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Highlights 

1. An indirect method to estimate the woody surface area proportion in forests was 

validated 

2. A 3D modelling and simulation framework was implemented for highly detailed 3D 

models 

3. Sensitivity to stem distribution, stem density and PAI values was quantified 

4. The method agreed to within 0.05 α of reference values and was robust to canopy 

structure variations   
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Abstract 

Estimating the proportion of woody-to-total plant material ‘α’ is an essential step to convert 1 

Plant Area Index ‘PAI’ estimates into Leaf Area Index ‘LAI’. α has also been shown to have a 2 

significant impact on the passive optical remote sensing signal for retrieval of biophysical 3 

parameters in forests, woodlands, and savannas. However, benchmarked indirect α retrieval 4 

methods are lacking and thus it is common for this pivotal correction to be ignored. In this 5 

paper we validate an α retrieval method using a 3D radiative transfer simulation framework, 6 

enabling the retrieval method to be benchmarked against a known and precise model truth. 7 

The 3D framework consists of a representative and highly detailed 3D explicit Eucalypt forest 8 

reconstructed from field measurements. The 3D structure is coupled with a 3D scattering 9 

model to enable simulation of remote sensing instruments. The retrieval method utilises 10 

classified hemispherical photography ‘HP’, but is applicable to all ground-based optical 11 

instruments that can separate leaf and woody elements. The method is applicable to 12 

evergreen forests and thus independent of the estimation of PAI or LAI. The unknown degree 13 

of mutual shading or occlusion of leaf and woody elements was traditionally a key impediment 14 

to the operational use of this method and was therefore closely examined. The indirect α 15 

method utilising classified HP imagery agreed on average to within 0.01 α of the reference (αref 16 

= 0.37). In addition, the method demonstrated robustness to a range of LAI, stem density, and 17 

stem distribution values, matching to within ±0.05 α of the reference. Angular dependence on 18 

indirect α retrieval was also found; where the entire HP image (180° FOV) was needed to 19 

produce the most accurate estimate. Conversely, the classified narrow view zenith angle range 20 

around 55-60° zenith also provided an α estimate matching the reference. At this narrow 21 

zenith angle the method is insensitive to leaf angle distribution. As such, careful consideration 22 

of zenith angle range utilised from the instrument is recommended. The results demonstrate 23 

the method’s applicability for accurate indirect estimation of α in single-storey forest types. 24 
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The simple and efficient method can be used to convert estimates of PAI into LAI from a 25 

variety of optical ground-based instruments. Quantitative α estimates can and should be used 26 

to aid interpretation of the remote sensing signal from satellite imagery, which has been 27 

shown to be sensitive to the proportion and spatial distribution of woody canopy materials.   28 



5 

 

5 

 

Introduction 29 

Leaf Area Index (LAI) is a primary descriptor of vegetation function and structure, and an 30 

essential climate variable (GCOS, 2011). It is usually defined as the total one-sided area of leaf 31 

tissue per unit of ground area (Chen & Black, 1992). In situ LAI estimates are extensively used 32 

to validate LAI products from remote sensing data among other purposes (Camacho et al., 33 

2013; Garrigues et al., 2008). Earth-observation derived LAI estimates are used more widely in 34 

Earth System Models as the main interface for water, energy and mass exchange, e.g. 35 

(Kowalczyk et al., 2013). 36 

Estimation of the woody-to-total plant area proportion (α) enables disaggregation of Plant 37 

Area Index (PAI) into LAI and Woody Area Index (WAI) (Chen, 1996). Many studies do not 38 

attempt to apply the α correction factor to PAI estimates, e.g. Hardwick et al. (2015); Tang et 39 

al. (2014). This is problematic for accurate LAI estimation due to typical values of α in forests 40 

ranging from 0.1 to 0.4 (Gower et al., 1999). Uncorrected LAI estimates therefore risk 41 

overestimation. α also has a secondary significance for indirect LAI estimation methods based 42 

on application of the Pgap model, used for the estimation of the combined projection function 43 

G of leaf and woody components (Woodgate et al., 2015a). The accurate retrieval of α is then a 44 

critical step in the estimation of LAI from ubiquitous indirect LAI estimation methods (see 45 

extensive reviews by (Bréda, 2003; Jonckheere et al., 2004; Zheng & Moskal, 2009)). 46 

Additionally, in order to be part of global biophysical parameter estimation the α retrieval 47 

method needs to be applicable across different forest types.  48 

Direct methods based on destructive estimates of woody area have traditionally been 49 

regarded as the most accurate due to the potential to completely quantify leaf and wood 50 

material independently. Examples of studies relying on direct methods include Deblonde et al. 51 

(1994) and Gower et al. (1997). Such manually intensive methods are dependent on species 52 
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composition and growth form and rarely carried out at anything other than small scales and 53 

for low stature vegetation (Hagihara & Yamaji, 1993).  54 

Indirect estimates of α have the advantage of being comparatively efficient and non-55 

destructive. A number of indirect methods have been employed which mainly vary in 56 

instrumentation used and applicability to deciduous or evergreen species. A commonly 57 

employed method in deciduous forests is to estimate PAI in leaf-on conditions, and then 58 

repeat the measurements in leaf-off conditions to estimate the Woody Area Index ‘WAI’; 59 

where α = WAI:PAI (Chen et al., 1997a; Leblanc & Chen, 2001). Leblanc & Fournier (2014) in a 60 

3D modelling framework found two processing techniques that on average provided estimates 61 

of WAI within 10% of the model truth (see their Table 6), due to errors cancelling out from 62 

estimating PAI in leaf-on conditions and WAI in leaf-off conditions. An alternative to this 63 

method is to estimate PAI, and then mask out woody material for applicable methods to 64 

estimate an approximation of LAI (Liu et al., 2012). However, the application of a masking 65 

technique requires careful consideration of the underlying assumptions (and limitations) 66 

regarding the spatial distribution of wood and foliage. This is discussed further below. New 67 

developments with accurate 3D reconstruction of trees gives rise to another potential α 68 

estimation method, e.g. (Calders et al., 2015; Côté et al., 2009; Raumonen et al., 2013). Total 69 

woody area and thus WAI can be calculated through querying total (known) woody area of 70 

reconstructed trees. A challenge of this method is to have reconstructed 3D models with 71 

accurately separated leaf and high order branch area, which is required to accurately 72 

determine α. 73 

Sea et al. (2011) estimated α as a simple proportion of woody cover to total tree cover from 74 

classified hemispherical photography (HP) images. α was determined as the slope of the linear 75 

fit between wood cover fraction and total tree cover fraction for all classified images. This 76 

method assumes that woody material and leaf material are distributed approximately evenly 77 
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throughout the canopy. In other words, the assumption is made that the visible cover 78 

proportion is equivalent to true surface area proportion, as α is an area-based metric. The 79 

classified material proportions from the images were stable in a savanna environment 80 

spanning a 900 km transect in Northern Australia, indicating the applicability of a single α 81 

correction factor across an ecological gradient. Sea’s method is applicable to evergreen forests 82 

and is independent of estimation of PAI and LAI. The method is also applicable to other 83 

instruments capable of classifying woody and leaf material, e.g. single or dual-wavelength 84 

Terrestrial Laser Scanners (TLS) (Danson et al., 2014; Malenovský et al., 2008), digital cover 85 

photography (Macfarlane et al., 2007b), and the multiband vegetation imager (MVI) 86 

instrument developed to separate non-photosynthetic from photosynthetic material and sunlit 87 

from shaded material (Kucharik et al., 1997).  88 

The spatial distribution of wood with respect to leaf material, such as mutual shading or 89 

occlusion, needs to be carefully considered for indirect methods utilising classification or 90 

image masking procedures. The importance of mutual occlusion is potentially enhanced if 91 

instruments or methods are only operating at a narrow or small view zenith angles where 92 

stems are not visible, yet are known to contribute significantly to PAI. Such issues to date have 93 

not been comprehensively explored. These issues highlight the reasons why indirect 94 

techniques would benefit from benchmarking against precisely known or ‘true’ values to 95 

evaluate method accuracy and better elucidate potential limitations.  96 

Traditionally a single α value is provided for a forest plot or region. However, when measured 97 

via indirect optical methods, it is possible to characterise the degree of mutual shading or 98 

occlusion of wood and leaf components as a function of view zenith angle. Characterising how 99 

this view-angle specific or ‘effective’ α estimate from indirect optical methods relates to the 100 

true α is essential for better understanding photosynthetic processes and its impact on carbon 101 

sequestration and net primary production (Whittaker & Woodwell, 1969). In addition, the 102 



8 

 

8 

 

proportion and spatial distribution of the woody material in a canopy has a significant impact 103 

on the bidirectional reflectance factor (BRF) measured from remote sensing platforms (Asner, 104 

1998; Malenovský et al., 2008), being critical for pigment foliar retrievals at the canopy scale 105 

(Verrelst et al., 2010). Few studies have explored the relationship between effective α 106 

estimates from indirect optical methods to the true α value, mainly due to difficulties in 107 

retrieving a highly accurate α estimate. There are still knowledge gaps around which zenith 108 

angle range to use from optical methods that can distinguish foliage from wood, and the 109 

method’s robustness to varying LAI values, stem configurations and canopy structures.  110 

Evaluation of indirect retrieval methods may be compromised by potential errors in the in situ 111 

validation or benchmarking methods, which themselves are also subject to large errors (Chen 112 

et al., 1997b). Furthermore, validation of these indirect methods in forested environments are 113 

lacking in the literature, for the reasons outlined above. Only a small number of studies, 114 

representing a handful of forest types (real or virtual), have benchmarked α optical retrieval 115 

methods, e.g. Leblanc & Fournier (2014); Kucharik et al. (1998). There is a need to quantify α 116 

retrieval method accuracies so that they may be implemented with confidence. Further 117 

assessment of retrieval method strengths and limitations in representative forested 118 

environments is required. 119 

An attractive alternative to benchmarking field-derived LAI and α estimates is through 3D 120 

computer simulation model frameworks, e.g. Leblanc & Fournier, (2014); Walter et al. (2003). 121 

This approach enables simulation of indirect retrieval methods, which can then be tested 122 

against modelled 3D canopy structure, where the wood and leaf area (and angular 123 

distribution) are known precisely a priori. Other advantages of a detailed 3D modelling 124 

approach are the flexibility in using a wide range of synthetic or ‘virtual’ 3D scenes. A potential 125 

trade-off is the considerable complexity, resources, time, and high degree of skill required to 126 
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create a representative 3D virtual forest environment. Computing resources are typically no 127 

longer a limitation. 128 

A select few studies have implemented 3D modelling frameworks to validate indirect LAI or PAI 129 

retrieval methods. Of those that have, ray tracing models coupled with a limited degree of 130 

canopy architectural realism were employed, e.g. (Disney et al., 2011; Jonckheere et al., 2006; 131 

Leblanc & Fournier, 2014). Of these 3D modelling studies, only Leblanc & Fournier (2014) 132 

evaluated the accuracy of a method to indirectly estimate α utilising HP. However, a key 133 

limitation of the method tested was the requirement of leaf-on and leaf-off canopy conditions, 134 

thus limiting its application to deciduous forests. In addition, mutual shading of leaf and woody 135 

components and the effect of instrument view zenith angle were not explored.  136 

The primary objective of this study was to use a 3D modelling approach to validate the α 137 

retrieval method implemented by Sea et al. (2011) utilising classified HP. Secondary objectives 138 

of this study included establishing the sensitivity of the indirect optical method to increasing 139 

LAI values, different stem distributions and different viewing angle configurations. The 140 

simulation framework was applied to a 3D forest canopy of a high degree of architectural 141 

realism reconstructed from empirical data, representative of a Box Ironbark Eucalypt forest in 142 

eastern Australia (Woodgate et al., 2015a). We specifically focused on the 55-60° view zenith 143 

angle range due to the known convergence of leaf and wood angle distributions near the 57.3° 144 

angle (Nilson, 1971; Wilson, 1963; Woodgate et al., 2015a). We conclude by discussing the 145 

implications of our results and identify priority areas for future research. 146 

  147 
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Materials and Methods 148 

Study site and data collection 149 

The Rushworth Box Ironbark forest study site (36°45’S, 144°58’E) was selected following the 150 

3D reconstruction methodology in Woodgate et al. (2015a). Rushworth is representative of a 151 

dry sclerophyll forest comprised of several Eucalyptus (E) tree species. The trees are typically 152 

10-15 m tall with an average stem density of 520 stems ha-1. The single strata site is also 153 

characterised by low-lying undulating land and a lack of understorey presence. The 3D trees 154 

were reconstructed from field measured forest plot inventory data to reflect key structural 155 

attributes of E species such as their moderate degree of within-crown clumping and 156 

predominant erectophile leaf angle distribution (Jacobs, 1955). 157 

High-resolution hemispherical photography (HP) was captured at eight plot locations in the 158 

Rushworth. In each plot, 13 HPs were captured using the sampling scheme derived from the 159 

Statewide Landcover and Trees Study (SLATS) transects, developed to estimate foliage 160 

projective cover (among other metrics) for calibration and validation of remotely sensed 161 

products (Armston et al., 2009; Schaefer et al., 2015). HPs were spaced 25 m apart on three 162 

intersecting 100 m transects, oriented at 60 degrees from one another (Figure 1). The HP 163 

processing protocol was that of the two-corner (TC) classification method, using the dual 164 

binary threshold, which produced binary classified images of sky and non-sky (Macfarlane, 165 

2011; Woodgate et al., 2015b). Airborne LiDAR Scanning (ALS) data were concurrently 166 

acquired over the Rushworth forest inventory plots. ALS was flown with a RIEGL LMS-Q560 167 

laser scanner (Horn, Austria) covering a 25 km2 area with a flying height < 600 m, mean 168 

footprint diameter of 30 cm, and a pulse density of 6-10 pulses m-2 (Wilkes et al., 2015). Post-169 

processing was conducted in RIEGL RiAnalyze® (version 4.1.2), resulting in a discrete return 170 

dataset of up to 6 returns (absolute accuracy: ±20 cm horizontal, ±30 cm vertical). The ALS and 171 

HP image datasets were used to validate the virtual scenes (section 2.3). 172 
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LAI retrieval based on the gap fraction model (Pgap model) 173 

LAI is typically estimated from optical instruments by solving for LAI through the Beer-Lambert 174 

law as described in Nilson (1971). The physical formulation has subsequently been modified to 175 

incorporate a correction for the proportion and the angular contribution of woody 176 

components by Chen (1996) and by Woodgate et al. (2015a), respectively. This formulation is 177 

also referred to as the Pgap model, solved for LAI from independent structural parameters: 178 

𝐿𝐴𝐼 =  
−log 𝑃𝑔𝑎𝑝𝑇(𝜃) cos(𝜃)(1−𝛼)

𝐺𝑇(𝜃)𝛺𝑇(𝜃)
            [1] 179 

Where PgapT() is the gap probability of all canopy elements (leaf and wood) as a function of 180 

view zenith angle (), GT() is the combined projection coefficient of wood GW() and leaf GL() 181 

elements characterising the angular contribution of both leaf and woody facets (Ross, 1981; 182 

Woodgate et al., 2015a), ΩT() is the combined clumping factor of all canopy elements relating 183 

effective LAI (LAIe) to true LAI via LAI = LAIe() / ΩT(), and α is the ratio of woody-to-total 184 

plant area, also referred to as the woody element correction factor. Here α is independent of 185 

the spatial distribution of woody material, i.e. it only corrects for the proportion of woody 186 

material. Eqn. 1 assumes all canopy elements are non-preferentially oriented in azimuth. 187 

GT in Eqn. 1 relates to woody GW and leaf GL projection function coefficients through α as a 188 

weighting parameter (Woodgate et al., 2015a): 189 

   GT() = (1- α)GL() + α.GW()                          [2] 190 

3D modelling of forest scenes 191 

Virtual 3D representations of the forest environment or ‘scenes’ were simulated using librat 192 

(Lewis, 1999), a 3D Monte Carlo ray tracing model used for benchmarking other radiative 193 

transfer models in the Radiation Model Intercomparison (RAMI) exercise (Widlowski et al., 194 

2013). Here, a total of 24 scenes were simulated comprising different PAI values and stem 195 
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distributions as described in Table 1. The 24 scenes are a product of multiplying the six stem 196 

distributions with four PAI values. The scene α values (α 0m = 0.38, α 1.5m = 0.36) are at the 197 

upper end of the typical range of forests reported in the literature (Gower et al., 1999; 198 

Kucharik et al., 1998). 199 

 200 

 201 

 202 

 203 

 204 

Table 1. Virtual Scene parameters for the 24 simulated scenes. 

Stand Values     

Domain X, Y 

  

270 m, 270 m 

Stem distribution (v:m) 

Regular (0.5), Random (1), Neyman (1.5, 2, 3, 

5) 

Number of species 

 

5 

Leaf Angle Distribution* Erectophile 

Stem density (trees ha-1) 230, 460, 690** 

LAI (PAI)^     0.38 (0.61), 0.76 (1.21), 1.14 (1.82), 1.5 (2.41) 

WAI:PAI ‘α’   0.36 

(v:m) refers to the variance to mean ratio of a stem distribution (Franklin et al., 1985). 205 

*denotes the erectophile LAD from De Wit (1965).  **denotes the 689 stem density was used 206 
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for scenes with PAI = 1.8 and 2.4. ^ denotes values for > 0 m above ground; scene PAI values 207 

above 1.5 m (camera height) are 0.97xPAI0m for all scenes, α > 0 m  is 0.38 for all scenes, scene 208 

LAI values > 1.5 m are unchanged. 209 

Six stem distributions were implemented to simulate different degrees of between-crown 210 

clumping. One regular, one random, and four clumped stem distributions of varying degree 211 

were implemented for each scene LAI value. The degree of stem clumping was quantified 212 

through the variance-to-mean ratio (v:m) of the number of stems per quadrat for a given 213 

quadrat size in an x, y domain (Franklin & Spies, 1991). A quadrat size of 15 m x 15 m was 214 

chosen to replicate the stem distributions, which coincided with the approximate extent of 215 

radiation interaction between trees, i.e. the horizontally-projected path length of a solar beam 216 

through the canopy, as recommended by Chen & Leblanc (1997). The v:m intervals chosen for 217 

each simulated stem distribution encompassed the range in the measured field inventory plots 218 

at the 15 m quadrat size and also deliberately exceeded them in order to test the sensitivity of 219 

retrieval methods to more extreme stem clumping values (measured range: 0.6 – 1.3 v:m, 220 

Figure A1; simulated range: 0.5 – 3.5 v:m, Table 1). The original scene domain of the quadrats 221 

was 90 m x 90 m, providing 36 quadrats. The original domain was then cloned 8 times to 222 

produce a 270 m x 270 m scene domain in a 3 x 3 grid configuration; avoiding edge effects 223 

when sampling with simulated HPs. Additional information on the stem placement and virtual 224 

scene configuration can be found in Appendix A to aid manuscript clarity. 225 

Simulation of hemispherical photographs (HPs) and canopy cover maps 226 

HPs were simulated in ‘reference’ mode to simulate true gap fraction determined from ray 227 

intersection. For every pixel in the image FOV, a single ray is traced from the camera position 228 

in the direction of the pixel centroid to determine if there is a canopy intersection event 229 

returning a binary result; ‘0’ for a canopy intercept or ‘1’ for a gap. This method effectively 230 

produces pre-classified ‘reference’ HP images, thus avoiding potential Pgap classification 231 
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errors that would otherwise confound interpretation of results. The material type for every 232 

intercepted pixel was also recorded in a separate image, i.e. wood or leaf intercept, hereafter 233 

referred to as the classified HP image, without error. This approach is far more 234 

computationally efficient than stochastic ray tracing of the full light environment (Jonckheere 235 

et al., 2006), which can require three wavelengths and multiple sampling rays per pixel to 236 

provide an RGB image (Disney et al., 2000).  237 

Virtual scene cover maps (90 m x 90 m; Figure 1) were simulated in librat at 1 cm resolution, 238 

based on a solitary ray traced at the centroid of each pixel returning the first intercept height 239 

from above the canopy; used to derive canopy height profiles.  240 

  241 
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Figure 1: SLATS sampling design 242 

 243 

Figure 1. Sample locations of the 13 HPs from the SLATS transect design (red crosses) 244 

overlayed on a 120 m x 120 m element cover map simulation of the regular stem distribution 245 

(1.8 PAI). 246 

In each virtual scene, 13 HPs were simulated using the SLATS sampling scheme previously 247 

described (Figure 1). In this study, 13 HPs were deemed an appropriate number per scene as: 248 

(i) it met the minimum recommended plot sample number (≈8-10 HPs) of various protocols 249 

(Baret et al., 2005; Fernandes et al., 2014; Homolová et al., 2007), in addition to (ii) 250 

representatively sampling an approximate 100 m x 100 m plot at the centre of the scene 251 

domain.  252 

The centre of the sampling design was coincident with the centre of the 270 m x 270 m scene 253 

domain. HPs were simulated at 1.5 m above ground level, pointing directly upwards with 180° 254 
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hemispherical field-of-view (FOV). A minimum separation distance of 30 cm between 255 

measurement and tree stem location was ensured. The HP image resolution was set to 3001 x 256 

3001 pixels, which is equivalent to a 12 megapixel digital camera with a 4:3 image format.  257 

Although sampling design can play an important role in the retrieval methods (e.g. spatial 258 

representativeness), it was not a focus of this investigation. The variability of the scene Pgap as 259 

sampled by HPs is provided in section 3.1 of the Results and Discussion. A brief discussion on 260 

the implications of sampling position is provided later in the manuscript. 261 

Comparisons of simulated model outputs with HP and ALS field measured data were made. 262 

The purpose was twofold: the first comparison was to inform which simulated scenes’ Pgap 263 

provided the closest match with Pgap derived from HP captured at Rushworth; the second was 264 

to provide additional evidence that the canopy density distributions via the height profiles of 265 

the modelled scenes were reflecting the Rushworth forest as measured from comparable 266 

independently collected ALS data. Normalised first return ALS profiles of the classified canopy 267 

returns from 100 m x 100 m plots coincident with the HP sample locations were compared 268 

with canopy height profiles simulated from the virtual scenes. 269 

  270 
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Reference woody-to-total plant area calculation 271 

The reference α value for each virtual scene was calculated directly from the tree models leaf 272 

and wood area: 273 

𝛼 𝑟𝑒𝑓 =  
∑(𝑤𝑜𝑜𝑑 𝑎𝑟𝑒𝑎)

∑(𝑤𝑜𝑜𝑑 𝑎𝑟𝑒𝑎)+ ∑(𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎)
=  

𝑊𝐴𝐼

𝑊𝐴𝐼+𝐿𝐴𝐼
=  

𝑊𝐴𝐼

𝑃𝐴𝐼
           [3] 274 

As Eqn. 3 provides an exact quantification of α or reference value, it is hereafter referred to as 275 

α ref. In contrast to any in situ retrieval method, which only ever approximate the ‘true’ value, α 276 

ref from the 3D model is the true value, and can thus be used to benchmark any retrieval 277 

method values. 278 

Woody-to-total area ratio estimation following Sea et al. (2013) 279 

The previously mentioned indirect α retrieval method from Sea et al. (2011) formed the basis 280 

of the evaluation. Here, the simulated reference classified HPs outlined in section 2.3 were 281 

utilised, ensuring image classification error would not confound results. Using this method, α 282 

was estimated, hereafter referred to as α est, as the proportion of woody cover to total plant 283 

cover, i.e. α est = ∑woody pixels / (∑woody pixels + ∑leaf pixels). The method is applicable to 284 

other instruments capable of classifying woody and leaf material, e.g. single or dual-285 

wavelength Terrestrial Laser Scanners (TLS) (Danson et al., 2014; Malenovský et al., 2008) and 286 

digital cover photography (Macfarlane et al., 2007b). The method is also applicable to 287 

evergreen forests and is independent of PAI and LAI estimation. 288 

The accuracy of the method was determined by direct comparison of α est with the scene α ref 289 

values, calculated from the known wood and leaf area of the constituent tree models (section 290 

2.4). The impact of restricting the HP FOV was then analysed to determine whether the entire 291 

FOV was required to obtain an accurate estimate. The sensitivity of the method to the 292 
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simulated scene PAI values and stem distributions was then established through grouping α est 293 

and significance testing, further explained in Section 2.6. 294 

Statistical analysis 295 

Two-way analysis of variance (ANOVA) was conducted to detect significant differences 296 

between factors such as scene PAI and stem distribution for α values. If the ANOVA revealed 297 

significant differences (p < 0.05), Tukey’s honest significance difference (HSD) test was 298 

conducted post-hoc to determine which combination of factors had significant differences. 299 

Statistical analysis was conducted in IBM SPSS Statistics v22 (IBM Corp). 300 

  301 
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Results and Discussion 302 

Architectural model performance 303 

This section presents a comparison of simulated virtual scene outputs with independently 304 

collected field data to establish the degree of matching of the 3D reconstructed environment 305 

with the real Box Ironbark Eucalypt forest. Specifically, the key structural metrics of gap 306 

probability (Pgap) and canopy height profiles are compared. Woodgate et al. (2015a) 307 

previously demonstrated the close degree of matching of individual tree reconstructions with 308 

empirical data. 309 

A visual comparison of a simulated HP in reference mode with a classified field measured HP 310 

from Rushworth is shown in Figure 2. The average scene Pgap for each of the four simulated 311 

PAI values (n = 78 HPs per PAI value) was calculated and compared against the mean Pgap for 312 

all the field measured HPs at Rushworth (n = 104) (Figure 3). The mean of the field measured 313 

HP Pgap from RF plots matched within ±0.05 Pgap with the mean simulated HP Pgap for the 314 

PAI = 1.8 scenes. The field-derived Pgap was also well within the range of the virtual scene 315 

Pgap from all virtual scenes. The field-derived HP Pgap typically matched to within ±0.05 Pgap 316 

of the mean of PAI = 1.8 scene simulations, showing a similar variance and extinction curve 317 

over all zenith angles.  318 

Figure 2: Simulated and field-derived Hemispherical Photos 319 
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(a) 

 

(b) 

Figure 2. Comparison of a simulated HP images in reference mode (a), with a classified field 320 

measured HP image (b) at Rushworth. The simulated image was taken from the Neyman scene 321 

(v:m = 2, LAI = 1.5), and the field measured HP was from a field plot with estimated LAI = 1.2; 322 

estimated from site-specific allometric plot data described in Woodgate et al. (2015a). 323 

Pgap from the 90 m x 90 m cover maps is also presented in Fig. 3. The mean simulated HP 324 

Pgap matched to within ±0.02 Pgap of the cover maps for PAI scene values = 0.6, 1.2, and 1.8. 325 

However, there was a 0.05 Pgap difference for the PAI = 2.4 scenes. Although the two 326 

methods are sampling the same virtual scenes, discrepancies are likely caused by the nature of 327 

incomplete HP sampling, well documented in previous studies, e.g. (Macfarlane et al., 2007a). 328 

Additionally, differences between ALS Pgap and field-derived HP Pgap at the 5° view zenith 329 

angle (VZA) are within expected uncertainty tolerances due to well-known issues of sampling 330 

and processing to name a few, e.g. (Armston et al., 2013; Lovell et al., 2003). 331 

Figure 3: Pgap of simulated and field-measured data 332 
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 333 

Figure 3. Pgap of simulated reference height maps and simulated HPs overlayed with field 334 

measured HPs and ALS Pgap. The solid grey-scale lines denote the azimuthally averaged 335 

simulated ‘sim’  HP mean Pgap of each individual PAI scene value (PAI = 0.6, 1.2, 1.8, 2.4; n = 336 

78 HPs per PAI value), with ± 1 standard deviation (SD) shaded in grey around the PAI = 1.2 337 

scene simulations; the green line denotes the azimuthally averaged field measured HP mean 338 

Pgap with ± 1 SD error bars of all the field measured HPs at Rushworth at plots RF1-7 and 9 339 

(RF8 not measured; n = 104 HPs); red circles at zenith = 0° denote the mean and SD Pgap from 340 

the simulated 90 m x 90 m element cover maps for the four PAI scene values, annotated with 341 

their PAI value (red text), treated as reference due to their complete coverage and 1 cm x 1 cm 342 

resolution; and the black circle at the 5° zenith angle denotes the mean and SD Pgap of the 343 

nine coincident 100 m x 100 m ALS plots to the field measured HPs, using the weighted return 344 

method (Lovell et al., 2003) - marker placed at 5° zenith due to ± 10° ALS look angle, annotated 345 

with ‘ALS’ in the figure. 346 
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Overall the normalised height profiles of the field measured ALS showed good agreement with 347 

the simulated profiles of all four simulated PAI scene values. This indicated the distribution of 348 

simulated canopy materials in the height domain was accurately represented (Figure 4a). For 349 

example, the location of the tails of the simulated and ALS profiles closely align; representing 350 

the lower and upper bounds of the single-storey canopy at Rushworth. The first three 351 

simulated PAI value scenes (PAI = 0.6, 1.2, 1.8) have a slightly closer agreement to the ALS 352 

profiles than fourth PAI value scenes (PAI = 2.4). Further discussion on the height profiles from 353 

the virtual scenes and ALS data can be found in Appendix A. 354 

Figure 4: Height profiles and reference element area 355 

 

(a) 

 

(b) 

Figure 4. (a) Height profile comparison of measured ‘meas’ ALS flown at Rushworth using the 356 

mean of all nine 100 m x 100 m plots centered on the plot locations (green line) and ± 1 357 

standard deviation (SD; green error bars), with height profiles from the simulated ‘sim’ plots 358 

using librat. Simulated scenes were grouped into PAI values 0.6, 1.2, and 1.8 (grey line) and PAI 359 
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= 2.4 (black) with ± 1 SD error bars. The bin size is 1m. All returns are non-ground 1st return. (b) 360 

Element area for the simulated scenes of leaves (green lines), wood (brown lines), and plant 361 

(leaf and wood together; black lines). Element area was calculated from the summation of the 362 

3D tree model facet area comprising a scene. The first three PAI value scene groupings (PAI 363 

0.6, 1.2, 1.8) have the same element area frequency (solid lines), and the PAI = 2.4 scenes have 364 

a different frequency (dashed lines). The bin size is 0.5m. 365 

  366 
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Retrieval of woody-to-total plant area 367 

The method of Sea et al. (2011) to indirectly determine the woody-to-total plant area 368 

correction factor ‘α est’ was validated using the 3D modelling and simulation framework. Figure 369 

5 shows tree cover fraction plotted against wood cover fraction from simulated classified HP 370 

for all images in every scene (n = 312). Tree cover from 0.1 to 0.7 was found for all simulated 371 

HPs, which is equivalent to canopy closure ‘cc’ (Jennings et al., 1999). Sea et al. (2013) utilised 372 

the gradient of the fitted linear reduced major axis (RMA) regression function as a proxy for α 373 

ref. The gradient of the slope in Figure 5 was 0.37, with a coefficient of determination R2 = 0.89. 374 

The slope matched to within 0.01 of α ref above the camera height (α ref = 0.36) for the 375 

Rushworth virtual scenes. The match demonstrated the utility of this method for accurate 376 

indirect estimation of α from classified HPs in the Box Ironbark forest type.  377 

Figure 5: Tree cover vs wood cover fraction 378 

 379 

Figure 5. Total tree cover fraction plotted against the total wood fraction for all 312 simulated 380 

classified HPs denoted by open black circles. Tree and wood cover fractions were calculated as 381 
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the proportion of leaf and wood pixels, and wood-only pixels, to total HP image pixels, 382 

respectively. The entire field-of-view ‘FOV’ (i.e. 0-90° view zenith angle) of the classified HPs 383 

were used. The α ref slope ‘y ref’ is denoted by the solid blue line. The RMA regression slope ‘y 384 

RMA’ is denoted by the solid black line, with error bounds of ± 50% to identify potential 385 

outliers in dashed black lines. 386 

Three outliers from of a total 312 HPs were detected, determined as ±50% from both the 387 

reference and RMA regression slopes (Figure 5). All outliers overestimated α ref. Upon further 388 

examination, the outliers were HPs with very large stems in close proximity to the HP 389 

measurement location (<1 m; e.g. Figure 6), which led to a greatly increased visible proportion 390 

of wood-to-total plant material. Therefore, a recommendation would be to ensure a minimum 391 

distance of ≈1.5 m from the base of any proportionately large stems to HP measurement 392 

location to negate the bias. Stands with a relatively large proportion of senescent trees could 393 

also result in similar outliers. This introduces a potential limitation of the representativeness or 394 

applicability of a single α value characterising an entire forest type. 395 

Figure 6: Outlier HPs with a high wood-to-total plant area ratio 396 

 

1. α ref = 0.58 

 

2. α ref = 0.71 

 

3. α ref = 0.59 

Figure 6. The three α est outlier HP images identified in Figure 5. The individual HP image α ref 397 

value (shown) was estimated as the proportion of woody pixels to total plant pixels from the 398 
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simulated classified HPs. All images were located close to large tree stems, which positively 399 

biased the proportion of wood-to-total plant material visible in the image. The respective PAI 400 

scene values and stem distributions of the three HPs are: (a) PAI = 0.6 (Neyman v:m 5), (b) PAI 401 

= 1.2 (Random), and (c) PAI = 2.4 (Random). 402 

Conversely, no outliers less than 50% of α ref were found. This was due to the combination of 403 

foliage bearing branches starting approximately 5 m above the ground as shown in Figure 4b, 404 

and HPs sampled near ground level (1.5 m). Potential outliers underestimating α ref would be 405 

expected in environments where understorey near to the camera is prominent, thus the 406 

recommendation to take HPs both above and below understorey has been made in numerous 407 

protocols e.g. (Leblanc, 2008; Schaefer et al., 2015). It is also important to consider whether 408 

understorey is included in the α metric, which would potentially bias HP sampling due its close 409 

proximity to the camera lens.  410 

The effect of restricting field-of-view (FOV) 411 

The entire HP FOV (typically 180° for fisheye lenses) is rarely utilised in analysis, due to 412 

multiple factors affecting the accurate classification of pixels for large zenith angles, including 413 

undulating terrain and a greater proportion of mixed pixels (Jonckheere et al., 2004; Leblanc et 414 

al., 2005). Therefore, it is common practise to either restrict the instrument FOV to a maximum 415 

zenith angle for indirect LAI estimation and subsequent estimation of α est (e.g. Sea et al., 416 

2011), or to use a discrete narrow zenith angle range (e.g. Neumann et al., 1989; Leblanc & 417 

Fournier, 2014).  418 

The effect of restricting instrument FOV was investigated. The slope of the RMA line of tree 419 

cover fraction versus woody cover fraction when restricting the HP FOV to 140° (i.e. 0-70° 420 

zenith angle range) decreased from 0.37 to 0.34 (R2 = 0.87). This indicated a slightly poorer 421 

agreement with α ref = 0.36 (RMA graph not shown). The dependence of α est derived from 422 
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classified HPs on view zenith angle is shown in Figure 7. The mean α est of all 312 simulated HPs 423 

(red line; Figure 7), a proxy of the RMA slope, increased with zenith angle from 0.15 at 0° to 424 

close to 1 at 90°. This indicates as expected that the assumption of a random or even 425 

distribution of woody material with respect to leaf material as a function of viewing angle does 426 

not hold. There was also a large spike in mean α est values at zenith angles greater than 75°, 427 

likely caused by the fact that at very large zenith angles predominantly stems are visible, due 428 

to a moderate 3.5 m gap between crown break and the height of the HP measurements as 429 

shown in Figure 4b.  430 

Interestingly, the mean α est at around 56° zenith angle matched with α ref, meaning that the 431 

visible proportion of woody-to-total plant material at this narrow zenith angle range was 432 

equivalent to the reference value. This narrow zenith angle range offers an alternative to 433 

utilising the entire image FOV to accurately estimate α est, at least for the forest type 434 

investigated. The slope of the mean α est line in Figure 7 would be expected to change with 435 

different leaf angle distributions (LAD). The exception to this would be at the 57.3° viewing 436 

angle where the mean α est would remain unchanged, due to the projected area for most LAD 437 

projection functions, G(), being equivalent at this viewing angle (Nilson, 1971; Wilson, 1963).  438 

Woodgate et al. (2015a) demonstrated the coupling effect of view angle and canopy element 439 

angle for the tree models used in this study, shown for the 0° and 57.3° viewing angles using 440 

three different LADs. For example, if the tree models were given a planophile LAD, then the 441 

proportion of leaf material visible at small zenith angles would increase, and subsequently 442 

decrease the mean HP-derived α est.  443 

The mean cumulative α est (green line; Figure 7) represented the mean α est value if a mask of all 444 

angles larger than the specific zenith angle was applied. The mean cumulative α est at 90° 445 

matched almost exactly with α ref, thus indicating that the entire FOV was required to produce 446 

the most accurate α est value using the classification method from Sea et al. (2011). Also, as 447 
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expected the mean α est using the entire image FOV matched to within 0.01 of the slope of the 448 

linear RMA equation in Figure 5. Although there was a spike in mean α est at 80°, the 449 

cumulative α est was only marginally affected, rising from 0.33 at 75° to 0.35 at 90°. The 450 

implication of the choice of HP view zenith angle range is discussed later in Section 3.2.3. 451 

Figure 7: Woody-to-total plant area evaluation 452 

 453 

 454 

Figure 7. Woody-to-total plant material estimates ‘α est’ shown as a function of view zenith 455 

angle (VZA). α est was estimated as the proportion of woody pixels to total plant pixels from the 456 

reference classified HPs. The red line denotes the mean α est value for all 312 simulated HPs at 457 

that specific zenith angle; the green line denotes the cumulative mean α est value i.e. the mean 458 

α est if a mask of all angles larger than the VZA was applied; the dashed blue line denotes the 459 

reference α ‘α ref’ value > 1.5m (camera height) of all scenes. α ref is independent of zenith 460 

angle. The mean α est and mean cumulative α est ±1 standard deviation are denoted by the 461 

shaded areas. 462 



29 

 

29 

 

Impact of PAI, stem density, and stem distribution on indirect woody-to-total plant area 463 

Further analysis was undertaken to quantify the effect of varying PAI, stem density, and stem 464 

distribution on α est from the simulated classified HPs. Figure 8 shows the mean α est of each 465 

simulated scene, estimated from the classified HPs using their entire FOV. This mean estimate 466 

is in contrast to the derivation of α using the RMA regression slope of the entire HP 467 

population, yet was shown to be approximate equivalent in the previous section. The two 468 

scenes with the largest differences in mean α est to α ref were Regular (v:m 1; PAI 0.6) and 469 

Random (v:m 0.5; PAI 2.4), with α differences of -0.05 and +0.04, respectively. A distinct PAI 470 

effect was observed, with the mean α est slightly increasing with scene PAI. The mean α est of all 471 

the scene PAI values were statistically significantly different to one another (p < 0.05, Tukey’s 472 

HSD test), with the exception of PAI scenes = 1.2 & 1.8. This demonstrated that the mean α est 473 

using the entire FOV was sensitive to both stem density (PAI = 0.6, 1.2, 1.8) and, to a lesser 474 

extent, the size of the trees whilst keeping the stem density constant (e.g. PAI = 2.4). 475 

Figure 8: Scene mean woody-to-total plant area estimates 476 
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 477 

Figure 8. Mean α est of the 24 individual scenes with ±1 standard deviation shown as error bars. 478 

The v:m for each scene is listed after the stem distribution type on the x-axis. For each PAI 479 

scene value, the stem distributions are ordered by v:m value (lowest to highest = left to right). 480 

Each scenes mean α est was estimated as the ratio of woody pixels to total plant pixels using the 481 

entire field-of-view of the simulated classified HPs comprising the scene. The α ref value 482 

(dashed line) was calculated as the ratio of the summation of total woody-to-plant facet area 483 

for the simulated scenes, and is equivalent for every scene (Eqn. 3). 484 

When grouping all scenes into stem distribution, no group was significantly different from any 485 

another (p ≥ 0.197). Therefore, stem distribution did not appear to have any ability to explain 486 

differences in mean α ref for each simulated scene. This demonstrates the robustness of the 487 

indirect α ref method to varying stem distributions. The three scenes with the largest standard 488 

deviations, namely Neyman 5 (PAI 0.6), Random 1 (PAI 1.2), and Random 1 (PAI 2.4), each 489 
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contained one HP image outlier as shown in Figure 5 & Figure 6. These outliers largely 490 

explained their comparative higher level of variability. Therefore, the variation in mean α ref for 491 

each scene PAI grouping was predominantly a function of sampling position, and not caused by 492 

varying stem distribution. 493 

An alternative approach to the empirical method of Sea et al. (2011) is to employ the basic 494 

Pgap model described by Eqn. 1 and compute an effective α using the ratio of effective wood 495 

and leaf area index. Development of such a model may provide a method more transferable to 496 

other canopy types with different structure and result in more physically realistic estimates 497 

of α outside the range of woody and plant cover tested in this study. Results are not presented 498 

for brevity, however this approach provided a slightly worse fit to the model of Sea et al. 499 

(2011) likely due to clumping changing the observed Pgap values from that expected from a 500 

theoretically independent and random distribution of leaf and wood material. Parameters 501 

describing clumping of leaf and wood canopy elements and their degree of mutual occlusion 502 

would be required, which are hard to measure separately and efficiently in-situ using 503 

traditional techniques. Co-registration of TLS point clouds from multiple locations to reduce 504 

occlusion effects offers a promising avenue for further research on more direct estimation 505 

of α. 506 

The applicability of the method in the field 507 

A potential limitation of the HP classification approach is that optimally-exposed images for 508 

accurate Pgap estimation usually have poor contrast between wood and leaf canopy elements, 509 

due to maximising contrast between sky and non-sky elements (Zhang et al., 2005). The 510 

method evaluated here was not subject to any classification errors, due to the material type 511 

also being returned for canopy intercepts for the simulated HPs. In the field, if one alters the 512 

camera exposure to gain contrast between leaf and woody elements, then the image is likely 513 

to be over-exposed, leading to higher Pgap than from ‘optimally’ exposed images. An 514 
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alternative to HP is to capture multi-angular images using narrow FOV digital cover 515 

photography methods (Hwang et al., 2016; Macfarlane et al., 2007b; Macfarlane et al., 2014; 516 

Piayda et al., 2015). The comparatively higher image resolution over the same image sampling 517 

domain has the advantage of being less sensitive to exposure (Blennow, 1995). For example, 518 

Piyada et al. (2015) separated leaf from woody material using an object-based image analysis 519 

technique to estimate α using the cover photography method.  520 

The method validated in this study is also applicable to the estimation of LAI using Terrestrial 521 

Laser Scanners, which have been used to separate leaf from wood intercepts, e.g. (Danson et 522 

al., 2014; Malenovský et al., 2008). TLS uses the intensity information of target structural and 523 

spectral properties in the return signal to distinguish between different target types (e.g. 524 

Béland et al., 2014). Dual wavelength scanners can account for partial laser beam interceptions 525 

and separate leaf and wood purely based on their spectral properties (e.g. Douglas et al., 526 

2015). Additional processing via return classification algorithms using structural knowledge of 527 

tree architecture may be used to constrain classification and lead to increased classification 528 

accuracy, and thus a better α estimate (e.g. Raumonen et al., 2013). 529 

Each application of this method would require the RMA regression model fit to be established, 530 

and for potential outlier images, plots or regions to be identified, especially when 531 

characterising large areas. The coefficient of determination provides an indication of the 532 

degree of model fit. This step could be first applied to a subset of images, or the entire sample 533 

if employing automated classification methods. If outlier plots or regions are found, then 534 

separate α estimates may be appropriate for applicable regions. The indirect method tested 535 

here is a more attractive alternative than destructive harvesting. Furthermore, the 536 

methodology validated in this study could be used to monitor defoliation or regeneration 537 

events from numerous ecological causes such as insect attacks, fire, senescence, and 538 

phenology.  539 
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Potential errors arising from camera exposure and classification accuracy from these Pgap and 540 

material classification steps are required to be taken into consideration in the field 541 

environment, yet were avoided in the modelling and simulation framework. This is an 542 

illustration of the modelling and simulation framework more robustly establishing the accuracy 543 

of these retrieval methods than in a field environment. It is expected that the performance of 544 

the retrieval method investigated in this study will vary depending on forest type, based on the 545 

architecture of the trees and relative positioning of crowns. For example, multi-layer forests 546 

with vastly different crown shapes and foliage densities are expected to provide differing 547 

effective α estimates as a function of view zenith angle to those presented in this study. Dense 548 

coniferous species with a low crown break are expected to lead to an underestimation of α 549 

following classification (or masking) techniques as a result of a relatively greater proportion of 550 

wood occluded by foliage from the typical ground-based measurement perspective. Therefore, 551 

it is recommended that a similar 3D simulation framework be applied to different 552 

representative reconstructed forest types in order to investigate the robustness of the method 553 

validated in this study. 554 

  555 
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Conclusion 556 

We present validation of a simple and efficient indirect retrieval method to estimate the 557 

proportion of woody-to-total plant material ‘α’ present in a canopy. The method is applicable 558 

to all instruments capable of separating leaf from woody elements, such as photography and 559 

TLS. A 3D modelling and simulation framework was used to validate the method, 560 

parameterised with a representative Eucalypt forest stand comprising highly-detailed 3D 561 

explicit reconstructed tree models. The framework enabled the α retrieval method to be 562 

validated against precisely known virtual scene parameters consisting of a range of LAI values, 563 

stem densities, and stem distributions.  564 

The indirect α method utilising classified HP imagery matched to within on average 0.01 α of 565 

the reference values. Quantifying accuracies to this tolerance is near impossible with field-566 

based comparison or benchmarking studies, which are subject to large, hard to quantify, 567 

margins of error. In addition, the method was robust to a range of LAI, stem density, and stem 568 

distribution values, matching to within ±0.05 α of the true value. This demonstrated its 569 

applicability for accurate indirect estimation in the single-storey forest type investigated. 570 

Angular dependence on indirect α retrieval was also found; where the entire HP image (180° 571 

FOV) was needed to produce the most accurate estimate. Conversely, the classified narrow 572 

view zenith angle range around 55-60° zenith also provided α estimates matching the 573 

reference. As such, careful consideration of zenith angle ranges utilised from any instrument is 574 

recommended. 575 

The method can be used to convert estimates of PAI into LAI. Quantitative α estimates can also 576 

be used to aid in the interpretation of the remote sensing signal from satellite data, which 577 

have been shown to be sensitive to the proportion and spatial distribution of woody material 578 

within the canopy. Suggested future work includes applying the 3D modelling framework to 579 

different forest types to determine its accuracy and robustness, e.g. tall or multi-layered 580 
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forests; including species with different woody proportions, leaf angle distributions, and crown 581 

characteristics.  582 

 583 

  584 
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Appendix A: Virtual scene stem placement additional information 594 

For the random and Neyman stem distributions, the placement of the stems was random 595 

within each quadrat, consistent with the Neyman Type A distribution (Neyman, 1939). For all 596 

virtual scenes, there was a minimum distance of 0.3 m between tree stem centroids to avoid 597 

direct overlap of stems. The assignment of a tree model to a stem location was random within 598 

the scene, with the exception of the largest trees in the scene, i.e. those with DBH > 40 cm 599 

(approximately 5% of trees). These trees were spaced furthest apart in the scenes to ensure 600 

they did not unrealistically aggregate.  601 

Scene LAI/PAI values were determined via the number of tree models used and their 602 

proportion, and kept constant for each stem distribution. This ensured the within-crown 603 

foliage density remained unchanged due to the individual tree models comprising a scene 604 

remaining unchanged. For the first three PAI scene values, namely PAI = 0.6, 1.2, and 1.8 605 

corresponding to the stem densities of 186, 372, and 558 trees per 8100 m2, the same 606 

proportions of tree models were used to ensure unchanged proportions of within-crown 607 

clumping from individual tree models. The virtual scene tree composition was derived from 608 

representative field measurement proportions of species, height, and DBH (refer to Woodgate 609 

et al. (2015a) for more information).  610 

The same proportion of tree models used for each different scene PAI value also led to a 611 

constant factor of 0.6 PAI increase for PAI = 0.6, 1.2, and 1.8 scenes. For the fourth PAI scene 612 

value (PAI = 2.4), the same stem distribution maps from PAI = 1.8 scenes were used with an 613 

equivalent stem density, where a greater proportion of higher LAI trees were used to gain the 614 

higher scene PAI value. The same density was chosen for scenes with PAI = 2.4 as PAI = 1.8, 615 

instead of the linear increase in stem density (186 trees per scene PAI value) used in the first 616 

three PAI scene values. This was because the 558 stem density was almost equivalent to the 617 

maximum value measured in Rushworth plots, yet the PAI of 2.4 was still realistic compared 618 
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with field measured values (Table 2). Therefore, priority was given to simulations of realistic 619 

stem density scenarios guided by field measurements over unrealistic scenarios. 620 

The ALS profile was smooth and normally distributed with greater variance than the simulated 621 

scene PAI profiles. This was primarily due to the finite sample size of tree models used in the 622 

virtual scenes (n = 51), which were cloned to produce a higher stem density and LAI value 623 

within the scene. In other words, there was a greater degree of natural variation between 624 

individual trees at the field sites than the reconstructed tree model population comprising the 625 

virtual scenes. In addition, the same tree proportions comprising the virtual scenes were used 626 

for PAI scene values = 0.6, 1.2, and 1.8. The scenes with a PAI = 2.4 was displayed separately 627 

from the first three PAI scene values due to selecting larger trees to increase the scene PAI, 628 

while keeping the stem numbers and distributions equal to the scenes with PAI = 1.8. This 629 

factor also caused the standard deviations of the simulated scenes height profiles to be 630 

comparatively smaller than the ALS profile.  631 

The small variance in the simulated height profiles was due to low variation in occlusion of 632 

elements from the different stem distributions for each PAI scene value (Fig. 4). This was also a 633 

reason why the two ‘peaks’ start to appear in the simulated data, because the same tree 634 

model proportion was used for each scene comprising a specific scene PAI value, rather than 635 

varying the tree models selected comprising each scene. Constant tree model proportions for 636 

each PAI scene value was deliberate to aid with interpreting stem clumping results. This 637 

prevented biasing results from implementing different tree models that may have variable 638 

levels of within-crown clumping. It is also noteworthy that 1st returns from librat simulated 639 

height profiles were derived from an infinitely small beam, whereas ALS had a larger beam 640 

diameter (≈20-30 cm diameter at the canopy level). Although the occlusion is the same from 641 

both the simulated and ALS captured profiles, the beam divergence may impact on the vertical 642 

distribution of the retrieved canopy element profiles. 643 
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 644 

 645 

Table 2. Forest inventory plot details used as input for the virtual scene creation process. RF1-9 646 

relate to the nine forest inventory plots in the 3 km x 3 km study area; R06-08 are the ancillary 647 

CCAP inventory plots. The LAI was calculated from the allometric relationships developed from 648 

the destructive harvest data (Woodgate et al., 2015a). Trees < 10 cm DBH were not included 649 

for stem density or LAI calculations. Stem densities per ha and per 8100 m-2 (matching the 90 650 

m x 90 m virtual scene domain) are provided. 651 

Plot name Area m2 

Stem density ha-1 

(8100 m-2)  LAI m2m-2 

RF1 400 700 (567) 1.10 

RF2 400 550 (446) 0.69 

RF3 400 550 (446) 1.20 

RF4 400 675 (547) 1.68 

RF5 400 300 (243) 0.93 

RF6 400 575 (466) 0.66 

RF7 400 325 (263) 0.58 

RF8 400 400 (324) 1.06 

RF9 400 625 (507) 1.94 

R06 5027 219 (177) 0.69 

R07 5027 213 (172) 0.69 

R08 5027 563 (456) 1.22 

 652 

Figure A9: Rushworth Measured Stem clumping 653 
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 654 

Figure A1. Variance-to-mean ratio ‘v:m’ of tree stems calculated at different quadrat sizes for 655 

the three 80 m diameter field plots (R06-R08), in addition to the nine forest inventory plots 656 

(RF1-9) equivalent to a single quadrat length of 20 m. The joined lines indicate the v:m value at 657 

a 1 m quadrat length increment below 20 m in length for the R06-R08 field plots. Field plot 658 

locations and measurement details are explained in Woodgate et al. (2015a). The ‘random’ 659 

threshold at v:m 1 is denoted by the dashed line, with the values above and below the 660 

threshold corresponding to increasingly clumped and regular stem distributions, respectively. 661 

  662 
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