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 i g  h  l  i g  h  t  s

We  develop  a novel  method  for  analysing  event-related  respiratory  responses.
This  method  is based  on  a Psychophysiological  Model  (PsPM)  of interpolated  time  series.
We  analyse  respiration  period  (RP),  amplitude  (RA)  and  flow  rate  (RFR).
RA and  RFR  estimates  distinguish  different  event  types,  and  all three  measures  distinguish  events  from  non-events.
The  new  method  could  be useful  for  fMRI  experiments  using  respiration  belts.
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a  b  s  t  r  a  c  t

Background:  Cognitive  processes  influence  respiratory  physiology.  This  may  allow  inferring  cognitive
states  from  measured  respiration.  Here,  we  take  a first step  towards  this  goal  and  investigate  whether
event-related  respiratory  responses  can  be  identified,  and  whether  they  are  accessible  to a  model-based
approach.
New  method:  We  regard  respiratory  responses  as  the  output  of  a linear  time  invariant  system  that  receives
brief  inputs  after  psychological  events.  We  derive  average  responses  to  visual  targets,  aversive  stimula-
tion,  and  viewing  of arousing  pictures,  in  interpolated  respiration  period  (RP),  respiration  amplitude  (RA),
and respiratory  flow  rate  (RFR).  We  then  base  a  Psychophysiological  Model  (PsPM)  on these  averaged
event-related  responses.  The  PsPM  is  inverted  to  yield  estimates  of  cognitive  input  into  the respiratory
system.  This  method  is  validated  in  an  independent  data  set.
Results:  All three  measures  show  event-related  responses,  which  are  captured  as  non-zero  response
amplitudes  in  the  PsPM.  Amplitude  estimates  for RA and RFR  distinguish  between  picture  viewing  and
the  other  tasks.  This pattern  is replicated  in  the  validation  experiment.

Comparison  with  existing  methods:  Existing  respiratory  measures  are  based  on relatively  short  time-
intervals  after  an  event  while  the new  method  is  based  on the  entire  duration  of respiratory  responses.
Conclusion:  Our  findings  suggest  that  interpolated  respiratory  measures  show  replicable  event-related
response  patterns.  PsPM  inversion  is  a suitable  approach  to analysing  these  patterns,  with  a potential  to
infer cognitive  processes  from  respiration.

© 2016  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
. Introduction

Brain stem centres regulate respiration via autonomic nervous

fferents, and these centres are influenced by higher cognitive
rocesses (Lorig, 2007; Ritz et al., 2010; Wientjes and Grossman,
998). A rich psychobiological literature has addressed how cog-
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nitive states impact respiration patterns (Grassmann et al., 2015;
Vlemincx et al., 2014; Wuyts et al., 2011), gas exchange parameters
(Grassmann et al., 2015), and airway responses (Ritz et al., 2010;
Van Diest et al., 2009), and how this may  contribute to patholo-
gies such as in asthma (Ritz et al., 2014) or panic disorder (Grassi
et al., 2014). In turn, such psychophysiological relationship may
allow inferring cognitive states from measured respiration. It is for
example known that autonomically controlled skin conductance

responses (SCR) (Boucsein, 2012) or heart period responses (HPR)
(Bradley et al., 2001) are informative about psychological processes.
The analysis of such signals has been formalised in the context of
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sychophysiological Modelling (PsPM) (Bach and Friston, 2013). A
sPM is usually a combination of a formal (mathematical) model for
he neural activity that links psychological processes to the physi-
logical signal under study (neural model), and another model that
pecifies the relation between neural activity and physiological sig-
al (peripheral model). The combined model is probabilistically

nverted to yield the most likely parameters of the neural activ-
ty, given physiological data. These parameters characterise the
resumed psychological or cognitive input into the system.

Here, we seek to create a PsPM for the relationship between
entral input and respiratory responses. Crucially, the aim of this
sPM is not to precisely characterise respiratory physiology, but to
haracterise cognitive states by inversion of the model. This means
hat even very simple respiratory measures, which may  not allow
recise quantification of local physiology such as gas exchange
r respiration patterns, can be useful as long as they are infor-
ative about a psychological process. In cognitive neuroscience

esearch, magnetic resonance imaging (MRI) scanners are stan-
ardly endowed with single chest belts for correcting breathing
rtefacts in MR  images (Glover et al., 2000; Hutton et al., 2011).
his motivates our present work where we seek to employ this
imple measurement system for inferring cognitive states. If suc-
essful, this method could thus be harnessed for analysis of a large
umber of existing datasets, and allow future investigation with
xisting setups.

In general, there are two  methods to develop a PsPM. If the phys-
ological system under study is well-characterised, one may  employ
uch knowledge to create a biophysical model of psychological
nfluences on peripheral physiology, such as the haemodynamic
esponse model in neuroimaging (Friston et al., 2008). More often,
owever, this is not the case. Alternatively, one may  attempt a
henomenological characterisation of the system’s input–output
elationship. For example, by assuming linearity and time invari-
nce, one can use brief inputs to derive the system’s impulse
esponse function. This approach has been fruitful in the context of
CR and HPR (Bach et al., 2009, 2010b; Paulus et al., 2016). There-
ore, respiratory responses to brief stimuli would be of primary
nterest for a respiratory PsPM. As yet, most studies in the field
f respiratory psychobiology – including all of the aforementioned
ork – have addressed respiratory responses to states or stimuli

n the timescale of at least 10–20 s up to minutes, or responses to
anticipated) respiratory stimuli (Pappens et al., 2015). However, a
ew strands of research indicate that an organism’s interaction with
on-respiratory events on a much shorter time scale also impacts
n respiration.

First, the existence of a respiratory orienting response has been
roposed by Barry (1977b) who related its magnitude to stim-
lus novelty (Barry, 1977a). This relationship was confirmed by
uantifying respiratory breaks as the duration of the respiration
ycle during which a stimulus was presented, measured from
tart of inspiration (Barry, 1982). This novelty response has later
lso been termed “surprise” response (Boiten et al., 1994) but has
ot systematically been investigated after the original proposal.
econdly, intense, unexpected aversive stimulation may  elicit “a
hort-latency [inspiratory] startle response, followed by a delayed
hasic increase in depth and rate of breathing” (Boiten et al., 1994).
inally, respiration line length (RLL), quantified as the path length
f the respiration trace over a fixed time interval of usually 15 s
fter an event, has been suggested to differentiate between crime-
elevant and crime-irrelevant items in the concealed information
est, one of the few validated tests for detection of deception in the
olygraph field (Matsuda and Ogawa, 2011).
Taken together, this suggests that respiratory breaks, and phasic
hanges in respiratory period and amplitude, might be informa-
ive about cognitive processes. The single-belt system employed
ere allows assessing respiration timing, while for precise quan-
e Methods 270 (2016) 147–155

tification of respiratory amplitude, a double-belt system would be
required to measure both thoracic and abdominal compartments
(Binks et al., 2007). However, if the ratio between thoracic and
abdominal contribution is relatively constant within any individ-
ual, it may  still be possible to approximate respiratory amplitude
up to a linear constant from the single-belt system. This is why we
ask empirically whether measures of respiration amplitude allow
a meaningful inference on psychological state.

We propose a PsPM approach based on continuous data and
linear time-invariant systems, as in previous work on skin conduc-
tance (Bach et al., 2009; Bach et al., 2010b; Bach and Friston, 2013;
Bach et al., 2010c) and heart period responses (Castegnetti et al.,
2016; Paulus et al., 2016). We  are interested in evoked responses
to events in the outside world that are non-synchronised to respira-
tion. This means that time after stimulus onset does not correspond
to particular fixed time points in the respiration cycle. To solve
the problem of assigning respiratory-cycle based measures to real
time, we  follow a strategy commonly employed in analysis of heart
period responses, namely, linear interpolation (Berntson et al.,
2007). We  capitalise on an established modelling framework (Bach
and Friston, 2013), to build a phenomenological forward model
of how cognitive input impacts respiration period. This forward
model is combined with a model inversion method. This provides
for inference on the amplitude of central input from measured data,
and is embodied in a general linear convolution model (GLM). All
algorithms are publicly available as part of a Matlab toolbox for
Psychophysiological Modelling, PsPM (previously termed SCRalyze,
http://pspm.sourceforge.net).

2. Method

2.1. Participants

We  recruited from the adult student population via adver-
tisements 30 participants for experiments 1–2 (23 female, mean
age ± standard deviation: 23.4 ± 3.6 years). From this sample, 5 per-
sons did not participate in the electric stimulation task 2, and 4
datasets from task 1 were discarded due to marker malfunction,
such that we  report 26 datasets for experiment 1 and 25 datasets
for experiment 2. Twenty participants took part in experiment 3
(12 female, 22.2 ± 3.6 years), and an independent sample of 20 par-
ticipants in validation experiment 4 (9 female, 25.3 ± 5.1 years). In
experiment 3 we also recorded heart period which was included
in a previous methodological investigation (Paulus et al., 2016). All
experiments and the form of taking written informed consent were
approved by the competent research ethics committee (Kantonale
Ethikkomission Zürich, KEK-ZH Nr. 2013-0118 and 2013-0258).

2.2. Procedure

2.2.1. General considerations
We  were interested in characterising phasic respiratory changes

that differentiate different experimental events, which we  selected
with an eye on previous findings. One dimension supposedly elicit-
ing phasic respiratory changes is stimulus novelty,  operationalised
previously by repeating simple auditory or visual stimuli in a detec-
tion task (Barry, 1977a, 1982). Experiment 1 therefore realised a
visual detection task with 10 target repetitions. Another relevant
class are intense, aversive stimuli (Boiten et al., 1994). This was
realised in experiment 2 using unpredictable and discomforting
electric stimulation. Finally, crime-relevance is a dimension known

from applied psychology to elicit phasic respiratory responses
(Matsuda and Ogawa, 2011), and is possibly related to emotional
arousal. As we  were not interested in crime-relevance as such,
we investigated emotional arousal by showing pictures with high

http://pspm.sourceforge.net
http://pspm.sourceforge.net
http://pspm.sourceforge.net
http://pspm.sourceforge.net
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Fig. 1. Data preprocessing. Transducer output (A, black) is filtered (blue) to detect
sharp pressure changes in the bellows system that mark the onset of inspiration
(red). Respiration period (RP) is the cycle duration, respiration amplitude (RA) is
the range of the transducer output in a cycle. Both measures, and their quotient
respiratory flow rate (RFR), are mapped onto the following inspiration onset (B,
D.R. Bach et al. / Journal of Neuro

nd low arousal ratings in experiment 3. In all 3 experiments,
vents were not synchronised with respect to respiration, as we
ere interested in the applicability to generic experimental cir-

umstances. Finally, since we did not know how long the tail of
ossible respiratory responses would be, and since other auto-
omic responses (skin conductance and heart period responses)
ave tails that extend over more than 30 s, we  used long intervals
>40 s) between subsequent events of interest. Experiment 4 aimed
t replicating findings from experiments 1–3.

.2.2. Tasks and stimuli
In Experiment 1 (dataset code RRM2), participants saw a train of

70 grey distractor digits on the screen and were instructed to press
 key when they detected one of 10 interspersed red +̈ẗargets. The
argets in this task have previously been shown to induce phasic
ympathetic arousal, while the other stimuli (i.e. the distractors)
id not induce sympathetic responses (Bach et al., 2010b). Each
timulus (targets and distractors) was presented for 200 ms  and
eparated from the next stimulus by an 800 ms  inter stimulus inter-
al. The experiment was divided into two blocks, a baseline block
nd a target block. The order of the two blocks was  balanced across
articipants, and the transition between the two  blocks was  not
ignalled. The baseline block consisted of 80 distractors and 1 tar-
et at the end, and was not analysed here. In the target block, inter
arget interval (ITI) was randomly drawn from 40 s, 45 s, or 50 s, and
he first target was preceded by 20 distractors.

In experiment 2 (dataset code RRM1), participants were exposed
o 10 electric stimulations with an ITI randomly drawn from
0 s, 45 s, or 50 s. Stimulations consisted of a 500 ms  train of
quare pulses with 2 ms  period and 10% duty cycle, delivered via

 pin-cathode/ring-anode configuration attached to the dominant
orearm (Digitimer DS7A). Pulse intensity was individually deter-

ined before the experiment to be just below the pain threshold
nd clearly uncomfortable.

In experiment 3 (dataset code HRM IAPS), participants watched
he 16 least arousing neutral, 16 most arousing aversive, and 16

ost arousing pleasant (excluding explicitly nude) pictures from
he International Affective Picture System (IAPS; Lang et al., 2005)
n randomised order. The selected pictures were the same as in
revious studies (Bach, 2014; Bach et al., 2013, 2015). Participants
ere instructed to press the cursor up or down key on a computer

eyboard to indicate whether they liked or disliked the picture.
ictures were presented for 1 s with an ITI randomly drawn from
3 s, 45 s or 47 s. All pictures were presented in one block.

In experiment 4 (dataset code RRM3), participants were pre-
ented with 60 stimuli from 4 conditions in randomised order: the
5 most arousing aversive, and 15 most arousing pleasant (exclud-

ng explicit nude) pictures from the International Affective Picture
ystem (IAPS; Lang et al., 2005), and white noise sounds of either
5 dB intensity (15 stimuli), or 85 dB intensity (15 stimuli). All stim-
li were presented for 1 s with an ISI randomly drawn from 40 s, 45 s
r 50 s; the experiment started with a 5 s rest period.

.2.3. Data recording
A bellows belt was fitted around the rib cage over the lower end

f the sternum. The bellows was connected to a pressure trans-
ucer (aneroid chest bellows, V94-19, Coulbourn Instruments) and
mplified (V72-25B, Coulbourn Instruments). The signal was  A/D
onverted with a sampling frequency of 1000 Hz and recorded (DI-
49/Windaq, Dataq).
.3. Data analysis

All data analysis was done in Matlab and using PsPM 3.0.2.
black dots), linearly interpolated (B, solid line), and filtered (C). Panels B/C show RP
only; RA and RFR are processed analogously. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

2.3.1. Data preprocessing
Transducer output was filtered offline with an anti-aliasing

bidirectional first-order Butterworth low-pass filter and a cut-off
frequency of 5 Hz. Data were then downsampled to 10 Hz resolu-
tion.

2.3.2. Detection of breathing cycles
In line with previous work (Barry, 1977a), we  sought to detect

the start of inspiration for temporal assignment of cycle-based
measures. For the bellows system, inspiration causes a sharp pres-
sure reduction in the transducer which is well visible to the trained
eye. Maximal expiration is visible as a peak in the pressure output
which then slowly drifts towards a baseline if the next inspiration
does not follow immediately. By trial and error using a selected
data set, we developed a simple algorithm to approximate the start
of inspiration (Fig. 1A). Specifically, respiration traces were mean-
centred, filtered with a bidirectional Butterworth band pass filter
and cut-off frequencies of 0.01 Hz and 0.6 Hz, and median filtered
over 1 s. A negative zero-crossing was  then taken as start of inspira-
tion. After each detected cycle, we imposed a 1 s refractory period,

to account for residual signal noise with might cause several zero-
crossings on the same cycle. This procedure was compared to visual
detection of respiratory cycles by a trained expert (SG) on a random
sample of 7 data sets not used for the development of this algo-
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ithm. Respiration events were visually marked at the beginning of
he inspiration. These time stamps were then compared to the ones
ound by automatic detection, and each event was categorized as
rue positive, false positive or false negative. This was done by pair-
ng visually and automatically detected events and searching for

issing or redundant pairs. Event pairs with a plausible delay (<1 s)
ere assumed to be true positive. This procedure revealed 1141

rue positives, 5 false positives (i.e. only reported by automated
etection) and 6 false negatives (i.e. missed by automated anal-
sis). Hence, sensitivity of the automated method was 99.3%, and
he positive predictive value 99.5%. Further, we measured the delay
etween the visually scored and automatically detected inspiration
nset. A median delay of 0.1 s and a standard deviation of 0.1 s was
ound. Considering the average respiration period (3.4 s in these
ata sets), the automated method was deemed precise enough.

.3.3. Analysis with existing methods
For comparison with previous work, we extracted the duration

f the respiration cycle into which each event fell (peri-event res-
iration period, RP), as well as one baseline cycle before (pre-event
P). We  either subtracted the baseline (D-RP), or in line with pre-
ious work (Barry, 1982) we divided through the baseline (RPQ).
he tacit assumption behind the first method is that psychologi-
al influences have a linear relation with RP, which is independent
rom baseline RP. The assumption behind the second method is that
his relationship is multiplicative, i.e. it depends on the baseline RP.

e  also computed RLL. Originally, RLL was defined as the length of
he recorded respiration trace over 15 s (Matsuda and Ogawa, 2011)
hich explains its name “respiration line length”. This approach
as later improved by discarding the x-component of the respi-

ation trace, and only using the data axis (y-component) of the
espiration trace for computing RLL (Matsuda and Ogawa, 2011).

e used this improved method and projected the respiration trace
nto the data axis (y-axis) to measure the path length of the ensu-
ng trace over 15 s following each event. Since the current study
mplemented a between-subjects design (different from the con-
ealed information test where RLL is typically used), we performed

 baseline correction by subtracting RLL computed over the 15 s
receding each event, resulting in a difference score D-RLL.

.3.4. Conversion to continuous data
For each detected respiration cycle we computed three mea-

ures: (1) respiration period (RP) is the duration of that cycle. We
hose RP rather than the more common respiration rate, its inverse,
n analogy to analysis of event-related cardiac responses where
eart period has been shown to linearly relate to autonomic ner-
ous system input (Berntson et al., 1995). (2) Respiration amplitude
RA) is the amplitude in rib cage excursion on that cycle, which
inearly relates to current tidal volume (VT) (Binks et al., 2007).
ince we did not make an attempt to derive the subject-specific
roportionality constant relating RA to VT, we use the term RA
ather than VT throughout the manuscript. (3) Respiration flow
ate (RFR), RA/RP, which is linearly related to tidal volumetric flow
ate, i.e. tidal volume per time unit. RFR is computed per cycle with
ariable duration. Otherwise it is similar to minute volume or RLL
hich are computed over fixed intervals. Each of these three mea-

ures was assigned to the start of the following inspiration cycle
nd linearly interpolated with 10 Hz sampling frequency. Interpo-
ated data were then filtered twice with a unidirectional first-order
utterworth band pass filter. Initially we used cut-off frequen-

ies of 0.01 Hz and 1 Hz, based on visual inspection of the power
pectrum across all data sets and including a frequency band that
ontained a clearly visible power peak. To determine the optimal
ltering method, we repeated the analysis by varying the high-pass
e Methods 270 (2016) 147–155

frequency (0.001–1 Hz, 0.005–1 Hz, 0.05–1 Hz) and the low-pass
frequency (0.01–0.5 Hz, 0.01–2 Hz, 0.01–5 Hz).

2.3.5. Data reduction
Continuous respiration measures were used for general lin-

ear models (see below). For derivation of response functions, data
were extracted over an interval of [−5 s, 40 s] around each event.
We then averaged data across all participants and trials for each
experimental condition. This is different from previous work on
skin conductance responses and evoked heart period responses, in
which we used principal component analysis across all datasets
and trials of each experiment condition to summarise responses
(Bach et al., 2009, 2010b; Paulus et al., 2016). In the present
dataset, however, principal components for all analyses resembled
an approximate Fourier series and were therefore not informative
about the shape of a respiration response. We  therefore chose to
use grand averages as for in example in a previous model of fear-
conditioned bradycardia (Castegnetti et al., 2016).

2.3.6. General linear modelling
We made the simplifying assumption that cognitive events

produce a brief (delta) neural input into a peripheral, linear time-
invariant (LTI), system, the output of which is an interpolated
respiration time series. In other words, we  assumed that the inter-
polated respiration trace is the convolution of a brief neural input
with a canonical response. LTI systems are endowed with two  char-
acteristic properties: first, the output does not explicitly depend on
time (time invariance), and secondly, the response to several inputs
is the sum of the responses to the individual inputs (linearity). Note
that in our case, these assumptions relate to the pre-processed data
time series rather than to the original respiratory traces. In most
real systems, LTI assumptions are only approximately met. In par-
ticular the linearity assumption may  be brittle since the system
will saturate if it receives inputs in quick succession (Paulus et al.,
2016); this is why we  use long ITI paradigms in this work. This
is in contrast to other psychophysiological measures such as skin
conductance responses for which the linearity and time invariance
assumption directly relate to the biophysical system that generates
the data, and can be formally tested in physiological investigations
(Bach et al., 2009, 2010b; Bach and Friston, 2013). Finally, also the
assumption of a discretised psychological input is a simplification
which, although useful, may  not truthfully reflect the biophysical
reality.

Mathematically, the output y(t) of a LTI system can be fully
described by convolving input x(t) with the system’s response func-
tion h(t) and can be written as:

y (t) = x (t) ×  h (t) =
∞∫

0

x (t  − �) h (�) d�.

Here, we assume x(t) as instantaneous (delta) input at event onset
and h(t) as the response function (RF) for respiratory responses. This
RF summarises all neural and respiratory processes that finally lead
to the respiratory response.

In order to estimate the psychological input into this system,
we used a general linear convolution model for each participant
and experiment (GLM), in line with previous approaches to analy-
sis of skin conductance responses (Bach et al., 2009), heart period
responses (Castegnetti et al., 2016; Paulus et al., 2016), or func-
tional magnetic resonance imaging (Friston et al., 1994). A GLM
can be written as
Y = X  ̌ + �,

where X is design matrix in which each column is obtained by
convolving impulse functions at event onset with each compo-
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Table  1
Analysis of respiratory responses with existing measures in experiments 1–3. D-RP: RP difference between pre- and peri-event cycle. RPQ: peri-event RP divided by pre-event
RP.  D-RLL: RLL difference to baseline. Descriptive data are given as mean (standard error).

Descriptive statistics and t-test against zero within each experiment D-RP (s) RPQ D-RLL

M (SEM) T M (SEM) T M (SEM) T

Visual detection (Exp. 1) 0.03 (0.05) T(25) = 0.6 4.1 (2.5) T(25) = 1.7 1.1 (0.25) T(25) = 4.4****

Electric shocks (Exp. 2) 0.08 (0.04) T(24) = 2.0 6.2 (2.1) T(24) = 3.0** 1.0 (0.28) T(24) = 3.6***

IAPS pictures (Exp. 3) 0.21 (0.10)T(19) = 2.1* 10.3 (2.5)T(19) = 4.1**** 0.4 (0.06) T(19) = 6.8****

ANOVA across experiments
Intercept across all groups T(70) = 2.7** T(70) = 4.8**** T(70) = 6.3****

Group effect (ANOVA) F(2, 68) = 2.2 F(2, 68) = 1.7 F(2, 68) = 2.3
Single-trial ANOVA within exp. 1: linear effect of time F(1, 233) = 0.3 F(1, 233) = 0.6 F(1, 233) = 0.5
Repeated-measures ANOVA within exp. 3: picture type F(2, 38) = 0.3 F(2, 38) = 0.0 F(2, 38) = 1.8

* p < 0.05.
** p < 0.01.

*** p < 0.005.
**** p < 0.001.

Fig. 2. Interpolated responses, averaged across trials and participants, for respiration period (RP), respiration amplitude (RA), and respiratory flow rate (RFR). Responses
a : aver
n  to der
4

n
ˇ
t
T
t
f

ˇ

i
d
b
d
r

re  grouped by similar manipulations. Row 1: visual detection task (exp. 1). Row 2
egative, neutral, and positive IAPS pictures (exps. 3–4). Experiments 1–3 are used
.

ent of the RF. Y is the vector of observations (time series data),
 is a vector of input amplitude parameters and � is the error

hat is assumed to be independent and identically distributed.
he maximum-likelihood amplitude estimates are computed using
he Moore–Penrose pseudoinverse X+, implemented in the Matlab
unction pinv:

ˆ = X+Y

After model inversion, we tested whether estimates of the input
nto that convolution system differ from zero, and whether they

ifferentiate experimental conditions. The estimated input can
e interpreted as amplitude of a cognitive input, controlling the
esired respiration period, tidal volume, or tidal volumetric flow
ate.
sive stimulation (exps. 2/4) Row 3: picture viewing (exps. 3–4). Row 4: viewing of
ive canonical response functions, which are validated on independent experiment

2.3.7. Model specification
Averaged data from experiments 1–3 was  used to construct the

RF of the presumed LTI system, by approximating them with a
Gaussian function

y′ = Ae−(x−�)2/2�2
,

with latency parameter �, dispersion parameter �, and ampli-
tude A. The best fitting parameters for this Gaussian function
were determined by minimizing the residual sum of squares using
the Nelder–Mead simplex direct search algorithm implemented in

the Matlab function fminsearch (Lagarias et al., 1998). Amplitude
parameter A was later left free for estimation in the GLM.

In an alternative model, each such RF was  complemented with
its time derivative analogous to previous models for SCR (Bach
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Table 2
Estimated parameters of the three canonical response functions (RF) for the winning
models used for validation, after filter optimisation.

RF � �

RPRF 4.20 s 1.65 s
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RARF 8.07 s 3.74 s
RFRRF 6.00 s 3.23 s

t al., 2009, 2013), HPR (Paulus et al., 2016) and functional magnetic
esonance imaging (Friston et al., 1994).

There appeared to be additional RP response components
hen considering the 3 experiments individually (Fig. 2). In an

xploratory approach, we  additionally modelled a later peak in
rand average RP data from experiment 2, and an even later peak
n combined data from experiments 1–2 (Fig. 3).

. Results

.1. Analysis with existing measures

Table 1 shows descriptive and inference statistics for discrete
-RP/RPQ and D-RLL, for comparison with previous literature. A

pecific novelty response in RP, previously suggested as habitua-
ion effect in a visual detection task, was not observed (Table 1,
epeated-measures ANOVA within experiment 1). A defensive
esponse, previously described as increase in RP of the respiration
ycle during which an aversive event occurred, was only observed
or RPQ, not D-RP (Table 1, experiment 2). However, this was  not
pecific for defensive responses and also occurred after IAPS pic-
ures (Table 1, experiment 3). Finally, the D-RLL was not specific for
rousal only, as previously suggested, but instead it increased from
aseline in all conditions. None of the discrete measures afforded

 differentiation between experimental conditions (ANOVA across
xperiments, all p > 0.10).

.2. Response function

Fig. 2 depicts the mean response in experiments 1–4, for the
hree different measures. In the first 10 s after an event, RP shows

 temporary reduction, while RA and RFR increase. For RP, one can
lso discern a secondary RP increase around 10 s after an electric
hock or visual target but not after pictures, and a tertiary reduc-
ion at 20 s after a visual target only. While the overall shape of the
esponse looks somewhat similar between conditions and experi-
ents, there is also variability even between repetitions of the same

xperimental condition in a different sample (Fig. 2, row 4).

.3. General linear modelling

For the purpose of general linear modelling (GLM), we analyt-
cally approximated responses from experiments 1–3 by fitting
aussian functions to the initial response in RP, RA and RFR, and

o the secondary and tertiary responses in RP (Fig. 3). Function
arameters for the winning models are summarised in Table 2.
nsuing response functions (RF) were entered into general linear
odels for each participant, to estimate response amplitudes. For

ach RF, we evaluated whether it met  at least one of three crite-
ia: the presence of an overall effect across experiments 1–3, the
bility to discriminate experiments 1–3 in a one-way ANOVA, or
he ability to discriminate the three different picture conditions in
xperiment 3 in a repeated-measures ANOVA. Because RF are eval-

ated on the data used for their development, this analysis is biased
owards finding significant effects. In reverse, if no effect is found
n this evaluation for a particular RF, this RF is unlikely to reflect

 true response, or to have sensitivity for analysis of independent
e Methods 270 (2016) 147–155

data sets. RF that met  neither criterion were excluded from the
validation study.

For RP, the first response function showed an overall negative
effect (t(70) = −5.42, p < 0.0001), reflecting the initial RP decrease
shown in Fig. 2. This respiration period response function (RPRF)
did not discriminate between the three experiments, or the picture
conditions within experiment 3. The other two  RFs were added in
chronological order, orthogonalised with respect to earlier peaks
in the response set. Neither of the two later peaking response func-
tions passed any of the three criteria. The magnitude of the overall
effect was not increased by additional modelling of the time deriva-
tive of the RPRF or by changing data pre-processing in terms of filter
frequencies.

For RA, the response function showed an overall positive effect
(t(70) = 4.29, p < 0.001). Parameter estimates for this respiration
amplitude response function (RARF) also showed a significant
impact of experimental condition (F(2, 68) = 4.36, p = 0.017). Mod-
elling the time derivative slightly increased the overall effect and
slightly decreased the experiment differences. Modifying filter
settings increased both the overall effect and the experimental dif-
ferences. A band pass filter with cut-off frequencies of 0.001–1 Hz
showed highest sensitivity, and this was improved by modelling the
time derivative (t(70) = 7.10, p < 0.001; F(2, 68) = 10.72, p < 0.001).
Exploratory post-hoc tests showed that response to IAPS pictures
were smaller than to visual targets (t(44) = −5.36, p < 0.001) or elec-
tric shocks (t(43) = −3.50, p = 0.001).

Finally, amplitude estimates of the respiratory flow rate
response function (RFRRF) showed an overall effect (t(70) = 4.64,
p < 0.001), which was not increased by modelling the time deriva-
tive. RFR did not significantly discriminate between any of the
experimental conditions. As for RA, the best filter frequency was
0.001–1 Hz, and this was improved by modelling the time deriva-
tive (t(70) = 7.07, p < 0.001). Using the optimal filter and with
time derivative, RFR also discriminated between experiments
(F(2, 68) = 6.80, p = 0.003). Exploratory post-hoc tests showed that
response to IAPS pictures were smaller than to visual targets
(t(44) = −4.16, p < 0.001) or electric shocks (t(43) = −3.07, p = 0.004).

3.4. Validation

Next, we evaluated the sensitivity of the GLM approach for
independent experiment 4 with a within-subjects design. First,
we sought to evaluate an overall event-related response across all
conditions, as shown in experiments 1–3 for all three measures.
Secondly, we sought to replicate the difference between a clearly
aversive event (experiment 2) and picture viewing (experiment 3)
by contrasting both types of pictures with a loud sound. Third,
we note that all events in experiments 1–3 were behaviourally
salient in terms of either being aversive (electric shocks), requir-
ing affective evaluation (IAPS pictures) or a specific response
(visual detection). We  were additionally interested whether the
method could be applied to distinguish salient from non-salient
events. Thus, we  contrasted responses to aversive loud sounds
with responses to sounds of low intensity. Results are summarised
in Table 3, and mean parameter estimates plotted in Fig. 4. All
three measures showed an overall event-related response: a neg-
ative RP response, i.e. breathing deceleration, and an increase in
RA and RFR. The overall RA response failed to reach significance.
Further, RA and RFR were significantly higher for aversive sounds
than for picture viewing, as expected from experiments 2–3. None
of the measures discriminated between loud and low sounds. We
then noted that the mapping between rib cage circumference and

lung volume might differ between participants such that our RA
and RFR measures contain between-subject variance of no inter-
est, due to individual anatomy (Binks et al., 2007). Previous studies
on SCR have suggested an improved sensitivity by z-scoring raw
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Fig. 3. Derivation of canonical response functions (RF) for respiration period (RP), respiration amplitude (RA) and respiratory flow rate (RFR). Response peaks are approximated
with  Gaussian functions using ordinary least squares minimisation. Lower panels show the final basis functions after filter optimisation.

Table 3
Inference statistics on response estimates in experiment 4. We  report planned contrasts for estimates from raw respiratory data, and from z-scored respiratory data.

Overall effect (intercept) Aversive sounds vs. pictures Aversive vs. non-aversive sounds Events vs. non-events

Raw data
RP t(19) = −2.68 t(19) = −0.65 t(19) = −0.71 t(19) = −2.26

p  = 0.015 n. s. n. s. p = 0.036
RA t(19) = 1.89 t(19) = 2.85 t(19) = 0.88 t(19) = 2.11

p  = 0.074 p = 0.010 n. s. p = 0.048
RFR t(19) = 4.91 t(19) = 2.29 t(19) = 1.31 t(19) = 3.67

p  < 0.001 p = 0.034 n. s. p = 0.002

Z-scored data
RP t(19) = −3.11 t(19) = −0.83 t(19) = −0.53 t(19) = −2.68

p  = 0.006 n. s. n. s. p = 0.015
RA t(19) = 2.74 t(19) = 2.78 t(19) = 1.18 t(19) = 2.62

d
p
c
w
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t
m
n
t
r

p  = 0.013 p = 0.012 

RFR t(19) = 5.17 t(19) = 2.35 

p  < 0.001 p = 0.030 

ata before analysis (Bach, 2014; Bach et al., 2009), which is only
ossible in a within-subject design. When using z-scored data for
onstruction of response functions and model inversion, results
ere essentially unchanged (Table 2); the overall positive response

n RA was significant now.
There is no theoretical reason to expect our analysis to be biased

owards detecting an overall event-related effect—parameter esti-
ates are in theory normally distributed around zero under the
ull hypothesis that no event occurred. To empirically demonstrate
his, we entered into our models “non-events”, i.e. we analysed
esponses at random time points between two events, and con-
n. s. p = 0.017
t(19) = 1.35 t(19) = 4.05
n. s. p < 0.001

trasted this with the responses to actual events. There was  no
overall effect for non-events in any of the three measures. All
measures showed higher response estimates for events than non-
events, although RP failed to reach significance. We  note that in
experiments 1–3, RA or RFR appeared to return to baseline earlier
than RP (Fig. 2), and this may  impact on the ability to distinguish
events from non-events.
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ig. 4. Parameter estimates (PE) for response amplitudes from GLMs in experiment
 (mean/standard error).

. Discussion

Respiration measures are commonplace in cognitive neuro-
cience for correction of MR  images, but as yet they are rarely used
o infer cognitive processes. Here, we present a first attempt at char-
cterising event-related respiratory responses in interpolated data
ime series, and analysing them in the framework of Psychophys-
ological Modelling (PsPM). We  derive our model from responses
o visual detection, aversive stimulation, and viewing of arousing
ictures.

As a first result, we observe event-related responses in all
hree experiments for respiration period (RP), respiration ampli-
ude (RA), and respiratory flow rate (RFR). These responses can be
pproximated with canonical response functions, and are repli-
ated in a validation experiment. Under the assumption that
ognitive processes after an external event elicit a brief neural input
nto a respiratory LTI system, one can use a general linear modelling
pproach to estimate the amplitude of that input. Amplitude esti-
ates for RP, RA and RFR are consistently different from zero, and

stimates for RA and RFR significantly discriminate between picture
iewing and the other two conditions. The overall responses and
he impact of experimental condition is confirmed in a validation
xperiment. As expected, the estimated responses to experimental
vents differ from those obtained at arbitrary time points, under-
ining the specificity of the event-related response.

From the evaluated measures, RFR appears particularly useful
or two reasons. First, the overall effect and the difference between
onditions appear slightly more robust in the independent exper-
ment 4. Secondly, RFR has a clear biological interpretation as it
irectly relates to gas exchange volume per time unit. It could thus
e driven by a central (psychological or neural) input that signals
he organism’s current oxygen demand. RFR is the quotient of RA
nd RP. RP not only impacts gas exchange but also has a distinct
mpact on movement of the organism. This could be particularly
mportant in the context of defensive responses when a prey needs
o avoid detection. In such circumstances, RP and RA could be reg-
lated into opposite direction to keep RFR constant, and it may
herefore be useful to analyse all three measures. We  note that
nly RP can unambiguously be derived from single chest-belt sys-
ems (Binks et al., 2007). It is therefore interesting that the RA
nd RFR models also generalised to an independent data set. This
ay indicate that thoracic and abdominal contributions to true RA
re relatively constant within any individual and recording ses-
ion, such that one can usefully approximate true RA with our RA
easures up to a linear constant that varies between subjects. How-

ver, our proposed model could be improved by using two  chest
e Methods 270 (2016) 147–155

belts for more precise quantification of respiratory volume and
volumetric flow rate, or even relating chest-belt measures to accu-
rate spirometric quantities. In the current work, we  abstained from
doing so as we sought to assess the potential of a simple measure
that is available in many cognitive neuroscience laboratories, and
standardly used in the context of functional magnetic resonance
imaging.

Taken together, our results suggest that interpolated event-
related respiratory responses are potentially useful to infer
cognitive processes from peripheral measures, and that PsPM is
a useful tool for their investigation. How specific this inference
may be is an empirical question that we  cannot answer in the
current paper. It is however encouraging that the main factor influ-
encing respiratory responses appears to be different from factors
governing the often used SCR. Specifically, SCR are mainly influ-
enced by stimulus arousal (Boucsein, 2012), but this is not what we
find here for RA and RFR. Instead, when comparing experiments
2/3, and conditions within experiment 4, respiratory responses
to arousing pictures are significantly smaller than those observed
for aversive stimulation (electric shocks or white noise bursts),
which is arousing, too. At the same time, visual targets (which are
non-arousing) elicit larger responses than arousing pictures when
comparing experiments 1/3. On the other hand, responses to the
differently valenced negative and positive pictures did not differ
in any of the three measures. This pattern suggests that neither
arousal nor valence suffices to explain our results. Future studies
will aim at elucidating the factors that determine the amplitude
of respiratory responses. We note that such knowledge is required
to achieve the ultimate goal of inferring cognitive processes from
respiratory responses with some specificity.

With the present methodology, one can only estimate the ampli-
tude of a presumed cognitive input into the respiratory system, but
it is not possible to determine the type of cognitive process that
elicits this input. In situations where the type of cognitive input
is suitably constrained, the estimated input amplitude can how-
ever be informative. For example, in fear conditioning experiments,
one is interested in responses to neutral conditioned stimuli (CS)
that only differ in whether or not they predict an aversive out-
come. Threat predictions can then be inferred from knowing the
estimated amplitude of cognitive input into the SCR or HPR system
after a CS (Bach et al., 2010a, 2011; Castegnetti et al., 2016; Staib
et al., 2015). Future work will investigate whether respiratory mea-
sures can also subserve this goal. For characterising more complex
cognitive processes, it has been suggested to use a combination of
various psychophysiological measures in a multivariate approach
(Stephens et al., 2010).

While we used long ITIs in the present study, this is not nor-
mally the case in cognitive neuroscience research. We  note that
our empirically derived response functions do not extend beyond
25 s after an event (RA) and are as short as 15 s after an event (RP).
This means that our method is usable in shorter-ITI paradigms
even without using the linearity assumption in the underlying
LTI model. To the extent that the linearity assumption is valid,
it may  be possible to analyse even paradigms with shorter event
succession, something that awaits further investigation. Another
limitation of the present study is that we  use a summary-statistics
approach for statistical inference on the group level. That is, we
enter single-participant response estimates into a group level t-test
or ANOVA. This is in keeping with the bulk of psychophysiologi-
cal literature where peak-scoring estimates are usually averaged
within participants before statistical testing. It would in theory be
possible to construct a multi-level model that explicitly accounts

for within-subject variance. Because subsequent data samples in
the interpolated respiration traces are not independent, we  note
that a multi-level model would require specifying and estimating
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Wientjes, C.J., Grossman, P., 1998. Respiratory psychophysiology as a discipline:
introduction to the special issue. Biol. Psychol. 49, 1–8.

Wuyts, R., Vlemincx, E., Bogaerts, K., Van Diest, I., Van den Bergh, O.,  2011. Sigh rate
and  respiratory variability during normal breathing and the role of negative
affectivity. Int. J. Psychophysiol. 82, 175–179.
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n auto-regression model, something that could be examined in
uture work.

We use existing analysis methods to replicate known effects
f aversive stimulation on respiration amplitude, and of emotional
rousal on RLL, a surrogate for respiratory flow rate. However, none
f these measures distinguishes the three experimental manipula-
ions and hence, these previously reported effects do not appear
pecific in the present investigation. Also, we fail to replicate a pre-
umed respiration period response to novelty. Standard measures
ely on shorter post-event time windows than the ones used by
ur new method. In particular RP is standardly evaluated in one
ost-event breathing cycle (corresponding to a few seconds) but
e show a response that lasts over about 10 s. RLL, a surrogate for
FR, is standardly evaluated over 15 s while we show a response in
FR over 20 s. Note however that we did not aim to directly com-
are the existing method with our new measures since the true
ognitive input is not known in the present study.

To summarise, we  demonstrate event-related respiratory
esponses that are replicable across experiments and distinguish
etween different experimental conditions. With this work, we
ope to inspire renewed interest in the inference of cognitive states

rom respiratory responses.
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