/Hypertension (Lloyd-Jones, Evans et al. 2005) 

Cholesterol (Di Angelantonio, Sarwar et al. 2009) 

Triglycerides (Sarwar, Danesh et al. 2007) 

Family History of CHD (Pohjola-Sintonen, Rissanen et al. 1998) 
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1.3.2 Causality of risk factors 

Dozens of risk factors have been identified for CHD, often from case-control or purely 

observational data. These study designs can be subject to bias from reverse causation or 

confounding. Therefore, is not possible to determine if the risk factor has a causal 

relationship with CHD. However, there are methods that can be used to assess this which 

are particularly useful for biomarkers. Firstly, if there is a therapeutic agent that can target 

the risk factor, it can be determined in a randomised controlled trial (RCT) whether raising 

or lowering the risk factor (depending on the proposed relationship) reduces the incidence 

of CHD. This has long been considered the gold-standard for establishing causality. The 

most pertinent example for CHD is the use of statins, which have been found to lower LDL-

cholesterol and also reduce the incidence of MI and CHD in multiple RCTs (Taylor, Huffman 

et al. 2013). However, RCTs are time-consuming, expensive and require a selective agent 

however advances made over the past two decades allow genetic studies to be used to 

assess causality. This study design, referred to as “Mendelian randomisation” (Lawlor, 

Harbord et al. 2008), requires the identification of a genetic variant associated with the 

potential risk factor under investigation (but not with any potential confounders). In the 

study population individuals are then separated by genotype, firstly to confirm there is a 

relationship between the variant and the potential risk factor. This being so, if there is a 

causal relationship between the potential risk factor and the disease outcome, the genetic 

variant should also be associated with the disease outcome (Figure 3). The allocation of 

alleles at birth is considered to be analogous to the randomisation procedure in an RCT, 

thus minimising the impact of potential confounders and reverse causation (Lawlor, 

Harbord et al. 2008). Applicability of this approach is limited to traits for which there is a 

suitable genetic instrument. Furthermore, suitable genetic variants generally elicit a 

relatively small effect on the trait in question. Therefore, a very large number of 

participants are required to perform the study, which can prove difficult to obtain. 

Mendelian randomisation has been used to assess the causality for a number of potential 

CHD risk factors (Table 2). 
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Figure 3: Workflow of A) randomised clinical trial and B) Mendelian randomisation study using the 
example of C-reactive protein 

 

Only homozygote genotypes are shown for clarity. RCT=randomised clinical trial, CV=cardiovascular, 
CRP=C-reactive protein.  Image reprinted from (Hingorani and Humphries 2005). 
 
 

 

Table 2: A selection of potential coronary heart disease risk factors assessed for causality  

LDL=low density lipoprotein. HDL=high density lipoprotein.  

 

 

 

 

 

 

 

 

Risk Factor Confirmed by Mendelian 

Randomisation 

Reference 

LDL-cholesterol Yes (Holmes, Asselbergs et al. 2015) 

HDL-cholesterol No (Holmes, Asselbergs et al. 2015) 

Triglycerides Yes (Holmes, Asselbergs et al. 2015) 

Lipoprotein(a) Yes (Kamstrup, Tybjaerg-Hansen et al. 2009) 

C-reactive protein No (Wensley, Gao et al. 2011) 

Interleukin-6 Yes (Niu, Liu et al. 2012) 

Fibrinogen No (Keavney, Danesh et al. 2006) 
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1.4 Genetic risk of CHD 

1.4.1 Genetic variation and disease 

Family history has long been recognised as a risk factor CHD (Snowden, McNamara et al. 

1982; Schildkraut, Myers et al. 1989), highlighting the genetic contribution to this disease. 

There is a common relationship between the penetrance, frequency and disease 

susceptibility for risk variants present in the human genome (Figure 4). Evolutionary 

pressures limit high penetrance variants with a large effect to a low frequency within the 

population (Blekhman, Man et al. 2008). For example, there is are a multitude of very rare 

variants that result in genetically strongly raised LDL-cholesterol levels, causing the disease 

known as familial hypercholesterolaemia (FH) (Futema, Whittall et al. 2013). Lifelong raised 

LDL-cholesterol in FH patients confers an extremely high risk of CHD, with 50% of men and 

30% of women developing the disease before the age of 60 if left untreated. Even the most 

common FH-causing variant in the UK is present in less than 10% of FH patients 

(Humphries, Whittall et al. 2006). It follows therefore that many risk alleles for common 

diseases such as CHD will be present at much higher frequencies in the population but will 

have a relatively small impact on disease risk. Thus, unlike the disease-causing mutations of 

rare conditions, to be adequately powered to identify such variants, studies require a large 

numbers of participants.  

Figure 4: The relationship between frequency and susceptibility for genetic variants associated with 
disease 

 

GWAS = genome-wide association study. Image reprinted from (Speicher, Geigl et al. 2010).  
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1.4.2 Candidate gene studies 

Prior to the sequencing of the human genome, genetic studies of CHD were limited to so-

called “candidate gene” studies (Lusis 2012). As atherosclerosis is a multi-factorial process, 

this provided a number of different pathways to study (such as lipid metabolism and  

inflammation (Steinberg 2002)) leading to the identification of a number of genes 

confirmed to be involved in the disease pathway. However, inconsistent findings were 

common using this approach, making non-replication a major issue (Tabor, Risch et al. 

2002). This could result from the small effect size of the risk variant making the association 

difficult to detect consistently in the relatively small sample sizes available (Ioannidis, 

Ntzani et al. 2001) or possibly a false association, identified by chance in the initial study 

(Colhoun, McKeigue et al. 2003). This issue can be partially overcome by systematically 

reviewing the literature and performing a meta-analysis although this is limited by the 

quality of the published data which can be reduced by sampling, publication and time-lag 

bias (Ioannidis, Ntzani et al. 2001). Another limitation of the candidate gene approach is 

that it was limited to a small number of genes and variants based on the current knowledge 

of the pathophysiology of CHD and of human genetics (Tabor, Risch et al. 2002). 

Nevertheless, a number of plausible candidate genes and variants were identified using the 

candidate gene approach (Table 3). 
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Table 3: Genetic variants associated with CHD in meta-analyses of candidate gene studies 

Data in the table is based on that presented in (Casas, Cooper et al. 2006). 

Gene Chromosome Variant(s) Reference 

AGT 1 rs699 
(M325T) 

(Zafarmand, van der Schouw 
et al. 2008) 

MTHFR 1 rs1801133 
(C677T) 

(Xuan, Bai et al. 2011) 

APOB 2 rs1032041 (E4181K) & 
Signal peptide insertion/deletion 

(Chiodini, Barlera et al. 
2003) 

NOS3 7 rs1799983 
(E298D) 

(Casas, Cavalleri et al. 2006) 

PON1 7 rs662 
(Q192) 

(Wheeler, Keavney et al. 
2004) 

SERPINE1 7 rs1799889 
(5G/4G) 

(Boekholdt, Bijsterveld et al. 
2001) 

LPL 8 rs328 
(S447X) 

(Wittrup, Tybjaerg-Hansen 
et al. 1999) 

CETP 16 rs708272 
(TaqIB) 

(Boekholdt, Sacks et al. 
2005) 

ACE 17 Insertion/deletion (Morgan, Coffey et al. 2003) 

ITGB3 17 rs5918 
(GPIIb-IIIa) 

(Morgan, Coffey et al. 2003) 

APOE 19 rs7412/rs429358  
(e2/e3/e4 polymorphism) 

(Bennet, Di Angelantonio et 
al. 2007) 
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1.4.3 Genome-wide association studies  

The sequencing of the human genome and advances in genotyping technology gave rise to 

the ability to perform genome-wide association studies (GWASs) (McCarthy, Abecasis et al. 

2008). Here a large number of individuals with and without the trait in question are 

genotyped using genotyping arrays designed to cover as much of the genome as possible, 

and association analysis performed. Unlike candidate gene studies, no prior hypothesis as 

to which genes are important in pathogenesis is required. The GWAS workflow is shown in 

Figure 5. The p-value threshold for genome-wide significance is usually set in frequentist 

manner, where it is corrected for multiple testing (often ~5x10-8 after adjustment for one-

two million independent tests). The results of a GWAS are commonly displayed graphically 

by chromosome, with p-value on the y axis, referred to as a Manhattan plot (Figure 6). To 

exploit the potential of GWASs, large consortia have been set up such as 

CARDIoGRAMplusC4D (for CHD (Deloukas, Kanoni et al. 2013), DIAGRAM (for diabetes 

(Zeggini, Scott et al. 2008)) and the Global Lipid Genetics Consortium (for lipid traits (Willer, 

Schmidt et al. 2013)). A number of the risk loci for CHD identified in GWASs (or by fine-

mapping GWAS results as in the CARDIoGRAMplusC4D meta-analysis (Deloukas, Kanoni et 

al. 2013)) lie in genes where risk variants for CHD had been identified in candidate gene 

studies (Table 4).  

Figure 5: Principle of genome-wide association studies 

 

A large number of participants with and without the disease are recruited and genotyped using 
genome-wide arrays and risk variants identified. Results from different studies in independent 
cohorts can then be meta-analysed to confirm associations. Image reprinted under licence from the 
Oxford University Press (Schunkert, Erdmann et al. 2010). 
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Figure 6: Example Manhattan plot depicting results from a genome-wide association study 

 
Manhattan plot for a GWAS performed for coronary heart disease by the Welcome Trust Case 
Control Consortium (WTCCC) (Samani, Erdmann et al. 2007). Each dot represents a variant 
genotyped as part of the GWAS, with chromosome plotted on the x axis and –log p-value on the y 
axis. Therefore, genomic locations with a strong association will be visually striking. In this example a 
strong signal has been found on chromosome 9, representing a locus at position p21. 
GWAS=genome-wide association study. Reproduced with permission from (Samani, Erdmann et al. 
2007). Copyright Massachusetts Medical Society. 
  
 
Table 4: Genes found to be involved in CHD in both candidate gene studies and GWAS-based studies 

GWAS=genome-wide association study. 
 

Gene Chromosome Evidence of Association in Candidate 
Gene Studies 

Evidence of Association in 
GWAS-based Studies 

PCSK9 1 (Benn, Nordestgaard et al. 2010) (Kathiresan, Altschuler et al. 
2009) 

APOB 2 (Chiodini, Barlera et al. 2003) (Deloukas, Kanoni et al. 2013) 

LPL 8 (Sagoo, Tatt et al. 2008) (Deloukas, Kanoni et al. 2013) 

ABO 9 (Wu, Bayoumi et al. 2008) (Schunkert, Konig et al. 2011) 

APOA5 11 (Sarwar, Sandhu et al. 2010) (Schunkert, Konig et al. 2011) 

APOE 19 (Bennet, Di Angelantonio et al. 
2007) 

(Deloukas, Kanoni et al. 2013) 

LDLR 19 (Linsel-Nitschke, Gotz et al. 2008) (Kathiresan, Altschuler et al. 
2009) 



37 
 

1.4.3.1 The impact of the GWAS design 

Results from GWASs of common complex diseases have a number of common features 

(Dandona, Stewart et al. 2010; Imamura and Maeda 2011). Firstly (and not surprisingly as 

discussed in Chapter 1.4.1) the effect size pertaining to the variants identified is relatively 

small. Secondly, the majority of the identified risk loci fall outside the exome – pointing to 

molecular mechanisms that impact on the regulation of gene expression rather than the 

protein-coding sequence itself(Hindorff, Sethupathy et al. 2009). Furthermore, in general 

GWASs can only identify a risk locus, not the functional single nucleotide polymorphism 

(SNP). Linkage disequilibrium (LD) between SNPs allows genotyping chips to cover the 

genome using a fraction of the variants present. However, as a consequence the lead SNP 

identified is not necessarily the functional variant. This could be one of many SNPs in strong 

LD with the lead SNP (that were not genotyped as part of the study). It has also been 

hypothesised that so-called “synthetic associations” may arise whereby the association of a 

common genetic variants with a trait results from multiple unobserved low frequency 

causal variants also present at the locus (Dickson, Wang et al. 2010). Finally, only a minority 

of the risk variants identified act through known pathogenic mechanisms. For example, of 

the 53 loci robustly associated with CHD in the meta-analysis published by the 

CARDIoGRAMplusC4D consortium (Deloukas, Kanoni et al. 2013), only 16 of the 51 were 

associated with known risk factors. While challenging, this presents an unprecedented 

opportunity to identify novel pathways which contribute to CHD.  

 

The situation is typified by the example of the CHD risk locus on chromosome 9p21. This 

was the first CHD risk locus to be identified by a GWAS (Burton, Clayton et al. 2007; 

McPherson, Pertsemlidis et al. 2007). Of all the loci identified by GWASs, it has the largest 

effect size for a common polymorphism (minor allele frequency (MAF)>0.05). However, its 

mechanism of action remains obscure. The locus is not associated with any CRFs for CHD 

(Deloukas, Kanoni et al. 2013) although an adjacent 11 kb LD block is a GWAS hit for type 2 

diabetes (T2D) (Zeggini, Weedon et al. 2007; Zeggini and Ioannidis 2009). The closest 

protein-coding genes are two cyclin kinase dependent inhibitors involved in cell cycle 

regulation (CDKN2A and CDKN2B) located approximately 100 kb upstream (McPherson, 

Pertsemlidis et al. 2007; Hannou, Wouters et al. 2015). The risk locus overlaps with the 

sequence of ANRIL (also called CDKN2BAS), a non-coding ribonucleic acid (RNA) (Pasmant, 

Laurendeau et al. 2007). Many of the functional studies conducted at the locus have 

focussed on these genes. Genotype at the 9p21 risk locus has been found to be associated 
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with expression of ANRIL - in whole blood, the risk alleles of SNPs at 9p21 were associated 

with reduced expression of ANRIL (Cunnington, Santibanez Koref et al. 2010) -  but not 

CDKN2A and CDKN2B (Holdt, Beutner et al. 2010). Moreover, expression of certain ANRIL 

transcripts is associated with plaque burden. This indicates that the effect of the 9p21 locus 

on CHD is at least partially mediated by influencing the regulation of ANRIL expression. 

There is evidence to suggest that expression of ANRIL influences expression of CDKN2A and 

CDKN2B (Congrains, Kamide et al. 2012) which could modulate cell cycle regulation (e.g. by 

influencing macrophage production) which is known to have a key role in progression of 

atherosclerosis (Braun-Dullaeus, Mann et al. 1998). Chromatin capture techniques have 

identified a number of enhancers in the 9p21 CHD risk locus and the results implicated 

disruption of the interferon-γ signalling pathway as a possible mechanism (Harismendy, 

Notani et al. 2011). While subsequent work has not confirmed this relationship 

(Almontashiri, Fan et al. 2013; Erridge, Gracey et al. 2013), this highlights the possibility 

that modulation of ANRIL expression may affect CHD risk through mechanisms 

independent of CDKN2A and CDKN2B. 
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1.4.4 Publically available data sources used in genetic research 

Advances stemming from the sequencing of the human genome have enabled the creation 

of large data sets concerning different aspects of the genetic contribution to disease and to 

biology in general. Many projects have been able to create online databases which are 

publically available. Thus such data can then be used in the functional analysis of GWAS-

identified variants.  

1.4.4.1 GWAS Catalog 

Tens of thousands of associations between SNPs and traits have been identified using 

GWASs and these are recorded in the GWAS Catalog (Welter, MacArthur et al. 2014) 

provided by the National Human Genome Research Institute (NHGRI) and the European 

Bioinformatics Institute (part of the European Molecular Biology Laboratory - EMBL-EBI). 

The details of all studies with a GWAS design meeting the eligibility criteria (assaying at 

least 100,000 SNPs and using a p-value threshold for association of less than 1x10-5) are 

extracted from the literature and added to the catalogue.  

1.4.4.2 HapMap and 1000 Genomes Projects 

The International HapMap Project was set up following the sequencing of the human 

genome to study the common patterns of genetic variation (2003). In total 270 individuals 

from four populations were genotyped for over three million SNPs (Frazer, Ballinger et al. 

2007) and the data is publically available (including MAF and LD data) (Smith 2008). 

Following on from this the 1000 Genomes Project was created to identify all genetic 

variants present in at least 1% of individuals in five major populations (European, East 

Asian, South Asian, West African and American)(Abecasis, Altshuler et al. 2010). In total 

2,604 individuals (some in common with the HapMap Project) were genotyped and 88 

million variants were identified (Auton, Brooks et al. 2015), providing an invaluable 

resource to use in the study of genetic variation.  
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1.4.4.3 Encyclopaedia of DNA Elements Project 

The Encyclopaedia of deoxyribonucleic acid (DNA) Elements (ENCODE) project seeks to 

investigate the functionally of the genome. The first publications from the ENCODE project 

detailed the findings from 1,640 data sets from 147 (mostly transformed) human cell lines 

(2012). This included analysis of genome-wide binding of transcription factor binding in 119 

cell types (Gerstein, Kundaje et al. 2012), DNase I footprinting in 41 cell and tissue types 

(Neph, Vierstra et al. 2012) and DNase I hypersensitivity in 125 cell and tissue types 

(Thurman, Rynes et al. 2012). The project has been expanded to other species, cell types 

and regulatory features. At the beginning of 2016 the ENCODE repository contained the 

results of 5000 experiments in seven areas (chromatin structure, 3D genome interactions, 

DNA-protein interaction, RNA-protein interactions, DNA methylation, transcription and 

expression) (Diehl and Boyle 2016). Therefore, the ENCODE data provides an invaluable 

resource to investigate in genomic loci in different cellular environments from direct 

laboratory analysis (Smith, Humphries et al. 2015). The ENCODE data can be viewed in its 

genomic context using the UCSC (University of California Santa Cruz) genome browser 

(Kent, Sugnet et al. 2002). “Tracks” displaying particular data from a cell line of interest can 

be selected and displayed alongside the genome sequence (see Figure 7 for an example).  
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Figure 7: Screenshot of ENCODE data for the  9p21 CHD risk locus, displayed using the UCSC Genome Browser (http://genome.ucsc.edu; GR37/hg19) 

  

The lead SNP at the risk locus (rs1333049) is circled in red. The gene “track” is on but there are no markings, indicating that no known genes are present. The other SNPs 
present at the locus are displayed. To the left of the lead SNP lies a region found to be a DNase I hypersensitivity site in 42 cell types and where multiple transcription 
factors have been found to bind (also depicted by grey boxes), suggesting this locus is involved in gene regulation. Data from individual cell lines can also be displayed, 
which is particularly useful if the relevant cells types are known. As an example, tracks showing data from a liver cell-line (HepG2, in pink) and a primary endothelial cell line 
(human umbilical vein endothelial cells (HUVECs), in orange) are also shown. The peaks represent regions where the feature of interest (e.g. DNAse I hypersensitivity sites) 
are present. The bottom two tracks represent the chromatin state assigned using the ENCODE data. None were assigned in HepG2 cells but regions were assigned as weak 
enhancers (yellow) and weakly transcribed (green) in HUVEC cells. ENCODE=encyclopaedia of DNA elements. UCSC=University of California Santa Cruz.  

rs1333049 

http://genome.ucsc.edu/
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1.4.4.4 Roadmap Epigenomics Consortium  

The goal of the Roadmap Epigenomics Consortium is to investigate how epigenomics 

affects human biology and disease. To create an epigenome, data on DNA accessibility, 

histone modifications, DNA methylation and RNA expression are used to annotate the 

genome. Recently data from 111 reference epigenomes from the Roadmap consortium and 

16 from the ENCODE project from a variety of different tissues (including adult cells, foetal 

cells and stem cells) was published (Kundaje, Meuleman et al. 2015). From this data, a 15-

state chromatin model has been developed featuring seven repressive and eight active 

states, which can be highly tissue specific. As such, data from the Roadmap Epigenomics 

Consortium provides an important insight to functionality and guidance for lab-based 

functional work (Smith, Humphries et al. 2015).  Chromatin state information can be 

accessed using the HaploReg tool (Ward and Kellis 2012).  

1.4.4.5 Genotype-Tissue Expression Consortium  

The genotype-tissue expression (GTEX) consortium seeks to provide a resource to study the 

relationship between genetic variation and gene expression by collecting multiple samples 

from densely genotypes donors (2013). Previous expression quantitative trait loci (eQTL) 

studies have been hampered by limited tissue availability and so the GTEX project has 

collected samples post-mortem. The pilot study included data on 43 tissues taken from 173 

individuals (2015) and the project is now being scaled up. The data is publically available on 

the GTEX browser (http://gtexportal.org/home/). The GTEX database provides a powerful 

tool to investigate the impact of genetic variation in different tissues. It can be used to 

search for eQTLs for particular variants or genes and also to compare levels of expression 

between tissues.  

 

http://gtexportal.org/home/
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1.5 Epidemiology of CHD 

Both CHD incidence and mortality have decreased in high-income nations in recent years 

(Smolina, Wright et al. 2012; Ford, Roger et al. 2014; Nichols, Townsend et al. 2014). 

Indeed, CVD is now the second most common cause of the death in a number of European 

countries including the UK as a result (Nichols, Townsend et al. 2014; 2015). However, this 

is not reflected in other regions across the world or in some minority ethnic groups within 

these countries.  

1.5.1 CHD in South Asia 

The region of South Asia, comprising the countries of India, Pakistan, Bangladesh, Sri Lanka 

and Nepal contains approximately a quarter of the world’s population. As such the region’s 

inhabitants are a heterogeneous group with a variety of different cultures and customs. 

Nevertheless, South Asian migrants are at a greater risk of developing CHD compared to 

those of European ethnicity (Zaman, Philipson et al. 2013). There is debate in the literature 

as to whether the increased burden of CHD in South Asians is accounted for by higher 

levels of CRFs such as dyslipidaemia and T2D. A large case-control study (the INTERHEART 

study) which included approximately 30,000 participants from 52 countries found that the 

excess burden of CHD in South Asians could be attributed to higher levels of CRFs at a 

younger age (Joshi, Islam et al. 2007). Furthermore, a systematic review of data available 

for South Asians living in Canada found this group to have a greater prevalence of a number 

of CRFs including T2D and hypertension (Rana, de Souza et al. 2014). However, overall the 

findings of the review were consistent with a different cardiovascular risk profile in South 

Asians compared to those of European ethnicity (e.g. a different relationship between body 

mass index (BMI) and body fat) indicating that there may be as yet unknown factors - 

perhaps genetic or epigenetic - contributing to this increased risk.  

 

High quality data concerning CHD in the native South Asian population is relatively scare 

(Ahmad and Bhopal 2005), however there is evidence that the prevalence has increased 

greatly  over the forty years (Mohan, Deepa et al. 2001; Krishnan, Zachariah et al. 2016), 

likely as a consequence of increasing urbanisation and the adoption of the more 

atherogenic “Western” lifestyle.  
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1.5.2 CHD in populations of African descent 

In contrast to South Asian migrants, those of Afro-Caribbean descent living in Western 

Europe have been found to be at a much lower risk of developing CHD (Wild and McKeigue 

1997; Tillin, Hughes et al. 2013). There appears to be a complicated relationship between 

CRFs and CHD in this group as they have been found to have a protective lipid profile but 

higher rates of T2D and hypertension (Agyemang, Addo et al. 2009). Curiously, a similarly 

protective effect was observed in African Americans in the earlier part of the 20th century 

(Hames and Greenlund 1996), despite a generally poorer risk profile. However, CHD now 

disproportionately affects African Americans (Crook, Clark et al. 2003) implicating socio-

economic and other environmental factors in the aetiology of CHD in this group. For the 

native African population, data concerning CHD, particularly in Sub-Saharan African is very 

limited, although it is expected that this will rise as levels of CRFs rise in this region (Onen 

2013). There has been a perception that the African population is relatively protected from 

CHD but it is difficult to assess the evidence as the burden shifts from communicable to 

non-communicable diseases. A comparison of mortality from CVD in the different ethnic 

groups in South Africa found that those of African ethnicity had much lower rates of CHD 

compared to the other ethnic groups - though higher mortality rate from stroke (Bradshaw, 

Groenewald et al. 2003) – and this was partly attributed to the different ethnic groups 

being in different stages of the epidemiological transition from a high burden of 

communicable disease to that of chronic disease (Onen 2013). However, large-scale 

prospective studies are required to confirm this and to fully investigate the role of CRFs, 

both traditional and novel.  
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1.5.3 CHD in East Asia 

Unlike the ethnic groups considered thus far, there is no large-scale data on migrant 

populations from the East Asia. Furthermore, the situation varies greatly between 

countries within the region. Death rates from CHD in China are increasing, as the burden of 

infectious disease falls and of non-communicable disease rises (Yang, Kong et al. 2008). 

There is also an increasing prevalence of CRFs including hypertension (Ma, Mei et al. 2013; 

Chen, Li et al. 2014) T2D (Zuo, Shi et al. 2014) and dyslipidaemia (Huang, Gao et al. 2014) 

but not unexpectedly it appears that ethnic groups within China show different CRF 

clustering (Li, Wang et al. 2012). Whereas, in Japan as CHD mortality declined between the 

1960s and the 2000s (Ueshima, Tatara et al. 1987; Hatano 1989). This has been attributed 

to the reduction in the prevalence of hypertension and smoking, despite the increase in 

dyslipidaemia although there is evidence to suggest that incidence of CHD and MI is 

increasing particularly in men (Kitamura, Sato et al. 2008; Rumana, Kita et al. 2008). 
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1.6 Primary Prevention of CHD 

1.6.1 Risk prediction scores 

A large proportion of CHD events are preventable (Stamler, Dyer et al. 1993; Stampfer, Hu 

et al. 2000). Therefore, predicting those at highest risk of developing the disease is an 

important public health consideration. To take advantage of the combined knowledge of 

how CRFs affect CHD risk, risk scores have been developed.  Here a linear function based on 

mean values for the risk factors included is calculated and then corrected for the 

individual’s own details (or this is incorporated directly into the original calculation). This 

value is then exponentiated and incorporated into a survival function to give the CHD risk in 

a defined period of time, usually ten years. The first risk score for CHD that gained 

widespread use was developed from the Framingham Heart Study and thus is referred to as 

the Framingham score (Wilson, D'Agostino et al. 1998). Included in it were age, total 

cholesterol, HDL-cholesterol, systolic blood pressure, diabetes and smoking (with separate 

equations for men and women). The score showed good predictively ability in some 

cohorts similar to that from which it was derived (D'Agostino, Grundy et al. 2001; Simons, 

Simons et al. 2003). However, it was found to overestimate risk in other ethnic groups 

(Barzi, Patel et al. 2007) and in other populations of European ethnicity where there was a 

lower incidence of CHD (Brindle, Emberson et al. 2003; Hense, Schulte et al. 2003). In 

response to this, region-specific scores have been developed such as SCORE which was 

derived using data from 12 prospective European cohorts (Conroy, Pyorala et al. 2003). The 

development of large primary care electronic records has enabled risk scores to be derived 

from large population cohorts. In England the QRISK score was derived from the 

QRESEARCH database, (which contains 1.2 million individuals) to estimate risk of CVD 

(rather than CHD) (Hippisley-Cox, Coupland et al. 2007)) to. This score updated (QRISK2) to 

include a number of other risk factors, most notably self-reported ethnicity (Hippisley-Cox, 

Coupland et al. 2008). A similar score (ASSIGN) was developed in Scotland using a 

nationally representative database – the Scottish Heart Health Extended Cohort 

(Woodward, Brindle et al. 2007). Both ASSIGN and QRISK2 include measures of social 

depravation. This was prompted by the observation that the Framingham score 

underestimated risk in socially deprived individuals and thus could re-enforce social 

gradients in disease (Brindle, McConnachie et al. 2005; Tunstall-Pedoe and Woodward 

2006). The QRISK2 model is updated annually (http://www.qrisk.org/).  

 

 

http://www.qrisk.org/
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1.6.2 Primary prevention strategies 

Many of the CRFs for CHD are modifiable and thus lifestyle interventions such as use of 

smoking cessation services and dietary review, form an important part of the strategy to 

reduce CHD risk (2014). Prescription of lipid-lowering therapies, primarily statins, has also 

been used to compliment this. Statin use has been found to reduce risk of CVD events by 

approximately one fifth per 1mmol/l of LDL-cholesterol reduction in a wide range of 

individuals (Baigent, Blackwell et al. 2010). A benefit has also been found in those with low 

CVD risk (Mihaylova, Emberson et al. 2012). However, a Cochrane review of the data 

concerning the benefit of statin use in primary prevention of CVD found shortcomings in 

many of the trials identified, with evidence of selective reporting and inclusion of 

individuals with CVD in many of the trials used in reviews of data on statin use in primary 

prevention (Taylor, Huffman et al. 2013). Moreover, statin therapies are not without their 

limitations. Data from both RCTs and Mendelian randomisation has found that statin 

therapy increases the risk of developing T2D (Sattar, Preiss et al. 2010; Swerdlow, Preiss et 

al. 2015) in an apparently dose dependent manner (Preiss, Seshasai et al. 2011). Mendelian 

randomisation also found that LDL-lowering alleles of variants in HMGCR (which encodes 

the protein targeted by statin therapies) were also associated with increased bodyweight, a 

known causal risk factor for T2D, which may partially explain the relationship between 

statin use and T2D (Swerdlow, Preiss et al. 2015). Furthermore, statin use has been found 

to be associated with an increase in glycated haemoglobin levels (a measure of glycaemic 

control) in those with diabetes (Erqou, Lee et al. 2014). However, both of these effects are 

relatively modest and outweighed by the protective benefits also found in those with T2D 

(Kearney, Blackwell et al. 2008). Statin use has also been associated with a greater risk of 

myopathy in a number of large-scale observational studies (Bruckert, Hayem et al. 2005; 

Nichols and Koro 2007; Hippisley-Cox and Coupland 2010). However, a meta-analysis of 

statin RCTs reporting adverse effects found that only a small minority of these were due to 

statin use (Finegold, Manisty et al. 2014) but the authors stated that the study was 

probably limited due to the poor reporting of side effects in clinical trials in academic 

journals (Goldacre 2014).  
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1.6.3 Current clinical guidance 

When risk scores were first introduced into clinical practice, the Framingham risk score was 

the recommended for use in both the USA and the UK and the high risk group was defined 

as those having a ten-year risk of CHD ≥20% (Cooper and O'Flynn 2008). Those who fell into 

that category were then recommended for intensive lifestyle and prescription of lipid-

lowering medications (usually statins). However, the joint guidelines issued by the 

American College of Cardiology (ACC) and the American Heart Association (AHA) developed 

new risk equations and lowered the high-risk cut-off to ≥7.5% (Goff, Lloyd-Jones et al. 

2013). Similarly, in the UK the National Institute of Health and Clinical Excellence (NICE) 

updated their guidelines to recommend use of QRISK2 and lowered the high-risk threshold 

to ≥10% (2014). However, given the shortcomings in the available data for statin use there 

have been concerns particularly regarding the “medicalisation of healthy individuals” and 

the numbers of adverse events observed in certain groups (Goldacre and Smeeth 

2014).There is also evidence that uptake of statins in the those classified in the 10-20 % risk 

groups is much lower than estimated by NICE (Usher-Smith, Pritchard et al. 2015), although 

larger studies are required to confirm this.   

 

1.6.4 The “prevention paradox” 

The majority of cases of CHD/CVD come from individuals classified with average risk using 

the CRF risk scores – the so-called prevention paradox (Rose 1981). For example, when use 

of QRISK2 (2010 version) was validated with data from the health improvement network 

(THIN), (using a 20% high-risk cut-off), 14% of men and 6% of women were identified as 

being at high risk. This captured 40% of the cardiovascular events in men and 26% of the 

cardiovascular events in women (Collins and Altman 2010). This leaves scope for 

refinement of the risk score to discriminate between those who do and do not go on to 

develop CVD. In addition to those CRFs already included in risk prediction a many others 

have been proposed including inflammatory markers (Madjid and Willerson 2011), 

lipoprotein(a) (Kamstrup, Tybjaerg-Hansen et al. 2013) and genetic information (as 

discussed in Section 1.6.5).  
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1.6.5  Use of genetics in risk prediction 

The identification of robustly associated CHD risk loci has prompted increasing interest in 

the inclusion of genetic information in risk prediction, particularly as being fixed at 

conception, it has a lifelong impact and need only be determined once (Di Angelantonio 

and Butterworth 2012). Given the relatively small effect sizes pertaining to robustly 

associated risk loci (OR<1.3, (Deloukas, Kanoni et al. 2013)), it is unsurprising that the 

addition of one variant into a CRF risk score has not resulted in improved predictive ability 

(Talmud, Cooper et al. 2008; Brautbar, Ballantyne et al. 2009; Paynter, Chasman et al. 

2009). This has led to the development of so-called “gene scores” (GS) where SNPs at 

independent loci are combined. A GS can be unweighted, where the number of risk alleles 

at each locus is combined. Alternatively, the individual SNPs can be weighted using the 

effect size pertaining to their association with CHD prior to their being added together. A 

number of different combinations of GS and CRF score have been assessed to determine if 

inclusion of an estimate of genetic risk can improve predictive ability over-and-above the 

CRF score alone, with mixed results (Paynter, Chasman et al. 2010; Ripatti, Tikkanen et al. 

2010; Vaarhorst, Lu et al. 2012; Ganna, Magnusson et al. 2013). It remains unclear whether 

under the current clinical guidelines it is beneficial to include a CHD risk GS in CHD risk 

prediction.  
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1.7 Aims 

The aims of this thesis were:  

1. To investigate the use of a CHD risk GS in the UK population. 

 

2. To investigate the use of a CHD risk GS in the South Asian and Afro-Caribbean 

populations. 

 

3. To perform a systematic literature search to identify variants suitable for inclusion 

in an updated CHD risk GS. 

 

4. To perform a systematic literature search to identify variants suitable for inclusion 

in a CHD in T2D risk GS. 

 

5. To assess how attendance at a self-management intervention, with and without 

provision of personalised CHD risk information impacts on behavioural and clinical 

outcome in those with T2D - as part of the coronary heart disease and diabetes-

related risk (CoRDia) study.  

 

6. To perform functional analysis of the CHD risk locus on chromosome 21q22. 



51 
 

2 Methods
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2.1 Studies Included 

2.1.1 The Second Northwick Park Heart Study  

The second Northwick Park heart study (NPHSII) is a prospective study of 3052 men 

recruited from nine general practices in the UK (Miller, Bauer et al. 1995). All recruits were 

aged between 50 and 64 and of European ethnicity. Men who were not free of CVD 

(defined as unstable angina, MI, electrocardiogram evidence of a silent MI, anti-coagulant 

or aspirin therapy, coronary surgery or other cerebrovascular disease), or who had 

malignancy or anything that would prevent the giving of informed consent were excluded. 

A non-fasting sample was taken at baseline, to perform biochemical analysis. CRF risk 

scores, Framingham and QRISK2 (2012 version) were calculated from baseline data to 

assess ten-year CHD and CVD risk respectively. These were assessed using ten-year follow-

up data.  In follow-up CHD was defined as acute MI, silent MI or undergoing coronary 

surgery. CVD was defined as CHD (as defined above), a new major Q wave on the ECG after 

five years of follow-up, surgery for angina pectoris with CHD angiographically 

demonstrated, stroke congestive heart failure or peripheral vascular disease.  All subjects 

gave written informed consent. The study had ethical approval from the institutional ethics 

committee and was performed in accordance with the Declaration of Helsinki. DNA 

extracted from blood was used for genotyping. Unless otherwise stated NPHSII had been 

pre-genotyped prior to the commencement of this project using Taqman assays (Chapter 

2.3.1.2) or restriction length fragment polymorphism based methods.  

 

2.1.2 University College, London School of Hygiene and Tropical Medicine, 

Edinburgh and Bristol Consortium 

The University College, London School of Hygiene and Tropical Medicine, Edinburgh and 

Bristol (UCLEB) Consortium comprises 12 prospective studies, almost all participants of 

which are of European ethnicity (Shah, Engmann et al. 2013). These include the British 

Regional Heart Study (BRHS), British Women’s Heart and Health Study (BWHHS), Caerphilly 

Prospective Study (CAPS), Edinburgh Artery Study (EAS), English Longitudinal Study of Aging 

(ELSA), Edinburgh Type 2 Diabetes Study (ET2DS), Medical Research Council 1946 birth 

cohort (MRC1946) and the Whilehall II study (WHII) The data collected differs between 

studies but all have recorded general CHD risk factors (such as those used to calculate the 

QRISK2 score (Hippisley-Cox, Coupland et al. 2008)). CHD was defined as the occurrence of 

fatal CHD, non-fatal MI or undergoing coronary artery bypass or angioplasty. CVD was 
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defined as CHD or stroke. Stroke included all non-fatal stroke (ischaemic and haemorrhagic 

combined, but excluding transient ischaemic attacks) and fatal stroke. Median follow-up 

was ten years. The Metabochip platform (Voight, Kang et al. 2012) was used to genotype 

approximately 21,000 participants included in the UCLEB studies. This platform has 

approximately 200,000 SNPs, designed to cover regions associated with cardio-metabolic 

disease. Imputation based on data from the 1000 Genomes European ancestry sample 

extended the SNP coverage to approximately one million SNPs (R2≥0.8). QRISK2 (2014 

version) was used to determine ten-year CVD risk. All subjects included gave informed 

consent. Individual research ethics committees gave written consent to use anonymised 

individual level data which had been obtained by each participating study. Analysis 

concerning the association of rs10911021 with CHD and with CHD risk factors in those with 

and without T2D was performed using STATA (StataCorp 2013). 

 

2.1.3 Islamabad MI case-control study 

The case group was recruited from the Rawalpindi Institute of Cardiology, Pakistan. All 

cases (n=321) had had an MI as defined by a positive test for troponin T, ST segment 

changes on electrocardiogram and typical chest pain radiating in the chest that was not 

relieved at rest. Control subjects (n=228) were recruited from the general population and 

did not have a history of CVD. Blood samples were taken from all participants and DNA was 

extracted for genotyping. Diabetes was defined as prescription of diabetes medication and 

hypertension as blood pressure greater than 140/100 mmHg or prescription of anti-

hypertensive medication. The study had approval from the Institutional Review Board and 

Ethics Committee of Shifa College of Medicine, Shifa International Hospital, Islamabad and 

all subjects gave written informed consent. 

 

2.1.4 Lahore CHD case-control study 

Cases were collected from hospitals in Lahore, Pakistan which covers the whole of the 

Punjab region. All cases (n=404) had CHD as defined by echocardiogram, angiography 

and/or biochemical markers. Participants in the control group (n=219) were age and sex 

matched to the cases, recruited from the general population and did not have a history of 

CVD. Blood samples were collected for biochemical analysis and DNA extracted for 

genotyping. Diabetes was defined as fasting blood glucose above 110 mg/dl or non-fasting 

blood glucose above 140 mg/dl. Hypertension was defined as blood pressure over 150/90 

mmHg for participants aged 60 or over, blood pressure over 140/90 mmHg for participants 
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aged 30-59 and blood pressure over 120/80 mmHg for participants aged under 30. All 

participants gave written informed consent and the study had ethical approval from the 

institutional ethical committee, University of the Punjab, Lahore.  

 

2.1.5 Guadeloupe CHD case-control study 

Cases were collected from the department of cardiology of the university hospital of 

Pointe-à-Pitre, Guadeloupe. Cases (n=178) were defined by history of coronary angioplasty 

and/or coronary bypass surgery or acute MI. Control participants (n=359) were recruited 

from a public health centre on Guadeloupe and had no history or suspicion of CVD. The 

study had ethical approval from the inter-regional ethics committee (Sud-Ouest/Outre-Mer 

III, France) and all participants gave written informed consent. Diabetes was defined as 

history of diabetes or prescription of hypoglycaemic agents (including insulin). 

Hypercholesterolaemia was defined as a history of hypercholesterolaemia or prescription 

of lipid-lowering therapies. Hypertension was defined as a history of hypertesion or 

prescription of anti-hypertensive therapies.  

 

2.1.6 University College Diabetes and Cardiovascular Study  

The University College diabetes and cardiovascular study (UDACS) is a cross-sectional study 

comprising 1020 participants of mixed ethnicity who were recruited from the University 

College London Hospitals (UCLH) NHS trust diabetes clinic (Stephens, Hurel et al. 2004). All 

recruits had diabetes as defined by the WHO criteria (Alberti and Zimmet 1998) but did not 

require renal dialysis. A number of CRF measures were obtained at recruitment.  Approval 

was obtained from the UCL/UCLH ethics committee.  

 

2.1.7 Advanced Study of Aortic Pathology  

Patients undergoing aortic valve surgery at the Karolinksa University Hospital, Stockholm, 

Sweden were recruited (n=213) into the advanced study of aortic pathology (ASAP) 

(Folkersen, van't Hooft et al. 2010). Tissue biopsies were taken from the mammary artery, 

aortic adventitia, aortic intima media heart and liver. Messenger RNA was extracted and 

measured using the Affymetrix Gene Chip Human Exon 1.0 ST expression array (Santa 

Clara, CA, USA). Genotyping was performed using the Illumina Human 610W Quad 

Beadarrays (San Diego, CA, USA). All participants gave informed consent and the study had 

approval from the ethical committee of the Karolinska Institute.  
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2.2 Systematic Literature Search 

To identify all variants found to be associated with CHD, a systematic literature search was 

performed. 

2.2.1 Search strategy  

A computerised literature search of “Web of Science” (Thomson Reuters, New York City, 

New York, USA) was performed for studies published in English between the inception of 

the database (1900) and February 2013. The following search terms were used, “coronary 

artery disease” or “coronary heart disease” or “acute myocardial infarction” AND 

“genetics” or “risk variants” or “single nucleotide polymorphisms”. In addition, the GWAS 

catalog (Welter, MacArthur et al. 2014) was searched using the heading “coronary heart 

disease”. 

 

2.2.2 Study selection  

All retrieved articles were assessed for relevance using the following inclusion criteria:  1) 

the articles reported an original peer-reviewed study; 2) the study was performed in a 

population of European ethnicity and 3) the study reported an association between a single 

genetic variant and CHD and provided a quantitative risk estimate. Four different 

subgroups were considered: variants associated with CHD, variants associated with 

premature CHD, variants associated with CHD in T2D and variants associated with 

secondary CHD events. The definitions of CHD accepted were: positive for angiography or 

angioplasty, bypass surgery, MI, symptomatic or treated angina, CHD death, coronary 

revascularisation and abnormal electrocardiogram. Studies which included a broader 

definition of cardiovascular disease or which used an intermediate phenotype (e.g. 

atherosclerosis) were excluded. Studies conducted in populations suffering from other 

conditions (except T2D) were also excluded.   

 

2.2.3 Data extraction  

The following information was extracted from each study included: effect size of the 

association between the genetic variant and the phenotype, gene (or locus) the variant is 

located in, authors, publication date, study design and gender and age of the study 

participants. For each variant identified, only the most recent meta-analysis was included. 

Where multiple variants in LD (r2>0.1 based on the values calculated in the EUR 1000 
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Genomes pilot 1 data) were identified only articles concerning the most commonly studied 

variant were further considered. 
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2.3 Genotyping 

2.3.1 Fluorescence based methods 

2.3.1.1 DNA preparation 

Prior to performing genotyping using fluorescence based methods, DNA concentrations 

were standardised (e.g. to 15 ng/µl) and diluted to 1.25 ng/µl. Where necessary, the DNA 

concentration was measured using the Nanodrop 8000 (Thermo Fisher, Scientific Waltham, 

MA, USA). A robotic liquid handling system (Biomek FX, Beckman Coulter, High Wycombe, 

UK) was used to transfer 4 µl of DNA (total 5 ng) in to 384-well DNA array plates to be used 

in genotyping.  

2.3.1.2 Taqman genotyping 

Taqman genotyping is based on the principle of allele-specific fluorescence emission during 

a polymerase chain reaction (PCR) (Shen, Abdullah et al. 2009). In each Taqman genotyping 

assay, there is a forward primer and a reverse primer, which bind either side of the SNP to 

be genotyped, allowing amplification of that region during PCR. Each assay also contains 

two allele-specific probes labelled at the 5’ end with a different fluorophore (FAM or VIC). 

A quencher which prevents the fluorophore from fluorescing is bound at the 3’ end. During 

the denaturation step of PCR, these probes can bind to their complementary sequence. 

During the DNA replication step, the exonuclease activity of the DNA polymerase degrades 

the bound probe, liberating the fluorophore from the quencher and fluorescence will be 

emitted. Therefore, if both fluorophores fluoresce the sample is heterozygous. Whereas 

should there only be a signal from one of the fluorophores, the sample is homozygous for 

the corresponding allele.   

 

The make-up of the reaction mix depended upon the buffer available. The reaction 

volumes used with the different buffers are shown below (KAPA buffer Table 5; Taqman 

genotyping mastermix Table 6). In both cases, 1.8 µl of the reaction mix was added per 

well.  The plate was then centrifuged and the PCR performed using the conditions shown in 

Table 7.  
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Table 5: Per-plate master-mix composition for Taqman assays performed KAPA buffer 

The volume of SNP specific assay (which contains the primers and probes) depends on whether it is 
supplied as 40x or 80x. Therefore, the volume of water used also varies accordingly. Sigma-Aldrich- 
St Louis, MO, USA; Applied Biosystems, Life Technologies - Carlsbad California, USA. Kapa Biosystems 
– Cape Town, South Africa.  
 
Table 6: Per-plate master-mix composition for Taqman assays performed with Taqman genotyping 
buffer 

The volume of SNP specific assay (which contains the primers and probes) depends on whether it is 
supplied as 40x or 80x. Therefore, the volume of water used also varies accordingly. Sigma-Aldrich- 
St Louis, MO, USA; Applied Biosystems, Life Technologies - Carlsbad California, USA. 
 
Table 7: PCR conditions for Taqman genotyping assays 

 

                                                                                                                     
      
                                                                                                      
                                                                    

 
 

2.3.1.3 KASPar genotyping 

KASPar genotyping utilises Kompetitive Allele Specific PCR (KASP) technology (Cuppen 

2007). Two components are required for this, the SNP-specific KASP assay mix and the 

general KASP Master Mix used for all KASPar assays. The KASP assay mix contains two allele 

specific forward primers, each with a differing 5’ tail sequence and a common reverse 

primer. The KASP Master Mix contains two fluorescence resonance energy transfer (FRET) 

reporter cassettes. One strand of each FRET reporter cassette has a sequence identical to 

one of the 5’ tails on the allele-specific primers, with either fluorophore FAM or HEX bound 

at the 5’ end. The complementary sequence has a quencher bound at the 3’ end and 

therefore the fluorophore cannot fluoresce. During the PCR reaction, the allele-specific 

forward primers bind if the corresponding allele is present in the template DNA, resulting in 

amplification of the SNP-containing region. In subsequent rounds of PCR, the 5’ tail 

sequence of the forward primer is amplified and complementary sequence generated. The 

fluorophore-labelled component of the FRET reporter cassette can now bind its 

Reagent Volume (µl) 

KAPA buffer (Kapa Biosystems) 
Nuclease free water (Sigma- Aldrich) 
40x/80x SNP specific assay (Life Technologies) 
High rox (Kapa Biosystems) 

410 
377.1 / 387.4 

20.5 / 10.3 
16.4 

Reagent Volume (µl) 

Taqman genotyping buffer (Applied Biosystems) 
Nuclease free water (Sigma-Aldrich) 
40x/80x SNP specific assay (Applied Biosystems) 

410 
389.5 / 399.8 

20.5 / 10.3 

Temperature  Time 

50
o
C  

95
o
C 

95
o
C 

60
o
C 

2 mins 
10 mins 

15 s 
1 mins 

40 cycles 
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complementary sequence, releasing it from the quencher, allowing fluorescence to be 

emitted.  

The reagent volumes used per-plate are stated below (Table 8) with 1.8 µl of reaction mix 

added per well. PCR was performed with the conditions shown in Table 9. Where distinct 

genotyping clusters were not observed, three further PCR cycles were performed 

(conditions shown in Table 10). Where using 1.8 µl of reaction mix per-well of reaction mix 

did not give acceptable results, the assay was repeated using 3.6 µl of reaction mix. 

 

Table 8: Per-plate master-mix composition for KASPar assays 

     

                                                            
                                                        
 
 
Sigma-Aldrich - St Louis, MO, USA. 
 
Table 9: PCR conditions for KASPar genotyping assays 
 

 

 

 
 
              
 
    
Table 10: PCR conditions for when further cycles are required for KASPar assays. 

 

 
 

2.3.1.4 Signal detection during Taqman and KASPar genotyping 

Both Taqman and KASPar genotyping assays are “end-read” methods where the 

fluorescent signal is detected following completion of the PCR. This was performed using 

the 7900HT Fast Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad 

California, USA) with the Sequence Detection System (SDS v2.1) software (Applied 

Biosystems, Life Technologies, Carlsbad California, USA).  The fluorescent dyes used in the 

genotyping assays have different excitation and emission wavelengths allowing them to be 

differentially detected. Genotypes were assigned by the software based on the fluorescent 

signal and these were checked manually. An example allele discrimination plot is shown in 

Figure 8. Each point on the scatterplot represents a well in the 384-well plate (DNA sample 

or no-template control (NTC)).  

Reagent Volume 1.8 µl per-well/ 
3.6  µl  per-well (µl)  

KASP master mix 
Nuclease free water (Sigma-Aldrich) 
KASP assay mix 

422.4 / 844.8 
422.4 / 844.8 

11.7 / 23.4 

Temperature  Time 

94
o
C  

94
o
C 

65
o
C-57

o
C 

 
 
94

o
C 

57
o
C 

15 mins 
20 s 
60 s 

 
 

20 s 
60 s 

Temperature  Time 

94
o
C 

57
o
C 

20 s 
60 s 

26 cycles 

cycles 

10 cycles 

cycles 

 

3 cycles 
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Figure 8: Example allele discrimination plot 

 

The plot was generated when genotyping one NPHSII plate for rs12526453 using a KASPar assay. 
Signal from the VIC dye has been plotted on the x axis and from the HEX dye on the y axis. Blue 
points represent samples with a strong HEX signal only and are assigned as homozygous for the 
corresponding allele (in this case C). Similarly, red points represent samples with a strong VIC signal 
only and are assigned homozygous for the other allele (in this case G). Samples with both a strong 
VIC and HEX signal are heterozygous and are represented by green dots. Black squares represent no 
template control (NTC) wells and black “X”s represent wells were the signal did not meet the 
significance threshold for any genotype and thus are unassigned.  
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2.3.2 Sanger sequencing 

On occasion it was necessary to confirm the genotypes determined using Sanger 

sequencing (for example rare homozygotes). To do this the region surrounding the SNP was 

amplified by PCR. The reaction conditions are shown in Table 11. To amplify the sequence 

surrounding two SNPs in APOE (rs7412 and rs429358), presence of ethylene glycol in the 

reaction was required. The required reagent volumes for this are shown in Table 12. The 

PCR conditions used in the PCRs are shown in Table 13. Following PCR, the products were 

purified using the GFX PCR and Gel Band Purification kit (GE Healthcare, Thermo Fisher 

Scientific Waltham, MA, USA), according to the manufacturer’s instructions. Purified PCR 

products were sent for Sanger sequencing along with the required primers to either 

Eurofins (Ebersberg, Germany) or Source Bioscience (Cambridge, UK).  

Table 11: Sequencing pre-amplification reaction mix (for SNPs not in APOE)   

 

 

 

     

                     
 
Sigma - Sigma-Aldrich, St Louis, MO, USA; Qiagen - Hilden, Germany. 

 
Table 12: Sequencing pre-amplification reaction mix for SNPs in APOE  

 

 

 

 

 
                                 
 
Sigma - Sigma-Aldrich, St Louis, MO, USA; Qiagen - Hilden, Germany. 

 

Table 13: PCR cycling conditions for sequencing pre-amplification reactions 
 
 

 

 

 

 
 
 
 
 

Reagent Volume (µl) 

Multiplex PCR mastermix (Qiagen) 
Nuclease free eater (Sigma-Aldrich) 
Forward sequencing primer 
Reverse sequencing primer 
Template DNA (5 ng/µl) 

10 
6 
1 
1 
2 

20 

Reagent Volume (µl) 

Multiplex PCR mastermix (Qiagen) 
Nuclease free water (Sigma Aldrich) 
Forward sequencing primer 
Reverse sequencing primer 
Ethylene glycol (Sigma-Aldrich) 
Template DNA (5 ng/µl) 

10 
4 
1 
1 
2 
2 

20 

Temperature  Time 

95
o
C  

94
o
C 

65.5
o
C 

72
o
C 

72
o
C 

15 mins 
1   mins 
1   mins 
1   mins 
5   mins 

35 cycles 
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2.3.3 Cardiac Risk Prediction Array 

The cardiac risk prediction array was developed by Randox Laboratories Ltd (Crumlin, Co 

Antrim, UK). This was as part of a collaboration between the Centre for Cardiovascular 

Genetics at UCL, Storegene (London, UK) and Randox Laboratories Ltd which aims to 

provide an estimate of CHD risk based on a combined CRF and genetic risk score. The array 

itself simultaneously genotypes 19 CHD risk SNPs (Chapter 3.1, Table 23) and is based on 

Randox’s Biochip Array Technology. The procedure involves amplifying the region 

surrounding the target SNPs in an allele-specific manner in a multiplex PCR. The PCR 

products are detected by hybridisation to spatially tethered probes on the biochip array 

surface. Each position on the biochip array corresponds to a specific allele and genotypes 

are determined using the Evidence Investigator Analyser (Crumlin, Co Antrim, UK). The 

array was used to genotype participants in the self-management intervention (SMI) plus 

risk arm of the CoRDia study (Chapter 5). The protocol was performed according to the 

manufacturer’s instructions.  
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2.4 In vitro functional techniques 

2.4.1 Cell culture  

Cell culture was performed under sterile conditions. Hepatocellular carcinoma cell lines 

(Huh-7 and HepG2) were grown in T175 flasks. Both require Dulbecco’s Modified Eagle 

Medium (DMEM) with serum. This was prepared by adding 50 ml of heat inactivated foetal 

bovine serum (FBS) to 450 ml DMEM (i.e. to give overall 10% FBS content).  Both cell lines 

are strongly adherent and where necessary were removed by trypsin treatment. To do this, 

the cells were washed in 1x phosphate buffered saline (PBS) and removed from the flask 

surface by treating with approximately 4 ml of 0.25% trypsin-Ethylenediaminetetraacetic 

acid (EDTA) solution for 3-5 minutes. The trypsin was deactivated by the addition of 

approximately 10 ml of DMEM medium. 

 

2.4.2 Electrophoretic mobility shift assay 

The electrophoretic mobility shift assay (EMSA) is used to study DNA-protein interactions in 

vitro (Hellman and Fried 2007). Labelled probes corresponding to a genomic region are 

incubated with nuclear extract from a relevant cell line. This mix in then run on a 

polyacrylamide gel. The underlying principle is that unbound probe will move more quickly 

through the gel than DNA-protein complexes. Such complexes will form discrete bands on 

the gel when it is visualised (e.g. using chemiluminescence for biotin labelled probes). In 

order to study allele-specific binding, two probe sets (one corresponding to each allele) are 

designed, the assay performed for both and the band pattern produced compared. 

Competitor EMSAs can be used investigate proteins that might be involved in the DNA-

protein complex. This is carried out by adding a much greater concentration of unlabelled 

probe which has the protein of interest’s consensus binding sequence. Should the EMSA 

bands observed in a competitor EMSA be much weaker or absent (i.e. are “competed out”), 

this indicates that the protein under investigation is binding to the genomic sequence of 

interest. This technique was used to study SNPs located at the CHD risk locus on 

chromosome 21q22.  

2.4.2.1 Extraction of nuclear proteins 

Cells were grown to near confluence in T175 flasks and trypsinised as previously described 

(section 2.4.1). The cells were spun at 1500 rpm for 4 minutes at 4oC and the pellet re-

suspended in5 ml ice-cold Buffer A (components of this shown in Table 14 with 50 µl of 

protease inhibitor 100X added). The mix was then left on ice for ten minutes and thereafter 
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was spun at 1500 rpm for 4 minutes at 4oC. The pellet was re-suspended in 2 ml Buffer A 

(with 20 µl of protease inhibitor 100X added) and vortexed for 30 seconds. This mix was 

spun at 13,000 rpm for 2 minutes at 4oC.  The pellet was suspended in 800 µl Buffer C 

(components shown in Table 15) and 16 µl of protease inhibitor (100X). The mix was 

vortexed for 1 minute then left on ice for 10 minutes and this was repeated three times. 

The mix was then spun at 13,000 rpm for 50 minutes at 4oC.  The supernatant containing 

the nuclear proteins was then divided into 50 µl aliquots which were stored at -80oC until 

required.  

 
Table 14: Components of Buffer A 

Reagent Volume 

10 mM HEPES (pH 7.9 4
o
C)  

1.5 mM MgCl2  

10 mM KCl 
dH20 

1ml 
150 µl 
500 µl 
to 100 ml 
 

HEPES= 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. dH20=distilled water. 
 

Table 15: Components of Buffer C 

Reagent Volume 

20 mM HEPES pH 7.9 
25% v/v glycerol 
0.42 M NaCl 
1.5 mM MgCl2  

0.2 mM EDTA 
dH20 

2 ml 
50 ml 
10.5 ml 
150 µl 
40 µl 
to 100 ml 
 

HEPES= 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. dH20=distilled water. 
EDTA= Ethylenediaminetetraacetic acid 
 

 

2.4.2.2 Probe preparation 

The probes used for the EMSAs described herein were 25 bases in length, with the SNP 

position in the middle. Two probes, one corresponding to each allele, were designed for 

each SNP (and ordered from Eurofins, Ebersberg, Germany). The probe sequences designed 

for SNPs at the 21q22 CHD risk locus are given in Table 16. The probes were reconstituted 

in nuclease-free water (Sigman-Aldrich, St Louis MO, USA) according to the manufacturer’s 

instructions.  
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Table 16: EMSA probe sequences for SNPs at the 21q22 CHD risk locus 

The SNP position is underlined. EMSA=electrophoretic mobility shift assay.  
 

To enable detection of DNA-protein complexes, a biotin label was attached to the 3’ end of 

all probes. The reaction mixture used for this is shown in Table 17. The reactions were 

incubated at 37oC for 90 minutes. Thereafter the TdT enzyme was removed adding an 

equal volume of chroloform : isoamyl alcohol (24:1), vortexing the mix briefly and spinning 

for 2 minutes at 13,000 rpm. The aqueous DNA containing phase was removed and stored. 

Table 17: Biotinylation reaction mix per 30 µl reaction 

 

 

 

 

 
Thermo Fisher Scientific - Waltham, MA, USA; Sigma- Aldrich - Sigma-Aldrich, St Louis, MO, USA. 
 

The biotinylated probes were then annealed to form double-stranded probes. To do this 

equal volumes of the complementary probes were added to 1/10th volume of 10X 

annealing buffering (made up of 200 mM Tris pH 7.6, 100 mM MgCl2 and 100 mM NaCl) 

and vortexed gently. An annealing reaction was then performed using the conditions 

shown in Table 18.  

SNP - Allele Sequence 

rs9982601 – C CACAGGGCTGCTCCATGGCCTTGGA 

rs9982601 – C  TCCAAGGCCATGGAGCAGCCCTGTG 

rs9982601 – T  CACAGGGCTGCTTCATGGCCTTGGA 

rs9982601 – T  TCCAAGGCCATGAAGCAGCCCTGTG 

rs28451064 – G  CCAGGCCAAAGTGGACACCAAATAC 

rs28451064 – G  GTATTTGGTGTCCACTTTGGCCTGG 

rs28451064 – A  CCAGGCCAAAGTAGACACCAAATAC 

rs28451064 – A  GTATTTGGTGTCTACTTTGGCCTGG 

rs9980618 – C  AGGGTGTCTGCTCCAGCACACCATG 

rs9980618 – C  CATGGTGTGCTGGAGCAGACACCCT 

rs9980618 – T  AGGGTGTCTGCTTCAGCACACCATG 

rs9980618 – T CATGGTGTGCTGAAGCAGACACCCT 

rs60687299 – T  CACTGTATTGAATACTGGAGGCAAC 

rs60687299 – T  GTTGCCTCCAGTATTCAATACAGTG 

rs60687299 – C CACTGTATTGAACACTGGAGGCAAC 

rs60687299 – C  GTTGCCTCCAGTGTTCAATACAGTG 

rs9977419 – T  TGTGATAGTGAGTGAGTTCTTACGA 

rs9977419 – T  TCGTAAGAACTCACTCACTATCACA 

rs9977419 – A    TGTGATAGTGAGAGAGTTCTTACGA 

rs9977419 – A  TCGTAAGAACTCTCTCACTATCACA 

rs9977093 – G CCATGCAGAACTGTGAATCAATTAA 

rs9977093 – G TTAATTGATTCACAGTTCTGCATGG 

rs9977093 – A CCATGCAGAACTATGAATCAATTAA 

rs9977093 – A TTAATTGATTCATAGTTCTGCATGG 

Reagent Volume (µl) 

5X TdT buffer (Thermo Fisher Scientific) 
Biotin-11-dUTP (Thermo Fisher Scientific) 
TdT enzyme (Thermo Fisher Scientific) 
H20 (Sigma-Aldrich) 
DNA probe  

6  µl  
3  µl  
0.3 

17.7 
3   

30 

http://www.broadinstitute.org/mammals/haploreg/detail_v2.php?query=&id=rs9980618
http://www.broadinstitute.org/mammals/haploreg/detail_v2.php?query=&id=rs9980618
http://www.broadinstitute.org/mammals/haploreg/detail_v2.php?query=&id=rs9980618
http://www.broadinstitute.org/mammals/haploreg/detail_v2.php?query=&id=rs9980618
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Table 18: Annealing reaction conditions 

 

 

 

 

 

2.4.2.3 EMSA binding reactions 

Double-stranded biotinylated probes were incubated with nuclear extract. The reaction 

volumes used are shown in Table 19. Two components of the reaction, poly(deoxyinosinic-

deoxycytidylic) acid sodium salt (dIdC) and random sequence oligonucleotides are included 

as substrates for non-specific DNA binding by proteins in the nuclear extract. All 

components were combined except for the biotinylated probe and this mix incubated at 

4oC for 30 minutes. Thereafter the biotinylated probes were added and the reaction 

incubated at 25oC for 50 minutes.  

Table 19: EMSA binding reaction composition 

10X binding buffer is 100mM Tris and 500mM KCl, pH 7.5. didC= poly(deoxyinosinic-deoxycytidylic) 
acid sodium salt. dH20=distilled water. Thermo Fisher Scientific - Waltham, MA, USA. 

2.4.2.4 EMSA Polyacrylamide gel electrophoresis 

To separate DNA-bound probes from free probes, the EMSA binding reaction was run on a 

6% polyacrylamide gel (1 x1.5 mm). The volume of regents used to prepare the gel is shown 

in Table 20. Gels were left to set overnight. Prior to running EMSA binding reactions, 15 µl 

of loading buffer (50% v/v 10X xylene cyanol CFF loading buffer/10X bromophenol blue 

loading buffer) was run at 120 V and 4oC for approximately 90 minutes in 0.5X TBE (Tris-

Borate-EDTA) buffer.  

 

Temperature  Time 

95
o
C  

95
o
C-75

o
C 

 
 
 
4

o
C 

5 mins 
           
 
 
 
HOLD 

Reagent Non-competitor EMSA 
Volume (µl) 

Competitor EMSA 
Volume (µl) 

10X Binding buffer 
dIdC 
50 mM MgCl2 (Thermo Fisher Scientific) 

Random sequence 
dH20 
Nuclear extract 
Competitor probe 
Biotinylated probe 

2 
1 

0.5 
1.5 
10 
3 
- 
2 

20 

2 
1 

0.5 
1.5 
6 
3 
4 
2 

20 

 
25 cycles 
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EMSA binding reactions were mixed with 5 µl loading buffer and 16-20 µl of this was loaded 

on the gel, ensuring an equal volume was loaded into each well. The gel was run for 

approximately 4 hours at 120 V and 4oC.  

Table 20: EMSA polyacrylamide gel reagent volumes 

 

 

 

 

TBE=Tris Borate EDTA, APS= Ammonium Persulphate, TEMED=Tetramethylethylenediamine. 
dH20=distilled water. Severn Biotech – Kidderminster, UK.  Sigma-Aldrich- St Louis, MO, USA. 
EMSA=electrophoretic mobility shift assay. 

 

 

2.4.2.5 EMSA blotting and detection 

The contents of the gel were transferred on to a hybond-N+ membrane using Southern 

transfer (Southern 1975). To fix the DNA-protein complexes to the membrane, cross-linking 

was performed at ~254 nm for 3 minutes using the UV Stratalinker2400 (Stratagene, La 

Jolla, CA, USA). Detection was carried out using chemiluminescence with the LightShift 

Chemiluminscent EMSA kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions. The membrane was then exposed to X-ray for a minimum of 

one minute. The film was developed according to the manufacturer’s instructions using the 

SRX-101A film processor (Konica Minolta Medical Imaging, Wayne, NJ, USA).  

 

Reagent Volume  

37.5: Acrylamide (Severn Biotech) 
10X TBE 
TEMED (Sigma-Aldrich) 

10 % APS  
dH20 

12 ml 
6 ml 
50 µl 

500  µl 
47 ml 
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2.4.3 Luciferase assay 

The luciferase dual-reporter assay system (Promega) can be used to quantitatively analyse 

the impact of genetic variation on mammalian gene expression (Sherf, Navarro et al. 1996; 

Smith, D'Aiuto et al. 2008; Khamis, Palmen et al. 2015). The system involves transfecting a 

relevant cell line with two vectors, each containing the sequence corresponding to one of 

the reporter genes (firefly luciferase gene (luc+) and Renilla luciferase gene). Gene 

expression is quantified by measuring the luminescent signal generated by the reporter 

enzymes in the presence of their substrate. The ratio of luc+ expression to Renilla luciferase 

expression is then calculated and compared between experimental conditions (e.g. 

comparing two vectors with different alleles for single SNP). This technique was used to 

assess the impact of one SNP, rs28451064 on gene expression.  

2.4.3.1 Cloning  

To generate the required vectors, the sequence surrounding rs28451064 was cloned into 

the pGL3-promoter vector (Figure 9), downstream of the luc+ gene between the SalI and 

BamHI restriction sites. This was carried out using the InFusion kit (Clonetech Laboratories, 

Mountain View, CA, USA). Here, the primers used to amplify the region surrounding the 

SNP have sequences corresponding to the restriction enzyme sites (SalI and BamHI) in the 

vector at the 5’ end. Thus amplified product containing the SNP sequence can be 

incorporated into the pre-digested vector by homologous recombination. The primer 

sequences surrounding the SNP were designed using primer3 (http://primer3.ut.ee/) and 

the restriction fragment sequence added to the 5’ end were designed using the Clontech 

tool (http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do) (Table 22). The 

genomic fragment was amplified using the Phusion High Fidelity PCR kit (New England 

Biolabs, Ipswich, MA, USA), according to the manufacturer’s instructions. The pGL3-

promoter vector was digested using the conditions listed in Table 21 and was gel purified 

using the GFX PCR and Gel Band Purification kit (GE Healthcare, Thermo Fisher Scientific 

Waltham, MA, USA) according to the manufacturer’s instructions. The cloning ligation 

reaction was then performed with the InFusion kit according to the manufacturer’s 

instructions.  

 

 

 

 

 

http://primer3.ut.ee/
http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do
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Table 21: Reaction components for plasmid digression with restriction enzymes 

Component Volume (µl) 

Plasmid (400 ng/µl) 
SalI 
BamHI 
10x Restriction Enzyme Buffer 3.1 
dH20 

2.5 
2.5 
2.5 
5 

37.5 
50 

Enzymes and buffers supplied by New England Biolabs (Ipswich, MA, USA). dH20=distilled water.  
 
 
Figure 9: Schematic diagram of the pGL3 promoter vector 

  

Reproduced with permission from Promega Corporation.  
 

The cloned vector was then transformed into E.coli DH5α cells (New England Biolabs, 

Ipswich, MA, USA) by mixing a 50 µl aliquot of cells with the InFusion reaction mix and 

leaving this on ice for 20-30 minutes. The mix was then incubated at 42oC for one minute 

and put back on ice for two minutes. The mix was then added to 500 µl of pre-warmed 

Lysogeny broth (LB) and incubated for one hour, shaking at 37oC.  Thereafter, this mix was 

spread on to an LB agar plate. Plates were incubated overnight at 37oC. The plasmid DNA 

was then purified from a single colony using the QIAprep Spin MiniPrep kit (Qiagen, Hilden, 

Germany), according to the manufacturer’s instructions. The enhancer region of the 

purified plasmid was sequenced using Sanger sequencing (as previously described in 

section 2.3.2, using a primer with a sequence corresponding to the region of the plasmid 

the insert was cloned into) to check that the insert was present and to determine which 

allele was present. To generate a plasmid stock with a high concentration a maxiprep was 

then performed using the GenEluteTM HP Plasmid Maxiprep kit  (Sigma-Aldrich, St Louis, 
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MO, USA), according to the manufacturer’s instructions. In order to generate a plasmid 

with the other allele at the rs28451064 position, the QuickChange Lightning Site-Directed 

Mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA) was used, according to the 

manufacturer’s instructions. The primers for this were designed using the online tool 

(www.genomics.agilent.com) (Table 22). The plasmid DNA was purified and sequenced to 

check the required base change had been made as previously described (section 2.3.2). 

Thereafter, this fragment was re-cloned into a fresh pGL3-promoter vector using the 

InFusion kit and the resulting plasmid DNA was purified and concentrated as described in 

the preceding paragraph.  

 

Table 22: Primers used to generate pGL3promoter vectors with the rs28451064 insert 

SDM=site directed mutagenesis. The sequence of the cloning primers containing the BamHI and SalI 
restriction sites in the pGL3promoter vector is shown in red.  
 

2.4.3.2 Transfection and luciferase assay 

Cells were grown to >90% confluence, trypsinised as previously described (section 2.4.1) 

and counted using the Advanced Detection and Accurate Measurement (ADAM) cell 

counter and the Accuchip kit (Digital Bio Pharm, Cambridge UK). Cells were then plated into 

a 96 well plate at different concentrations (1x105/ml-5x105/ml) and left for approximately 

24 hours. The plate with cells that were ~70-90% confluent were selected to perform the 

assay with.  

 

Transfection was performed using either Lipofectamine 2000 or Lipofectamine 3000 

(Invitrogen, Life Technologies, Carlsbad CA, USA) according to the manufacturer’s 

instructions. Four control vectors were used: puc19, which does not contain the luc+ gene, 

the pGL3control plasmid (containing the luc+ gene, SV40 bacterial promoter and enhancer), 

pGL3 promoter plasmid (containing the luc+ gene, SV40 bacterial promoter but not the 

enhancer) and the pGL3-basic plasmid (which does not contain the SV40 bacterial 

promoter or enhancer but does have the luc+ gene). Each vector was added to twelve 

wells. The plate was then left for approximately 48 hours at 37oC. The pRL-TK plasmid 

which contains the Renilla luciferase gene was co-transfected into all wells except those 

with puc19.  

Primer Sequence 

rs28451064 Cloning forward primer AAATCGATAAGGATCCCCAGGCACCAGGTAGACTTA 

rs28451064 Cloning reverse primer AAGGGCATCGGTCGACTCTCAGAACTTTACAGAACGCG 

SDM Forward primer CTGGGAGTATTTGGTGTCTACTTTGGCCTGGTAAATT 

SDM Reverse Primer AATTTACCAGGCCAAAGTAGACACCAAATACTCCCAG 

http://www.genomics.agilent.com/
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To determine levels of luciferase activity, luminescence was detected using the Tropix 

TR717 Microplate Luminometer with the WinGlow software (Applied Biosystems, Life 

Technologies, Carlsbad, CA, USA) and the Dual Luciferase assay kit (Promega, Madison, WI, 

USA) according to the manufacturer’s instructions. The ratio of firefly luciferase readings : 

Renilla luciferase readings was then compared between the different constructs using 

paired t-tests.  
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2.5 Statistical analysis 

2.5.1 General statistical analysis 

All statistical analyses were performed using R (R Core Team 2015), unless otherwise 

stated. Meta-analyses were performed using the R package “metafor” using either a fixed 

effects (FE) or random effects (RE) (DerSimonian Laird) model (Viechtbauer 2010). Where 

specific packages have been used to generate figures, this has been indicated. Power 

calculations for genetic association studies were performed using QUANTO software 

(Gauderman and Morrison 2001). 

2.5.2 Calculation of CHD risk prediction scores 

2.5.2.1 CHD GSs 

Unweighted GSs were calculated by adding the number of risk alleles present together. 

Weighted GSs were calculated by multiplying the number of risk alleles at each risk locus by 

the natural log of the odds ratio (OR) associated with each risk allele (i.e. an additive 

model). If a recessive model was used, homozygotes for the protective allele and 

heterozygotes were assigned zero and homozygotes for the risk allele were assigned the 

natural log of the OR associated with that genotype. These individual “SNP scores” were 

then added to together to give an overall GS.   

 

2.5.2.2 Framingham risk score 

The Framingham risk score was calculated using the equations given in (Wilson, D'Agostino 

et al. 1998). To combine the Framingham CRF risk with genetic risk, the population mean 

adjusted Framingham score was combined with the population mean adjusted GS, which is 

calculated by subtracting the mean population GS based on population risk allele 

frequencies (RAFs) from the individual’s GS. This value was then exponentiatied to give the 

relative odds ratio (OR) for CHD. Combined ten-year CHD risk was then calculated by 

incorporating this into the Framingham score survival function (Wilson, D'Agostino et al. 

1998).  

2.5.2.3 UK Prospective Diabetes Study risk score 

The UK Prospective Diabetes Study (UKPDS) risk score was calculated using the equations 

given in (Stevens, Kothari et al. 2001) to calculate the value “q” from the CRFs values 

present. To combine the GS with the UKPDS score, the relative OR for CHD was converted 

to relative risk (incidence of CHD in this group was set at 0.3 – calculated using data 
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published by the British Heart Foundation (Scarborough, Wickramasinghe et al. 2011)) and 

included as a term in the calculation of “q”. Combined ten-year CHD risk could then be 

calculated by exponentiating the product by (1-duration of T2D^10)/1-duration of T2D) and 

subtracting it from one.  

 

2.5.2.4 QRISK2 risk score 

QRISK2 was calculated under licence. To combine the QRISK2 score with the GS, the QRISK2 

risk was converted to the natural log scale and added to the centred GS (using the 

population GS) to give value a. This value was then converted back to ten-year CHD 

probability using the equation: 1/1+e^(-a).  

 

2.5.3 Metrics used to assess risk prediction 

2.5.3.1 Calibration 

“Calibration” refers to how well the predicted event rate determined using a risk score 

corresponds to the observed event rate. This was assessed with the Hosmer-Lemeshow 

test, which is used to determine the “goodness of fit” of a logistic regression model 

(Hosmer and Lemeshow 1980), such as those used in risk prediction. The sample is divided 

into deciles according to the risk score values. The expected number of events and 

observed number of events in the cohort is then determined and a chi-squared test 

performed using these values. Ten degrees of freedom were used rather than eight as the 

risk score values and the disease incidence data were obtained independently. A large p-

value indicates that the predicted and observed rates are similar and thus that the model 

used is well calibrated. Hosmer-Lemeshow tests were performed in R using the 

hoslem.test() function which is part of the “ResourceSelection” package (Lele, Keim et al. 

2014). The p-values were calculated from the Hosmer-Lemeshow chi-squared value using 

the code 1-pchisq(q,df), where q=chi-squared statistic determined in the Hosmer-

Lemeshow test and df=the number of degrees of freedom, which was set at ten.  

2.5.3.2 Discrimination 

The ability of a risk score to discriminate between those who did and did not have an event 

was assessed using a receiver operator characteristic (ROC) curve. This is a plot of the true 

positive rate (sensitivity) against the false positive rate (1-specificity)(Fawcett 2006). Each 

participant in a data set has a risk score value and a known outcome. As the outcome is 

binary, whether the risk score value predicts an event or not depends on the assigned 



74 
 

threshold. Therefore, at a particular threshold the true positive and false positive rates can 

be calculated. The ROC curve is a graphical summary of the true and false positive rates at 

all possible thresholds. The area under the ROC curve (AUROC) can then be calculated and 

this is a measure of how well the risk model discriminates between individuals. An AUROC 

of 0.5 indicates that the model discriminates poorly, as this value would be expected for a 

binary outcome by chance whereas an AUROC of 1 indicates perfect discrimination. 

However, being a rank-based measure the AUROC it can be relatively insensitive to the 

addition of robustly associated risk factor, with only a small increase in the AUROC 

observed (ref-Cook).  ROC curves were made and AUROC calculated using the “pROC” 

package in R (Robin, Turck et al. 2011). AUROCs were compared using De Long’s test. 

 

2.5.3.3 Reclassification 

As discussed in Chapter 1.6.5, CHD risk prediction scores are used to categorise individuals 

into low or high risk groups. Whether addition of a novel marker to an established risk 

score improves the classification of individuals can be assessed using the net 

reclassification index (NRI) (Pencina, D'Agostino et al. 2008). In order to improve risk 

classification in those who have had an event, risk scores should increase such that those 

who were classified in the low risk group previously now fall into the high risk group. 

Conversely to improve classification in the non-event group, risk scores should be lower 

leading to individuals who were classified as high risk moving into the low risk category. 

The NRI is the sum of the “event NRI” and the “non-event NRI”.  The event NRI is calculated 

by dividing the number of individuals (who had events) who moved up a risk category by 

the total number of events and subtracting the number of individuals (who had events) 

who moved down a risk category divided by the number of events. The non-event NRI is 

calculated in the same manner for those who did not have events. The NRI itself is then 

calculated by combining these values and as such is not itself a proportion but a unit-less 

statistic (Leening, Vedder et al. 2014). NRI is sensitive to calibration and give misleading 

results for poorly calibrated models(Hilden and Gerds 2014). NRI was calculated using the 

reclassification() function of the R package “PredictABEL”(Kundu, Aulchenko et al. 2011). 
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2.5.4 Analysis of metabolomics data 

Metabolomic traits were determined using a nuclear magnetic resonance (NMR) based 

platform. All metabolomic measures were adjusted for age, age2 and sex and an inverse 

rank transformation was used prior to association analysis (Blom 1958). This was 

performed using a linear model, adjusted for lipid lowering medication use, in each cohort 

individually. Separate analysis was performed for those with and without prevalent T2D. 

The results from the different studies were combined in a FE meta-analysis weighted by 

sample size. To account for multiple testing and the correlation between the metabolomic 

traits, p-values were adjusted using the false discovery rate (FDR) from Benjamini-

Hochberg-Yekutieli (Benjamini and Yekutieli 2001). An FDR adjusted p-value p<0.05 was 

considered to be statistically significant. 
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3 Assessment of a CHD GS in the UK and other populations 
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3.1 Introduction 

Data from twin studies has estimated the heritability of CHD mortality to be 40-60% 

(Zdravkovic, Wienke et al. 2002; Wienke, Herskind et al. 2005) and dozens of loci have been 

robustly associated with the disease (Casas, Cooper et al. 2006; Deloukas, Kanoni et al. 

2013). This has led to development of GSs where a number of risk variants are combined to 

give an estimate of genetic CHD risk. In order to take account of the different impact that 

individual risk loci have on CHD risk, each variant can be weighted using its effect size 

rather than simply constructing a score through allele counting (i.e. an unweighted GS). In 

addition to the scientific value of developing a CHD GS, they can also provide a tool through 

which genetic CHD risk can be incorporated into risk prediction in a clinical setting. An 

individual’s GS can be adjusted for the population GS (based on the RAFs present in the 

population) and then be combined with a CRF score such as the Framingham score or 

QRISK2 (Hippisley-Cox, Coupland et al. 2008) to give an overall CHD risk estimate (Chapters 

2.5.2.2and 2.5.2.4).  

 

Nineteen SNPs from candidate gene studies and GWASs were selected from the literature 

for inclusion in a CHD GS. The details are given in Table 23. Eight of the SNPs are non-

synonymous, seven are located in introns, one is located in a promoter, another in a 3’-

untranslated region (3’-UTR) and two are intergenic. The list was finalised in 2010. Since 

then the field has developed rapidly, most notably with the publication of the 

CARDIoGRAM GWAS results (Schunkert, Konig et al. 2011) and the subsequent 

CARDIoGRAMplusC4D meta-analysis (Deloukas, Kanoni et al. 2013) as is discussed in 

section 3.2.3.1 of this Chapter. Thirteen of the 19 GS SNPs are found in CHD risk loci/genes 

identified in the CARDIoGRAMplusC4D meta-analysis, although not all of these SNPs are in 

LD with the corresponding lead SNP. All SNPs were treated additively in the GS, except for 

rs1799983 which was treated in a recessive manner, due to the association found in the 

source publication. A kit to genotype all 19 SNPs simultaneously was developed (the 

Randox Cardiac Risk Prediction array, Chapter 2.3.3) to enable the GS to be used in a 

clinical context.  
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Table 23: SNPs included in the CHD risk GSs.   

SNPs marked with an asterisk (*) are included in both the 19 and 13 SNP GS. 
+
rs599839 was 

genotyped in the studies herein instead of rs646776, r
2
=0.95 in Europeans.

 ++
For rs7412, the 

protective SNP is included in the GS. LD taken from the, 1000 Genomes phase 1 EUR data.  OR=odds 
ratio. GS= gene score.  3’-UTR= 3’-untranslated region. LD=linkage disequilibrium.  

 

The first aim of this study was to investigate the use of the 19 SNP CHD GS in CHD risk 

prediction in the UK population using the prospective study, NPHSII. Use of the 19 SNP GS 

was also assessed in both the South Asian and Afro-Caribbean populations using case-

control studies from Pakistan and Guadeloupe. A GS comprising only the 13 SNPs located in 

confirmed CHD risk loci/genes was also assessed in the three ethnic groups to compare its 

performance to that of the 19 SNP GS. A further aim of the study was to perform a 

literature search to identify variants associated with CHD that would be suitable for future 

GSs. Following on from this the final aim was to update the CHD GS using the results of the 

literature search and to assess whether this improved its performance.  

Gene  SNP Location Risk Allele OR Reference 

APOE* rs7412 C158R T
++

 0.80 Bennet, Di Angelantonio et al. 
(2007) 

APOE* rs429358 C112R C 1.06 Bennet, Di Angelantonio et al. 
(2007) 

MIA3* rs17465637 Intronic C 1.14 Samani, Erdmann et al. (2007) 

MRAS* rs9818870 3’-UTR T 1.15 Erdmann, Grosshennig et al. 
(2009) 

DAB2IP rs7025486 Intronic A 1.16 Harrison, Cooper et al. (2012) 

CXCL12* rs1746048 Intergenic C 1.17 Samani, Erdmann et al. (2007) 

APOA5* rs662799 Promoter 
Variant 

G 1.19 Sarwar, Sandhu et al. (2010) 

SORT1*
+
 rs646776

+
 Intergenic A 1.19 Kathiresan et al. (Kathiresan, 

Altschuler et al. 2009) 

SMAD3 rs17228212 Intronic C 1.21 Samani, Erdmann et al. (2007) 

ACE rs4341 Intronic G 1.22 Casas, Cooper et al. (2006) 

LPL* rs328 S447X C 1.25 Casas, Cooper et al. (2006) 

CETP rs708272 Intronic C 1.28 Casas, Cooper et al. (2006) 

CDKN2A 
/9p21* 

rs10757274 Intronic G 1.29 Samani, Erdmann McPherson, 
Pertsemlidis et al. (2007); (Samani, 

Erdmann et al. 2007) 

NOS3 rs1799983 E298D T 1.31 Casas, Baustista (Casas, Bautista et 
al. 2004) 

LPL rs1801177 D9N A 1.33 Sagoo, Tatt et al. (2008) 

PCSK9* rs11591147 R46L G 1.43 Benn, Nordestgaard et al. (2010) 

LPA* rs10455872 Intronic G 1.70 Clarke, Peden et al. (2009) 

APOB* rs1042031 E4181K A 1.73 Casas, Cooper et al. (2006) 

LPA* rs3798220 I1891M C 1.92 Clarke, Peden et al. (2009) 
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3.2 Results 

3.2.1 Assessment of GS in the UK population  

3.2.1.1 Baseline characteristics of NPHSII participants 

The baseline characteristics of the participants of NPHSII are presented in Table 24. As 

expected, the men who went on to develop CHD were older, had higher BMI, higher 

systolic blood pressure, higher total cholesterol, LDL cholesterol, and a higher 

proportion were smokers and had diabetes, at baseline. Furthermore, those who 

subsequently developed CHD had a higher ten-year CHD risk as calculated using the 

Framingham risk score and those who subsequently developed CVD had a higher ten-

year CVD risk as calculated using the QRISK2 score.   

Table 24: Baseline characteristics in NPHSII for those who did and did not go on to develop CHD 
during ten-year follow-up  

All variables are presented as the mean plus standard deviation, unless otherwise stated. 
Categorical variables were compared using chi-squared tests and continuous variables were 
compared using Welch’s t-tests, apart from the Framingham and QRISK2 risk scores which were 
compared using Mann Whitney tests (the median and interquartile range are given). *QRISK2 
values shown are for those who did and did not go on to develop CVD. 
 

3.2.1.2 GSs in NPHSII 

 The genotype distribution and RAF of each of the 19 SNPs in NPHSII is shown in Table 

25. All SNPs except rs1042031 in APOB were in Hardy-Weinberg equilibrium (HWE). A 

comparison of the RAF in those who did not go to develop CHD and those who did is 

presented in Table 26. The RAF was higher in those who did develop CHD for 

rs10757274 at the 9p21 locus (0.48 v 0.64 p=6x10-3) and rs1746048 which is located 

close to the gene CXCL12 (0.86 v 0.89, p=0.03). Both weighted GSs were higher in 

those who developed CHD in the ten-year follow-up period (19 SNP GS p=4.54x10-3, 13 

SNP GS p=2.63x10-3). Both the 19 SNP and 13 SNP GSs were associated with CHD (Table 

Trait NPHSII 
No CHD 

(n=2491) 

NPHSII 
CHD 

(n=284) 

p-value 

Age (years) 55.91 (3.42) 56.64 (3.60) 4.12x10
-3

 

Sex (% Male) 100 % 100 % - 

Smoking    25 %  39 %  2.14x10
-5

 

BMI (kg/m
2
) 26.38 (3.42) 27.19 (3.44) 9.61x10

-4
 

Systolic Blood Pressure (mmHg) 137.00 (18.59) 144.09 (20.10) 9.68x10
-7

 

Total Cholesterol (mmol/l) 5.71 (1.01) 6.13 (1.05) 4.79x10
-8

 

LDL-cholesterol (mmol/l) 3.07 (1.00) 3.48 (0.97) 2.66x10
-7

 

HDL-cholesterol (mmol/l) 1.72 (0.59) 1.57 (0.53) 2.60x10
-4

 

Diabetes  2 % 7 % 1.33x10
-11

 

Framingham ten-year CHD risk 0.12 (0.07-0.15) 0.17 (0.09-0.21) 4.33x1011
-4

 

QRISK2 ten-year CVD risk* 0.09 (0.07-0.13) 0.13 (0.09-0.17)  1.93x10
-14
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27 and Table 28). The unweighted 19 SNP score was associated with total cholesterol, 

LDL-cholesterol and HDL-cholesterol, however, only the association with HDL-

cholesterol remained with the weighted score (Table 29). Both the weighted and 

unweighted 19 SNP GSs were associated with the Framingham risk score while only the 

unweighted score was associated with QRISK2.  

Table 25: Genotype distribution and risk allele frequency for each SNP in all NPHSII  
participants  

 RAF=risk allele frequency. HWE=Hardy-Weinberg equilibrium, CI=confidence interval.     

Gene/Locus SNP Genotype Distribution NPHSII RAF 
(95% CI) 

 HWE  
p-value 

APOE rs429358 TT TC CC 0.17 
(0.16-0.18) 

0.46 

1672 675 61 

APOE rs429358 TT TC CC 0.17 
(0.16-0.18) 

0.46 

1672 675 61 

MIA3 rs17465367 CC CA AA 0.71 
(0.69-0.72) 

0.97 

1360 1135 236 

MRAS rs9818870 CC CT TT 0.16 
(0.15-0.17) 

0.86 

1924 709 67 

DAB2IP rs7025486 GG GA AA 0.26 
(0.17-0.24) 

0.28 

1498 997 185 

CXCL12 rs1746048 TT TC CC 0.86 
(0.85-0.87) 

0.85 

52 641 2035 

APOA5 rs662799 AA AG GG 0.06 
(0.05-0.07) 

0.15 

1793 285 14 

SORT1 rs646776 AA AG GG 0.78 
(0.77-0.79) 

0.18 

1685 902 140 

SMAD3 rs17228212 TT TC CC 0.31 
(0.30-0.32) 

0.09 

1325 1123 277 

ACE rs4341 CC CG GG 0.52 
(0.50-0.53) 

0.32 

643 1328 740 

LPL rs328 CC CG GG 0.90 
(0.89-0.94) 

0.77 

2187 497 30 

CETP rs708272 CC CT TT 0.56 
(0.55-0.58) 

0.07 

798 1320 471 

CDKN2A/ 
9p21 

rs10757274 AA AG GG 0.48 
(0.47-0.50) 

0.41 

733 1324 637 

NOS3 rs1799983 GG GT TT 0.33 
(0.32-0.35) 

0.91 

1083 1080 272 

LPL rs1801177 GG GA AA 0.01 
(0.01-0.02) 

0.08 
 2413 64 2 

PCSK9 rs11591147 GG GT TT 0.99 
(0.99-0.99) 

0.18 

2401 42 1 

LPA rs10455872 AA AG GG 0.07 
(0.07-0.08) 

0.42 

2266 373 12 

APOB rs1042031 GG GA AA 0.18 
(0.17-0.19) 

0.04 

1763 790 66 

LPA rs3789220 TT TC CC 0.02 
(0.01-0.02) 

1.00 

2636 90 0 
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Table 26: Comparison of allele frequencies in those who did and did not go on to develop CHD 
during ten-year follow-up of NPHSII 

Allele frequencies compared using tests of proportion. CI=confidence interval. RAF=risk allele 
frequency. CHD=coronary heart disease.  

Gene/Locus SNP NPHSII 
No CHD 

RAF (95% CI) 

NPHSII 
CHD 

RAF (95% CI) 

p-value 

APOE rs429358 0.16 
(0.15-0.18) 

0.18 
(0.15-0.22) 

0.40 

APOE rs7412 0.91 
(0.90-0.91) 

0.93 
(0.91-0.95) 

0.06 

MIA3 rs17465367 0.71 
(0.69-0.728) 

0.71 
(0.67-0.75) 

0.70 

MRAS rs9818870 0.15 
(0.14-0.16) 

0.18 
(0.15-0.21) 

0.16 

DAB2IP rs7025486 0.25 
(0.24-0.27) 

0.28 
(0.24-0.32) 

0.16 

CXCL12 rs1746048 0.86 
(0.85-0.87) 

0.89 
(0.87-0.92) 

0.03 

APOA5 rs662799 0.06 
(0.05-0.07) 

0.06 
(0.04-0.09) 

0.79 

SORT1 rs646776 0.78 
(0.77-0.79) 

0.79 
(0.76-0.83) 

0.61 

SMAD3 rs17228212 0.31 
(0.30-0.32) 

0.29 
(0.26-0.33) 

0.42 

ACE rs4341 0.52 
(0.50-0.53) 

0.52 
(0.47-0.56) 

0.96 

LPL rs328 0.90 
(0.89-0.90) 

0.91  
(0.88-0.93) 

0.26 

CETP rs708272 0.57 
(0.55-0.58) 

0.54 
(0.50-0.59) 

0.31 

CDKN2A/ 
9p21 

rs10757274 0.48 
(0.462-0.490) 

0.54 
(0.50-0.58) 

6x10
-3

 

NOS3 rs1799983 0.34 
(0.32-0.35) 

0.31 
(0.27-0.35) 

0.25 

LPL rs1801177 0.01 
(0.01-0.02) 

0.02 
(0.01-0.04) 

0.24 

PCSK9 rs11591147 0.99 
(0.99-0.99) 

0.996 
(0.99-1.000) 

0.32 

LPA rs10455872 0.07 
(0.07-0.08) 

0.09 
(0.07-0.12) 

0.11 

APOB rs1042301 0.18 
(0.16-0.19) 

0.19 
(0.15-0.22) 

0.71 

LPA rs3789220 0.02 
(0.01-0.02) 

0.02 
(0.01-0.04) 

0.18 
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Table 27: Comparison of mean GSs in those who did and did not go on to develop CHD during ten-
year follow-up of NPHSII 

Mean GS plus standard deviation is show in all cases GSs were compared using Welch’s t-test. 
GS=gene score. CHD=coronary heart disease.  
 
 
 
Table 28: Association between the GSs and CHD in NPHSII.  

 

 

 

 

 
 
 

Effect sizes relate to one standard deviation of the variable and were determined by logistic 
regression, adjusted for age. CI=confidence interval. GS=gene score. CHD=coronary heart disease.  
  
 
 
 

Table 29: Association of 19 SNP GS with CHD risk factors and CRF scores 

The p-values were determined using linear or logistic regression (unadjusted), as appropriate. 
SNP=single nucleotide polymorphism. GS=gene score. CHD=coronary heart disease. 
CRF=conventional risk factor.  
 

 

 

Trait NPHSII 
No CHD 

NPHSII 
CHD 

p-value 

19 SNP unweighted GS 16.07 (2.09) 
n=1090 

16.74 (1.92) 
n=110 

8.26x10
-4

 

19 SNP weighted GS 3.16 (0.53) 
n=1090 

3.31 (0.51) 
n=110 

4.54x10
-3

 

13 SNP unweighted GS 12.63 (1.69) 
n=1374 

13.18 (1.51) 
n=133 

1.21x10
-4

 

13 SNP weighted GS 2.44 (0.49) 
n=1374 

2.56 (0.44) 
n=133 

2.63x10
-3

 

Score Effect Size 
(95% CI) 

p-value 

19 SNP GS -unweighted 1.38 
(1.13-1.69) 

1.55x10
-3

 

19 SNP GS- weighted 1.32 
(1.05-1.47) 

5.30x10
-3

 

13 SNP GS - unweighted 1.39 
(1.16-1.67) 

3.77x10
-4

 

13 SNP GS - weighted 1.29 
(1.08-1.53) 

4.24x10
-3

 

Trait 19 SNP unweighted GS 
p-value 

19 SNP weighted GS 
p-value 

Smoking 0.15 0.28 

BMI 0.08 0.11 

Hypertension 0.42 0.38 

Cholesterol 0.02 0.18 

LDL-cholesterol 9.74x10
-3

 0.08 

HDL-cholesterol 9.69x10
-3

 0.04 

Diabetes 0.78 0.90 

Family History of CHD 0.16 0.22 

Framingham 7.28x10
-4

 4.93x10
-3

 

QRISK2 0.04 0.11 
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3.2.1.3 Addition of GSs to CRF scores 

As shown in Table 30, complete data (ten-year CHD outcome, genotyping and CRF score) 

was available for 1022 individuals for the Framingham score plus 19 SNP GS and 1272 

individuals for the Framingham score plus 13 SNP GS. Complete data (ten-year CVD 

outcome, genotyping and CRF score) was available for 1213 NPHSII participants for QRISK2 

plus 19 SNP GS and for 1522 participants for QRISK2 plus 13 SNP GS.  To combine the CRF 

with the Framingham score (and indeed QRISK2) the population GS was calculated using 

the effect sizes and allele frequencies from the source publications (Table 23). To assess the 

CRF score alone and CRF plus GS scores the number of predicted events was compared to 

those observed (i.e. calibration of the score) using a Hosmer-Lemeshow goodness-of-fit 

test. As shown in Figure 10, overall the Framingham score showed poor calibration in 

NPHSII (p=2.94x10-6) and this was worse after addition of the both GSs (both p<2.94x10-6). 

Whereas, QRISK2 showed good calibration in NPHSII (p=0.35) but again calibration was 

worse after addition of both GSs (19 SNP p=1.12x10-3 and 13 SNP p=4.30x10-4, Figure 11).  

 

Next the predictive ability (as assessed using the AUROC) of the CRF scores was compared 

to the combined CRF plus GS risk scores (Figure 12). No statistically significant increase in 

the AUROC was observed with the addition of either of the GSs to the CRF scores (all 

p>0.05).  Addition of the GSs to the CRF scores did not lead to a significant improvement in 

risk classification as shown in the reclassification table, which includes the NRI values ( 

 

 

Table 32).  

 

Table 30: Number of NPHSII participants with complete data for each risk score plus GS combination 
after follow-up of ten years 

FRAM=Framingham risk score. GS=gene score. CHD=coronary heart disease. SNP=single nucleotide 
polymorphism.  

 

 

 

Score No CHD 
n 

CHD 
n 

Total  
N 

FRAM + 19 SNP GS 930 92 1022 

FRAM + 13 SNP GS 1160 112 1272 

Score No CVD 
n 

CVD 
n 

 

QRISK2 + 19 SNP GS 1080 133 1213 

QRISK2 + 13 SNP GS 1356 166 1522 
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Figure 10: Observed CHD event rate in NPHSII compared to the predicted event rate determined by 
A) Framingham score alone; B) Framingham plus 19 SNP GS; C) Framingham plus 13 SNP GS, 
presented by decile of risk score 

 

 

 

Rates were compared using the Hosmer-Lemeshow test. R packages “ggplot2”(Wickham 2009),” 
PredictABEL”(Kundu, Aulchenko et al. 2011; Kundu, Aulchenko et al. 2014) and “ResourceSelection” 
(Lele, Keim et al. 2014) were used to perform the analysis and produce the plots. However, p-values 
were calculated separately using ten degrees of freedom, rather than with the eight calculated with 
the R packages. 

A p=2.94x10-6 

B 

p=1.37x10-9 

p=1.16x10-8 

 

C

B 
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Figure 11: Observed CHD event rate in NPHSII compared to the predicted event rate determined by 
A) QRISK2 score alone; B) QRISK2 plus 19 SNP GS; C) QRISK2 plus 13 SNP GS, presented by decile of 
risk score 

 

 
Rates were compared using the Hosmer-Lemeshow test. R packages “ggplot2”(Wickham 2009),” 
PredictABEL”(Kundu, Aulchenko et al. 2014) and “ResourceSelection”(Lele, Keim et al. 2014) were 
used to perform the analysis and produce the plots. However, p-values were calculated separately 
using ten degrees of freedom, rather than with the eight calculated with the R packages. 

A 

p=4.30x10-4 

p=0.35 

B 

C 

p=1.12x10-3 
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Figure 12: ROC curves for different risk scores – CRF score alone and with the addition of the one the 
GSs A) CRF scores and the 19 SNP GS and B) CRF score and the 13 SNP GS 

 

Plots were created using the R package “pROC” (Robin, Turck et al. 2011).  
 
Table 31: AUROC for combined CRF plus GS risk scores 

Combined Score AUROC (95% CI) CRF score AUROC (95% CI) p-value  

FRAM+19 SNP GS 0.69 (0.64-0.74) FRAM 0.69 (0.63-0.74) 0.90 

FRAM +13 SNP GS 0.67 (0.62-0.72) FRAM 0.67 (0.61-0.72) 0.75 

QRISK2+19 SNP GS 0.68 (0.63-0.73) QRISK2 0.69 (0.64-0.73) 0.85 

QRISK2+13 SNP GS 0.67 (0.63-0.71) QRISK2 0.67 (0.62-0.71) 0.72 

AUROC for different scores were compared using DeLong’s test, part of the R package “pROC” 
(Robin, Turck et al. 2011). AUROC= area under the ROC curve. CI=confidence interval. 
CRF=conventional risk factor. GS=gene score.  FRAM=Framingham risk score.  
 
 
 

A 

B 
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Table 32: Reclassification of NPHII participants with the addition of the GSs to the CRF scores 

10 % was used as the high risk cut-off. NRI=net reclassification index. FRAM=Framingham risk score. 
CI=confidence interval. GS=gene score. CRF=conventional risk factor. GS=gene score. 
CRF=conventional risk factor. CHD=coronary heart disease. 
 

 

 

 

 

  

 

Risk Score Reclassified 
at  

lower risk 

No change  
in risk 

classification 

Reclassified 
at  

higher risk 

NRI 
(95% CIs) 

p-value 

FRAM + 19 SNP GS  

No CHD  80 745 105 -0.01 
(-0.10-0.09) 

0.92 

CHD 8 74 10 

Event rate 9.10 % 9.06 % 8.78 % 

FRAM + 13 SNP GS  

No CHD  84 933 143 0.01 
(-0.06-0.09) 

0.76 

CHD 5 95 12 

Event rate 5.62 % 9.24 % 7.69 % 

QRISK2 + 19 SNP GS  

No CHD  101 812 167 0.01 
(-0.07-0.10) 

0.75 

CHD 11 101 21 

Event rate 9.82 % 11.06 % 11.17 % 

QRISK2 + 13 SNP GS  

No CHD  111 1041 204 0.05 
(-0.02-0.12) 

0.16 

CHD 8 130 28 

Event rate 6.61 % 11.10 % 12.07 % 
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3.2.2 CHD risk GS in the South Asian and Afro-Caribbean populations 

The risk variants included in the risk score were all identified in studies with individuals of 

European ethnicity. Thus it is unknown how applicable this work is in other ethnic groups, 

particularly given the differing LD patterns between ethnic groups. Therefore, the 

performance of the 19 SNP and 13 SNP GSs were assessed in cohorts of South Asian and 

Afro-Caribbean origin.  

3.2.2.1 Basic characteristics of the Islamabad, Lahore and Guadeloupe cohorts 

The basic characteristics of the participants from the two Pakistani case-control groups 

studied are presented in Table 33. In the Islamabad study, data was not collected for up to 

60% of participants for all variables except age and sex. As expected, in both studies the 

case group was older and had a higher proportion of smokers and those with diabetes and 

hypertension (all p<0.05). There was no difference in the proportion of males between 

cases and controls in either study. While in the Lahore study LDL cholesterol was higher in 

the case group, surprisingly, in the Islamabad study, total cholesterol and LDL cholesterol 

did not differ between cases and controls. As all of those in the case group are post-MI, this 

can be attributed to treatment with lipid-lowering therapies. Data on BMI, triglycerides, 

family history and HDL-cholesterol were available for some of the participants of the 

Islamabad study. Only for HDL cholesterol was the difference between cases and controls 

statistically significant, being lower in the cases.  

 

The basic characteristics of the participants of the Afro-Caribbean case-control study are 

presented in Table 34. The cases were older and a greater proportion were male and had 

hypertension, diabetes, hypercholesterolaemia and were smokers. However, there was no 

difference in the proportion of obese participants or in BMI between cases and controls.  
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Table 33: Basic characteristics of the participants in the case-control studies of South Asian 
individuals from Pakistan  

Where appropriate mean and standard deviation (sd) are shown. Categorical variables were 
compared using a χ

2
 test while Welch’s t-test was used to compare continuous variables. *Log 

transformed data. Geometric mean and approximate sd are given. BMI=body mass index. TC=total 
cholesterol.  

 

Table 34: Basic characteristics of the participants of the case-control study of Afro-Caribbean 
individuals from Guadeloupe 

Where appropriate mean and standard deviation (sd) are shown. Categorical variables were 
compared using a χ

2
 test. Student t test was used for comparison between continuous variables. 

BMI=body mass index.  

 

 

 

 

 

 

 

 

 

Trait Islamabad Lahore 
Controls 
n=228 

Cases 
n=321 

p-value Controls 
n=219 

Cases 
n=404 

p-value 

Age (mean) 38 
(11.83) 

53 
(11.80) 

<2.2x10-16 56 
(10.50) 

59 
(12.60) 

2x10-3 

Sex (% Male) 66 % 69 % 0.52 54 % 59 % 0.27 

BMI (kg/m
2
) 24.2 

(3.95) 
24.3 

(4.08) 
0.85 - - - 

Smoking  25 % 46 % 1.25x10-3 11 %  30 % 4.30x10-8 

Hypertension  15 % 46 % 4.9x10-7 16 % 62 % 9.00x10-28 

TC (mmol/l) 4.52 
(1.38) 

4.71 
(3.77) 

0.56 - - - 

LDL-cholesterol (mmol/l) 2.66 
(0.78) 

2.55 
(0.99) 

0.33 2.19 
(0.44) 

2.74 
(0.75) 

6.50x10-22 

HDL-cholesterol (mmol/l) 1.35 
(1.01) 

0.96 
(0.22) 

1.01x10-4 - - - 

Diabetes  1 % 32 % 6.6x10-9 14 % 65 % 5.10x10-34 

Trait Controls 
n=359 

Cases 
n=178 

p-value 
 

Age 51.66 (13.54) 63.20 (10.50) <1x10
-5

 

Sex (% Male) 44 % 64 % <1x10
-5

 

Smoking   13 % 28 % <1x10
-5

 

BMI (kg/m
2
) 27.15 (5.62) 27.41 (4.86) 0.54 

Obesity (BMI >30 kg/ m
2)

 29 % 24 % 0.22 

Hypertension   30 % 79 % <1x10
-5

 

Hypercholesterolemia   15 % 53 % <1x10
-5

 

Diabetes   15 % 54 % <1x10
-5
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3.2.2.2 GSs in the Islamabad, Lahore and Guadeloupe cohorts 

The 19 SNPs were genotyped in the South Asian and Afro-Caribbean cohorts and the results 

are presented in Table 35-Table 37. For the Islamabad study, five SNPs were not in HWE - 

MIA3 rs17465637, CXCL12 rs1746048, MRAS rs9818870, LPL rs1801177 and APOE rs7412 - 

with an excess of homozygotes present in each case. To confirm this, a selection of 

genotypes were checked by Sanger sequencing and the genotype frequencies remained out 

of HWE. In the Lahore study, only one SNP – LPA rs10455872- was not in HWE. Similarly, in 

the Guadeloupe study only one SNP, rs646776 (rs599839 was genotyped) close to the gene 

cluster containing CELSR2-PSRC1-SORT1, was not in HWE. The data from the Pakistani 

control groups was combined and compared to that from the NPHSII (Table 36). The RAF 

was lower in the Pakistani group for 13 SNPs and higher for three SNPs compared to 

NPHSII. In the Guadeloupe cohort the RAF was higher for six SNPs and lower for eight SNPs 

compared to the NPHSII participants (Table 37).            

       

The 19 and 13 SNP GSs were calculated for all cohorts and the results are shown in Table 

38. For the 19 SNP GS, full genotyping was available for 294 samples (119 controls/175 

cases) in the Islamabad study, 443 samples (134 controls/309 cases) in the Lahore study 

and 537 samples (359 controls/178 cases) for the Guadeloupe study. There was no 

difference in the weighted GS between the cases and control in either Pakistani group 

(Islamabad p=0.35, Lahore p=0.41). However, weighted mean GS was higher in cases 

compared to controls in the Guadeloupe study (p=0.02). For the 13 SNP GS, full genotyping 

was available for 317 samples (123 controls/194 cases) in the Islamabad study, 488 samples 

(145 controls/343 cases) in the Lahore study and 537 samples (359 controls/178 cases) for 

the Guadeloupe study. In the Islamabad sample, mean weighted 13 SNP GS was found to 

be higher in case compared to controls (p=0.04) but not in the Lahore sample (p=0.41). The 

weighted 13 SNP GS was also found to be higher in the Guadeloupe case group compared 

to controls (p=0.001).  

 

Both GSs (unweighted and weighted) were associated with CHD after adjustment for age 

and sex in the Guadeloupe cohort but not in either Pakistani study (Table 39, Figure 13). 

The GSs were not associated with any of the CRFs assessed in the three studies (Table 40, 

Table 41 and Table 42).  
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Table 35: Hardy-Weinberg equilibrium results from the Pakistani and Guadeloupe cohorts 

HWE=Hardy-Weinberg equilibrium.  

Gene/Locus SNP Islamabad HWE 
p-value 

Lahore HWE 
p-value 

Guadeloupe HWE 
p-value 

APOE rs429358 0.03 0.28 0.60 

APOE rs7412 0.27 0.33 0.10 

MIA3 rs17465367 0.01 0.53 0.92 

MRAS rs9818870 0.03 0.86 0.44 

DAB2IP rs7025486 0.24 0.80 0.86 

CXCL12 rs1746048 1.4x10
-3

 0.94 0.2 

APOA5 rs662799 0.37 0.99 0.78 

SORT1 rs646776 0.76 0.18 0.02 

SMAD3 rs17228212 0.05 0.85 0.48 

ACE rs4341 0.13 0.16 0.63 

LPL rs328 0.65 0.64 0.48 

CETP rs708272 0.70 0.36 0.3 

CDKN2A/9p21 rs10757274 0.09 0.40 0.93 

NOS3 rs1799983 0.06 0.11 0.63 

LPL rs1801177 <1x10
-4

 - 0.98 

PCSK9 rs11591147 - 0.95 - 

LPA rs10455872 0.82 0.01 0.90 

APOB rs1042031 0.14 0.85 0.81 

LPA rs3789220 0.87 0.93 0.74 
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Table 36: Risk allele frequency in control groups from the Islamabad and Lahore cohorts  

The RAF from the two Pakistani studies were compared to each other, then combined and to NPHSII 
using tests of proportion. CI=confidence interval. RAF=risk allele frequency.  

 

Gene/ 
Locus 

SNP RAF   
Islamabad 
Controls 
(95% CI) 

RAF   
Lahore 

Controls 
(95% CI) 

p-value RAF  
NPSHII 

(95% CI) 

p-value 

APOE rs429358 0.09  
(0.06-0.11) 

0.11  
(0.08-0.14) 

0.52 0.17  
(0.16-0.18) 

1.60x10
-9

 

APOE rs7412 0.96  
(0.94-0.98) 

0.96  
(0.94-0.98) 

1 0.91  
(0.90-0.92) 

2.69x10
-6

 

MIA3 rs17465367 0.64 
(0.59-0.69) 

0.63 
(0.58-0.67) 

0.68 0.71 
(0.69-0.72) 

3.42x10
-5

 

MRAS rs9818870 0.10  
(0.07-0.13) 

0.09 
(0.06-0.12) 

0.75 0.16 
(0.15-0.17) 

2.61x10
-6

 

DAB2IP rs7025486 0.31  
(0.26-0.35) 

0.32 
(0.27-0.36) 

0.84 0.26 
(0.17-0.24) 

4.70x10
-4

 

CXCL12 rs1746048 0.65  
(0.61-0.70) 

0.64 
(0.59-0.68) 

0.65 0.86 
(0.85-0.87) 

<2.20x10
-16

 

APOA5 rs662799 0.15  
(0.12-0.18) 

0.17 
(0.13-0.20) 

0.60 0.06 
(0.05-0.07) 

<2.20x10
-16

 

SORT1 rs599839 0.72  
(0.68-0.77) 

0.74 
(0.70-0.79) 

0.55 0.78 
(0.77-0.79) 

2.03x10
-3

 

SMAD3 rs17228212 0.19  
(0.15-0.22) 

0.18 
(0.14-0.21) 

0.76
 

0.31 
(0.30-0.32) 

4.88x10
-14

 

ACE rs4341 0.41  
(0.36-0.45) 

0.47 
(0.43-0.52) 

0.05
 

0.52 
(0.50-0.53) 

3.09x10
-5

 

LPL rs328 0.92  
(0.89-0.94) 

0.91  
(0.89-0.94) 

0.98 0.90  
(0.89-0.91) 

0.12 

CETP rs708272 0.55  
(0.50-0.60) 

0.56 
(0.51-0.61) 

0.83 0.56 
(0.55-0.58) 

0.62 

CDKN2A/ 
9p21 

rs10757274 0.45 
(0.40-0.49) 

0.54 
(0.49-0.58) 

0.01 0.48 
(0.47-0.50) 

0.68 

NOS3 rs1799983 0.16  
(0.13-0.20) 

0.18 
(0.15-0.22) 

0.51 0.33 
(0.32-0.35) 

<2.20x10
-16

 

LPL rs1801177 0.01  
(0-0.02) 

0 
- 

NA 0.01  
(0.01-0.02) 

NA 

PCSK9 rs11591147 1.00 
- 

0.995  
(0.00-0.01) 

NA 0.99 
 (0.99-0.99) 

NA 

LPA rs10455872 0.01  
(0-0.03) 

0.01 
(0.00-0.03) 

1 0.07 
(0.07-0.08) 

1.06x10
-10

 

APOB rs1042031 0.15  
(0.12-0.19) 

0.13 
(0.09-0.16) 

0.24 0.18 
(0.17-0.19) 

9.75x10
-3

 

LPA rs3789220 0.01  
(0-0.02) 

0.003 
(0-0.01) 

0.81 0.02 
(0.01-0.02) 

0.02 
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Table 37: Risk allele frequency in the control group of the Guadeloupe cohort  

The RAF from the Guadeloupe study was compared to that of NPHSII participants using tests of 
proportion. CI=confidence interval. RAF=risk allele frequency.  

Gene/Locus SNP RAF 
Guadeloupe Controls 

(95% CI) 

RAF  
NPSHII  

(95% CI) 

p-value 

APOE rs429358 0.23 
 (0.19-0.28) 

0.17  
(0.16-0.18) 

0.01 

APOE rs7412 0.93  
(0.90-0.96) 

0.91  
(0.90-0.92) 

0.23 

MIA3 rs17465367 0.24 
(0.80-0.28) 

0.71 
(0.69-0.72) 

2x10
-57

 

MRAS rs9818870 0.08 
(0.05-0.11) 

0.16 
(0.15-0.17) 

1x10
-4

 

DAB2IP rs7025486 0.32 
(0.27-0.37) 

0.26 
(0.24-0.28) 

0.03 

CXCL12 rs1746048 0.53 
(0.48-0.58) 

0.86 
(0.84-0.88) 

1x10
-40

 

APOA5 rs662799 0.13  
(0.10-0.17) 

0.06 
(0.05-0.07) 

1x10
-5

 

SORT1 rs599839 0.25 
(0.20-0.30) 

0.78 
(0.76-0.80) 

3x10
-77

 

SMAD3 rs17228212 0.12 
(0.09-0.15) 

0.31 
(0.30-0.32) 

9x10
-13

 

ACE rs4341 0.60 
(0.55-0.65) 

0.52 
(0.50-0.53) 

8x10
-3

 

LPL rs328 0.94  
(0.91-0.96) 

0.90  
(0.89-0.91) 

0.02 

CETP rs708272 0.76 
(0.72-0.80) 

0.56 
(0.55-0.59) 

11x10
-11

 

CDKN2A/ 
9p21 

rs10757274 0.21 
(0.17-0.25) 

0.48 
(0.47-0.50) 

8.19x10
-20

 

NOS3 rs1799983 0.12  
(0.09-0.15) 

0.33 
(0.32-0.35) 

8x10
-15

 

LPL rs1801177 0.001  
(0-0.003) 

0.01  
(0.01-0.02) 

NA 

PCSK9 rs11591147 1.00 
- 

0.99  
(0.99-1.00) 

NA 

LPA rs10455872 0.01  
(0-0.03) 

0.07 
(0.07-0.08) 

1x10
-5

 

APOB rs1042031 0.15  
(0.12-0.19) 

0.18 
(0.17-0.19) 

0.19 

LPA rs3789220 0.01  
(0-0.03) 

0.02 
(0.01-0.02) 

0.21 
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Table 38: GS values in the Pakistani and Afro-Caribbean cohorts  

Mean GS and standard deviation are shown.  Welch’s t-test was used to compare the GSs between 
cases and controls. GS=gene score.  
 

Table 39: Association between GS and CHD outcome 

Effect sizes relate to one standard deviation of the variable and were determined by logistic 
regression, adjusted for age and sex. OR= odds ratio. CI= confidence interval.  

 
Table 40: Association between CHD risk factors and the 19 SNP GS in the Islamabad cohort 

Trait 19 SNP unweighted GS 
p-value 

19 SNP weighted GS 
p-value 

Smoking 0.34 0.21 

Hypertension 0.47 0.48 

TC   0.82 0.89 

LDL-cholesterol 0.43 0.68 

HDL-cholesterol 0.07 0.28 

Diabetes 0.23 0.18 
The p-values were determined by linear or logistic regression as appropriate. TC = total cholesterol. 
GS=gene score.  

 
 
 
 
 
 

Study  19 SNP GS 13 SNP GS 

Score  Controls Cases p-value Controls Cases p-value 

 
Islamabad 

Unweighted 14.97  
(2.12) 

15.37 
(2.22) 

0.11 11.84  
(1.63) 

12.40  
(1.82) 

0.004 

Weighted 2.89  
(0.50) 

2.94 
(0.50) 

0.35 2.24  
(0.42) 

2.34  
(0.42) 

0.04 

 
Lahore 

Unweighted 15.28  
(2.23) 

15.24 
(2.20) 

0.86 11.85  
(1.80) 

11.72  
(1.72) 

0.91 

Weighted 2.95  
(0.50) 

2.91 
(0.46) 

0.41 2.25  
(0.42) 

2.22  
(0.36) 

0.41 

 
Guadeloupe 

Unweighted 13.17  
(2.07) 

13.90 
(2.10) 

1.60x10
-4

 9.35  
(1.73) 

10.12 
(1.68) 

<0.001 

Weighted 2.57 
(0.47) 

2.67 
(0.49) 

0.02 1.80 
(0.42) 

1.94 
(0.44) 

0.001 

Study  19 SNP GS 13 SNP GS 

Score  OR (95% CI) p-value OR (95% CI) p-value 

 
Islamabad 

Unweighted 0.88 
(0.64-1.19) 

0.41 1.22 
(0.90-1.65) 

0.20 

Weighted 0.89 
(0.65-1.22) 

0.48 1.21 
(0.90-1.65) 

0.21 

 
Lahore 

Unweighted 0.98 
(0.80-1.20) 

0.85 1.00 
(0.82-1.22) 

0.98 

Weighted 0.92 
(0.75-1.13) 

0.41 0.91 
(0.75-1.11) 

0.36 

 
Guadeloupe 

Unweighted 1.44 
(1.17-1.78) 

4.79x10
-4

 1.57 
(1.28-1.95) 

2.85x10
-5

 

Weighted 1.35 
(1.10-1.66) 

4.93x10
-3

 1.42 
(1.15-1.75) 

1.01x10
-3
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Table 41: Association between CHD risk factors and the 19 SNP GS in the Lahore cohort 

Trait 19 SNP unweighted GS 
p-value 

19 SNP weighted GS 
p-value 

Smoking 0.32 0.43 

Hypertension 0.58 0.35 

TC   0.59 0.86 

LDL-cholesterol 0.15 0.63 

HDL-cholesterol 0.09 0.54 

Diabetes 0.41 0.83 
The p-values were determined by linear or logistic regression as appropriate. TC =total cholesterol. 
GS=gene score. 

 
 
 
 
Table 42: Association between CHD risk factors and the 19 SNP GS in the Guadeloupe cohort 

Trait 19 SNP unweighted GS 
p-value 

19 SNP weighted GS 
p-value 

Smoking 0.92 0.83 

Hypertension 0.32 0.21 

Hypercholesterolemia   0.42 0.80 

Diabetes 0.66 0.94 
The p-values were determined using t-tests. GS=gene score.  
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Figure 13: Association between quintile of weighted GS and outcome in the A) Islamabad 
study B) Lahore study and C) Guadeloupe study 

 

    

   
Logistic regression was performed, adjusted for age and sex. Error bars represent 95% CI. 
CI=confidence intervals. GS=gene score.  

A 

B 

C 
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3.2.3 Updating the Gene Score 

3.2.3.1 Literature search for variants associated with CHD  

In order to ascertain the current knowledge regarding the genetics of CHD and to identify 

candidate SNPs for future CHD GSs, a systematic literature search (up to February 2013) 

was carried out. Nine search terms relating to the genetics of CHD were used (see Chapter 

2.2). An overview of the search strategy and the number of papers identified is shown in 

Figure 14. Four phenotypes were considered: CHD, premature CHD, CHD in those with T2D 

and secondary CHD events. Studies which did not meet the inclusion criteria were excluded 

and only the most recent meta-analysis for a particular variant was retained. For the CHD 

phenotype, 32 meta-analyses were identified. This included the meta-analysis conducted 

by the CARDIoGRAMplusC4D consortium (Deloukas, Kanoni et al. 2013). Over 60,000 cases 

and 130,000 controls were included in the study, by far the largest analysis of CHD genetics 

published when the search was performed. More than 50 SNPs from 46 loci were robustly 

associated with CHD and thus these are best candidates to be used in determining genetic 

risk of CHD (Table 43).  

 

From the remaining 31 meta-analyses, there were 34 variants which had been associated 

with CHD but were neither among nor in LD with those identified in the 

CARDIoGRAMplusC4D meta-analysis (Table 44). The data from the CARDIoGRAMplusC4D 

consortium has been made publically available and was searched to determine if these 34 

SNPs had been included in the analysis. If a SNP had been included but had not met the 

significance threshold, it can be concluded it is not a good candidate to be included in a 

future CHD risk GS. This cannot be established for SNPs that were not genotyped or 

imputed in that study. Data on coronary artery disease / myocardial infarction was 

contributed by CARDIoGRAMplusC4D investigators and was downloaded from 

www.CARDIOGRAMPLUSC4D.ORG. Of the 34 SNPs, all 29 had been genotyped or imputed 

in at least one stage of the CARDIoGRAMplusC4D analysis but had not met the significance 

threshold for association with CHD. Eleven of these SNPs showed a suggestive association 

with CHD (p<0.05) indicating that these loci may be influencing CHD risk but this has not 

been confirmed. Therefore, these variants can be discounted in favour of those that have 

been robustly associated with CHD.  

 

 

http://www.cardiogramplusc4d.org/
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 Of the remaining five variants the LPA SNP, rs10455872, met the criteria for replication in 

the first stage of the analysis (the CARDIoGRAM GWAS (Schunkert, Konig et al. 2011)) but it 

was not found in the CARDIoGRAMplusC4D data. It is assumed this is because it is located 

in the gene LPA, where another CHD risk SNP rs3798220, is also located and thus was not 

included in follow-up. For the remaining four SNPs that were not genotyped or imputed in 

the CARDIoGRAMplusC4D analysis, the most likely reason is that they are not included on 

the genotyping arrays used. For one of these SNPs, rs41360247 (ABCG8) a proxy SNP, 

rs4953023, (r2=1, as determined in the 1000 Genomes phase 1 EUR data) had been 

genotyped/imputed in stage 1 of the analysis but had not met the threshold for replication 

(Stage 1 p=2.15x10-6, validation at p<1x10-6). Of the remaining three SNPs, one is located in 

the promoter APOB (Chiodini, Barlera et al. 2003), which is a CHD risk loci, one is a SNP 

tagging an insertion/deletion polymorphism in the NFκB subunit encoding gene NFKB1 

(Vogel, Jensen et al. 2011) and the third a missense variant in TGF-B  (Morris, Moxon et al. 

2012).  

 

Two meta-analyses investigating variants associated with premature CHD phenotypes were 

identified (Kathiresan, Altschuler et al. 2009; Xuan, Bai et al. 2011). All of the loci identified 

by Kathiresan, Altschuler et al. were also identified in the CARDIoGRAMplusC4D meta-

analysis. The variant rs1801133 in MTHFR investigated by Xuan, Bai et al., was not found to 

be associated with CHD in the CARDIoGRAMplusC4D meta-analysis (p=0.36). No meta-

analyses concerning secondary CHD events were identified. One meta-analysis considering 

variants associated with CHD in T2D was identified and is discussed in Chapter 4.2.2.  
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Table 43: Summary of CHD risk loci identified in the CARDIoGRAMplusC4D meta-analysis 

OR=odds ratio. RAF=risk allele frequency. CHD=coronary heart disease.  

 

Chromosome Lead SNP Gene/Locus OR RAF 

1 rs602633 SORT1 1.12 0.77 

1 rs11206510 PCSK9 1.06 0.84 

1 rs4846525 IL6R 1.09 0.47 

1 rs17114036 PPAP2B 1.11 0.91 

1 rs17464857 MIA3 1.05 0.87 

2 rs6725887 WDR12 1.12 0.11 

2 rs515135 APOB 1.03 0.83 

2 rs2252641 ZEB2-AC74093.1 1.00 0.46 

2 rs1561198 VAMP5-VAMP8-GGCX 1.07 0.45 

3 rs99818870 MRAS 1.07 0.14 

4 rs7692387 GUCY1A3 1.13 0.81 

4 rs1878406 EDNRA 1.09 0.15 

5 rs273909 SLC22A4-SLC22A5 1.11 0.14 

6 rs3798220 LPA 1.28 0.01 

6 rs2048327 LPA 1.06 0.35 

6 rs10947789 KCNK5 1.01 0.76 

6 rs4252120 PLG 1.07 0.73 

6 rs12205331 ANKS1A 1.04 0.81 

6 rs9369640 PHACTR1 1.09 0.65 

7 rs11556924 ZC3HC1 1.09 0.65 

7 rs2023938 HDAC9 1.13 0.10 

7 rs12539895 7q22 1.08 0.19 

8 rs264 LPL 1.06 0.86 

8 rs2954029 TRIB1 1.05 0.55 

9 rs1333049 9p21 1.23 0.47 

9 rs3217992 9p21 1.16 0.38 

9 rs579459 ABO 1.07 0.21 

10 rs12413409 CYP17A1-CNNM2-NT5C2 1.10 0.89 

10 rs2505083 KIAA1462 1.06 0.42 

10 rs501120 CXCL12 1.07 0.83 

10 rs2047009 CXCL12 1.05 0.48 

10 rs2246833 LIPA 1.06 0.38 

10 rs11203042 LIPA 1.04 0.44 

11 rs974819 PDGRD 1.07 0.29 

11 rs9326246 ZNF259-APOA5-APOA1 1.09 0.10 

12 rs3184504 SH2B3 1.07 0.40 

13 rs4773144 COL4A1-COL4A2 1.07 0.74 

13 rs9515203 COL4A1-COL4A2 1.08 0.74 

13 rs9319428 FLT1 1.10 0.32 

14 rs2895811 HHIPL1 1.06 0.43 

15 rs7173743 ADAMTS7 1.07 0.58 

15 rs17514846 FURIN-FES 1.04 0.44 

17 rs12936587 RAI1-PEMT-RASD1 1.06 0.59 

17 rs15563 UBE2Z 1.04 0.52 

17 rs2281727 SMG6 1.05 0.36 

19 rs1122608 LDLR 1.10 0.76 

19 rs2075650 ApoE-ApoC1 1.11 0.14 

19 rs445925 ApoE-ApoC1 1.13 0.90 

21 rs9982601 21q22 1.13 0.13 
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Figure 14: Literature search protocol   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
Two publications covered two of the phenotypes (Xuan, Bai et al. 2011) for CHD and premature CHD 
and (Buysschaert, Carruthers et al. 2010) for CHD and secondary CHD events. Therefore, when the 
total number of studies for each phenotype is added together, the total is 310 rather than 308.  
T2D=type 2 diabetes. GWAS=genome-wide association study. CHD=coronary heart disease.  
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Table 44: SNPs identified in the literature search that were not confirmed in the 
CARDIoGRAMplusC4D meta-analysis 

Where SNPs have been genotyped or imputed in the CARDIoGRAM GWAS data set, the p-value for 
association with CHD is included.  Data on coronary artery disease / myocardial infarction was 
contributed by CARDIoGRAMplusC4D investigators and was downloaded from 
www.CARDIOGRAMPLUSC4D.ORG.Cplus4D = CARDIoGRAMplusC4D meta-analysis. CG GWAS= 
CARDIoGRAM GWAS. OR=odds ratio. 

SNP Gene/ 
Locus 

Study Literature 
Search OR 

CARDIoGRAM 
Source  

CARDIoGRAM 
p-value 

rs10455872 LPA (Li, Luke et al. 2011) 1.42 CG GWAS 3.08 x10
-13

 
rs10846744 SCARB1 (Grallert, Dupuis et al. 

2012) 
1.01 Cplus4DGWAS 3.61x10

-6
 

rs2943634 2p36.3 (Angelakopoulou, Shah et 
al. 2012) 

1.08 Cplus4DGWAS 3.29 x10
-5

 

rs4420638 APOE-C1-
C4-C2 

(Grallert, Dupuis et al. 
2012) 

1.11 CG GWAS 2.14 x10
-4

 

rs6922269 MTHFD1L (Angelakopoulou, Shah et 
al. 2012) 

1.10 Cplus4DGWAS 3.58 x10
-4

 

rs1801177 LPL (Sagoo, Tatt et al. 2008) 1.33 Cplus4DGWAS 4.04 x10
-4

 
rs3869109 6p21.3 (Davies, Wells et al. 2012) 1.10 CG GWAS 1.49 x10

-3
 

rs7025486 DAB2IP (Harrison, Cooper et al. 
2012) 

1.10 Cplus4DGWAS 2.14x10
-3

 

rs2706399 IL-5 (Butterworth, Braund et al. 
2011) 

1.05 CG GWAS 0.01 

rs699 AGT (Zafarmand, van der 
Schouw et al. 2008) 

1.08 CG GWAS 0.01 

rs266729 ADIPOQ (Zhou, Xi et al. 2012) 1.12 CG GWAS 0.02 

rs383830 APC (Angelakopoulou, Shah et 
al. 2012) 

1.10 CG GWAS 0.10 

rs2234693 ESR1 (Shearman, Cooper et al. 
2006) 

1.44 CG GWAS 0.15 

rs12042319 ANGPTL3 (Angelakopoulou, Shah et 
al. 2012) 

1.11 CG GWAS 0.16 

rs20455 KIF6 (Peng, Lian et al. 2012) 1.27 CG GWAS 0.16 
rs1800469 TGF-B (Morris, Moxon et al. 

2012) 
1.13 CG GWAS 0.22 

rs1800896 IL-10 (Wang, Zheng et al. 2012) 1.12 CG GWAS 0.24 
rs1801133 MTHFR (Xuan, Bai et al. 2011) 1.14 CG GWAS 0.36 
rs4343 (I/D) ACE (Zintzaras, Raman et al. 

2008) 
1.21 CG GWAS 0.44 

rs662 PON1 (Wheeler, Keavney et al. 
2004) 

 CG GWAS 0.60 

rs5985 FXIII (Voko, Bereczky et al. 
2007) 

1.23 CG GWAS 0.62 

rs1800629 TNFA (Zhang, Xie et al. 2011) 1.50 CG GWAS 0.64 
rs5186 AGT1R (Xu, Sham et al. 2010) 1.09 C4D GWAS 0.71 
rs1801282 PPARG (Wu, Lou et al. 2012) 1.45 Cplus4DGWAS 0.73 
rs2995300 ADAM8 (Raitoharju, Seppala et al. 

2011) 
1.39 CG GWAS 0.79 

rs1799983 NOS3 (Casas, Cavalleri et al. 
2006) 

1.13 CG GWAS 0.90 

rs708272 CETP (Thompson, Di 
Angelantonio et al. 2008) 

 C4D GWAS 0.91 

rs17228212 SMAD3 (Angelakopoulou, Shah et 
al. 2012) 

1.11 Cplus4DGWAS 0.95 

rs1024611 MCP-1 (Wang, Zhang et al. 2011) 1.42 CG GWAS 0.99 
rs11279109 APOB (Chiodini, Barlera et al. 

2003) 
1.15 - - 

rs41360247 ABCG8 (Teupser, Baber et al. 
2010) 

1.20 - - 

rs1800471 TGF-B Morris, Moxon et al. 2012 1.21 - - 
rs28362491 NFKB1 (Vogel, Jensen et al. 2011) 1.22 - - 
rs116843064 ANGPTL4 (Talmud, Smart et al. 2008) 1.48 - - 

http://www.cardiogramplusc4d.org/
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3.2.3.2 GS SNPs in the CARDIoGRAMplusC4D analysis 

The 19 SNPs included in the GS presented in section 3.1, were then considered in the 

context of the literature search findings. The results of the CARDIoGRAMplusC4D meta-

analysis were checked to determine how many of the 19 SNPs were among the robustly 

associated CHD risk loci. The full data sets were then checked to assess whether the 

remaining SNPs showed a suggestive association with CHD (at least under the additive 

model used in that analysis).  

3.2.3.2.1 GS SNPs among the 46 confirmed CHD loci 

Sixteen of the 19 GS SNPs were genotyped as part of the CARDIoGRAM GWAS or 

CARDIoGRAMplusC4D meta-analysis. Four of the SNPs were lead SNPs at one of the 46 CHD 

risk loci identified (SORT1, CXCL12, MRAS and LPA rs3798220). The 9p21 SNP used in the 19 

SNP GS (rs10757274) and the lead SNP identified in the CARDIoGRAMplusC4D analysis are 

in strong LD (r2=0.88 as determined in the 1000 Genomes phase 1 EUR data). Furthermore, 

rs10757274 is in almost complete LD with the lead 9p21 SNP from the CARDIoGRAM GWAS 

(r2=0.99 in the 1000 Genomes phase 1 EUR data). Therefore, it can be concluded that the 

SNP in the GS covers the locus identified in the CARDIoGRAMplusC4D analysis.  

 

Two of the 19 SNP GS SNPs were moderate LD with the CARDIoGRAMplusC4D lead SNPs 

and were also genotyped/imputed in the analysis. The APOA5 promoter SNP, rs662799, is 

in moderate LD with the lead SNP at the ZNF259-APOA5-APOA1 locus (r2=0.73 with 

rs9326246 as calculated from the 1000 Genomes phase 1 EUR data) while the nonsense LPL 

variant rs328 is in moderate LD with the lead LPL SNP identified (rs264, r2=0.30 with rs328 

in the 1000 Genomes phase 1 EUR data). Three of the 19 SNP GS SNPs - rs1801177 in LPL 

(not in LD with rs264), rs7025486 in DAB2IP and rs708272 in CETP - showed a suggestive 

association with CHD (p <0.05). Two more of the 19 SNP GS SNPs (rs10455872 in LPA and 

rs17465637 in MIA3) were found to be associated with CHD in the CARDIoGRAM GWAS but 

were not assessed in the CARDIoGRAMplusC4D meta-analysis. The MIA3 SNP, rs17465637, 

was not tested for in the CARDIoGRAMplusC4D meta-analysis as neither it nor a good proxy 

is included on the Metabochip array used (Voight, Kang et al. 2012). As discussed above 

(section 3.2.3.1), LPA rs10455872 was likely not included in the replication step performed 

in the CARDIoGRAMplusC4D meta-analysis due to its proximity to rs3798220 (also in LPA) 

despite meeting the significance threshold for replication.  
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Four of the 19 SNP GS SNPs were not found to be associated with CHD in the 

CARDIoGRAMplusC4D meta-analysis. The APOB SNP, rs1042031, is in weak LD with the 

CARDIoGRAMplusC4D APOB SNP rs515135 (r2=0.28, LD data from the 1000 Genomes pilot 

CEU data). However, while the minor allele of rs1042031 is the CHD “risk” allele, the 

common allele is the CHD risk allele for rs515135. A systematic review (Boekholdt, Peters 

et al. 2003) found that rare allele was associated with lower LDL-cholesterol levels and 

there was no association between the SNP and CHD. This suggests that the data used in the 

original meta-analysis (Chiodini, Barlera et al. 2003) may have been subject to bias. The lack 

of an association between this SNP and CHD is confirmed in the CARDIoGRAMplusC4D 

meta-analysis (Table 45).  No association was found between three other SNPs (NOS3 

rs1799983, ACE rs4341, and SMAD3 rs17228212, all p>0.05) and CHD. 

 

Three of the SNPs in the 19 SNP GS were not genotyped by the CARDIoGRAMplusC4D 

consortium. However, the APOE SNPs rs7412 and rs429358 are in weak LD with the lead 

SNP identified at the APOE locus (rs445925 r2=0.68 with rs7412; rs2075650 r2=0.48 with 

rs429358, LD data taken from 1000 Genomes phase 1 EUR data). For the missense variant 

rs11591147 in PCSK9, while one of the CARDIoGRAMplusC4D lead SNPs (rs11206510) is 

located close to PCSK9, the two SNPs are not in strong LD. However, a study of PCSK9 

variants in an Italian cohort found r2 = 0.02 and D’=0.66 between the two SNPs and the 

authors concluded that the SNPs are not independent of each other (Guella, Asselta et al. 

2010). Therefore, for these three SNPs it can be concluded that the SNPs included in the 19 

SNP GS may at least partially tag the risk loci identified in the CARDIoGRAMplusC4D meta-

analysis.   

3.2.3.2.2 Updating the GS weightings 

The effect sizes used to weight the SNPs in the GS are taken mostly from early GWASs or 

meta-analysis of candidate gene studies. Given that these are subject to inflation through 

sources of bias such as the “winner’s curse” (Ioannidis 2008) it was decided to update the 

score using the effect sizes determined in the CARDIoGRAMplusC4D analysis (Deloukas, 

Kanoni et al. 2013). The updated weightings are shown in Table 45. Where a SNP was not 

present in the CARDIoGRAMplusC4D data, the effect size from the CARDIoGRAM GWAS 

(Schunkert, Konig et al. 2011) was used. As discussed above, neither the APOE SNPs nor 

rs11591147 in PCSK9 were genotyped in CARDIoGRAMplusC4D.  Therefore, the most 

recent meta-analysis identified in the literature search for these SNPs were used for a 

weighting, which were also the sources used for the weighting in the original score (Table 
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45). When combining the GS data with the CRF scores, the frequency from the 

CARDIoGRAM GWAS/CARDIOGRAMplusC4D data (or source publication) was used.  All 

SNPs were treated additively.  
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Table 45: SNP weightings for updated GS 

a
Weighting for rs1333049 (r

2
=0.88). 

b
Weighting for rs501120 used (r

2
=0.97). 

c
Weighting for rs4343 

(r
2
=0.96).

 d
Weighting for rs711752 (r

2
=1).

 e
Weighting for rs7016529 (r

2
=1). All r

2
 values calculated 

from 1000 Genomes phase 1 EUR data. Data on coronary artery disease / myocardial infarction have 
been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from 
www.CARDIOGRAMPLUSC4D.ORG. **In the original score, the protective allele was included rather 
than the risk allele. OR=odds ratio. Cplus4D = CARDIoGRAMplusC4D meta-analysis. CG 
GWAS=CARDIoGRAM GWAS. GS=gene score.

 

 

Gene/Locus  SNP Risk 
Allele 

OR OR in 
original 
score 

Frequency p-value* Source 

APOE rs7412 C 1.25 0.80** 0.87 - - (Bennet, Di 
Angelantonio 
et al. 2007) 

APOE rs429358 C 1.06 1.06 0.26 - (Bennet, Di 
Angelantonio 
et al. 2007) 

MIA3 rs17465637 C 1.14 1.14 0.74 1.36x10
-8

 CG GWAS 

MRAS rs9818870 T 1.07 1.15 0.14 2.62x10
-9

 Cplus4D 

DAB2IP rs7025486 A 1.04 1.16 0.29 2.14x10
-3

 Cplus4D 

CXCL12 rs1746048
b
 C 1.07 1.17 0.83 1.79x10

-8
 Cplus4D 

APOA5 rs662799 G 1.05 1.19 0.06 0.01 Cplus4D 

SORT1 rs599839 A 1.11 1.19 0.77 3.8x10
-15

 Cplus4D 

SMAD3 rs17228212 C 1.01 1.21 0.31 0.94 Cplus4D 

ACE rs4341
c
 G 1.01 1.22 0.52 0.43 CG GWAS 

LPL rs328 C 1.09 1.25 0.91 2.34x10
-4

 CG GWAS 

CETP rs708272
d
 C 1.04 1.28 0.56 0.04 CG GWAS 

CDKN2A/9p
21 

rs10757274
a
 G 1.23 1.29 0.47 1.39x10

-52
 Cplus4D 

NOS3 rs1799983 G 1.00 1.31 0.67 0.90 CG GWAS 

LPL rs1801177
e
 A 1.10 1.33 0.06 4.04x10

-4
 Cplus4D 

PCSK9 rs11591147 G 1.39 1.43 0.99 - (Benn, 
Nordestgaard 

et al. 2010) 

LPA rs10455872 G 1.32 1.70 0.06 3.80x10
-13

 CG GWAS 

APOB rs1042031 A 1.01 1.73 0.18 0.80 Cplus4D 

LPA rs3798220 C 1.28 1.92 0.01 4.90x10
-5

 Cplus4D 

http://www.cardiogramplusc4d.org/
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3.2.3.2.3 Assessing the updated GS in the UK population  

The performance of the updated 19 SNP GS was investigated in NPHSII.  A GS removing the 

SNPs with weak evidence of an association with CHD in the CARDIoGRAMplusC4D was also 

constructed and its performance compared to that of the 19 SNP GS. Removing SNPs that 

are not associated with CHD, the performance of the GS should improve (or least show a 

similar performance) and this will reduce the number of SNPs it is necessary to genotype. 

Therefore, a 14 SNP score discounting SNPs with a p>0.01 from the CARDIoGRAM 

GWAS/CARDIoGRAMplusC4D analysis was also tested. Number of NPHSII participants were 

as shown in Table 30 for the updated 19 GS and 1214 participants (1101 who did not 

develop CHD/113 who did develop CHD) for the Framingham score plus the 14 SNP GS and 

1440 participants (1277 who did not develop CVD/163 who did develop CVD) for QRISK2 

plus the 14 SNP GS. For both scores (weighted and un-weighted) the mean GS in the CHD 

group was higher than in the non-CHD group (Table 46). Both scores were also associated 

with CHD after adjustment for age and sex, with the weighted scores showing a stronger 

association (Table 47). As in section 3.2.1.3, the GSs were combined with the Framingham 

and QRISK2 CRF risk scores (the population GSs were calculated using the effect sizes and 

allele frequencies shown in Table 45). Ten-year follow-up data was used with the endpoint 

of CHD for the Framingham score and CVD for the QRISK2 score. Addition of the updated 

GSs improved calibration in comparison to the Framingham score alone but overall it 

remained poor (19 SNP GS, p=4.22x10-4; 14 SNP GS p=1.74x10-3, Figure 15). Whereas, 

calibration remained good with the addition of both GSs to QRISK2 (19 SNP GS, p=0.17; 14 

SNP GS p=0.20, Figure 16).  

 

 An improvement in discrimination was observed when the 19 SNP GS was combined with 

QRISK2 and compared to QRISK2 alone (AUROC 0.68 v 0.70 p=0.02). Addition of the 

updated 14 SNP GS to the CRF scores also showed improved discrimination compared to 

both QRISK2 alone (AUROC 0.66 v 0.69 p=4.69x10-4) and the Framingham score alone 

(AUROC 0.67 v 0.69 p=7.52x10-3) (Figure 16). There was no difference in AUROC observed 

with the addition of the 19 SNP GS to the Framingham score compared to the Framingham 

score alone (p=0.78). Combining the updated GSs with the QRISK2 risk score resulted in 

improved risk classification in the group who developed CHD giving a positive NRI (19 SNP 

NRI=0.07, p=0.04; 14 SNP NRI=0.06, p=0.03, Table 49). This was also the case for the 

addition of the GSs to the Framingham risk score compared to the Framingham score alone 
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(19 SNP NRI=0.06, p0.03; 14 SNP NRI=0.06, p=0.02, Table 49), but as the combined 

Framingham plus GS models are poorly calibrated, this may be misleading. 

Table 46: Updated GSs in NPHSII 

The mean (sd) are presented. The means were compared using Welch’s t-test. CI=confidence 
interval. GS=gene score. CHD=coronary heart disease.  
 
 
Table 47: Association between updated GSs and CHD in NPHSII 

Effect sizes relate to one standard deviation of the variable and were determined by logistic 
regression, adjusted for age. OR=odds ratio. CI=confidence interval. CHD=coronary heart disease.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Score No CHD CHD p-value 

Updated 19 SNP GS -Unweighted 16.61 (2.18) 
n=1090 

17.29 (2.09) 
n=110 

1.45x10
-3

 

Updated 19 SNP GS- Weighted 2.08 (0.24) 
n=1090 

2.17 (0.19) 
n=110 

1.37x10
-5

 

Updated 14 SNP GS - Unweighted 12.79 (1.70) 
n=1294 

13.47 (1.53) 
n=133 

3.61x10
-6

 

Updated 14 SNP GS - Weighted 2.01 (0.24) 
n=1294 

2.10 (0.21) 
n=133 

1.01x10
-6

 

Score Odds Ratio 
(95% CI) 

p-value 

Updated 19 SNP GS - Unweighted 1.38 (1.13-1.68) 1.83 x10
-3

 

Updated 19 SNP GS -Weighted 1.47 (1.20-1.80) 1.99 x10
-4

 

Updated 14 SNP GS - Unweighted 1.50 (1.25-1.80) 1.56x10
-5

 

Updated 14 SNP GS - Weighted 1.51 (1.26-1.82) 8.90x10
-6
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Figure 15: Observed CHD event rate in NPHSII compared to the predicted event rate determined by 
A) Framingham score alone; B) Framingham plus updated 19 SNP GS; C) Framingham plus 14 SNP GS, 
presented by decile of risk score. 

 

 

 
Rates were compared using the Hosmer-Lemeshow test. R packages “ggplot2”(Wickham 2009),” 
PredictABEL”(Kundu, Aulchenko et al. 2011; Kundu, Aulchenko et al. 2014) and “ResourceSelection” 
(Lele, Keim et al. 2014) were used to perform the analysis and produce the plots. However, p-values 
were calculated separately using ten degrees of freedom, rather than with the eight calculated with 
the R packages. 

A 

B 

C 

p=2.94x10-6 

p=4.22x10-4 

p=1.74x10-3 
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Figure 16: Observed CHD event rate in NPHSII compared to the predicated event rate determined by 
A) QRISK2 score alone; B) QRISK2 plus updated 19 SNP GS; C) QRISK2 plus 14 SNP GS, presented by 
decile of risk score 

 

 

 
Rates were compared using the Hosmer-Lemeshow test. R packages “ggplot2”(Wickham 2009),” 
PredictABEL”(Kundu, Aulchenko et al. 2014) and “ResourceSelection”(Lele, Keim et al. 2014) were 
used to perform the analysis and produce the plots. However, p-values were calculated separately 
using ten degrees of freedom, rather than with the eight calculated with the R packages. 

A 

C 

p=0.35 

p=0.17 

p=0.20 

B 
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Figure 17: ROC curves for different risk scores – CRF score alone with the addition of the one the 
updated GSs. A) CRF scores and the updated 19 SNP GS and B) CRF score and the 14 SNP GS 

 

 
Plots were created using the R package “pROC” (Robin, Turck et al. 2011). 
 
Table 48: AUROC for combined CRF plus updated GSs  

Combined Score AUROC (95% CI) CRF score AUROC (95% CI) p-value  

FRAM+19 SNP Updated GS 0.70 (0.65-0.75) FRAM 0.69 (0.64-0.74) 0.78 

FRAM+14 SNP Updated GS 0.69 (0.64-0.74) FRAM 0.67 (0.61-0.72) 7.52x10
-3

 

QRISK2+19 SNP Updated GS 0.70 (0.66-0.75) QRISK2 0.68 (0.64-0.73) 0.02 

QRISK2+14 SNP Updated GS 0.69 (0.65-0.73) QRISK2 0.66 (0.62-0.70) 4.69x10
-4

 

AUROC were compared using DeLong’s test, part of the R package pROC (Robin, Turck et al. 2011) 
CI=confidence interval. AUROC=area under the ROC curve. CRF=conventional risk factor. GS=gene 
score. FRAM=Framingham risk score.  
 
 
 
 
 

A 

B 
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Table 49: Reclassification of NPHII participants with the addition of the updated GSs to the CRF 
scores  

10 % was used as the high risk cut-off. FRAM=Framingham risk score. GS=gene score. 
CRF=conventional risk factor. NRI=net reclassification index. CHD=coronary heart disease. 
CI=confidence interval.  

Risk Score Reclassified 
at  

lower risk 

No change in 
risk 

classification 

Reclassified 
at  

higher risk 

NRI 
(95 % CIs) 

p-value 

FRAM + 19 SNP GS  

No CHD 49 828 53 0.06 
(0.01-0.12) 

0.03 

CHD 0 86 6 

Event rate 0 % 9.40 % 10.17 % 

FRAM + 14 SNP GS  

No CHD 55 982 64 0.06 
(0.01-0.11) 

0.02 

CHD 0 105 8 

Event rate 0 % 9.66 % 10.26% 

QRISK2 + 19 SNP GS  

No CHD 51 945 84 0.07 
(0.002-0.13) 

0.04 

CHD 3 114 16 

Event rate 5.56 % 10.76 % 16.00 % 

QRISK2 + 14 SNP GS  

No CHD 63 1115 99 0.06 
(0.01-0.12) 

0.03 

CHD 3 142 18 

Event rate  4.54 % 11.30 % 15.38 % 
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3.2.3.2.4 Assessing the updated GS in the South Asian and Afro-Caribbean 

populations 

The updated GSs were also assessed in the cohorts from Islamabad, Lahore and 

Guadeloupe. Both weighted GSs were higher in the cases compared to the controls in the 

Islamabad (19 SNP GS p=0.01, 14 SNP GS p=0.01, Table 50) and Guadeloupe (19 SNP GS 

p=0.01, 14 SNP GS p=9x10-4;Table 50) cohorts but not in the Lahore cohort (19 SNP GS 

p=0.83, 14 SNP GS p=0.88; Table 50). After adjustment for age and sex the GSs were not 

associated with CHD in either Pakistani group (all p>0.05; Table 51) but were associated 

with CHD in the Guadeloupe cohort (both weighted and unweighted, Table 51; Figure 18). 

When the association between the GSs and CHD was adjusted for CRFs (age, sex, 

hypertension, diabetes, hypercholesterolemia and smoking) the association remained for 

the unweighted score only (19 SNP GS p=8x10-3, 14 SNP GS p=4x10-3).  

Table 50: Updated GS values in the Pakistani and Afro-Caribbean cohorts 

Mean GS and standard deviation are shown.  Welch’s t-test was used to compare the GSs between 
cases and controls. GS=gene score.  

Table 51: Association between updated GSs and outcome in Pakistani and Afro-Caribbean cohorts 

Effect sizes relate to one standard deviation of the GS Logistic regression, adjusted for age and sex, 
was performed in each case. GS=gene score. OR=odds ratio.CI=confidence interval.  

  19 SNP GS 14 SNP GS 

Study Score  Controls Cases p-value Controls Cases p-value 

 
Islamabad 

Unweighted 14.90  
(2.33) 

15.42 
(2.10) 

0.05 12.23 
(1.55) 

12.73 
(1.90) 

0.01 

Weighted 1.99  
(0.19) 

2.06 
(0.22) 

0.01 1.94 
(0.19) 

2.00 
(0.22) 

0.01 

 
Lahore 

Unweighted 13.65  
(2.36) 

13.58 
(2.31) 

0.78 10.24 
(1.88) 

10.35 
(1.89) 

0.55 

Weighted 1.36  
(0.22) 

1.36 
(0.23) 

0.83 1.29 
(0.22) 

1.29 
(0.23) 

0.88 

 
Guadeloupe 

Unweighted 13.17  
(2.07) 

13.90 
(2.10) 

1.60x10
-4

 9.69 
(1.70) 

10.28 
(1.68) 

1.60x10
-4

 

Weighted 1.68 
(0.20) 

1.74 
(0.24) 

0.01 1.61 
(0.21) 

1.66 
(0.23) 

9.00x10
-4

 

  19 SNP GS 13 SNP GS 

Study Score  OR (95% CI) p-value OR (95% CI) p-value 

 
Islamabad 

Unweighted 0.93 
(0.68-1.27) 

0.65 1.12 
(0.84-1.52) 

0.44 

Weighted 1.11 
(0.82-1.50) 

0.50 1.15 
(0.86-1.55) 

0.34 

 
Lahore 

Unweighted 0.97 
(0.79-1.19) 

0.76 1.06 
(0.87-1.29) 

0.58 

Weighted 0.97 
(0.79-1.19) 

0.77 0.98 
(0.80-1.19) 

0.82 

 
Guadeloupe 

Unweighted 1.50 
(1.22-1.86) 

9.29x10
-3

 1.41 
(1.15-1.73) 

1.16x10
-3

 

Weighted 1.32 
(1.08-1.64) 

7.37x10
-3

 1.32 
(1.07-1.62) 

9.29x10
-3
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Figure 18: Association between updated weighted GS and outcome in A) the Islamabad study, B) 
the Lahore study and C) the Guadeloupe study 

    
 

    

  

Logistic regression was performed in each case, adjusted for age and sex. Error bars represent 95 %  
CI. CI=confidence intervals.  GS = gene score.  

A 

B 

C 
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3.3 Discussion 

In this study a CHD GS comprising 19 SNPs selected from candidate gene studies and early 

GWASs was investigated using data from a prospective study of healthy UK middle-aged 

men (NPHSII). A smaller 13 SNP GS derived from the 19 SNPs was also assessed. The GSs 

were originally weighted using the effect sizes determined in meta-analyses of candidate 

gene studies or GWASs. Both the original 19 SNP and 13 SNP GSs were associated with 

CHD.  However, addition of the GSs to CRF scores (Framingham and QRISK2) to give a 

combined CHD risk score did not show an improved performance compared to the CRF 

score alone. Updating the weightings to those determined in the CARDIoGRAM GWAS or 

CARDIoGRAMplusC4D analysis was found to improve the performance of the 19 SNP GSs. A 

14 SNP GS based with five of the 19 SNPs removed (those that did not show an association 

with CHD in the CARDIoGRAMplusC4D meta-analysis) was also assessed. The combined 

QRISK2 plus GS risk score showed improved discrimination and reclassification while 

maintaining good calibration compared to QRISK2 alone. Therefore, our results indicate 

that including the updated GSs along with QRISK2 may have clinical utility in the UK 

population. Furthermore, as the updated 19 SNP and 14 SNP GSs performed equally well, 

only these 14 SNPs of the original 19 require to be used. The results also show that QRISK2 

was better at predicating cardiovascular outcome in NPHSII compared to the Framingham 

score, with the Framingham score overestimating risk in NPHSII. This is consistent with the 

literature where even the NICE-adjusted Framingham risk equations have been found to 

overestimate ten-year CHD risk in the UK population, particularly in men (Collins and 

Altman 2010). The superior performance of QRISK2 compared to the Framingham score is 

unsurprising given that QRISK2 was derived from a very large British cohort while 

Framingham was developed from the Framingham study based in Massachusetts, USA 

(Wilson, D'Agostino et al. 1998; Hippisley-Cox, Coupland et al. 2008; Collins and Altman 

2010). 

 

The updated GSs were weighted using the results from the CARDIoGRAMplusC4D meta-

analysis (Deloukas, Kanoni et al. 2013). This work has since been expanded and a GWAS 

meta-analysis investigating over 9 million SNPs using haplotype data from the 1000 

genomes project in approximately 185,000 individuals was recently published (Nikpay, Goel 

et al. 2015). Ten new CHD risk loci were identified (eight from an additive model and two 

from a recessive model). Association analysis for all the SNPs in the 19 SNP GS with CHD 

was performed. A comparison of the weightings used in the updated GS and the effect sizes 
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determined in this meta-analysis is shown in Table 52. For the most part, the effect sizes 

are very similar and thus it was felt unnecessary to update the weightings in the GS.  

 

Table 52: Comparison of the effect size for the 19 CHD GS SNPs between two CARDIoGRAMplusC4D 
meta-analyses  

a
Weighting for rs1333049 (r

2
=0.88). 

b
Weighting for rs501120 used (r

2
=0.97). 

c
Weighting for rs4343 

(r
2
=0.96).

 d
Weighting for rs711752 (r

2
=1).

 e
Weighting for rs7016529 (r

2
=1). All r

2
 values calculated 

from 1000 Genomes phase 1 EUR data. Data on coronary artery disease / myocardial infarction have 
been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from 
www.CARDIOGRAMPLUSC4D.ORG. OR= Odds Ratio. Cplus4D = CARDIoGRAMplusC4D meta-analysis. CG 
GWAS=CARDIoGRAM GWAS.

 

 

In comparison to the genetics of CHD in those of Europeans ethnicity, very little is known 

about the genetics of CHD in either the South Asian or Afro-Caribbean populations. Here, 

the GSs were assessed in two case-control cohorts from Pakistan and one from Guadeloupe 

in the Caribbean. Both the original and updated GSs were associated with CHD (after 

adjustment for age and sex) in the Afro-Caribbean cohort. The GSs (apart from the 19 SNP 

GS with the original weightings) were higher in cases compared to controls for both 

updated GSs in the Islamabad sample, although neither score was associated with CHD 

after adjustment for age and sex. There was no difference for any of the GSs between cases 

and controls in the Lahore group. The lack of an association observed for the updated GSs 

in the Lahore study is unlikely to be due to low power. To have 80% power (at the p=0.05 

Gene/Locus  SNP Risk 
Allele 

OR in Cardiogram-
plusC4D meta-

analysis 
(Deloukas, Kanoni 

et al. 2013) 

OR in most 
recent meta-

analysis 
(Nikpay, Goel 
et al. 2015) 

p-value in most 
recent meta-

analysis 
(Nikpay, Goel et 

al. 2015) 

APOE rs7412 C 1.25 1.14 8.17x10
-11

 

APOE rs429358 C 1.06 1.10 2.17x10
-9

 

MIA3 rs17465637 C 1.14 1.08 3.52x10
-12

 

MRAS rs9818870 T 1.07 1.07 2.21x10
-6

 

DAB2IP rs7025486 A 1.04 1.05 3.26x10
-6

 

CXCL12 rs1746048 C 1.07
b
 1.08 6.49x10

-11
 

APOA5 rs662799 G 1.05 1.06 4.23x10
-4

 

SORT1 rs599839 A 1.11 1.10 9.01x10
-19

 

SMAD3 rs17228212 C 1.01 1.03 9.30x10
-3

 

ACE rs4341 G 1.01
c
 1.01 0.24 

LPL rs328 C 1.09 1.05 1.81x10
-3

 

CETP rs708272 C 1.04
d
 1.02 0.01 

CDKN2A/9p21 rs10757274 G 1.23
a
 1.22 2.49x10

-38
 

NOS3 rs1799983 G 1.00 1.03 4.28x103
1
 

LPL rs1801177 A 1.10
e
 1.13 2.21x10

-3
 

PCSK9 rs11591147 G 1.39 1.29 7.47x10
-6

 

LPA rs10455872 G 1.32 1.38 5.73x10
-39

 

APOB rs1042031 A 1.01 1.00 0.71 

LPA rs3798220 C 1.28 1.42 4.66x10
-9

 

http://www.cardiogramplusc4d.org/
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significance threshold) to detect a similar difference in updated mean GS (for either 19 SNP 

or 14 SNP updated GS) as was seen in NPHSII, 91 cases and 91 controls are required. The 

number of cases and controls exceeded this. Rather, the poor performance of the GSs in 

the Lahore group can be at least partly attributed to the much broader definition of CHD 

used in recruitment the case group compared to the Islamabad study which used an MI 

phenotype (more like the “hard” endpoints used in the prospective NPHSII and the 

Guadeloupe study). Overall, the results indicate that the GSs provide a useful estimate of 

genetic CHD risk in Afro-Caribbeans from Guadeloupe at least, but firm conclusions cannot 

be drawn from the Pakistani data.   

 

The improved performance of the GSs with the updated weightings demonstrates that the 

effect sizes derived from the CARDIoGRAMplusC4D analysis more accurately reflect the 

impact of the SNP CHD risk. All of the updated weightings were lower, indicating that the 

original effect sizes were inflated. This is a common problem in genetic studies (Kraft 2008). 

However, in the Afro-Caribbean group, the updated unweighted GSs remained associated 

with CHD after adjustment for multiple risk factors while the weighted score did not 

(Larifla, Beaney et al. 2016). It would be expected that weighting SNPs for their individual 

impact on CHD risk would improve performance, rather than assuming that all SNPs have 

the same magnitude of effect. The findings of this study can be partly explained by differing 

LD patterns between Afro-Caribbeans and those of European ethnicity. A number of the 

SNPs included in the score are GWAS hits where the lead SNP (i.e. that included in the 

score) is unlikely to be the functional SNP at that risk locus. LD between the lead and 

functional SNPs may differ between ethnicities, meaning that some SNPs are better proxies 

than others. This will reduce the ability of the weighted GS to accurately reflect CHD risk. 

This problem would be removed by the identification of the functional SNP (or possibly 

SNPs) at each risk locus.   

 

The results of the systematic literature search demonstrated that SNP selection, which was 

performed in the early days of GWASs, was suboptimal in light of recent meta-analyses. In 

order to construct a CHD risk GS now a reasonable strategy would be to use the results of 

the CARDIoGRAMplusC4D meta-analysis (Deloukas, Kanoni et al. 2013). GSs based on this 

work have been assessed by others. In six prospective studies with over 10,000 participants 

of European ethnicity a CRF-CARDIoGRAMplusC4D GS score improved discrimination and 

reclassification over above the CRF score alone while maintaining good calibration (Ganna, 
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Magnusson et al. 2013). In the Rotterdam Study the CARDIoGRAMplusC4D GS showed no 

improvement over CRFs alone (de Vries, Kavousi et al. 2015). In the UCLEB consortium 

participants a combined QRISK2 plus CARDIoGRAMplusC4D GS score was found to have 

potential clinical utility for those previously classified as being at intermediate risk although 

overall the combined score did not show additional benefit over and above QRISK2 alone 

(Morris, Cooper et al. 2016). It would be interesting to compare the performance of such a 

score with the 19 SNP/14 SNP GSs developed here. However, the biochip technology 

utilised by the Randox Cardiac Risk Prediction array (Chapter 2.3.3) developed to genotype 

the SNPs in a clinical setting is limited to 23 SNPs.  Therefore, it would be more pertinent to 

compare a GS of the top 23 ranked CARDIoGRAMplusC4D SNPs (by RAF multiplied by effect 

size, Table 53) with the GSs assessed herein. Constructing large-scale GSs using tens of 

thousands of SNPs with CHD risk estimates (from GWASs) has also been suggested 

(Dudbridge 2013). While such GSs may ultimately out-perform those constructed with only 

robustly associated SNPs, such an approach is not practical for a clinical setting, at least in 

the short-to-medium term. 
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Table 53: Top 25 CARDIoGRAMplusC4D CHD risk loci ranked by ln(OR) multiplied by RAF 

OR=odds ratio. RAF=risk allele frequency.  

Chromosome Lead SNP Gene/Locus OR RAF ln(OR) x RAF 

19 rs445925 ApoE-ApoC1 1.13 0.9 0.110 

4 rs7692387 GUCY1A3 1.13 0.81 0.099 

9 rs1333049 9p21 1.23 0.47 0.097 

1 rs17114036 PPAP2B 1.11 0.91 0.095 

1 rs602633 SORT1 1.12 0.77 0.087 

10 rs12413409 
CYP17A1-CNNM2-

NT5C2 
1.1 0.89 0.085 

19 rs1122608 LDLR 1.1 0.76 0.072 

13 rs9515203 COL4A1-COL4A2 1.08 0.74 0.057 

9 rs3217992 9p21 1.16 0.38 0.056 

10 rs501120 CXCL12 1.07 0.83 0.056 

6 rs9369640 PHACTR1 1.09 0.65 0.056 

7 rs11556924 ZC3HC1 1.09 0.65 0.056 

8 rs264 LPL 1.06 0.86 0.050 

13 rs4773144 COL4A1-COL4A2 1.07 0.74 0.050 

6 rs4252120 PLG 1.07 0.73 0.049 

1 rs11206510 PCSK9 1.06 0.84 0.049 

1 rs17464857 MIA3 1.05 0.87 0.042 

1 rs4846525 IL6R 1.09 0.47 0.041 

15 rs7173743 ADAMTS7 1.07 0.58 0.039 

17 rs12936587 RAI1-PEMT-RASD1 1.06 0.59 0.034 

6 rs12205331 ANKS1A 1.04 0.81 0.032 

13 rs9319428 FLT1 1.1 0.32 0.030 

2 rs1561198 VAMP5-VAMP8-GGCX 1.07 0.45 0.030 

12 rs3184504 SH2B3 1.07 0.4 0.027 

8 rs2954029 TRIB1 1.05 0.55 0.027 
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The literature search also found three CHD risk loci which had not been identified in the 

CARDIoGRAMplusC4D analysis. One variant tags a three codon deletion in the signal 

peptide region of the APOB gene (Boerwinkle and Chan 1989). The second risk locus tags an 

insertion/deletion variant in NFKB1 (Vogel, Jensen et al. 2011). The SNP used in genotyping 

is not available on large scale genotyping chips and no suitable proxies have, as yet, been 

identified. Another meta-analysis was identified which found an association between 

variants in TGF-B and CHD under a dominant model (Morris, Moxon et al. 2012) (although 

it is noteworthy that one TGF-B variant was included in CARDIoGRAMplusC4D and did not 

show even a suggestive association p=0.22). Typically, the additive model is used in the 

GWAS analysis (although this was not the case with the most publication from the 

CARDIoGAMplusC4D consortium (Nikpay, Goel et al. 2015), so if there is a different 

relationship between risk allele and CHD, this can easily be missed. At the present the 

evidence for a robust association between these SNPs and CHD is not as strong as for the 

CARDIoGRAMplusC4D confirmed loci but a true association cannot be discounted. This 

serves as a reminder that while the GWAS remains a crucial tool in risk loci discovery and 

replication, it does not give a complete account of the genetics of a particular phenotype. 

In addition, one must be mindful of the criteria use to select variants for replication in such 

large-scale analysis. Variants may not be included due to proximity to another risk locus 

despite there being strong evidence the effects are independent as was the case with LPA 

in CARDIoGRAMplusC4D.  

 

This study has a number of limitations. All of the participants of NPHSII are male. While 

there is no evidence to suggest the SNP effect sizes differ between men and women, it is 

known that the pathogenesis of atherosclerosis is different between the sexes (Appelman, 

van Rijn et al. 2015). Therefore, it would be ideal to test the GSs in a mixed sample set. 

Data to calculate either the Framingham score or QRISK2 was not available in either the 

Pakistani or Afro-Caribbean studies and so the performance of a combined CRF plus 

genetics CHD risk score could not be assessed in these groups (and the case-control study 

design precludes assessment of predictive ability). In any case, these CRF scores may not be 

appropriate to use in these populations. An assessment of CRF scores in the multi-ethnic 

SABRE cohort in the UK found the performance of both the Framingham score and QRISK2 

to vary between ethnicities, being poorer in South Asian women and Afro-Caribbean 

individuals of both sexes (Tillin, Hughes et al. 2014). Therefore, it may be that specific CHD 

risk calculators for these populations are required. It might also be necessary to tailor the 
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GS to particular ethnic groups as all of the variants used in the GSs assessed here were 

identified in those of European ethnicity. Some of the rarer risk alleles may not be present 

in all ethnicities - for example none of the participants of the Guadeloupe study carried the 

rare allele of the PCSK9 SNP rs11591147. This indicates that in an Afro-Caribbean specific 

GS, this SNP should be removed. This is only proposed for completely monomorphic 

variants, as rare variants usually carry relatively large effect sizes and it is important to 

identify carriers of such variants (e.g. rs3798820 in LPA). Moreover, future large-scale 

analysis in different ethnic groups may identify CHD risk variants which are not present in 

populations of European ethnicity would merit inclusion in a CHD risk GS used in other 

populations. It is noteworthy however, that studies performed in African Americans (Lettre, 

Palmer et al. 2011; Franceschini, Hu et al. 2014) have so far failed to find any such risk loci 

with large effect sizes, although sample size is relatively small compared to studies 

performed with individuals of European ethnicity. For the time-being GSs based on data 

derived from the population remains the best way to estimate genetic CHD risk.  

 

A further limitation is that it is unclear how representative the results in cohorts studied 

here are of the general South Asian and Afro-Caribbean populations. A small number of 

Punjabi participants from Lahore (n=96) were genotyped as part of the 1000 Genomes 

project (phase 3) (Abecasis, Altshuler et al. 2010). The risk allele frequencies for all SNPs 

except rs10757274 did not differ between this group and the Pakistani control subjects 

presented here. Given that the frequencies of 19 SNPs were compared between the groups 

using a p=0.05 significance threshold, it is not unexpected to find one with a significantly 

different frequency between the two groups by chance. Overall the results suggest that the 

groups studied here are at least somewhat representative of the Punjabi population in 

Pakistan. However, five of the 19 SNPs were out of HWE in the Islamabad group. In each 

case this was due to an excess of homozygotes, indicating the presence of population sub-

structure within the cohort. A small number (n=96) of Afro-Caribbean participants from 

Barbados were also included in the 1000 Genomes phase 3. The RAF differed between this 

group and the Guadeloupe controls for four SNPs. While this indicates that the results 

presented here will have some relevance to the wider Afro-Caribbean population, it also 

highlights the genetic diversity within this ethnic group. Evidently, both genetic and CRF 

data derived from much larger studies reflecting the different regions of South Asia and the 

Caribbean is required.  
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3.4 Conclusion to chapter 

The use of the CHD risk GS was optimised by updating the weightings to the effect sizes 

determined in the CARDIoGRAMplustC4D analysis. Addition of the GS to QRISK2 was found 

to have potential clinical utility in the UK population. The results from an Afro-Caribbean 

cohort suggested the GS may also have clinical utility in this group but the results from the 

Pakistani cohorts were inconclusive.  
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4 The genetics of CHD in T2D 
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4.1 Introduction 

Data from epidemiological studies has shown that those with T2D have an approximately 

two-fold greater risk of developing CHD (Woodward, Zhang et al. 2003; Sarwar, Gao et al. 

2010). However, given that the two diseases share many common risk factors, it has been 

difficult to ascertain whether the diabetic state is itself contributing to the pathogenesis of 

CHD. Recent Mendelian randomisation studies have found that T2D risk variants and 

variants associated with fasting glucose levels are also associated with CHD, providing 

evidence for a causal relationship between T2D and CHD (Ahmad, Morris et al. 2015; 

Jansen, Loley et al. 2015). This is supported by a number of meta-analyses of RCTs that 

have found improved glycaemic control reduces risk of cardiovascular events (Stettler, 

Allemann et al. 2006; Mannucci, Monami et al. 2009; Ray, Seshasai et al. 2009). Work is 

ongoing to identify the mechanism(s) through which diabetes impacts upon CHD risk.  

 

A number of risk factors for CHD in T2D have been identified, including duration of diabetes 

(Fox, Sullivan et al. 2004; Wannamethee, Shaper et al. 2011) and elevated glycated 

haemoglobin (Selvin, Marinopoulos et al. 2004). Given this and that those with T2D are 

already a high risk group specific CHD risk scores for T2D have been developed (Chamnan, 

Simmons et al. 2009). Data from the UKPDS study was used to construct a T2D-specific CHD 

risk score (Stevens, Kothari et al. 2001). The 2008 NICE guidelines recommended its use for 

CHD risk assessment in those with T2D (2008). However, external validation of the UKPDS 

score with approximately 80,000 newly diagnosed T2D cases taken from the Clinical 

Practice Research Database  found it was poorly calibrated, greatly overestimating risk 

(Bannister, Poole et al. 2014). The authors concluded that revised risk scores are required. 

NICE updated its guidance, recommending the use of QRISK2 for those with T2D (2014). 

Despite the lack of external validation, the Guideline Development Group felt that as the 

QRISK2 development cohort contains 40,000 individuals with T2D and that QRISK2 is 

updated regularly, it is the most suitable tool available. Whether updated risk scores for 

CHD in T2D, developed from a T2D-only cohort will outperform QRISK2 remains to be seen.  

 

The potential of genetics to improve CHD risk prediction was demonstrated in Chapter 3 

but whether a general CHD GS is suitable for use in T2D is unknown. It may be more 

appropriate to use a CHD in T2D specific GS to provide an estimate of genetic risk in this 

population. Therefore, the aim of this study was to identify risk loci for CHD in T2D from the 

literature, to construct a GS and assess its performance with data from the UCLEB 
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consortium. In addition, the general 19 SNP CHD GS was also calculated to assess its 

performance in those with T2D. Furthermore, by studying the mechanism(s) through which 

risk variants mediate their effect, genetics can also play a role in elucidating how the 

diabetic state pre-disposes individuals to CHD. As such, the final aim of this study was to 

investigate the relationship between the risk variant rs10911021 and CHD in T2D, 

particularly the relationship between the SNP and T2D-CHD risk factors. 
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4.2 Results 

4.2.1 Systematic literature search results 

As when identifying variants associated with the general CHD phenotype, variants 

associated with CHD in those with T2D were identified in a systematic literature search. The 

methodology used for the literature search was described in Chapter 2.2 and the workflow 

is depicted in Figure 14. One meta-analysis which studied variants associated with CHD in 

T2D was found (Qi, Parast et al. 2011). In this study, twelve GWAS hits for CHD in the 

general population were genotyped in three cohorts with T2D. Five of the variants were 

found to be associated with CHD in T2D (Table 54). The authors constructed an unweighted 

GS using these five SNPs and found it to be associated with CHD in the same three T2D 

cohorts that were used for the meta-analysis (approximately 1000 CHD cases and 1400 

CHD controls), although statistical adjustments were made to account for this. 

Furthermore, they found that addition of the GS to a CRF model, including glycated 

haemoglobin, improved discrimination and reclassification compared to the CRF model 

alone. 

 

Following the completion of the literature search, another locus associated with CHD in 

T2D was identified by the same group (published September 2013). This locus on 

chromosome 1 (lead SNP rs10911021) was the first to be associated with CHD in T2D that 

had not been associated with CHD in the general population (Qi, Qi et al. 2013) and details 

of the association are shown in Table 54. The SNP was genotyped in the CARDIoGRAM 

GWAS and found to have a suggestive association with CHD (OR=1.04, p=0.01). The authors 

state that this effect size was in accordance with what would be expected based on the 

effect sizes they observed in the T2D and no T2D groups and the prevalence of T2D in the 

CARDIoGRAM participants. This SNP is studied in section 4.2.4 of this chapter.  

 

Table 54: Variants found to be associated with CHD in T2D.   

The data is taken from either a meta-analysis of 3 independent T2D cohorts (Qi, Parast et al. 2011) 
or 5 independent T2D cohorts (Qi, Qi et al. 2013). OR=odds ratio.  
 

SNP Gene/Locus Risk Allele OR Study 

rs4977574 9p21 G 1.21 (Qi, Parast et al. 2011) 

rs12526453 PHACTR1 C 1.25 (Qi, Parast et al. 2011) 

rs646776 SORT1 T 1.17 (Qi, Parast et al. 2011) 

rs2259816 HNF1A T 1.17 (Qi, Parast et al. 2011) 

rs11206510 PCSK9 T 1.26 (Qi, Parast et al. 2011) 

rs10911021 GLUL C 1.36 (Qi, Qi et al. 2013) 
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4.2.2 CHD in T2D GSs 

4.2.2.1 Association of CHD in T2D GSs with CHD in T2D 

Two CHD in T2D GSs were assessed using data from the UCLEB consortium. One included 

the five SNPs identified in Qi, Parast et al. 2011 (5 SNP GS) while the other included these 

plus the chromosome 1 variant, rs10911021 (6 SNP GS). All SNPs were treated additively. 

The SNPs were weighted using the effect sizes determined in the source publications as 

listed in Table 54. Of the six SNPs found to be associated with CHD in T2D, two had been 

genotyped in UCLEB (rs11206510 close to PCSK9 and rs646776 at the SORT1 locus). The 

lead SNP identified by Qi, Parast et al. at the 9p21 locus (rs4977547) had not been 

genotyped in UCLEB but genotyping data for rs10757274 (r2=0.99 with rs4977547 as 

determined in CEU 1000 Genomes phase 1 data) was available. The three other SNPs 

included in the GS had been imputed. Genotype, diabetic status and follow-up data were 

available for eight of the UCLEB cohorts (Table 55).  Only those with prevalent diabetes at 

baseline were included to ensure that all CHD events occurred following a diagnosis of T2D.   

 

In total there was complete data for 1535 participants with T2D. There were 160 CHD 

events during follow-up. The mean weighted and unweighted GS were higher in those who 

went on to develop CHD for both the 5 SNP and 6 SNP GSs (Table 56 and Table 57). The 

association between the GSs and CHD was analysed using logistic regression for each study 

and the results were combined by meta-analysis. Under a FE model both unweighted 

scores were found to be associated with CHD (6 SNP GS p=2.39x10-3 and 5 SNP GS p=0.02; 

Figure 19). For the 5 SNP GS, each additional risk allele was associated with an increased 

risk of CHD OR=1.17 (95 % CIs 1.02-1.33), similar to the effect size observed in the original 

publication (OR=1.19 (95 % CIs 1.13-1.26)) (Qi, Parast et al. 2011). The weighted GSs were 

also associated with CHD in T2D under a FE model (6 SNP GS p=2.16x10-3 and 5 SNP GS 

p=0.02). However, while there was no evidence of heterogeneity between the studies for 

the 5 SNP GS (unweighted I2=0 %, p=0.43; weighted I2=7 %, p=0.38), there appeared to be 

at least moderate heterogeneity for the 6 SNP GS, particularly the unweighted score 

(unweighted I2=31%, p=0.14, weighted I2=47%, p=0.07). Under a RE model (using the 

DerSimonian Laird method), the association was no longer statistically significant for either 

the unweighted (p=0.14) or weighted score (p=0.06).   
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Table 55: Number of participants in UCLEB cohorts with genotype, baseline T2D and CHD follow-up data 

The median number of follow-up years is shown.   

 

 

 

 

 

 BRHS BWHHS CAPS EAS ELSA ET2DS MRC1946 WHII Total 

Participants with complete 
genotype and CHD data (n) 

2182 1819 1319 744 1705 823 2406 3041 14039 

Participants with prevalent 
T2D (% of total) 

261 
(12 %) 

107 
(6 %) 

36 
(3 %) 

59 
(8 %) 

167 
(10 %) 

823 
(100 %) 

50 
(2 %) 

32 
(1 %) 

1535 
(11 %) 

Incident CHD cases (n) 
(% of T2D total) 

72 
(28 %) 

13 
(12 %) 

16 
(44 %) 

13 
(22 %) 

7 
(4 %) 

31 
(4 %) 

5 
(10 %) 

3 
(9 %) 

160 
(11 %) 

Approximate length of follow-
up (years) 

15 7 9 20 4 4 12 5 - 
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Table 56: Mean weighted and unweighted 6 SNP GS in UCLEB T2D participants who did and did not 
go on to develop CHD. 

The mean (standard deviation) for each study is shown individually. Mean gene score between the 
CHD and no CHD groups were compared using Welch’s t-tests in individual studies and by ANOVA 
(with study as a factor) for the combined analysis. GS=gene score.  

 

Table 57: Mean weighted and unweighted 5 SNP GS in UCLEB T2D participants who did and did not 
go on to develop CHD.   

The mean GS (standard deviation) for each study is shown individually. Mean GS between the CHD 
and no CHD groups were compared using Welch’s t-tests in individual studies and by ANOVA (with 
study as a factor) for the combined analysis. GS=gene score. 
 
 

 

Study Score No CHD CHD p-value 

BRHS Weighted GS (sd) 1.49 (0.32) 1.65 (0.30) 4.05 x 10
-4

 

Unweighted GS (sd) 6.94 (1.49) 7.56 (1.45) 2.74 x 10
-3

 

BWHHS Weighted GS (sd) 1.42 (0.40) 1.67 (0.34) 0.03 

Unweighted GS (sd) 6.57 (1.87) 7.69 (1.65) 0.04 

CAPS Weighted GS (sd) 1.46 (0.31) 1.44 (0.37) 0.84 

Unweighted GS (sd) 6.75 (1.41) 6.75 (1.57) 1 

EAS 
 

Weighted GS (sd) 1.58 (0.34) 1.63 (0.27) 0.61 

Unweighted GS (sd) 7.21 (1.56) 7.62 (1.04) 0.29 

ELSA Weighted GS (sd) 1.48 (0.35) 1.42 (0.22) 0.58 

Unweighted GS (sd) 6.89 (1.59) 6.57 (0.98) 0.43 

ET2DS Weighted GS (sd) 1.50 (0.34) 1.45 (0.27) 0.23 

Unweighted GS (sd) 6.96 (1.56) 6.77 (1.28) 0.47 

MRC1946 Weighted GS (sd) 1.52 (0.36) 1.79 (0.19) 0.03 

Unweighted GS (sd) 7.00 (1.68) 8.40 (0.89) 0.02 

WHII Weighted GS (sd) 1.51 (0.35) 1.55 (0.33) 0.86 

Unweighted GS (sd) 7.00 (1.58) 7.33 (1.53) 0.74 

Combined Weighted GS (sd) - 2.39 x 10
-3

 

Unweighted GS (sd) 2.16 x 10
-3

 

Study Score No CHD CHD p-value 

BRHS Weighted GS (sd) 1.07 (0.26) 0.14 (0.26) 0.05 

Unweighted GS (sd) 5.56 (1.35) 5.90 (1.37) 0.07 

BWHHS Weighted GS (sd) 1.02 (0.32) 1.17 (0.29) 0.08 

Unweighted GS (sd) 5.26 (1.67) 6.08 (1.50) 0.09 

CAPS Weighted GS (sd) 1.03 (0.25) 1.06 (0.24) 0.78 

Unweighted GS (sd) 5.35 (1.31) 5.50 (1.21) 0.73 

EAS 
 

Weighted GS (sd) 1.10 (0.26) 1.15 (0.15) 0.41 

Unweighted GS (sd) 5.67 (1.38) 6.08 (0.76) 0.18 

ELSA Weighted GS (sd) 1.06 (0.29) 0.99 (0.17) 0.32 

Unweighted GS (sd) 5.54 (1.46) 5.14 (0.90) 0.31 

ET2DS Weighted GS (sd) 1.07 (0.27) 1.06 (0.25) 0.85 

Unweighted GS (sd) 5.56 (1.40) 5.55 (1.31) 0.95 

MRC1946 Weighted GS (sd) 1.08 (0.30) 1.43 (0.14) 1.63 x 10
-3

 

Unweighted GS (sd) 5.56 (1.55) 7.20 (0.84) 6.37 x 10
-3

 

WHII Weighted GS (sd) 1.09 (0.23) 1.14 (0.17) 0.66 

Unweighted GS (sd) 5.62 (1.21) 6.00 (1.00) 0.59 

Combined Weighted GS (sd)  0.02 

Unweighted GS (sd) 0.02 
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Figure 19: Association between CHD and A) 6 SNP unweighted GS and B) 5 SNP unweighted GS 
(unadjusted).  

 
 

 

The effect size (95% CI) determined per standard deviation of GS in each study is shown along with 
the combined effect size. A FE meta-analysis was performed using the R package “metafor” in both 
cases (Viechtbauer 2010).GS=gene score. FE=fixed effects. CI=confidence interval.  

A 

B 
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4.2.3 Association of CHD in T2D GSs with T2D-CHD risk factors 

To further assess the relationship between the CHD in T2D GSs and CHD, whether the GSs 

were associated with conventional T2D-CHD risk factors was investigated. For each trait, 

linear regression with the GS was performed and the results were meta-analysed. An FE 

model was used unless there was evidence of heterogeneity between the studies (defined 

as I2>30%, p<0.05). As shown in Table 58, only LDL-cholesterol showed an association with 

the unweighted 5 SNP GS (p=0.04) and a suggestive association with the weighted 5 SNP GS 

(p=0.06). Neither the weighted nor unweighted 6 SNP GS was associated with any of the 

T2D-CHD risk factors assessed (Table 59).  

 

Table 58: Association between T2D-CHD risk factors and 5 SNP GSs in T2D participants of UCLEB 

For each variable linear regression was performed in individual UCLEB studies and the results meta-
analysed using a fixed-effects model. Beta coefficient per unit increase and standard error are 
shown for each trait. *Variable log transformed. TC=total cholesterol.  GS=gene score.  
 

Table 59: Association between T2D-CHD risk factors and 6 SNP GSs in T2D participants of UCLEB 

For each variable linear regression was performed in individual UCLEB studies and the results meta-
analysed using a fixed-effects model unless otherwise stated. Beta-coefficient per unit increase and 
standard error are shown for each trait. *Variable log transformed. **Random effects (DerSimonian 
Laird method) used in this meta-analysis. TC=total cholesterol. GS=gene score.  
 

Trait  5 SNP GS - Unweighted 5 SNP GS - Weighted 

Beta-coefficient 
(se) 

p-value Beta-coefficient 
(se) 

p-value 

BMI (kg/m
2
) -0.12 (0.09) 0.17 -0.63 (0.44) 0.15 

Triglycerides* (mmol/l) 0.01 (0.01) 0.35 0.06 (0.08) 0.39 

TC (mmol/l) 0.01 (0.02)  0.46 0.05 (0.09) 0.53 

HDL-cholesterol (mmol/l) 0.002 (0.006) 0.79 -0.004 (0.03) 0.90 

LDL-cholesterol (mmol/l) 0.05 (0.03) 0.04 0.24 (0.13) 0.06 

Systolic blood pressure (mmHg) 0.12 (0.31) 0.38 0.95 (1.61) 0.56 

Diastolic blood pressure (mmHg) -0.13 (0.17) 0.45 -0.71 (0.89) 0.42 

Fasting glucose* (mmol/l) 0.007 (0.005) 0.14 0.04 (0.03) 0.12 

Insulin
* 

(µIU/ml) -0.07 (0.16) 0.66 0.05 (0.48) 0.91 

Trait  6 SNP GS - Unweighted 6 SNP GS - Weighted 

Beta-coefficient 
(se) 

p-value Beta-coefficient 
(se) 

p-value 

BMI (kg/m
2
) -0.10 (0.08) 0.18 -0.48 (0.35) 0.20 

Triglycerides* (mmol/l) 0.01 (0.01) 0.42 0.04 (0.06) 0.53 

TC** (mmol/l) 0.03 (0.03)  0.29 0.06 (0.07) 0.37 

HDL-cholesterol (mmol/l) 0.005 (0.005) 0.32 0.04 (0.02) 0.10 

LDL-cholesterol** (mmol/l) 0.02 (0.04) 0.60 -0.01 (0.20) 0.96 

Systolic blood pressure (mmHg) 0.07 (0.28) 0.81 0.48 (1.29) 0.75 

Diastolic blood pressure (mmHg) -0.04 (0.15) 0.82 -0.006 (0.71) 0.99 

Fasting glucose* (mmol/l) 0.007 (0.005) 0.13 0.03 (0.02) 0.13 

Insulin
* 

(µIU/ml) -0.02 (0.03) 0.52 -0.05 (0.30) 0.72 
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4.2.3.1 Addition of CHD in T2D GS to CRF score 

Whether addition of the CHD in T2D GSs to a CRF score provides any improvement 

compared to the performance of a CRF risk score alone was also assessed.  Complete 

QRISK2, GS and ten-year CVD follow-up data was available for 1009 UCLEB participants 

with T2D (908 no CVD/101 CVD) taken from seven of the UCLEB studies (BWHHS, CAPS, 

EAS, ELSA, ET2DS, MRC1946 and WHII).  To calculate the population weighted 5 SNP GS and 

6 SNP GS, the effect sizes were taken from the source publications (Table 54) and the allele 

frequencies from the EUR group of the 1000 genomes project phase 1. As shown in Figure 

20, QRISK2 was very poorly calibrated in the UCLEB participants with T2D (p<2.20x10-16). 

The number of CVD events was similar in each decile of QRISK2 score, a very poor 

predictive performance. Unsurprisingly addition of the CHD in T2D GSs to QRISK2 did not 

improve calibration (both 6 SNP and 5 SNP GSs p<2.20x10-16). There was no difference in 

discrimination between QRISK2 and the combined QRISK2 plus weighted GS score for 

either CHD in T2D GS (6 SNP GS AUROC 0.57 v 0.58 p=0.30, 5 SNP GS AUROC 0.57 v 0.59 

p=0.12). 
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Figure 20: Observed CHD event rate in UCLEB T2D participants compared to the predicted event rate 
determined by A) QRISK score alone; B) QRISK plus 6 SNP GS C) QRISK plus 5 SNP GS, presented by 
decile of risk score.  

 

 

 
Rates were compared using the Hosmer-Lemeshow test. R packages “ggplot2” (Wickham 2009), 
”PredictABEL”(Kundu, Aulchenko et al. 2011; Kundu, Aulchenko et al. 2014) and “ResourceSelection” 
(Lele, Keim et al. 2014). However, p-values were calculated separately using ten degrees of freedom, 
rather than with the eight calculated with the R packages. 

A 

B 

C 

p<2.20x10-16 

p<2.20x10-16 

p<2.20x10-16 
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4.2.3.2 CHD in T2D gene scores in those without T2D 

The performance of the CHD in T2D GSs was assessed in the non-T2D population, using the 

NPHSII data set. Complete genotyping and CHD follow-up data was available for 2032 

participants (1855 no CHD/177 CHD) for the 6 SNP GS and for 2260 participants (2072 no 

CHD/188 CHD) for the 5 SNP GS.  However, as shown in Table 60, there was no difference 

in either gene score (both weighted and unweighted) between those who did and those 

who did not go on to develop CHD over the ten-year follow-up period.  Neither score was 

found to be associated with CHD (all p>0.05).  

Table 60: CHD in T2D GSs in NPHSII 

The GSs were compared using Welch’s t-test. GS=gene score.  

 

4.2.3.3 Updated 19 SNP GS in those with T2D 

The performance of the updated 19 SNP GS developed in Chapter 3.2.1 was also assesed in 

the UCLEB participants with T2D. As in the non-T2D population, the GS was associated with 

CHD (Table 61; Figure 21). Higher unweighted GS values were associated with an increased 

risk of CHD, for each risk allele OR=1.10 (95% CIs 1.01-1.19). The weighted GS was also 

associated with CHD in T2D with a similar effect size to the unweighted score (per SD of GS 

unweighted OR=1.24 (95% CIs 1.03-1.48); weighted OR=1.22 (95% CIs 1.02-1.46, both 

unadjusted)). This is slightly lower than the effect size observed between the updated 19 

SNP GSs in NPSHII (unweighted OR=1.38 (95% CIs 1.13-1.68); weighted NPHSII OR=1.47 

(95% CIs 1.20-1.80), both adjusted for age). There was no difference in the discrimiantory 

ability of the 19 SNP GS compared to the CHD in T2D GSs (no difference in AUROC curve, all 

p>0.05). The impact of the adding the 19 SNP GS to QRISK2 was not assessed due to the 

poor calbration of QRISK2 in the UCLEB T2D participants. 

 

 

 

 
 
 

Score No CHD CHD p-value 

CHD in T2D 6 SNP GS - Unweighted 7.64 (5.18) 
n=1855 

7.54 (1.37) 
n=177 

0.39 

CHD in T2D 6 SNP GS - Weighted 1.65 (0.34) 
n=1855 

2.17 (0.19) 
n=177 

0.27 

CHD in T2D 5 SNP GS - Unweighted 12.80 (1.68) 
n=2072 

13.47 (1.49) 
n=188 

0.40 

CHD in T2D 5 SNP GS - Weighted 1.23 (0.24) 
n=2072 

1.21 (0.19) 
n=188 

0.34 
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Table 61: Mean updated 19 SNP GS in UCLEB participants who did and did not develop CHD during 
follow-up 

Mean weighted and unweighted 6 SNP GS in UCLEB T2D participants who did and did not go on to 
develop CHD. The mean (standard deviation) for each study is shown individually. Mean gene score 
between the CHD and no CHD groups were compared using Welch’s t-tests in individual studies and 
by ANOVA (with study as a factor) for the combined analysis. GS=gene score.  

 

Figure 21: Association between updated 19 SNP GS and CHD in UCLEB participants with T2D 

 

The unadjusted effect size (95% CI) determined in each study, per standard deviation of GS, is shown 
along with the combined effect size. The meta-analysis was performed using the R package 
“metafor” (Viechtbauer 2010). A FE model was used as there was no evidence of heterogeneity 
between the studies (I

2
=0, p=0.78). GS=gene score. CI=confidence interval. FE=fixed effects.  

 

Study  No CHD CHD p-value 

BRHS Weighted GS (sd) 2.02 (0.24) 2.11 (0.22) 4.0 x 10
-3

 

Unweighted GS (sd) 15.76 (2.03) 16.39 (2.04) 0.03 

BWHHS Weighted GS (sd) 2.03 (0.23) 2.04 (0.15) 0.73 

Unweighted GS (sd) 15.78 (2.51) 16.46 (2.63) 0.40 

CAPS Weighted GS (sd) 2.05 (0.30) 2.12 (0.20) 0.41 

Unweighted GS (sd) 17.55 (2.28) 17.44 (1.97) 0.88 

EAS 
 

Weighted GS (sd) 2.13 (0.26) 2.07 (0.14) 0.31 

Unweighted GS (sd) 16.96 (2.49) 16.54 (1.81) 0.51 

ELSA Weighted GS (sd) 2.06 (0.24) 2.07 (0.24) 0.93 

Unweighted GS (sd) 15.91 (2.26) 16.29 (2.43) 0.70 

ET2DS Weighted GS (sd) 2.05 (0.25) 2.07 (0.21) 0.71 

Unweighted GS (sd) 16.41 (2.31) 16.97 (2.30) 0.19 

MRC1946 Weighted GS (sd) 2.07 (0.23) 2.09 (0.14) 0.62 

Unweighted GS (sd) 16.44 (2.13) 17.40 (1.34) 0.21 

WHII Weighted GS (sd) 2.09 (0.26) 2.20 (0.15) 0.34 

Unweighted GS (sd) 17.07 (2.39) 16.33 (0.58) 0.21 

Combined Weighted GS (sd)  0.03 

Unweighted GS (sd) 0.03 
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4.2.4 Functional analysis of CHD in T2D risk variant rs10911021 

4.2.4.1 rs10911021 and CHD 

Only one of the variants found to be associated with CHD in T2D, rs10911021 on 

chromosome 1, has not previously been identified as a CHD risk locus in the general 

population (Qi, Qi et al. 2013). The minor allele was found to be protective with an OR of 

0.74 (95% CI 0.66-0.82, 1517 CHD cases, 2671 controls). Subsequently, the association was 

replicated in the Look AHEAD study (2016) and the SNP was found to be associated with all-

cause mortality in the same T2D cohorts used for the original GWAS (Prudente, Shah et al. 

2015).  

 

The closest downstream gene to rs10911021 is GLUL which encodes glutamine synthase, 

an enzyme which catalyses the conversion of glutamate to glutamine. The authors of the 

original study also observed that endothelial cells homozygous for the risk allele had 32 % 

lower expression of GLUL compared to those homozygous for the protective allele. 

Moreover, while no association between rs10911021 and glutamate or glutamine was 

observed, individuals homozygous for the risk allele were found to have a lower 

pyroglutamic acid/glutamate ratio compared to those homozygous for the protective allele. 

Both metabolites are part of the γ-glutamyl cycle (Figure 22) which is involved in amino 

acid uptake and in the homeostasis of the anti-oxidant glutathione (Meister 1973). Thus, 

the authors hypothesised that the presence of the risk allele may impair the γ-glutamyl 

cycle resulting in a lesser availability of glutathione. Intracellular glutathione is known to be 

lower in those with T2D (Yoshida, Hirokawa et al. 1995).   

 

The CHD in T2D risk locus falls close to a locus robustly associated with HDL-cholesterol 

levels (lead SNP rs1689800) (Teslovich, Musunuru et al. 2010). The close proximity between 

the SNPs raises the possibility that this risk locus may be involved in HDL metabolism. 

However, the degree of LD between the lead SNPs rs10911021 and rs1689800 is low 

(r2=0.03 and D’=0.22, calculated from the CEU group of 1000 Genomes pilot). Moreover, 

rs10911021 was not found to associated with HDL-cholesterol levels in either the general 

population (Global Lipids Genetics Consortium data (p=0.05) (Willer, Schmidt et al. 2013)) 

or in overweight/obese individuals with T2D (Look AHEAD study (2016)).   
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Figure 22: Simplified diagram of the γ-glutamyl cycle 

 

 

Other enzymes involved in the cycle and some metabolites have been omitted for clarity.  
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4.2.4.2 rs10911021 and CHD in UCLEB 

The relationship between rs10911021 and CHD risk in those with T2D was investigated 

using data from the UCLEB consortium. The T2D group included only those with prevalent 

diabetes (either self-reported or clinically confirmed as described in (Shah, Engmann et al. 

2013)). The basic characteristics and selected T2D-CHD risk factors of the UCLEB 

participants are presented in Table 62, separated by T2D status. As would be expected 

those with T2D had higher BMI, triglycerides, blood pressure, fasting glucose, glycated 

haemoglobin, insulin, whereas those without T2D had higher cholesterol (both LDL-

cholesterol and HDL-cholesterol) and a greater proportion were male.  

Table 62: Baseline characteristics for UCLEB participants separated by T2D status 

Mean and standard deviation, where appropriate, are shown. P-values were determined using a chi-
squared test for sex and with regression model (adjusted for age and sex) for the other variables. 
*
Variables were log transformed.TC=total cholesterol.  

 

Eight studies had data on diabetes status, rs10911021 imputation and CHD outcome. As 

shown in Table 63, no association was observed between those without T2D and 

rs10911021 OR=1.00 (95%CIs 0.92-1.10). Whereas in those with T2D, while the association 

between the SNP and CHD was not statistically significant it was directionally similar 

OR=0.80 (95%CIs 0.60-1.06, p=0.13) to the published data. The results from UCLEB were 

then meta-analysed with the published data using both FE and RE models. Both meta-

analyses gave a strongly statistically significant p-value and a similar effect size, (FE: 

OR=0.74, 95% CIs 0.68-0.82 p=8.22x10-10 and RE: OR=0.75 95% CIs 0.67-0.84, p=1.61x10-6). 

Heterogeneity between the studies was low (I2=18%) The sensitivity analysis is shown in 

Table 64 and Table 65.  

 

  

Trait  Non-T2D participants T2D-participants p-value 

n Mean (SD) n Mean (SD)  

Age (years) 13015 61.1 (6.0) 1803 61.3 (8.1) 0.32 

Sex (percentage male) 8068 62.00 % 1053 58.4% 0.003 

BMI (kg/m
2
) 12803 26.7 (4.3) 1747 28.6 (5.80) 1.346x10

-36
 

Triglycerides* (mmol/l) 12022 0.43 (0.55) 1563 0.67 (0.75) 8.461x10
-33

 

TC (mmol/l) 12736 6.28 (1.24) 1784 6.04 (1.65) 4.484x10
-8

 

HDL-cholesterol (mmol/l) 12493 1.42 (0.38) 1757 1.25 (0.51) 2.114x10
-34

 

LDL-cholesterol (mmol/l) 12385 4.00 (1.07) 1607 3.62 (1.43) 1.573x10
-21

 

Systolic blood pressure (mmHg) 12739 139.90 (22.80) 1783 148.00 (30.60) 1.650x10
-23

 

Diastolic blood pressure (mmHg) 12722 81.70 (12.90) 1782 84.40 (17.30) 3.716x10
-9

 

Fasting glucose* (mmol/l) 12741 1.69 (0.15) 1670 1.98 (0.19) 2.54x10
-303

 

Insulin
* 

(µIU/ml) 7732 1.89 (0.62) 456 2.50 (0.66) 1.686x10
-80

 

Glycated haemoglobin (%) 8711 5.37 (0.65) 1807 6.80 (0.98) 8.14x10
-265
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Table 63: Relationship between the minor allele of rs10911021 and CHD for UCLEB participants with and without T2D 

Minor allele frequency (MAF) is shown separately for those who did and did not go on to develop CHD.  Number of participants is shown in brackets.  The odds 
ratio (OR) adjusted for sex for the association between rs10911021 and CHD in T2D is also shown with its 95% confidence intervals (95% CI).  

No T2D BRHS BWHHS CAPS EAS ELSA ET2DS MRC1946 WHII Combined 

MAF   
no CHD 

0.30 
(1544) 

0.32 
(1528) 

0.31 
(1022) 

0.31 
(553) 

0.30 
(1426) 

- 0.32 
(2294) 

0.31 
(2851) 

0.31 
(8665) 

MAF  
CHD 

0.30 
(378) 

0.31 
(285) 

0.28 
(239) 

0.29 
(132) 

0.29 
(114) 

- 0.31 
(65) 

0.35 
(161) 

0.30 
(1677) 

OR (95% CI) 1.02 
(0.85-1.22) 

1.01 
(0.79-1.28) 

0.82 
(0.65-1.04) 

0.90 
(0.67-1.23) 

1.10 
(0.81-1.49) 

- 1.00 
(0.68-1.47) 

1.23 
(0.97-1.56) 

1.00 
(0.92-1.10) 

p value 0.81 0.94 0.10 0.64 0.54 - 0.43 0.09 0.93 

T2D  

MAF   
no CHD 

0.31 
(190) 

0.34 
(94) 

0.30 
(20) 

0.23 
(46) 

0.32 
(160) 

0.30 
(793) 

0.28 
(45) 

0.31 
(29) 

0.30 
(1377) 

MAF  
CHD 

0.18 
(72) 

0.20 
(13) 

0.29 
(16) 

0.24 
(13) 

0.29 
(7) 

0.32 
(31) 

0.40 
(5) 

0.30 
(3) 

0.26 
(160) 

OR (95% CI) 0.44 
(0.26-0.74) 

0.48 
(0.17-1.33) 

1.43 
(0.51-4.00) 

1.05 
(0.36-3.03) 

0.85 
(0.25-2.94) 

1.35 
(0.80-2.33) 

1.69 
(0.46-6.25) 

1.01 
(0.52-1.96) 

0.80 
(0.60-1.06) 

p value 2x10
-3

 0.16 0.49 0.95 0.80 0.26 0.43 0.87 0.13 
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Table 64: Sensitivity analysis for fixed-effects meta-analysis of the association between rs10911021 
and CHD in T2D  

OR for the effect relating to the minor allele is shown along with the p-value, when the meta-
analysis was performed without individual studies. The meta-analyses were performed using the R 
“metafor” package (Viechtbauer 2010). NHS=Nurses’ Health Study, HPFS=Health Professionals 
Follow-up Study, JHS=Joslin Heart Study, GHS=Gargano Heart Study, CS=Catanzaro Study. OR=odds 
ratio. 
 

Table 65: Sensitivity analysis for random-effects meta-analysis of the association between 
rs10911021 and CHD in T2D  

OR for the effect relating to the minor allele is shown along with the p-value, when the meta-
analysis was performed without individual studies. The meta-analyses were performed using the R 
“metafor” package (Viechtbauer 2010). NHS=Nurses’ Health Study, HPFS=Health Professionals 
Follow-up Study, JHS=Joslin Heart Study, GHS=Gargano Heart Study, CS=Catanzaro Study. OR=odds 
ratio. 

Study Source Study Left Out OR p-value 

Qi, Qi et al (Qi, Qi et al. 2013) NHS 0.75 3.54x10
-7

 

Qi, Qi et al.(Qi, Qi et al. 2013) HPFS 0.76 4.20x10
-7

 

Qi, Qi et al.(Qi, Qi et al. 2013) JHS 0.73 5.33x10
-9

 

Qi, Qi et al.(Qi, Qi et al. 2013) GHS 0.75 3.37x10
-8

 

Qi, Qi et al.(Qi, Qi et al. 2013) CS 0.74 1.91x10
-9

 

UCLEB BRHS 0.76 1.43x10
-8

 

UCLEB BWHHS 0.75 1.58x10
-9

 

UCLEB CAPS 0.74 4.69x10
-10

 

UCLEB EAS 0.74 6.70x10
-10

 

UCLEB ELSA 0.74 8.28x10
-10

 

UCLEB ET2DS 0.73 1.22x10
-10

 

UCLEB MRC1946 0.74 5.19x10
-10

 

UCLEB WHII 0.74 7.84x10
-10

 

Study Source Study Left Out OR p-value Heterogeneity  
(I

2
 (%)) 

Qi, Qi et al. (Qi, Qi et al. 2013) NHS 0.76 3.67x10
-4

 24.57 

Qi, Qi et al.(Qi, Qi et al. 2013) HPFS 0.77 1.39x10
-4

 17.83 

Qi, Qi et al.(Qi, Qi et al. 2013) JHS 0.74 3.48x10
-5

 21.88 

Qi, Qi et al.(Qi, Qi et al. 2013) GHS 0.76 1.51x10
-4

 24.39 

Qi, Qi et al.(Qi, Qi et al. 2013) CS 0.75 2.03x10
-5

 24.19 

UCLEB BRHS 0.76 1.43x10
-8

 0 

UCLEB BWHHS 0.76 5.08x10
-6

 20.79 

UCLEB CAPS 0.74 3.42x10
-7

 15.73 

UCLEB EAS 0.75 3.62x10
-6

 22.55 

UCLEB ELSA 0.75 7.29x10
-6

 24.47 

UCLEB ET2DS 0.73 1.22x10
-10

 0 

UCLEB MRC1946 0.75 3.98x10
-7

 15.98 

UCLEB WHII 0.75 6.05x10
-6

 24.10 
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4.2.4.3 rs10911021 and the γ-glutamyl cycle in T2D 

The relationship between rs10911021 and the γ-glutamyl cycle was investigated by 

assessing whether the SNP was associated with levels of amino acids which are taken up 

into cells by it. Data on the levels of nine amino acids, determined using an NMR-

metabolomics platform, was available for four UCLEB studies: BWHHS, ET2DS, MRC1946 

and WHII. These included glutathione constituent glycine and glutamine (the product of the 

reaction catalysed by glutamine synthase). there was no association between rs10911021 

and any of the amino acids measured in either those with T2D (p>0.05) as shown in Table 

66, nor in those without T2D (p>0.05, data not shown).  

 

Table 66: Relationship between rs10911021 and NMR-determined amino acid levels in those with 
T2D 

 

 

 

 

 

 

 

 

 

Beta-effects corresponding to the minor allele from the linear regression are shown – adjusted for 
lipid lowering medication, along with the standard errors (se). Prior to analysis the metabolomics 
measures were adjusted for age, age

2
 and sex and inverse rank transformed.

Trait Beta-coefficient (se) p-value 

Alanine (mmol/l) -0.007 (0.07) 0.94 

Glutamine (mmol/l) 0.005 (0.08) 0.94 

Glycine (mmol/l) 0.003 (0.07) 0.97 

Histidine (mmol/l) 0.03 (0.07) 0.66 

Isoleucine (mmol/l) 0.02 (0.07) 0.74 

Leucine (mmol/l) -0.005 (0.07) 0.94 

Valine (mmol/l) 0.06 (0.07) 0.44 

Phenylalanine (mmol/l ) 0.04 (0.07) 0.58 

Tyrosine (mmol/l ) -0.03 (0.07) 0.65 
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4.2.4.4 rs10911021 and T2D-CHD risk factors 

The relationship between rs10911021 and T2D-CHD CRFs was then investigated, again 

using the UCLEB data. The SNP was not associated with any T2D-CHD CRFs in the no-T2D 

group (all p>0.05; Table 67). In the T2D participants, rs10911021 was associated with HDL-

cholesterol levels (p=5x10-4, Table 67). Unexpectedly the minor allele, which was found to 

be “protective” for CHD, was associated with 0.034 mmol/l lower HDL-cholesterol levels. 

Mean HDL-cholesterol levels by genotype (adjusted for sex and study) are shown in Figure 

23. The effect appears to be recessive.   

Table 67: Relationship between rs10911021 and T2D-CHD risk factors in UCLEB in those with and 
without T2D 

Mean and standard error (se) for each trait in those with and without T2D is shown. The beta effect 
relating to the minor allele is shown. 

*
Variables were log transformed. TC=total cholesterol.  

Trait 
 
 

Non-T2D UCLEB participants T2D UCLEB participants 

n Beta-
coefficient 

(se) 

p-value n Beta-
coefficient 

(se) 

p-value 

BMI (kg/m
2
) 12803 -0.032 

(0.055) 
0.56 1747 -0.055 

(0.178) 
0.76 

Triglycerides
*
(mmol/l) 12022 0.007 

(0.007) 
0.34 1563 0.030 

(0.020) 
0.87 

TC (mmol/l) 12736 -0.011 
(0.016) 

0.25 1784 0.026 
(0.043) 

0.54 

HDL-cholesterol (mmol/l) 12493 -0.001 
(0.005) 

0.86 1757 -0.034 
(0.012) 

5x10
-4

 

LDL-cholesterol (mmol/l) 12385 -0.018 
(0.014) 

0.21 1607 0.070 
(0.037) 

0.06 

Systolic blood pressure 
(mmHg) 

12739 0.045 
(0.298) 

0.88 1783 0.056 
(0.794) 

0.94 

Diastolic blood pressure 
(mmHg) 

12722 0.052 
(0.170) 

0.76 1782 -0.510 
(0.432) 

0.24 

Fasting glucose
*
(mmol/l) 12740 0.001 

(0.002) 
0.61 1670 -0.011 

(0.009) 
0.21 

Insulin
a
 (µIU/ml) 7732 -0.019 

(0.011) 
0.09 456 0.039 

(0.063) 
0.53 

Glycated haemoglobin (%) 8711 -0.003 
(0.008) 

0.73 1317 0.032 
(0.040) 

0.42 
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Figure 23: Mean HDL-cholesterol by rs10911021 genotype in UCLEB participants with and without 
T2D 

The means were adjusted for sex and study. The error bars represent standard error. C is the 
common, “CHD risk” allele.   
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Four UCLEB studies had HDL-cholesterol metabolomics data available. The NMR-based 

platform can separate HDL by size into four subclasses (very large, large, medium and 

small) with twelve separate traits pertaining to particle composition available for each one. 

Overall mean HDL particle diameter, concentrations of HDL-cholesterol and the sub-

fractions HDL2 and HDL3 and the triglyceride content of HDL particles were also measured. 

A summary of the results in those with T2D is shown in Figure 24. As shown in Table 68, in 

those with T2D, six metabolic measures, all relating to large HDL particles showed an 

association with rs10911021 with an FDR adjusted p-value p<0.05. A further 16 HDL 

metabolic measures had an unadjusted p-value below p=0.05 (Table 69). By contrast, no 

association between rs10911021 and any of the HDL measurements in non-T2D 

participants was observed (unadjusted p>0.05). Figure 25 is a representative forest plot of 

large HDL particle concentration showing a consistent lower level associated with the 

minor allele of rs10911021 in those with T2D in the four studies.  

 

Given the close proximity of a GWAS hit (lead SNP rs1689800) for HDL-cholesterol levels to 

the CHD in T2D locus, it was hypothesised that the association observed between 

rs10911021 and HDL traits could involve this locus. However, conditional analysis was 

performed and found similar results as in the unadjusted model (Table 68).  
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Figure 24: Relationship between HDL metabolomic traits and the minor allele of rs10911021 in those with T2D 

 
SE=standard error. Beta=beta-coefficient. 



145 
 

 
Table 68: Metabolomic HDL traits associated with rs10911021 in those with T2D 

Beta-effects corresponding to the minor allele from the linear regression are shown – adjusted for lipid lowering medication, along with the standard errors (se). 
Prior to analysis the metabolomics measures were adjusted for age, age

2
 and sex and inverse rank transformed. FDR analysis was performed using the Benjamini-

Hochberg-Yekutieli method (Benjamini and Yekutieli 2001). FDR=false discovery rate 

 

Trait Non-T2D Participants T2D participants 

n Beta-
coefficient  

 (se) 

p-value FDR 
adjusted 
 p-value 

Heterogeneity  
(I

2
 (%)) 

n Beta-
coefficient  

 (se) 

p-value FDR  
adjusted  
p-value 

Heterogeneity  
(I

2
 (%)) 

p-value for 
conditional 

analysis 
with  

rs1689800 

FDR adjusted  
p-value for 
conditional 

analysis with  
rs1689800 

Concentration 
of large HDL 
particles (mol/l) 

5221 0.01 
 (0.02) 

0.59 1 0 1310 -0.15  
(0.04) 

0.0005 0.03 0 0.001 0.07 

Total lipids in 
large HDL 
(mmol/l) 

5229 0.01 
 (0.02) 

0.62 1 0 1310 -0.15  
(0.04) 

0.0005 0.03 0 0.001 0.07 

Phospholipids 
in large HDL 
(mmol/l) 

5223 0.01 
 (0.02) 

0.59 1 0 1310 -0.14  
(0.04) 

0.0009 0.03 0 0.002 0.09 

Total 
cholesterol in 
large HDL 
(mmol/l) 

5223 0.008  
(0.02) 

0.71 1 0 1310 -0.15  
(0.04) 

0.0004 0.04 0 0.001 0.07 

Cholesterol 
esters in large 
HDL (mmol/l) 

5221 0.009  
(0.02) 

0.67 1 0 1310 -0.15  
(0.04) 

0.0004 0.03 0 0.001 0.07 

Free 
cholesterol in 
large HDL 
(mmol/l) 

5221 0.005  
(0.02) 

0.83 1 0 1310 -0.16  
(0.04) 

0.0003 0.03 0 0.0009 0.07 
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Figure 25: Forest plot for the meta-analysis of large HDL particle concentration and the minor allele 
rs10911021 in those with T2D 

 

The meta-analysis was performed using the “metaphor” R package. Beta=beta-coefficient. 
CI=confidence interval. FE=fixed effects.  
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Table 69 :Metabolomic HDL traits which did not show an association with rs10911021 in those with and without T2D 

Trait Non-T2D participants T2D participants 

n Beta-
coefficient 

(se) 

p-value FDR 
adjusted 
p-value 

Heterogeneity 
(I

2 
(%)) 

n Beta- 
coefficient 

(se) 

p-value FDR 
adjusted  
p-value 

Heterogeneity 
 (I

2
 (%)) 

p-value for 
conditional 

analysis 
with  

rs1689800 

FDR 
adjusted p-

value for 
conditional 

analysis 
with  

rs1689800 

Triglycerides 
in very large 
HDL (mmol/l) 

5221 -0.006 
(0.02) 

0.77 1 0 1310 -0.03 
(0.04) 

0.56 1 0 0.69 1 

Concentration 
of medium 
HDL particles 
(mol/l) 

5229 0.03 
(0.02) 

0.17 1 0 1310 -0.05 
(0.04) 

0.26 1 0 0.42 1 

Total lipids in  
medium HDL 
(mmol/l) 

5224 0.03 
(0.02) 

0.16 1 0 1310 -0.05 
(0.04) 

0.21 1 0 0.36 1 

Phospholipids 
in  medium 
HDL (mmol/l) 

5224 0.03 
(0.02) 

0.17 1 0 1310 -0.04 
(0.04) 

0.31 1 0 0.49 1 

Total 
cholesterol in  
medium HDL 
(mmol/l) 

5222 0.03 
(0.02) 

0.19 1 0 1310 -0.07 
(0.04) 

0.11 0.96 0.94 0.20 1 

Cholesterol 
esters in  
medium HDL 
(mmol/l) 

5224 0.03 
(0.02) 

0.21 1 0 1310 -0.07 
(0.04) 

0.11 0.96 0 0.19 1 

Free 5224 0.03 0.17 1 0 1310 -0.06 0.20 1 0 0.31 1 



148 
 

cholesterol in  
medium HDL 
(mmol/l) 

(0.02) (0.04) 

Triglycerides 
in medium 
HDL (mmol/l) 

5221 0.02 
(0.02) 

0.38 1 0 1310 0.05 
(0.04) 

0.27 1 0 0.21 1 

Concentration 
of small HDL 
particles 
(mol/l) 

5229 0.02 
(0.02) 

0.29 1 0 1310 0.02 
(0.04) 

0.67 1 0 0.62 1 

Total lipids in   
small HDL 
(mmol/l) 

5222 0.02 
(0.02) 

0.38 1 0 1310 0.01 
(0.04) 

0.75 1 0 0.71 1 

Phospholipids 
in   small HDL 
(mmol/l) 

5222 0.03 
(0.02) 

0.11 1 0 1310 0.01 
(0.04) 

0.82 1 0 0.67 1 

Total 
cholesterol in   
small HDL 
(mmol/l) 

5221 -0.004 
(0.02) 

0.83 1 44.90 1310 0.01 
(0.04) 

0.89 1 0 0.98 1 

Cholesterol 
esters in   
small HDL 
(mmol/l) 

5221 -0.01 
(0.02) 

0.58 1 59.27 1310 0.01 
(0.04) 

0.73 1 0 0.91 1 

Free 
cholesterol in   
small HDL 
(mmol/l) 

5221 0.02 
(0.02) 

0.43 1 0 1310 -0.01 
(0.04) 

0.74 1 0 0.85 1 

Triglycerides 
in very   small 
HDL (mmol/l) 

5221 -0.006 
(0.02) 

0.78 1 0 1310 0.07 
(0.04) 

0.13 1 0 0.17 1 

Phospholipids 
to total lipids 

5143 0.0004 
(0.02) 

0.99 1 0 958 -0.07 
(0.05) 

0.18 1 16.56 0.31 1 
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ratio in very 
large HDL (%) 

Total 
cholesterol to 
total lipids 
ratio in very 
large HDL (%) 

5142 0.008 
(0.02) 

0.72 1 0 958 0.02 
(0.05) 

0.66 1 0 0.90  

Cholesterol 
esters to total 
lipids ration in 
very large HDL 
(%) 

5142 0.0004 
(0.02) 

0.98 1 0 958 0.02 
(0.05) 

0.64 1 52.42 0.83  

Free 
cholesterol to 
total lipids 
ratio in very 
large HDL (%) 

5142 0.02 
(0.02) 

0.41 1 0 
 

958 0.02 
(0.05) 

0.76 1 66.02 0.84 1 

Triglycerides 
to total lipids 
ratio in very 
large HDL (%) 

5142 -0.01 
(0.02) 

0.51 1 15.40 958 0.02 
(0.05) 

0.16 1 0 0.13 1 

Triglycerides 
to total lipids 
ratio in large 
HDL (%) 

5140 0.003 
(0.02) 

0.88 1 0 1056 0.0005 
(0.05) 

0.99 1 8.14 0.89 1 

Phospholipids 
to total lipids 
ratio in 
medium HDL 
(%) 

5221 -0.01 
(0.02) 

0.50 1 53.87 1309 0.08 
(0.04) 

0.08 0.70 0 0.12 1 

Total 
cholesterol to 
total lipids 

5218 0.01 
(0.02) 

0.63 1 21.40 1309 -0.08 
(0.04) 

0.05 0.55 0 0.09 0.90 
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ratio in 
medium HDL 
(%) 

Cholesterol 
esters to total 
lipids ration in 
medium HDL 
(%) 

5221 0.009 
(0.02) 

0.69 1 24.66 1309 -0.08 
(0.04) 

0.05 0.55 0 0.08 0.84 

Free 
cholesterol to 
total lipids 
ratio in 
medium HDL 
(%) 

5221 0.01 
(0.02) 

0.50 1 0 1309 -0.04 
(0.04) 

0.34 1 0 0.42 1 

Triglycerides 
to total lipids 
ratio in 
medium HDL 
(%) 

5218 -0.0009 
(0.02) 

0.97 1 0 1309 0.08 
(0.04) 

0.07 0.66 0 0.10 0.94 

Phospholipids 
to total lipids 
ratio in small 
HDL (%) 

5218 0.04 
(0.02) 

0.06 1 60.62 1310 -0.0 (0.04) 0.77 1 0 0.92 1 

Total 
cholesterol to 
total lipids 
ratio in small 
HDL (%) 

5217 -0.03 
(0.02) 

0.13 1 66.43 1310 -0.01 
(0.04) 

0.77 1 0 0.55 1 

Cholesterol 
esters to total 
lipids ration in 
small HDL (%) 

5217 -0.03 
(0.02) 

0.15 1 60.49 1310 -0.00005 
(0.04) 

0.9996 1 0 0.74 1 

Triglycerides 5217 -0.01 0.56 1 6.76 1310 0.07 0.12 1 3.23 0.18 1 
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Beta-effects corresponding to the minor allele from the linear regression are shown – adjusted for lipid lowering medication, along with the standard errors (se). Prior to 
analysis the metabolomics measures were adjusted for age, age

2
 and sex and inverse rank transformed. FDR analysis was performed using the Benjamini-Hochberg-

Yekutieli method (Benjamini and Yekutieli 2001). FDR=false discovery rate. 
 
 
 
 
 
 
 

to total lipids 
ratio in small 
HDL (%) 

(0.02) (0.04) 

Triglycerides 
in HDL 
(mmol/l) 

5219 0.01 
(0.02) 

0.60 1 0 1310 -0.002 
(0.04) 

0.96 1 0 0.94 1 
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4.3 Discussion 

The association between a GS comprised of five risk SNPs and CHD in T2D observed by Qi, 

Parast et al. was replicated in the UCLEB data set. There was also evidence for an 

association between a 6 SNP GS (the five original SNPs plus a subsequently identified risk 

SNP rs10911021 (Qi, Qi et al. 2013)) and CHD in T2D. Furthermore, it was found that both 

the 5 SNP and 6 SNP GSs were not associated with CHD in NPHSII participants free of T2D at 

baseline. The general CHD 19 SNP GS was also associated with CHD in those with T2D 

indicating that it would be suitable to use this tool in the diabetic population. The effect 

size for each GS is similar and there was no difference in the AUROC between the scores. 

This suggests that a specific CHD in T2D GS based on current knowledge would not improve 

CHD risk prediction over and above a general CHD GS. However, a major limitation of this 

work is that no meaningful assessment of whether addition of the GSs to a CRF risk score 

gives improved performance compared to the CRF score alone could be performed. QRISK2 

data was available but this score was found to be very poorly calibrated in the UCLEB T2D 

participants. Unsurprisingly given their relatively modest effect sizes, addition of the CHD in 

T2D GSs did not improve calibration. It is unclear why QRISK2 greatly overestimated CHD 

risk in this group. The developers of the QRISK score published a document detailing the 

validation of QRISK2 (2014 version as was calculated in UCLEB) in those with T2D on the 

QRISK2 website (http://www.qrisk.org/). Data from the QRESEARCH group comprising 

almost 80,000 individuals with T2D was used.  While statistics pertaining to the calibration 

of QRISK2 were not given, it is clear from the calibration plot shown, that the model is 

much better fitting than observed in the UCLEB data set. However, external validation is 

required. Only once the GSs have been assessed in combination with CRFs risk score can 

firm conclusions about their potential utility be drawn.  

 

Five of the six SNPs used in the CHD in T2D GSs are GWAS hits for CHD and four were 

confirmed as CHD risk SNPs in the CARDIoGRAMplusC4D meta-analysis (Deloukas, Kanoni 

et al. 2013). Therefore, it would be expected that a GSs composed of these SNPs would be 

associated with CHD in the general population. That no such association was observed in 

NPHSII could simply be because the sample was underpowered to detect the effect. Thus it 

appears that the risk alleles have a much greater impact on CHD risk in those with T2D 

compared to the general population. It is not surprising therefore, that the effect size SNP 

is larger for four or the five SNPs (for the 9p21 SNP it is the same) in those with T2D, 

although these effect sizes may be inflated as the number of participants in the studies 

http://www.qrisk.org/
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they were derived from was relatively small compared to the tens of thousands included in 

the CARDIoGRAMplusC4D meta-analysis. 

 

As the functional mechanisms of CHD risk variants are elucidated, it will become possible to 

determine if the variants associated with CHD in both the general population and in T2D 

affect risk through the same mechanism or if the diabetic state leads to as yet unknown 

consequences. Two of the CHD in T2D risk variants (rs646776 close to SORT1 and 

rs11206510 close to PCSK9) are known to be associated with LDL-cholesterol levels 

(Teslovich, Musunuru et al. 2010). This would explain the suggestive association between 

the 5 SNP GSs and LDL-cholesterol. It seems reasonable to speculate therefore that each 

risk allele may be associated with a greater increase in LDL-cholesterol in the diabetic state 

compared to the non-diabetic state. Thus, presence of these risk alleles may contribute to 

diabetic dyslipidaemia which is characterised by high triglyceride levels, a high 

concentration of small dense LDL particles and a low HDL-cholesterol concentration (Wu 

and Parhofer 2014). This may also be the case for the risk locus in HNF1A, where the lead 

SNP rs2259816 is in moderate LD with the lead SNP (r2=0.48, taken from the 1000 Genomes 

phase 3 EUR panel) at a confirmed LDL-cholesterol associated locus (rs1169288) (Teslovich, 

Musunuru et al. 2010). Moreover, mutations in HNF1A are also the most common cause of 

Mendelian diabetes (Gardner and Tai 2012) and a GWAS hit for T2D is located in this gene 

(Voight, Scott et al. 2010). HNF1A encodes hepatocyte nuclear factor 1-alpha, which is 

involved in regulating the expression of many genes, particularly in the pancreas and liver 

(Courtois, Morgan et al. 1987), suggesting this gene could influence risk of both CHD and 

T2D through a number of different metabolic pathways. For the two remaining loci 

originally identified by (Qi, Parast et al. 2011) (lead SNPs: rs4977574 at the 9p21 locus and 

rs12526453 in PHACTR1) there is no obvious mechanism of action. The relationship 

between the 9p21 locus and CHD was discussed in 1.4.3.1. Notably a GWAS identified risk 

locus for T2D is also present on chromosome 9p21. In addition to CHD, the SNP in PHACTR1 

is associated with coronary artery calcification (Pechlivanis, Muhleisen et al. 2013) which is 

also known to be greater in those with T2D (Erbel, Lehmann et al. 2014). PHACTR1 encodes 

PHACTR-1 which thought to be play a key role in endothelial cell function (Jarray, Allain et 

al. 2011) and angiogenesis (Allain, Jarray et al. 2012) but the biology of this protein is not 

well understood.  
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The identification of a CHD risk variant in those with T2D only (Qi, Qi et al. 2013) further 

suggests that the diabetic state itself is pro-atherogenic. The UCLEB data lacked the power 

to replicate this association (237 CHD cases and 2038 CHD controls would be required for 

80% power to detect the same effect). However, a consistent protective but statistically 

insignificant association between the minor allele of rs10911021 and CHD in T2D was 

observed. The more modest effect size found here is not unexpected as the initial report of 

an association is likely to be inflated due to the “winner’s curse”(Ioannidis 2008). Indeed, 

the association between CVD and rs10911021 observed in the Look AHEAD study had a 

smaller effect than the original report (2016), although the outcome definition was broader 

which may also partly account for this. When the data presented here were meta-analysed 

with the data from Qi, Parast et al. using a FE meta-analysis, the p-value was lower 

compared to the original findings indicating that our data support the original observation. 

A meta-analysis using a RE model was also performed although the p-value was higher than 

in the original study. However, sensitivity analysis (Table 64 and Table 65) shows that this is 

being driven by one study and as heterogeneity is relatively low between the studies a FE 

model is satisfactory.  

 

The authors of the original study implicated impairment of the γ-glutamyl cycle and thus 

glutathione availability as the mechanism through which rs10911021 affects CHD risk. They 

observed that subjects homozygous for the risk allele of rs10911021 had a lower 

pyroglutamic acid to glutamate (substrate of GLUL) ratio, and that endothelial cells with 

this genotype had lower expression of the enzyme glutamine synthase (encoded by GLUL). 

Variants in the T2D/CHD in T2D risk gene HNF1A have been found to be associated with 

levels of γ-glutamyl transferase, another enzyme involved in the γ-glutamyl cycle (Yuan, 

Waterworth et al. 2008) (Figure 22), further implicating this pathway in the development of 

CHD in T2D. Neither pyroglutamic acid nor glutamate were measured by the NMR-

metabolomics platform used in this study nor were cysteine and glutamate which are 

crucial to glutathione levels (Liu, Hyde et al. 2014). However, nine amino acids, including 

glycine (another constituent of glutathione (Liu, Hyde et al. 2014)) and glutamine, the 

product of the reaction catalysed by glutamine synthase, were measured but no 

association was observed in those with T2D. Therefore, a relationship between the γ-

glutamyl cycle and rs10911021 cannot be discounted but if so the results herein indicate 

that it is not through limiting the availability of glycine or by inhibiting general amino acid 

translocation into the cell.  
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There was no association between rs10911021 and any of the classical CHD risk factors in 

those without T2D, while in those with T2D only an association with HDL-cholesterol was 

observed. This is contrary to the findings of the Look AHEAD study which found no 

association between the SNP and HDL-cholesterol in their overweight/obese T2D cohort. In 

UCLEB, the association remained when the analysis was restricted to those with BMI equal 

to or greater than 25 kg/m2. Curiously, the protective minor allele was associated with 

lower HDL-cholesterol, which has long been associated with an increased risk of CHD. More 

in-depth analysis with the metabolomics data found an association between rs10911021 

and six large-HDL traits, again only in those with T2D. There were also suggestive 

associations between the SNP and a further 16 HDL traits, mostly relating to large and very 

large HDL particles. These associations were found to be independent of the nearby HDL 

GWAS hit marked by rs1689800.  

 

The relationship between HDL-cholesterol and CHD remains to be clarified. Mendelian 

randomisation studies have failed to find a relationship between genetically low HDL-

cholesterol and CHD (Assimes, Holm et al. 2010; Holmes, Asselbergs et al. 2015) and HDL-

cholesterol raising therapies have failed to improve cardiovascular outcome (Keene, Price 

et al. 2014).  The failure to confirm a causal association between lower levels of HDL-

cholesterol and CHD has moved the focus from HDL-cholesterol concentration towards HDL 

particle subclasses. While increased levels of small HDL particles have been associated with 

increased risk of CHD the converse is true of large HDL particles (Rosenson, Otvos et al. 

2002; Morgan, Carey et al. 2004; Musunuru, Orho-Melander et al. 2009). In this analysis an 

association between the minor (previously identified as CHD “protective”) allele and lower 

levels of large HDL particle traits including concentration and cholesterol content were 

observed, which is the opposite of what would be expected for a protective gene variant. A 

variant with a similar phenotype (HDL-cholesterol raising but also associated with CHD) was 

recently identified in the SCARB1 gene (Zanoni, Khetarpal et al. 2016) providing further 

evidence that high HDL-cholesterol is not necessarily protective and may in some 

circumstances promote CHD.  

 

It is also unclear why rs10911021 should be associated with HDL traits in T2D but not in the 

general population. As previously mentioned one feature of diabetic dyslipidemia is low 

HDL-cholesterol mostly driven by a potentially pro-atherogenic reduction in the presence 



156 
 

of larger HDL particles (Krauss 2004). It may be that presence of the minor allele of 

rs10911021 leads to changes in the expression of protein(s) involved in HDL metabolism 

altering the composition of large HDL particles, creating slightly less pro-atherogenic 

particles compared to carriers of the risk allele. Of course this presumes that large HDL 

particles do play a protective role and are not simply a biomarker and/or confounded by 

another causal factor. 

 

There are several limitations to this study. One study, ET2DS, contributed the majority of 

participants in our metabolomic analysis of those with T2D.  All suggestive associations 

were lost when this study was left out of the meta-analysis as power was greatly reduced. 

While the results were adjusted for use of any lipid-lowering medications, data on the 

specific medication used was not available for analysis and this may have led to residual 

confounding. It has long been known that the relationship between a particular lipid-

lowering medication and HDL-cholesterol varies greatly. For example, rosuvastatin and 

simvastatin have been found to have a much greater HDL-cholesterol raising ability 

compared to atorvastatin (Barter, Brandrup-Wognsen et al. 2010). It is unknown how lipid-

lowering medications may affect the HDL sub-fractions measured here. A study 

investigating the impact of statin use on the HDL traits measured here found that the 

concentration of very large HDL particles increased and the concentration of small HDL 

particles decreased while the concentration of large and medium HDL particles was largely 

unaffected (Wurtz, Wang et al. 2016) but this study did not assess individual statins.  Due 

to the very high proportion of the T2D group that were on lipid-lowering medication we 

were unable to perform any meaningful analysis after exclusion of those on lipid lowering 

medication.  
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4.4 Conclusion to the chapter 

In summary, both a CHD in T2D specific GS and a general CHD GS were found to be 

associated with CHD in UCLEB participants with T2D. In addition, data from the UCLEB 

consortium supported an association between rs10911021 and CHD in T2D. However, our 

results indicate that rs10911021 does not impact upon CHD risk by limiting the availability 

of the glutathione constituent glycine or by inhibiting general amino acid translocation into 

the cells. Furthermore, rs10911021 was found to be associated with classically measured 

HDL-cholesterol levels and a number of large HDL particle traits in those with T2D only. 

Counterintuitively, the minor “protective” allele was associated with the atherogenic 

phenotype in both classically measured HDL-cholesterol and the metabolomics large HDL 

traits pointing to a potentially novel mechanism through which HDL particles promote CHD 

pathogenesis.
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5 The CoRDia study 
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5.1 Introduction 

While T2D confers an increased risk of CHD, good glycaemic control can minimise this risk 

(as discussed in Chapter 4.1). Thus reducing the CHD risk associated with the diabetic state 

can be achieved by taking regular exercise, having a balanced diet and taking medication as 

directed. Such behaviours may also reduce the likelihood or severity of other diabetic 

complications such as retinopathy (Zhang, Zhao et al. 2015) and renal disease (Holman, 

Paul et al. 2008).  The importance of good diabetes management from both an individual 

and a public health perspective is underlined in the most recent NICE guidelines which 

recommend that patients attend structured education classes covering this at diagnosis, 

with annual follow-up thereafter (2015). Such self-management interventions (SMI) seek to 

provide participants with motivation to make behavioural changes, a forum to learn 

problem solving skills and to increase confidence, all of which are key to sustainable 

lifestyle change (Barlow, Wright et al. 2002). Systematic reviews of clinical trial data have 

found that SMI attendance improves diabetes management (Steinsbekk, Rygg et al. 2012; 

Chrvala, Sherr et al. 2015) although effectiveness in “real-world” clinical settings remains to 

be demonstrated. An examination of the Canadian registry data found attendance led to 

better quality of care but no improvement in the rate of diabetic complications or mortality 

after a median of 5.3 years follow-up (Shah, Hwee et al. 2015). 

 

The CoRDia study seeks to investigate the impact of attendance at SMI sessions with and 

without provision of personalised CHD risk information compared to usual care, in patients 

with poorly managed T2D. This will be assessed using two primary outcomes: glycated 

haemoglobin levels and comparison of CHD risk (as determined using the UKPDS risk score, 

see Chapter 4.1) across the study groups. These parameters were determined at baseline 

and will be re-assessed at 6-month and 12-month post-recruitment. A number of 

behavioural and clinical secondary outcomes (such as smoking cessation and cholesterol 

levels) will also be assessed.  

 

CoRDia recruitment commenced in December 2013 and follow-up is due to finish in June 

2016. Therefore, the aim of the work presented here is to i) assess the baseline T2D-CRF 

characteristics of the recruits and ii) to determine the genetic characteristics of the 

participants in the SMI plus risk profile group. Furthermore, how CHD risk in the CoRDia 

recruits compares to a cross-sectional study of individuals with T2D was also assessed.  
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5.2 CoRDia trial protocol 

The full protocol for the CoRDia study has been published elsewhere (Davies, McGale et al. 

2015) and is depicted diagrammatically in Figure 29. Briefly, participants were recruited 

from primary care centres in the East of England. All were defined as having poorly 

controlled T2D based as on glycated haemoglobin levels (Hba1c >6.45 %). The age range of 

participants was 25-74 years and those of European, Afro-Caribbean, Asian Indian, mixed 

European/Afro-Caribbean or mixed European/Asian Indian ethnicity were included. 

Participants were randomised into one of three groups (i) usual care, (ii) SMI only or (iii) 

SMI-plus-personalised-CHD-risk. CHD risk was estimated using the UKPDS risk score 

(Stevens, Kothari et al. 2001). When calculating the UKPDS score, those of mixed ethnicity 

were treated as non-Afro-Caribbean as suggested by the developers of the UKPDS risk 

score. The UKPDS risk score was combined with the weighted 19 SNP GS (as described in 

Chapter 2.5.2, score calculated using the original weightings) to give a combined CHD risk 

for participants in the SMI plus risk profile group. All participants were free of CVD at 

baseline. Ethical approval for this study has been granted by the East of England Research 

Ethics Committee (ref 12/EE/0437) and the study complied with the ethical principles 

underlying the Declaration of Helsinki. This study has been registered at ClinicalTrials.gov; 

registration identifier NCT01891786.  

 

Personalised CHD risk information in the form of a risk report was delivered to participants 

in the SMI plus risk profile group in one-to-one sessions with a researcher. In the report, 

genetic CHD risk (relative to population CHD risk) was displayed graphically along with 

average genetic risk (set at zero). A statement contextualising genetic risk was also 

included, and the wording depended on the individual’s genetic CHD risk score. The 

statement read - “Your risk is (adjective used based on cut-offs shown in Table 70) was 

higher/lower than the average person”. The UKPDS CHD risk - percentage risk of CHD in the 

next ten years - was referred to as “lifestyle risk” and was displayed graphically alongside 

the UKPDS score for an “average person” of the same age (and with the same duration of 

diabetes), sex, smoking status and ethnicity as the participant. The values used for the 

other variables are given in Table 71, the systolic blood pressure and lipid ratio were 

determined using data from UDACS (Stephens, Hurel et al. 2004) and the glycated 

haemoglobin value was set under guidance from a group clinician.  Combined CHD risk was 

also displayed in this manner.  
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Table 70: Adjectives used in CoRDia study risk reports to describe genetic CHD risk relative to the 
average population risk 

 

 

 

 

The same adjective was used whether displayed genetic risk was positive or negative.  
 
Table 71: Values for variables in the UKPDS score used to calculate risk in an “average” person of the 
same age, sex, smoking status and ethnicity as the participant in the CoRDia study risk reports.  

  

 

 

 

 

Follow-up time-points were immediately after the cessation of the SMI (2-4 months post-

recruitment, behavioural measures only), at 6 months and 12 months post recruitment 

with questionnaires and clinical measures taken at these time-points. Data collection from 

follow-up is not yet complete and data from intermediate time points has not yet been 

fully collated and analysed. Thus it is not available for presentation in this thesis.   

 

Figure 26: Example of the depiction of genetic CHD risk in the CoRDia study risk reports 

 

 

Displayed Genetic Risk Value 

>0.8 “Considerably” 
0.3 - 0.7999 “Moderately” 
0.051-0.299 “Slightly” 

0-0.05 “Minimally” 
0 “Same as average” 

Trait Value 

Systolic Blood Pressure 136 mmHg 

HbA1c 6.7 % 

Lipid Ratio 3.71 
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Figure 27: Example of the depiction of ten-year CHD risk, as determined by the UKPDS risk score and 
referred to as “lifestyle risk”, in the CoRDia study risk reports 
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Figure 28: Example of the depiction of combined ten-year CHD risk, as determined by the UKPDS risk 
score plus the genetic risk, in the CoRDia study risk reports 
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Figure 29: Flow-chart representing the CoRDia study protocol  

 

Figure originally published by BioMed Central in (Davies, McGale et al. 2015). 
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5.3 Results: 

5.3.1 Baseline characteristics of the CoRDia participants 

Participant recruitment was conducted at 14 GP surgeries and one community diabetes 

clinic in the East of England from December 2013 to June 2015 (Figure 30). The baseline 

T2D-CHD risk factor characteristics of the CoRDia recruits are shown by randomisation 

group in Table 72. None of the risk factors differed between the three groups nor did ten-

year risk of CHD (a p>0.05).  

Figure 30: Map of CoRDia recruitment sites 

 

Recruitment sites are indicated by orange dots. Image created using data from “OpenStreetMap” 
available under Open Database License. ©OpenStreetMap contributors. 
(http://www.openstreetmap.org/copyright.org). 
 
 

 

 

 

 

 

 

 

 

 

 

http://www.openstreetmap.org/copyright.org
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Table 72: Baseline characteristics of the CoRDia study participants by randomisation group 

The mean plus standard deviation is shown, where appropriate. Numerical variables were compared 
using ANOVA and categorical variables by Chi-squared tests. *Variable was log transformed. 
Geometric mean and approximate standard deviation are shown.**Variable was square-root 
transformed, means were transformed back and the range is shown. TC=total cholesterol.  

 

To ascertain how ten-year CHD risk observed in the CoRDia recruits compared to other 

cohorts from the T2D population, the UKPDS score was compared to that observed in the 

UDACS study (in those with no history of CHD). Unlike CoRDia, where participants were 

recruited from primary care, the UDACS participants were recruited from a hospital 

diabetes clinic. CHD risk was found to be higher in the UDACS recruits compared to the 

CoRDia (median 14.89 % v 20.85 % p=<2.20x10-16, Figure 31). Comparing the T2D-CHD CRFs 

between the two studies reveals that the groups have very different risk profiles (Table 73). 

The UDACS participants were older, had been diagnosed with T2D at an earlier age and the 

duration of T2D was longer in this group. In addition, total cholesterol, HDL-cholesterol and 

systolic blood pressure were higher in UDACS, as was the proportion of smokers but the 

proportion of those of European ethnicity was lower. The lower cholesterol levels in the 

CoRDia recruits can be accounted for by the much higher proportion of CoRDia participants 

on lipid lowering therapy compared to the UDACS participants (76% v 20% p<2.20x10-16). It 

is unsurprising therefore that CHD risk was also higher. Glycated haemoglobin did not differ 

between the CoRDia participants and the UDACS participants. To qualify for inclusion in the 

CoRDia study recruits were required to have poorly controlled T2D as defined by their 

Trait CoRDia Control 

Group  

(n=67) 

CoRDia SMI only 

Group  

(n=74) 

CoRDia SMI+risk 

profile Group 

(n=70) 

p-value 

Age (years) 61.40 (10.08) 61.28 (9.11) 62.36 (7.42) 0.53 

Sex (% Female) 48 % (n=33) 46 % (n=40) 34 % (n=24) 0.05 

Ethnicity (% European) 92 % (n=60) 92 % (n=68) 94 % (n=66) 0.65 

TC (mmol/l)
*
 4.18 (0.97) 4.36 (0.89) 4.29 (1.03) 0.55 

HDL-cholesterol 

(mmol/l)
*
 

1.27 (0.29) 1.23 (0.37) 1.16 (0.29) 0.05 

Systolic blood pressure 

(mmHg) 

133.93 (12.56) 134.36 (14.41) 133.44 (12.97) 0.97 

Duration of T2D 

(years)** 

5.60 (0-23) 5.60 (0-39) 6.33 (0-23) 0.38 

Age of T2D Onset 

(years) 

55.00 (10.87) 54.99 (10.17) 54.90 (8.36) 0.95 

Glycated haemoglobin 

(%)* 

7.73 (1.29) 7.60 (1.03) 7.58 (0.99) 0.41 

Smoking % (n) 7 % (n=5) 5 % (n=4) 16 % (n=11) 0.09 

UKPDS risk score (%)* 12.70 % (9.56) 13.18 % (9.44) 16.06 (10.47) 0.13 
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glycated haemoglobin level. Therefore, this suggests that a majority of the UDACS 

participants may also have poorly controlled diabetes but this would assume that diabetes 

management was equally effective when the UDACS participants were recruited in 2001-

2002, as now. 

 

 Figure 31: Ten-year CHD risk as determined by the UKPDS score in A) the CoRDia 
participants and B) UDACS participants 
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Table 73: Baseline characteristics of the CoRDia participants and UDACS participants without CHD at 
recruitment 

The mean plus standard deviation is shown where appropriate. *Variable was log transformed. 
Geometric mean and approximate standard deviation are shown (except for UKPDS risk score where 
the interquartile range is shown). **Variable was square root transformed, mean was transformed 
back and range is also shown. 

&
Medians and interquartile range shown as distribution of the variable 

appeared to differ between the studies. These variables were compared using a Mann-Whiney 
Wilcox test.

  
The other numeric variables were compared using Welch’s t-test and categorical 

variables were compared using chi-square tests. TC=total cholesterol. 
+
For the CoRDia group this 

refers to non-Afro Caribbean participants.  

 

Trait CoRDia  

(n=211) 

UDACS 

(n=597) 

p-value 

Age (years) 61.68 (8.90) 64.02 (11.55) 2.55x10
-3

 

Sex (% Female) 45 % (n=96) 40 % (n=240) 0.22 

Ethnicity (% European
+
) 98 % (n=207) 74 % (n=442) 9.61x10

-8
 

TC (mmol/l)
&

 4.20 (3.73-4.89) 5.10 (4.40-5.80) <2.20x10
-16

 

HDL-cholesterol (mmol/l)
*
 1.21 (0.32) 1.29 (0.38) 9.55x10

-3
 

Systolic blood pressure (mmHg)
&
 134.00 (125.0-140.0) 141.00 (130.10-151.50) 9.09x10

-11
 

Duration of T2D (years)** 5.80 (0-39) 9.16 (0-60) 3.20x10
-10

 

Age of T2D Onset (years) 54.96 (9.80) 52.92 (13.17) 0.01 

Glycated haemoglobin (%)* 7.63 (1.10) 7.83 (1.71) 0.06 

Smoking % (n) 10 % (20) 17% (97) 0.02 

UKPDS risk score (%)
&

 14.89 (8.34-23.53) 20.85 (12.65-34.53) <2.20x10
-16
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5.3.2 Genetic CHD risk in CoRDia 

Genetic CHD risk was determined in the SMI plus risk profile group using the 19 SNP GS 

with the original weightings (Chapter 3.1). To assess how the genetic CHD risk of the 

recruits compared to that of the non-T2D population, the 19 SNP GS was compared 

between the CoRDia SMI plus risk profile group and NPHSII. Furthermore, the UCLEB 

participants with T2D were used to represent a the T2D population. The distribution of risk 

alleles in NPSHII (n=1360) and the participants of European ethnicity in the CoRDia SMI plus 

risk profile group (n=66 as there were four participants not of European ethnicity in this 

group) is shown in Figure 32. Furthermore, there was no difference in mean GS between 

the participants of European ethnicity of the CoRDia group and NPSHII (3.14 v 3.17 p=0.80, 

Figure 33) or between the participants of European ethnicity of the CoRDia group the 

UCLEB participants with T2D (3.14 v 3.27 p=0.14, Figure 33).  

Figure 32: Histogram of unweighted GS in A) NPHSII B) UCLEB participants with T2D and C) CoRDia 
SMI plus risk profile group 
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Figure 33: Boxplot of GS in NPSII, the UCLEB participants with T2D and the CoRDia SMI plus Risk 
Profile group 

The mean GS (gene score) for each group is marked in red (horizontal line represents the median). 
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5.4 Discussion 

The CoRDia study seeks to investigate how attendance at SMI sessions with and without 

knowledge of personal CHD risk affects clinical and behavioural outcomes compared to 

usual T2D care. CHD risk was determined using the T2D-specific UKPDS score (Stevens, 

Kothari et al. 2001) as well as a combined UKPDS plus genetic risk score. As has been 

discussed previously (Chapter 4.1), the UKPDS score has been found to overestimate CHD 

risk. However, it was recommended for use by the NICE guidelines (2008) when the study 

was commenced and therefore was used to estimate CHD risk in the participants. 

Furthermore, the primary purpose of the study is not to evaluate the risk tool per se but to 

investigate how knowledge of personal CHD risk impacts upon behavioural and clinical 

characteristics in the context of attendance at SMI sessions. Thus while the ideal would be 

to use a well calibrated risk score (and the use of a poorly calibrated one is a limitation of 

the study), using the UKPDS will still allow the research aims to be met. Another limitation 

in relation to using the UKPDS score is how to categorise those of mixed ethnicity. The 

UKPDS score assigns those of Afro-Caribbean ethnicity with a lower CHD risk compared to 

those of European or South Asian ethnicity and Afro-Caribbean ethnicity is coded as a 

binary variable. However, how to code those of mixed ethnicity is not clear. Under 

guidance from the developers of the UKPDS score, those of mixed race (mixed European 

and Afro-Caribbean) were assigned with non-Afro-Caribbean ethnicity with the caveat that 

this may underestimate risk.  Only two participants were of mixed European and Afro-

Caribbean ethnicity were recruited (both in the usual case group) so this is unlikely to affect 

the findings.  

 

Subjects were randomised using a pre-specified procedure (Davies, McGale et al. 2015) and 

none of the T2D-CRFs nor ten-year CHD risk was found to differ between the three study 

groups. The genetic CHD risk in the SMI plus risk profile arm was found to be similar to that 

in a non-T2D cohort (NPHSII) and a T2D cohort (UCLEB T2D participants). This suggests that 

the genetic CHD risk of the recruits in the CoRDia SMI plus risk profile group is reflective of 

the general UK population. 
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In the CoRDia trial the personalised risk information given was a combined CRF and GS risk 

score. Therefore, the effect of including genetic information in addition to CRF risk cannot 

be assessed. The MI-GENES trial compared LDL-cholesterol levels between two groups of 

individuals with intermediate CHD risk (Kullo, Jouni et al. 2016). One group was given CHD 

risk as determined by a CRF risk score. The other group was given the CRF score and how it 

compared to a combined risk score which had genetic risk incorporated into it. Genetic risk 

was determined using a GS comprising 28 SNPs robustly associated with CHD, but not with 

CRFs – 4 of these SNPs are included in the 19 SNP GS. An individualised graphic displaying 

how many people in 100 with the same risk profile would have an MI in the next ten years 

was used to communicate CHD risk to participants. A similar graphic was used to visualise 

the impact of genetics upon CHD risk (e.g. if the person had low genetic risk it would show 

how many MIs would be prevented as a result) and the reduction in risk that would result 

from statin use (shown as number of events prevented by the medication). All participants 

then had a meeting with a clinician, primarily to discuss whether to initiate statin 

treatment. At 6-month follow-up those in the CRF plus GS group were found to have lower 

LDL-cholesterol and a greater proportion had initiated statin treatment (a likely cause of 

the former). Statin use was highest and LDL-cholesterol lowest in those with high genetic 

risk, indicating that knowledge of personalised genetic information increases motivation to 

start and adhere to risk-lowering medication. There was no difference in dietary fat intake 

or physical activity between the groups, suggesting that knowledge of personalised risk 

alone does not help sustain healthier lifestyle choices. Thus other strategies (such as 

attendance at SMI sessions) must be employed to help patients do this and the CoRDia 

study will assess if access to personalised CHD risk information will improve outcomes over-

and–above SMI attendance alone.  
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5.5 Conclusion to chapter 

Analysis of the baseline CoRDia data found that glycated haemoglobin level and ten-year 

CHD risk were similar between the three randomisation groups. The CHD risk observed in 

the CoRDia subjects recruited from primary care was lower than in the UDACS participants 

recruited from a hospital based clinic. The genetic CHD risk of the SMI plus risk profile 

group was found to be similar to other cohorts with and without T2D. Follow-up will be 

completed in June 2016.  
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6 Functional analysis of CHD risk locus 21q22 
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6.1 Introduction 

The CHD risk locus on chromosome 21q22 was first identified in a GWAS of early-onset MI 

(Kathiresan, Altschuler et al. 2009). The association has since been confirmed in the 

CARDIoGRAMplusC4D meta-analysis (Deloukas, Kanoni et al. 2013) where each copy of the 

minor allele was associated with an increase in CHD risk (OR=1.13). However, the 

mechanism through which this locus affects CHD risk remains obscure. Like many of the 

GWAS identified CHD risk loci, 21q22 is not associated with any CRFs for CHD (Deloukas, 

Kanoni et al. 2013). Moreover, it lies in a “gene desert” (Figure 34). The closest upstream 

genes are SLC5A3 and MRSP6. These genes share an exon which is in the open reading 

frame for MRPS6 but not SLC5A3 (Gardiner, Slavov et al. 2002). SLC5A3 (solute carrier 

family 5-inositol transporter) encodes a sodium myo-inositol transporter which is involved 

in the response to hypertonic stress (Berry, Mallee et al. 1995). MRPS6 (mitochondrial 

ribosomal protein 6) encodes a subunit of the mitochondrial ribosome (Suzuki, Terasaki et 

al. 2001). The locus containing these two genes was identified in a GWAS concerning red 

blood cell traits as being associated with packed cell volume (van der Harst, Zhang et al. 

2012). The closest downstream gene is the potassium channel subunit encoding KCNE2 and 

mutations in this protein are known to cause long-QT syndrome (Abbott, Sesti et al. 1999). 

Long-QT syndrome is associated with arrhythmias and sudden cardiac death. Furthermore, 

even within the normal range, longer QT-interval has been associated with increased risk of 

CHD mortality (Zhang, Post et al. 2011). However, it is unclear whether longer-QT interval 

has a causal relationship with CHD. Variants in or close to KCNE2 have also been associated 

with lung function (Soler Artigas, Loth et al. 2011), height (Lango Allen, Estrada et al. 2010) 

and BMI in Hispanic post-menopausal women who smoke (Velez Edwards, Naj et al. 2013). 

However, none of these points to a plausible pathway to account for the association with 

CHD and thus genomic location does not suggest any obvious mechanism through which 

this CHD risk locus is acting. 

 

Being located within a gene desert, neither the lead SNP at the 21q22 risk locus nor any 

SNPs in strong LD result in changes to the protein coding sequence. Rather, it is likely that 

the locus impacts upon risk of CHD through involvement in the regulation of gene 

expression (Hindorff, Sethupathy et al. 2009). A SNP that is located within open, 

transcriptionally active chromatin is more likely to be functional than a SNP located within 

heterochromatin and thus investigating the genomic context of a locus can provide insight 

into its functionality. Publically available bioinformatics data, both experimentally 
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determined and predicted, can be used to study this. HaploReg (Ward and Kellis 2012) can 

be used to search all SNPs in LD with a query SNP (r2>=0.2 as determined in 1000 Genomes 

phase 1) and its output combines information concerning these SNPs from a variety of 

sources. This includes data on transcription factor binding, presence of DNAse I 

hypersensitivity sites and chromatin marks from ENCODE (Bernstein, Birney et al. 2012), 

predicted regulatory chromatin state from the Roadmap Epigenomics Project (Kundaje, 

Meuleman et al. 2015) and eQTL data from GTEX (2013). More detailed information from 

the ENCODE data can be obtained using the UCSC genome browser (Kent, Sugnet et al. 

2002) where results of interest (e.g. presence of enhancer chromatin marks in a relevant 

cell line) can be displayed alongside genomic location or the GTEX browser itself. Thus such 

tools can be used to identify candidate functional SNPs.  

 

Candidate functional SNPs identified from bioinformatics analysis require to be 

investigated experimentally. A crucial aspect of DNA variation is how it affects transcription 

factor binding. If a SNP lies within the binding site for a particular transcription factor, 

presence of one allele could lessen or enhance the binding affinity of the protein for that 

sequence compared to the other allele. Ultimately this could result in differential gene 

expression.  Therefore, allele-specific binding suggests functionality and this can be studied 

in vitro with EMSAs. EMSAs can be used to screen for functional variants as many variants 

can be studied in the same experiment. If a particular variant shows consistent allele-

specific binding, then its effect on gene expression can be investigated using a dual-

reporter luciferase assay. Here the impact of each allele on expression of the reporter 

luciferase gene is investigated. Should a SNP show allele-specific binding and affect gene 

expression, this is strong evidence of functionality. The focus can then shift to the 

identification of the specific molecular pathways (i.e. transcription factors and target 

genes) involved.  

 

Identification of the functional SNP(s) at a particular risk locus and the mechanism through 

which is impacts upon CHD risk can provide an important insight into the pathogenesis of 

CHD. In this context, the aim of this study to was investigate the 21q22 CHD risk locus using 

bioinformatics analysis and in vitro functional assays to identify the candidate functional 

SNP(s).   
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Figure 34: Schematic image of the 21q22 CHD risk locus taken from the UCSC Genome Browser (http://genome.ucsc.edu).  

 
The lead SNP at the CHD risk locus, rs9982601 is highlighted in green.  Genes present at the locus are shown in blue with SLC5A3 and MRPS6 upstream of the risk locus and 
KCNE2 downstream of the risk locus. GWAS hits from the NHGRI catalog are also shown in green. Displayed is rs9978142, a GWAS hit the ratio of forced expiratory volume 
in 1 second/forced vital capacity (Soler Artigas, Loth et al. 2011) and rs2834442, a GWAS hit for height (Lango Allen, Estrada et al. 2010). Also shown is rs1013063, a SNP 
found to be associated with BMI measures with smoking in Hispanic women in a study looking at gene environment interactions (Velez Edwards, Naj et al. 2013). 
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6.2 Results 

6.2.1 Association of the 21q22 CHD risk locus with CHD risk factors 

In order to assess whether the 21q22 risk locus was associated with any traits that might 

provide an insight into how it affects CHD, a phenome scan of the UCLEB data set was 

performed. This included many inflammatory markers, lipid traits and a number of 

physiological phenotypes. The cohort had been genotyped using the Metabochip platform 

(designed to cover regions associated with cardiometabolic disease (Voight, Kang et al. 

2012)). Four SNPs at the 21q22 locus lwere analysed, the lead SNP rs9982601 and three 

SNPs in moderate LD, rs8131284 (r2=0.78), rs7278204 (r2=0.76) and rs973754 (r2=0.75) - r2 

was determined using the 1000 Genomes phase 1 data (Abecasis, Auton et al. 2012).  Over 

one hundred traits were tested but none met the Bonferroni-adjusted significance 

threshold (p=4.72x10-4). Only one trait, QT interval, showed a suggestive association 

(p<0.05) for all four SNPs with the effect in the same direction (Table 74). The CHD risk 

allele was nominally associated with longer QT interval. This putative association is of 

interest due to the close proximity of the potassium ion channel gene KCNE2 to the risk 

locus. 

 

The p-value for height was also below 0.05 for all four SNPs but for 3 SNPs the rare allele 

was nominally associated with greater height while for rs9982601, the effect was in the 

opposite direction. It is noteworthy that rs2834442 (GWAS hit for height (Lango Allen, 

Estrada et al. 2010)) is also present at this locus (Table 75) and is in weak LD with the lead 

SNP (r2=0.23, 1000 Genomes pilot data). 
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Table 74: The association between four SNPs at the CHD risk locus on chromosome 21q22 and mean 
QT interval in UCLEB.  

Mean QT interval is shown by genotype as well as the beta coefficient for the minor allele 
(±standard error). 

 

 

 

 

 

 

 

 

 

 

SNP     Beta-
coefficient 

p-
value 

rs9982601 Genotype CC TC TT  
1.83  

(0.90) 

 
0.04 n  

(frequency)  
5329  
(0.75) 

1643 
(0.23) 

130  
(0.02) 

Mean QT 
interval (ms)     

402.8 
(37.35) 

404.5  
(39.28) 

409.1 
(41.08) 

rs8131284 Genotype TT CT CC  
2.14  

(0.89) 

 
0.02 n  

(frequency)  
5293  
(0.75) 

1670 
(0.24) 

142  
(0.02) 

Mean QT 
interval (ms)     

402.7 
(37.41) 

404.9 
(39.20) 

408.1 
(38.97) 

rs7278204 Genotype AA GA GG  
2.07  

(0.89) 

 
0.02 n  

(frequency)  
5290  
(0.74) 

1673 
(0.24) 

141  
(0.02) 

Mean QT 
interval (ms)     

402.7 
(37.73) 

404.9 
(38.19) 

407.9 
(39.26) 

rs973754 Genotype AA GA GG  
1.85  

(0.89) 

 
0.02 n  

(frequency)  
5300  
(0.75) 

1663 
(0.23) 

142  
(0.02) 

Mean QT 
interval (ms)     

402.7 
(37.75) 

404.6 
(38.18) 

408.2 
(38.84) 
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Table 75: The association between four SNPs at the CHD risk locus on chromosome 21q22 and mean 
height n UCLEB 

Mean height is shown by genotype as well as the beta coefficient for the minor allele (±standard 
error). 
 

 

 

 

SNP     Beta-
coefficient 

p-
value 

rs9982601 Genotype CC TC TT  
-0.002 

(9x10
-4

) 

 
0.02 n  

(frequency)  
9481 
(0.75) 

2899 
(0.23) 

212 
(0.02) 

Mean  
height (m)      

1.680 
(0.10) 

1.679 
(0.10) 

1.678 
(0.10) 

rs8131284 Genotype TT CT CC  
0.003 

(9x10
-4

) 

 
0.004 n  

(frequency)  
9424  
(0.75) 

2924 
(0.23) 

248  
(0.02) 

Mean  
height (m)         

1.68  
(0.10) 

1.68  
(0.10) 

1.681 
(0.10) 

rs7278204 Genotype AA GA GG  
0.003 

(9x10
-4

) 

 
0.003 n  

(frequency)  
9417 
(0.75) 

2931 
(0.23) 

246 
(0.02) 

Mean  
height (m)      

1.68  
(0.10) 

1.68  
(0.10) 

1.681 
(0.10) 

rs973754 Genotype AA GA GG  
0.003 

(9x10
-4

) 

 
0.002 n  

(frequency)  
9433 
(0.75) 

2917 
(0.23) 

247 
(0.02) 

Mean  
height (m)      

1.68  
(0.10) 

1.68  
(0.10) 

1.68 
(0.10) 
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6.2.2 Identification of a putative functional SNP  

6.2.2.1 Bioinformatics analysis of the CHD risk locus 21q22 

HaploReg v2 (Ward and Kellis 2012) was used to identify SNPs that are in strong LD (r2>0.8 

as calculated in the 1000 Genomes phase 1 EUR data) with the lead SNP, rs9982601. The 

output is shown in Figure 35. Five such SNPs were identified. The genomic context of 

rs9982601 and plus these five SNPs was assessed using the UCSC Genome Brower (Figure 

36- 40) (Kent, Sugnet et al. 2002). One SNP (rs28451064) showed strong evidence of 

residing within open chromatin in some cell types. Data from the ENCODE project showed 

that this SNP is located in DNase I hypersensitivity sites in HepG2, Huh-7 and human 

umbilical vein endothelial cell (HUVEC) cell lines. This SNP was also found to be positioned 

within a site bound by multiple transcription factors including specificity protein 1(SP1) and 

forkhead box A2 (FOXA2) (Figure 36). 

6.2.2.2 Assessment of allele-specific binding  

The lead SNP plus the five in strong LD were investigated for allele-specific binding of 

nuclear proteins using EMSAs. The assays were performed with nuclear extracts from two 

hepatocyte carcinoma cell lines, HepG2 and Huh-7, as the only enhancer chromatin marks 

found for any of the SNPs at this locus were in HepG2 cells. Five of SNPs showed allele 

specific binding in the initial experiments (Figure 41) but this was only consistent for 

rs28451064 when replicates were performed (Figure 42). Therefore, the bioinformatics 

analysis together with the EMSA results shows that rs28451064 is a strong candidate to be 

the functional SNP. 

6.2.2.3 Predicted impact of rs28451064 on transcription factor binding  

In order to assess whether how the presence of the two alleles of rs28451064 might affect 

transcription factor binding, the genomatix software suite (Genomatix Software GmbH, 

Munich, Germany) which details predicted binding sites, was used. Presence of the minor 

“A” allele rather than the major “G” allele was predicted to abolish a vitamin D receptor-

retinoid X receptor heterodimer (VDR-RXR) binding site and a homeodomain protein H6 

family member 3 (HMX3) binding site. The software also predicted the creation of a 

forkhead-related transcription factor 4 (FREAC4) binding site in the presence of the A allele.  
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 Figure 35: HaploReg v2 output for query SNP rs9982601 (http://www.broadinstitute.org/mammals/haploreg/haploreg_v2.php) 

 
Screenshot taken from HaploReg version 2 output for the query SNP rs9982601. HaploReg (Ward and Kellis 2012) displays frequency information from four ethnic groups 
from the 1000 genomes project (this is also where the linkage disequilibrium (LD) information is sourced), conservation information is taken from a combination of SNPinfo 
and TRANSFAC. Promoter histone marks, enhancer histone marks, DNAse and protein binding information comes from the ENCODE project. eQTL data is from the GTEx 
project and motif alteration predictions are based on a library constructed from the literature. Gene information is taken from GENECODE. The lead SNP at the locus is 
shown in red. The list of SNPs was limited to SNPs in strong LD with the query SNP (r

2
>=0.8 as calculated in the 1000 Genomes phase 1 EUR data). 

 

http://www.broadinstitute.org/mammals/haploreg/haploreg_v2.php
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Figure 36: The genomic environment of rs28451064, taken from the UCSC Genome Browser (http://genome.ucsc.edu;GR37/hg19)   

  
Presence of DNAse I hypersensitivity sites were determined using in vitro assays as part of the ENCODE project. The results are shown both as a composite of results in all 
cell lines tested and in HepG2, Huh-7 and HUVEC cell lines specifically (shown in pink, black and orange respectively). Transcription factor binding sites identified by chip-
seq assays performed as part of the ENCODE are also shown (grey boxes). All of the transcription factor binding site were found in HepG2 cells. The position of rs28451064 
is indicated by the green line. HUVEC= human umbilical vein endothelial cell. 

rs28451064 

http://genome.ucsc.edu/
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Presence of DNAse I hypersensitivity sites were determined using in vitro assays as part of the ENCODE project. The results are shown both as a composite of results in all 
cell lines tested and in HepG2 and HUVEC cell lines specifically (shown in pink and orange respectively). Transcription factor binding sites identified by chip-seq assays 
performed as part of the ENCODE are also shown (grey boxes). The position of rs60687229 is indicated by the green line. HUVEC=human umbilical vein endothelial cell. 

 

 

 

rs60687229 

Figure 37: The genomic environment of rs60687229, taken from the UCSC Genome Browser (http://genome.ucsc.edu; GR37/hg19) 

http://genome.ucsc.edu/
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Presence of DNAse I hypersensitivity sites were determined using in vitro assays as part of the ENCODE project. The results are shown both as a composite of results in all 
cell lines tested and in HepG2 and HUVEC cell lines specifically (shown in pink and orange respectively). Transcription factor binding sites identified by chip-seq assays 
performed as part of the ENCODE are also shown (grey boxes). The positions of rs9977419 and rs9977093 are indicated by the green lines. HUVEC=human umbilical vein 
endothelial cell. 
 

rs9977419 

rs9977093 

Figure 38: The genomic environment of rs9977419 and rs9977093, taken from the  UCSC Genome Browser (http://genome.ucsc.edu; GR37/hg19) 

SPI1 

http://genome.ucsc.edu/
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Presence of DNAse I hypersensitivity sites were determined using in vitro assays as part of the ENCODE project. The results are shown both as a composite of results in all 
cell lines tested and in HepG2 and HUVEC cell lines specifically (shown in pink and orange respectively). Transcription factor binding sites identified by chip-seq assays 
performed as part of the ENCODE are also shown (grey boxes). The position of rs9982601 is indicated by the green line. HUVEC=human umbilical vein endothelial cell. 
 
 
 

rs9982601 

Figure 39: The genomic environment of rs9982601, taken from the UCSC Genome Browser (http://genome.ucsc.edu;GR37/hg19) 

http://genome.ucsc.edu/
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Presence of DNAse I hypersensitivity sites were determined using in vitro assays as part of the ENCODE project. The results are shown both as a composite of results in all 
cell lines tested and in HepG2 and HUVEC cell lines specifically (shown in pink and orange respectively). Transcription factor binding sites identified by chip-seq assays 
performed as part of the ENCODE are also shown (grey boxes). The position of rs9980618 is indicated by the green line. HUVEC=human umbilical vein endothelial cell.

rs9980618 

Figure 40: The genomic environment of rs9980618, taken from the  UCSC Genome Browser (http://genome.ucsc.edu; GR37/hg19) 

http://genome.ucsc.edu/
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Allele-specific binding can be observed particularly with rs28451064. Both assays used NFkB as a 
positive control.  In the right-most lane of (B) unlabelled NFkB oligo has been added and it can be 
seen that the original band has been competed out and the oligo has bound to proteins of a 
different size. 

rs60687299 rs9977419 rs9977093 rs9982601 rs28451064  rs9980618  
NFκB  

Control 
T    C T A G A C T G A C T 

A 

rs60687299 rs9977419 rs9977093 rs9982601 rs28451064 rs9980618 
NFκB  

Control 
NFκB  

Control 
Comp. 

T    C T A G A C T G A C T 

B 

Figure 41: EMSA results for assays performed with A) HepG2 nuclear extract and B) Huh-7 
nuclear extract.  
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Binding by both alleles was compared for all five SNPs. Only in E (rs28451064) is there strong binding for one allele but complete absence of binding for the other in both 
cell lines.  

Figure 42: Replication of EMSAs with A) rs60687299 B) rs977419 C) rs977093 D) rs9982601 and E) rs28451064 probes using HepG2 and Huh-7 nuclear extract 

rs28451064  

G A G A 

HepG2 Huh-7 

HepG2 
rs9977419 

T A T A 

Huh-7 

rs9977093 

G A G A 

HepG2 Huh-7 
rs9982601 

C T C T 

HepG2 Huh-7 

C D E 

rs60687299 

T C T C 

HepG2 Huh-7 

A B 
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6.2.3 Assessment of possible transcription factors 

In order to investigate which transcription factors may be binding to rs28451064, 

competitor EMSAs were performed, again with Huh-7 and HepG2 nuclear extracts (for 

proteins where consensus sequence probes were available). Four transcription factors 

were assessed (Figure 43). SP1 and FOXA2 were investigated as these proteins had been 

found to bind at this locus in the HepG2 cell line in the ENCODE project.  VDR and RXR were 

assessed as the A allele of rs28451064 was predicted to disrupt the binding site for the 

VDR:RXR heterodimer. The RXR consensus probe did not bind proteins in either extract, 

indicating the binding conditions were not optimal. However, its binding to the 

rs28451064-G probe could not be ruled out as the conditions required may differ between 

the rs28451064-G and the RXR consensus sequence probe. SP1 binding to its consensus 

sequence was not competed out by the addition of the rs28451064-G probe. This makes it 

unlikely that SP1 is involved in the allele-specific binding observed previously (Figure 41 and 

Figure 42). The results with FOXA2 and VDR were inconsistent, with binding observed on 

some occasions but not others and thus their involvement could neither be discounted nor 

confirmed.  



191 
 

Figure 43: Competitor EMSA results from assays performed with A) SP1 probes B) VDR probes C) RXR probes and D) FOXA2 probes and HepG2 and Huh-7 nuclear 
extracts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*G allele of rs28451064.  

   

   

 

 

G* 

 

G* 

G* G* G* 
G* 

G* G* 



192 
 

6.2.4 Impact of the 21q22 CHD risk locus on gene expression 

The relationship between the risk locus and gene expression also required to be 

considered. One eQTL for this locus was identified from the literature. The risk allele of the 

lead SNP, rs9982601, was found to be associated with higher expression of MRPS6 (closest 

upstream gene) in blood in the deCODE cohort (Schunkert, Konig et al. 2011). Other data 

sources were investigated to assess other tissues.  

6.2.4.1 ASAP Study 

The relationship between the lead SNP at the risk locus and expression of its three closest 

genes MRPS6, SLC5A3 and KCNE2 was examined using data from the ASAP study 

(Folkersen, van't Hooft et al. 2010). Expression data was available for five tissues (liver, 

mammary artery, aortic adventitia, aortic intima media and heart). Genotyping data for 

rs9982601 was available for 106 ASAP participants. For both SLC5A3 and MRPS6, the minor 

CHD risk allele was associated with higher expression of the mRNA transcript in aortic 

intima media (SLC5A3 1.30 fold (95% CIs 1.16-1.47) per A allele p=3.98x10-5; MRPS6 1.15 

fold (95% CIs 1.06-1.25) per A allele p=9.60x10-4, Figure 44). No association was observed 

for KCNE2.  
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Figure 44: Expression of A) SLC5A3 and B) MRPS6 in aortic intima media presented by rs9982601 
genotype in the ASAP study.  
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6.2.4.2 GTEX project  

The relationship between the 21q22 CHD risk locus and gene expression was further 

studied using data from the GTEX project (http://www.gtexportal.org/)(2013). No genes 

met the significance threshold for single tissue eQTL with either the lead SNP rs9982601 or 

the putative functional SNP rs28451064. The search was then narrowed to consider the 

relationship between the risk locus and the three genes located most closely to it, KCNE2, 

MRPS6 and SLC5A3, in seven tissues (Table 76). This gives a Bonferroni-adjusted p-value of 

4x10-3. In agreement with the ASAP results, the minor allele of rs28451064 was found to be 

associated with higher expression of MRPS6 in the aortic (p=1.2x10
-3

) and tibial arteries 

(p=1.1x10
-4

, Figure 45), although not in the coronary artery. There was a suggestive 

association between the minor allele and lower expression of MRPS6 in whole blood 

(p=0.04). Similar results were obtained for rs9982601. There were suggestive associations 

between the minor allele and higher expression of KCEN2 in aortic and tibial artery tissue 

(both p=0.02). Expression data for SLC5A3 was not available.   

 

Figure 45: Expression of MRPS6 by rs28451064 genotype in the tibial artery   

 

The graph was created using data from GTEX (2013) (http://www.gtexportal.org/home/). 
 

 

 

 

 

http://www.gtexportal.org/
http://www.gtexportal.org/home/
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Table 76: Relationship between rs28451064 and expression of selected genes in seven tissues from 
GTEX (http://www.gtexportal.org/home/) 

Effect sizes refer to the change in expression per minor allele.  

Gene Tissue n Effect Size p-value 

MRPS6 Aortic Artery  197 0.17 1.2x10
-3

 

MRPS6 Coronary Artery 118 0.10 0.42 

MRPS6 Tibial Artery 285 0.21 1.1x10
-4

 

MRPS6 Atrial Appendage 159 -0.05 0.67 

MRPS6 Left Ventricle (Heart) 190 -0.09 0.42 

MRPS6 Liver 97 -0.12 0.48 

MRPS6 Whole Blood 338 -0.05 0.04 

KCNE2 Aortic Artery  197 0.17 0.02 

KCNE2 Coronary Artery 118 0.22 0.06 

KCNE2 Tibial Artery 285 0.19 0.02 

KCNE2 Atrial Appendage 159 -0.06 0.29 

KCNE2 Left Ventricle (Heart) 190 -0.09 0.72 

KCNE2 Liver 97 -0.05 0.36 

KCNE2 Whole Blood 338 0.16 0.54 
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6.2.4.3 Impact of rs28451064 on reporter gene expression 

To investigate how the rs28451064 affects gene expression, dual luciferase reporter assays 

were used. To do this the SNP was cloned into the enhancer site of the pGL3 promoter 

vector which contains the SV40 promoter sequence (Figure 46). The pGL3 plasmids were 

then transfected into Huh-7 cells. The results are shown in Figure 47 and are from four 

different experiments each with eleven or twelve replicates.  

Figure 46: Schematic diagram of the pGL3 vector with the sequence surrounding rs28451064 
inserted downstream of the luciferase gene 

 

Image create using SnapGene software (from GSL biotech; available at snapgene.com). 
 

Both plasmids containing the sequence surrounding rs28451064 showed higher expression 

(A allele 87 % higher p=1.90x10-15, G allele 62 % higher p=9.74x10-15, Figure 47) than the 

pGL3 promoter plasmid, indicating that this region acts as an enhancer. Furthermore, the 

minor A (risk) allele was found to have 12 % higher expression compared to the G allele 

(p=4.82x10-3, Figure 47), which is in agreement with the eQTL data.  
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Figure 47: Relative expression of a vector containing the rs284510654 A allele and rs28451064 G 
allele normalised to the pGL3 promoter expression 

 

Relative expression was compared using paired t-tests. A=rs28451064 A allele, G=rs28451064 G 
allele.  The errors bars represent 95% confidence intervals.  
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6.3 Discussion 

A locus on chromosome 21q22 has been consistently associated with CHD. However, like 

the majority of the confirmed GWAS loci for CHD, how this locus affects CHD risk is not 

clear (Deloukas, Kanoni et al. 2013). In this study, rs28451064 was identified as a putative 

functional SNP at the locus. The minor CHD risk allele was found to show less protein 

binding and be associated with higher gene expression in vitro. This allele was also found to 

be associated with higher expression of the two closest upstream genes (MRPS6 and 

SLC5A3) in a number of tissues. In agreement with previous studies no association between 

the lead SNP rs9982601 and CRFs for CHD was observed. A suggestive association between 

the risk locus and QT interval was observed, indicating that it may be impacting CHD risk 

through regulating the expression of the potassium channel subunit gene KCNE2, the 

closest downstream gene to the risk locus. However, while a suggestive association 

between rs9982601 and KCNE2 expression in the aortic and tibial arteries was observed in 

the GTEX data set, the evidence for the risk locus being involved in the regulation of MRPS6 

and SLC5A3 was more consistent.  

 

How increased expression of any of the nearby genes might affect CHD risk is unclear. As a 

constituent part of the mitochondrial ribosome, the gene product of MRPS6 plays a key 

role in the synthesis of the thirteen proteins encoded in mitochondrial DNA, all of which 

are involved in oxidative phosphorylation (Taanman 1999)(Figure 48). An important by-

product of oxidative phosphorylation is the generation of reactive oxygen species (ROS) 

(Murphy 2009). Overproduction of ROS by dysfunctional mitochondria has been associated 

with multiple pro-atherogeneic consequences including the activation of inflammatory 

pathways and endothelial dysfunction, but whether this is a causal relationship remains to 

be determined (Wang and Tabas 2014). If so, it may be that increased expression of MRPS6 

caused by presence of the risk allele disrupts the translation of the genes encoded by the 

mitochondrial DNA, increasing the risk of mitochondrial dysfunction and ultimately 

oxidative stress.  
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Figure 48: Simplified schematic diagram of the mitochondrion and key proteins involved in oxidative 
phosphorylation 

 

 

The sequence of SLC5A3 lies completely within that of MRPS6. The protein encoded by 

SLC5A3 is a sodium-myoinositol co-transporter (SLC5A3). This transporter plays an 

important role in the maintenance of cell volume in response to hyperosmotic stress. As 

osmolarity of the extracellular fluid increases, non-selective cation channels are activated 

causing sodium ions to enter the cell, disrupting cellular ion homeostasis. In response 

solute carrier family proteins (including SLC5A3) are activated causing increased transport 

of small organic molecules such as myo-inositol, referred to as “compatible osmolytes” to 

replace inorganic ions (Brocker, Thompson et al. 2012) (Figure 49). Recent evidence has 

suggested that SLC5A3 is also involved in the response to hypotonic stress but this is much 

less well understood (Andronic, Shirakashi et al. 2015). Work in mouse models has found 

that SLC5A3 is involved in the development of the peripheral nervous system and 

respiratory gas exchange (Chau, Lee et al. 2005; Buccafusca, Venditti et al. 2008). From the 

current knowledge there is no obvious mechanism to link SLC5A3 with the pathogenesis of 

CHD. However, as it appears that there may be a number of pathways which contribute to 

atherosclerosis yet to be elucidated (indicated by the number of GWAS hits with unknown 

mechanisms), the involvement of SLC5A3 cannot be discounted. Alternatively, the 
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association between the risk locus and expression of this gene may simply be a 

consequence of its sharing an exon with MRPS6 (Gardiner, Slavov et al. 2002).  

 

Figure 49: Simplified schematic representation of the involvement of SLC5A3 in the cellular response 
to hyperosmotic stress 

 

The relationship between KCNE2 and CHD appears to be complex. The ion channel subunit 

encoded by KCNE2 has a long established relationship with QT interval (and thus with the 

electrical activity of the ventricles). How this may relate to CHD risk is yet to be elucidated. 

Recently, deletion of the gene was found to promote spontaneous atherosclerotic lesions 

in mice (Lee, Nguyen et al. 2015). In addition, Kcne2-/- mice were also found to have raised 

LDL-cholesterol and impaired glucose tolerance, both pro-atherogenic characteristics (Hu, 

Kant et al. 2014). While results from mice are not directly translatable to humans, this does 

provide preliminary evidence of a causal relationship between KCNE2 and CHD. However, 

only weak evidence for a relationship between the 21q22 risk locus and the gene was 

observed in this study. Of course, it may be that risk locus acts through multiple molecular 

pathways.  

 

While a putative functional SNP (rs28451064) was identified in this study none of the 

transcription factors involved could be identified. Presence of rs28451064 minor (risk) 

allele was predicted to abolish a binding site for the VDR-RXR heterodimer transcription 

factor complex. A large scale analysis performed in lymphoblastoid cells found that 

expression of both MRPS6 and SLC5A3 increased in response to treatment with calcitriol (a 

bioactive form of vitamin D) (Ramagopalan, Heger et al. 2010). This indicates that the VDR 

pathway is involved in expression of these two genes.  How expression of the two genes, 

rs28451064 and VDR might be related is unclear - higher expression of both genes is 

associated with the minor (risk) allele which is also predicted to abolish the VDR binding 
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site. Here, competitor EMSAs were performed in an attempt to investigate which 

transcription factors were binding the rs28451064-G probe in the EMSAs. However, while 

some binding of VDR was detected in the Huh-7 nuclear extract, no binding was observed 

in the HepG2 nuclear extract. It could be that the VDR protein is not expressed in this cell 

line or alternately that the protein is expressed but does not bind the consensus sequence 

probe under the conditions used in the experiment. Whether VDR is involved could be 

more directly studied by using a supershift EMSA. Here, a VDR-binding antibody is included 

in the reaction mix and binding is detected by the presence of a “supershift” band as this 

complex will move more slowly when run on a polyacrylamide gel. Mass spectroscopy 

could also be used to identify the proteins bound to the DNA probe (Stead, Keen et al. 

2006). Once the DNA-protein complex has been run on the polyacrylamide gel, the relevant 

region can be excised and the proteins present identified. This is particularly useful when 

there is no candidate transcription factor as it essentially “hypothesis-free” in this regard.  

 

This work has a number of limitations. The functional molecular assays were performed in 

hepatocyte carcinoma cell lines and these may not be the most appropriate cellular model. 

However, given that the mechanism through which this locus impacts upon risk remains 

obscure, it is not clear which cell type would serve as the most appropriate model. 

Moreover, the putative functional SNP, rs28451064, was found to lie in a DNAse I 

hypersensitivity site, transcription binding sites and have enhancer chromatin marks in 

HepG2 (hepatocyte) cells. This indicates that the SNP lies in open chromatin in this cell line 

and thus may be influencing gene expression. The luciferase assays were performed using 

the pGL3 promoter vector which contains a general SV40 bacterial promoter. It would have 

been preferable to use the promoter of either MRPS6 or SLC5A3. However, the MRPS6 

promoter is not well characterised and attempts to clone the SLC5A3 promoter sequence 

into the pGL3 basic vector were unsuccessful.  

 

Both EMSA and the luciferase reporter assays are in vitro techniques which cannot account 

for chromatin state or long range interactions and thus only provide a guide as to the true 

situation occurring within the cell. In recent years a number of “chromatin capture” 

methods which enable DNA interactions in the native state to be studied have been 

developed. The first such was 3C (chromatin confirmation capture) which can be used to 

investigate whether two distant genomic sequences interact (Dekker, Rippe et al. 2002). 

DNA binding proteins are formaldehyde cross-linked to the DNA and then a restriction 
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enzyme digestion is performed. The cross-linked DNA is then ligated creating “ligation 

junctions”. The cross-links are removed, the DNA purified and selected ligation junctions 

quantified using PCR with primers specific to the genomic loci being studied. Should a 

particular combination (e.g. sequences from the 21q22 risk locus and the MRPS6 promoter) 

form more ligation junctions than proximal sequences, this demonstrates that a chromatin 

loop exists between these two sites (Simonis, Kooren et al. 2007). This technique is 

appropriate when investigating if two particular sequences interact. However, it may be 

desirable to investigate all the DNA sequences with which the 21q22 CHD risk locus is 

interacting. To do this 4C (chromosome confirmation capture (3C) on-chip) can be used 

(Simonis, Klous et al. 2006). This follows similar protocol to 3C, except that there is a 

second round of restriction enzyme digestion and ligation to get the DNA into a suitable 

form for PCR, as one of the DNA sequences in the ligation junction will be unknown.  

 

In recent years, there has been the development of “genome editing” methodologies, most 

notably the CRISPR/Cas9 system (Ran, Hsu et al. 2013). This uses RNA-guided nucleases to 

introduce double-strand breaks in the DNA, activating the cell’s non-homologous end 

joining pathway or the homology directed repair pathway (although this is only active in 

dividing cells) to repair this, allowing insertion or deletion of a small DNA fragment. This 

technology can be used to generate cell lines or model organisms with a particular 

genotype and thus the impact of a single variant (e.g. on gene expression) can be 

investigated. 

 

6.4 Conclusion to chapter 

Functional analysis of the 21q22 CHD risk locus was performed using both bioinformatics 

tools and in vitro functional assays. A putative functional SNP, rs28451064, was identified 

but the affected gene(s) and transcription factor(s) remain obscure. Future work should 

focus on identifying the pathway(s) through which this locus influences CHD risk, 

specifically the transcription factors and genomic loci involved.   
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7 General discussion 
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7.1 Overview 

In addition to increasing the knowledge of the biology of common diseases such as CHD, 

investigating their genetics has two further aims, use in risk prediction and identification of 

therapeutic targets. For example, genetic studies of FH led to the identification of PCSK9, as 

a third gene (after LDLR and APOB) in which FH-causing mutations are found (Abifadel, 

Varret et al. 2003). Subsequent studies using animal models and in human subjects have 

led to the development of PCSK9 inhibitors. These have been found to reduce LDL-

cholesterol by more than 50% and are currently undergoing phase 3 clinical trials (Marais, 

Kim et al. 2015). With the advent of the post-GWAS era, the use of genetics in risk 

prediction has focused on GSs, often using lead SNPs from GWAS-identified risk loci, with 

functional analysis to identify the molecular mechanisms involved also ongoing. Identifying 

the functional variant(s) can also be beneficial in risk prediction as this will refine the 

association, capturing all of the risk effect held by a particular locus. Furthermore, it should 

make the results more easily translatable between ethnic groups by removing the issue of 

differing levels of LD between the functional SNP and the proxy used in the GS. 

7.2 Risk prediction 

One of the major aims of this thesis was to investigate and optimise the use of a 19 SNP 

CHD risk GS in CHD risk prediction. This GS (and a smaller a 14 SNP GS derived from it) was 

found to have potential clinical in UK men (Chapter 3.2.3.2.3), in those with T2D (Chapter 

4.2.3.3) and those of Afro-Caribbean origin (Chapter 3.2.3.2.4). Data from the South Asian 

cohorts was inconsistent as discussed in Chapter 3.3 and thus at present there is no 

evidence of clinical utility in this ethnic group. A kit to genotype these SNPs and ultimately 

provide an estimate of CHD risk incorporating the GS – the Cardiac Risk Prediction array 

(Randox Laboratories, Crumlin, Co Antrim, UK; Chapter 2.3.3) - is currently undergoing the 

“CE marking” procedure.  

 

Overall, demonstrating the clinical utility of including genetic information in CHD risk 

prediction has proved challenging. The Joint British Societies’ consensus recommendations 

for the prevention of CVD (JBS3) did not advocate the use of genetics risk in CVD 

prevention, as it was felt that the available evidence showed tools including genetic 

information  performed more poorly than CRF based tools (2014). This had been 

underlined by the relatively disappointing performance of risk scores including GSs 

comprised of the variants identified in the CARDIoGRAMplusC4D meta-analysis (Deloukas, 
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Kanoni et al. 2013), which was identified in this thesis as the best source of risk variants for 

inclusion in CHD risk prediction. The results from the prospective Rotterdam study (de 

Vries, Kavousi et al. 2015) and the UCLEB consortium (Morris, Cooper et al. 2016) found 

very limited benefit in the population-wide inclusion of the GS in risk prediction, although 

improvements in both discrimination and reclassification were observed in a meta-analysis 

of six Swedish prospective cohorts (Ganna, Magnusson et al. 2013) and in the Malmo Diet 

and Cancer (MDC) study (Tada, Melander et al. 2016). Only the reclassification analysis in 

the MDC study was performed using the most recent guidelines however this was based on 

the US guidelines from the ACC/AHA (Goff, Lloyd-Jones et al. 2013) rather than the 10 % 

high risk cut-off recommended in the most recent NICE guidelines in the UK (2014). 

Therefore, direct comparison with the results observed here cannot be made. It has been 

suggested that due to the nature of case selection in GWASs, many of the variants 

identified in the CARDIoGRAMplusC4D meta-analysis are actually associated with CHD 

survival rather than an incident CHD event itself. This is supported by data from both the 

Rotterdam study and UCLEB consortium where the gene score was more strongly 

associated with prevalent rather than incident disease (de Vries, Kavousi et al. 

2015),(Morris, Cooper et al. 2016). This indicates that the weightings used may not 

accurately reflect the impact of each variant on incident CHD risk and thus effect sizes 

obtained from a prospective cohort should be used. This strategy was used by Ganna, 

Magnusson et al. and a better performance was observed with the inclusion of the GS 

(Ganna, Magnusson et al. 2013). This issue is likely to be more pertinent for the 

CARDIoGRAMplusC4D SNPs whereas the majority of SNPs included in the 19 SNP GS (and 

indeed 14 SNP GS) have a clear mechanism of action to impact CHD and rather than purely 

CHD survival. This may partly explain the relatively strong performance of the updated 19 

and 14 SNP GSs in NPHSII compared to the relatively poor performance of the 

CARDIoGRAMplusC4D GSs in much larger studies. Ultimately a large-scale well powered 

prospective study is required to alleviate the problem of survival bias in genetic association 

studies. If such data became available this could be used to provide the weights for the GS 

assessed in this thesis as it would be hypothesised that this would improve its 

performance.  

 

It has also been suggested given the life-long nature of genetic risk, that it might be 

advantageous to identify those with high genetic CHD risk at a relatively young age (say 

early-middle age) but the data concerning this is inconsistent. Analysis performed in the 
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MDC found that risk estimates for the GSs assessed were higher in those below the median 

age (Tada, Melander et al. 2016) however there was no difference in reclassification or 

discrimination between those above and below the median age with the addition of the GS 

to QRISK2 in UCLEB (Morris, Cooper et al. 2016). 

 

As with many risk factors and as observed herein, most GSs are normally distributed. Thus 

the majority of individuals have intermediate genetic risk, which will consequently have 

little impact on overall CHD risk. Therefore, the primary purpose of using GSs is to identify 

those individuals who have an intermediate risk according to the CRF score but who carry a 

high genetic CHD risk. Both (Ganna, Magnusson et al. 2013) and (Morris, Cooper et al. 

2016) investigated the impact of restricting the inclusion genetic risk to those in the 

intermediate risk group (10-20 %, with prescription of statins at ≥20 % risk). They observed 

that this would postpone one event for 318 and 462 individuals screened in this manner 

respectively ((Ganna, Magnusson et al. 2013),(Morris, Cooper et al. 2016). When a similar 

strategy was assessed in the MI-GENES study (Kullo, Jouni et al. 2016), it was found that a 

greater proportion of those with a high genetic risk but intermediate CRF risk (i.e. those 

who would likely move into the high risk category using the combined CRF plus GS risk 

score) initiated statin treatment leading to lower LDL-cholesterol levels in this group 

compared to the controls. Larger trials with a long follow-up are required to determine if 

this finding can be replicated and whether it translates into a clinically relevant reduction in 

CHD risk. However, the results suggest that knowledge of high genetic risk may help 

individuals take appropriate steps to lower their overall CHD risk. Moreover, a meta-

analysis of RCTs performed with statin therapy found that those in the top quintile of the 

GS (using 27 SNPs from the CARDIoGRAM GWAS (Schunkert, Konig et al. 2011)) had the 

greatest reduction in both relative and absolute in risk (Mega, Stitziel et al. 2015). This 

indicates that those with a high risk genetic risk may derive greater clinical benefit from 

statin use, increasing the potential benefit of identifying these individuals. The limited 

evidence available suggests that uptake of statins in those with >10% risk may be much 

lower than estimated in the NICE guidelines (Usher-Smith, Pritchard et al. 2015). 

Maximising statin uptake in those who are eligible is important to ensure the greatest 

benefit possible is derived from the guidelines and the results of the MI-GENES study show 

that provision of genetic risk may have a role to play in this. However, knowledge of genetic 

risk did not alter physical activity levels or dietary fat intake between the groups 

demonstrating that other strategies are required (such as the self-management 
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interventions used in the CoRDia trial) to help individuals adopt and sustain healthier 

lifestyles.  

 

In this thesis the inclusion of genetic testing in CHD/CVD risk prediction has been within a 

clinical context only, most likely primary care such as general practice in the UK. Here the 

genetic risk information (as well as the CRF information) can be relayed to the individual by 

healthcare professionals to ensure correct interpretation of the results. The available 

evidence suggests that this model does not lead to unnecessary fatalism or false assurance 

(Collins, Wright et al. 2011). However, genetic testing for a variety of traits is now available 

to the general public in the UK most notably through “23andme”(Mullard 2015). This is 

despite the Food and Drug Administration ordering the cessation of health-related genetic 

testing services by 23andme in the USA (2014). It is unclear how, or indeed if, receiving 

genetic risk information outwith a clinical setting will impact on lifestyle choices and indeed 

how widespread uptake of the service will be.   

 

The study of genetics of CHD in T2D presented here were mostly in agreement with 

previously published results (Qi, Parast et al. 2011; Qi, Qi et al. 2013). Efforts should now 

focus on investigating whether including the GSs in CHD in T2D risk prediction provides any 

additional benefit over using QRISK2 (as recommended in the guidelines), which could not 

be assessed herein. Additionally this will show if there is any benefit in using a specific CHD 

in T2D for those with T2D compared to a general CHD GS, as the results presented in this 

thesis also indicated that the 19 SNP GS was suitable for use in those with T2D.  

7.3 Functional analysis 

Functional analysis of two variants was performed in this thesis. One variant, rs10911021 

associated with CHD in T2D, was found to be associated with HDL-cholesterol in T2D. Thus 

the analysis focussed on the relationship between the risk variant and this CRF. 

Counterintuitively, the CHD protective allele was associated with lower HDL-cholesterol 

and also large HDL particle traits, pointing to a potentially novel pathogenic mechanism, 

pending robust replication. The full implications of this association will only be understood 

when the relationship between HDL (particularly large HDL particles) and CHD is clarified. 

However, this does not preclude the functional analysis (possibly using a similar strategy as 

was applied to CHD risk locus 21q22) of the locus to establish the molecular pathway 

through which presence of the minor allele results in lower HDL-cholesterol in the diabetic 

state.  
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The other risk locus studied (chromosome 21q22) in this thesis was not associated with any 

CRFs for CHD. Therefore, a different strategy had to be employed. This focussed on 

identifying a candidate functional SNP and possible target genes. The phenomenon of LD 

which enables widespread coverage of the genome also creates the problem of having an 

entire locus associated with the trait, often with no obvious functional SNP. However, the 

availability of large datasets such as ENCODE and GTEX combined with in vitro functional 

assays was used to overcome this issue. This study identified rs28451064 as a candidate 

functional SNP and implicated the involvement of the genes MRPS6 and SLC5A3 (and 

possibly KCNE2). Developments such as chromatin capture techniques to analyse 

interactions between DNA elements and genome editing methods (to create model 

organisms/cell types with a specific genotype) will help to elucidate the molecular 

mechanisms involved.  

 

The results from this thesis indicate that both variants investigated influence CHD risk 

through novel mechanisms.  Such studies build on the available knowledge and can provide 

a fuller picture of the pathogenesis of CHD (Edwards, Beesley et al. 2013) and could 

ultimately identify new therapeutic targets.   
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