
Survey of Consistent Network Updates

Klaus-Tycho Foerster1 Stefan Schmid2 Stefano Vissicchio3

1 ETH Zurich, Switzerland 2 Aalborg University, Denmark 3 University of Louvain (UCL), Belgium

ABSTRACT
Computer networks have become a critical infrastructure. Design-
ing dependable computer networks however is challenging, as such
networks should not only meet strict requirements in terms of cor-
rectness, availability, and performance, but they should also be
flexible enough to support fast updates, e.g., due to a change in the
security policy, an increasing traffic demand, or a failure. The advent
of Software-Defined Networks (SDNs) promises to provide such
flexiblities, allowing to update networks in a fine-grained manner,
also enabling a more online traffic engineering.

In this paper, we present a structured survey of mechansims
and protocols to update computer networks in a fast and consis-
tent manner. In particular, we identify and discuss the different
desirable update consistency properties a network should provide,
the algorithmic techniques which are needed to meet these consis-
tency properties, their implications on the speed and costs at which
updates can be performed. We also discuss the relationship of con-
sistent network update problems to classic algorithmic optimization
problems. While our survey is mainly motivated by the advent of
Software-Defined Networks (SDNs), the fundamental underlying
problems are not new, and we also provide a historical perspective
of the subject.

Keywords
Network Updates, Algorithms, Software-Defined Networks, Open-
Flow, NP-Hardness, TCAMs

1. INTRODUCTION
Computer networks such as datacenter networks, enterprise net-

works, carrier networks etc. have become a critical infrastructure
of the information society. The importance of computer networks
and the resulting strict requirements in terms of availability, perfor-
mance, and correctness however stand in contrast to today’s ossified
computer networks: the techniques and methodologies used to build,
manage, and debug computer networks are largely the same as those
used in 1996 [4]. Indeed, operating traditional computer networks is
often a cumbersome and error-prone task, and even tech-savvy com-
panies such as GitHub, Amazon, GoDaddy, etc. frequently report
issues with their network, due to misconfigurations, e.g., resulting in
forwarding loops [25, 34, 74, 90]. Another anecdote reported in [4]
illustrating the problem, is the one by a Wall Street investment bank:
due to a datacenter outage, the bank was suddenly losing millions
of dollars per minute. Quickly the compute and storage emergency
teams compiled a wealth of information giving insights into what
might have happened. In contrast, the networking team only had
very primitive connectivity testing tools such as ping and traceroute,
to debug the problem. They could not provide any insights into the

actual problems of the switches or the congestion experienced by
individual packets, nor could the team create any meaningful experi-
ments to identify, quarantine and resolve the problem [4]. Given the
increasing importance computer networks play today, this situation
is worrying.

Software-defined networking is an interesting new paradigm
which allows to operate and verify networks in a more princi-
pled and formal manner, while also introducing flexibilities and
programmability, and hence faster innovations. In a nutshell, a
Software-Defined Network (SDN) outsources and consolidates the
control over the forwarding or routing devices (located in the so-
called data plane) to a logically centralized controller software
(located in the so-called control plane). This decoupling allows
to evolve and innovate the control plane independently from the
hardware constraints of the data plane. Moreover, OpenFlow, the
de facto standard SDN protocol today, is based on a simple match-
action paradigm: the behavior of an OpenFlow switch is defined by
a set of forwarding rules installed by the controller. Each rule con-
sists of a match and an action part: all packets matched by a given
rule are subject to the corresponding action. Matches are defined
over Layer-2 to Layer-4 header fields (e.g., MAC and IP addresses,
TCP ports, etc.), and actions typically describe operations such as
forward to a specific port, drop, or update certain header fields. In
other words, in an SDN/OpenFlow network, network devices be-
come simpler: their behavior is defined by a set of rules installed
by the controller. This enables formal reasoning and verification,
as well as flexible network update, from a logically centralized per-
spective [43, 46]. Moreover, as rules can be defined over multiple
OSI layers, the distinction between switches and routers (and even
simple middleboxes [17]) becomes blurry.

However, the decoupling of the control plane from the data plane
also introduces new challenges. In particular, the switches and
controllers as well as their interconnecting network form a complex
asynchronous distributed system. For example, a remote controller
may learn about and react to network events slower (or not at all)
than a hardware device in the data plane: given a delayed and
inconsistent view, a controller (and accordingly the network) may
behave in an undesirable way. Similarly, new rules or rule updates
communicated from the controller(s) to the switch(es) may take
effect in a delayed and asynchronous manner: not only because
these updates have to be transmitted from the controller to the
switches over the network, but also the reaction time of the switches
themselves may differ (depending on the specific hardware, data
structures, or concurrent load).

Thus, while SDN offers great opportunities to operate a network
in a correct and verifiable manner, there remains a fundamental
challenge of how to deal with the asynchrony inherent in the com-
munication channel between controller and switches as well as in

ar
X

iv
:1

60
9.

02
30

5v
1

 [
cs

.N
I]

 8
 S

ep
 2

01
6

the switches themselves. Accordingly, the question of how to update
network behavior and configurations correctly yet efficiently has
been studied intensively over the last years. However, the notions of
correctness and efficiency significantly differs across the literature.
Indeed, what kind of correctness is needed and which performance
aspects are most critical often depends on the context: in security-
critical networks, a very strong notion of correctness may be needed,
even if it comes at a high performance cost; in other situations,
however, short transient inconsistencies may be acceptable, as long
as at least some more basic consistency guarantees are provided
(e.g., loop-freedom).

We observe that not only the number of research results in the
area is growing very quickly, but also the number of models, the
different notions of consistency and optimization objectives, as well
as the algorithmic techniques. Thus, it has become difficult to keep
an overview of the field even for active researchers. Moreover, we
observe that many of the underlying problems are not entirely new
or specific to SDN: rather, similar consistency challenges arose
and have been studied already in legacy networks, although update
algorithms in legacy protocols are often more distributed and indirect
(e.g., based on IGP weights).

Accordingly, we believe that it is time for a comprehensive survey
of the subject.

1.1 The Network Update Problem
Any dependable network does not only need to maintain a range

of static invariants, related to correctness, availability, and perfor-
mance, but also needs to be flexible and support reconfigurations and
updates. Reasons for updating a network are manifold, including:

1. Change in the security policy: Due to a change in the enter-
prise security policy, traffic from one subnetwork may have to
be rerouted via a firewall before entering another subnetwork.
Or, in the wide-area network, the set of countries via which it
is safe to route sensitive traffic may change over time.

2. Traffic engineering: In order to improve traffic engineering
metrics (e.g., minimizing the maximal link load), a system
administrator or operator may decide to reroute (parts of)
the traffic along different links. For example, many Internet
Service Providers switch between multiple routing patterns
during the day, depending on the expected load. These pat-
terns may be precomputed offline, or may be computed as a
reaction to an external change (e.g., due to a policy change of
a Content Distribution Provider).

3. Maintenance work: Also maintenance work may require the
update of network routes. For example, in order to replace
a faulty router, or to upgrade an existing router, it can be
necessary to temporarily reroute traffic.

4. Link and node failures: Failures happen quite frequently and
unexpectedly in today’s computer networks, and typically
require a fast reaction. Accordingly, fast network monitoring
and update mechanisms are required to react to such failures,
e.g., by determining a failover path.

Despite these changes, it is often desirable that the network main-
tains certain minimal consistency properties, during the update. For
example, per-packet consistency (a packet should be forwarded
along the old or the new route, but never a mixture of both), loop-
freedom (at no point in time are packets forwarded along a loop), or
waypoint enforcement (a packet should never bypass a firewall).

Moreover, while the reasons for network updates identified above
are general and relevant in any network, both software-defined

and traditional, we believe that the flexibilities introduced by pro-
grammable networks are likely to increase the frequency of network
updates, also enabling, e.g., a more fine-grained and online traffic
engineering [35].

1.2 Our Contributions
This paper presents a comprehensive survey of the consistent

network update problem. We identify and compare the different no-
tions of consistency as well as the different performance objectives
considered in the literature. In particular, we provide an overview
of the algorithmic techniques required to solve specific classes of
network update problems, and discuss inherent limitations and trade-
offs between the achievable level of consistency and the speed at
which networks can be updated. In fact, as we will see, some update
techniques are not only less efficient than others, but with them, it
can even be impossible to consistently update a network.

While our survey is motivated by the advent of Software-Defined
Networks (SDNs), the topic of consistent network updates is not
new, and for example, guaranteeing disruption-free IGP operations
has been considered in several works for almost two decades. Ac-
cordingly, we also present a historical perspective, surveying the
consistency notions provided in traditional networks and discussing
the corresponding techniques accordingly. Moreover, we put the
algorithmic problems into perspective and discuss how these prob-
lems relate to classic optimization and graph theory problems, such
as multi-commodity flow problems or maximum acyclic subgraph
problems.

The goal of our survey is to (1) provide active researchers in the
field with an overview of the state-of-the-art literature, but also to (2)
help researchers who only recently became interested in the subject
to bootstrap and learn about open research questions.

1.3 Paper Organization
The remainder of this paper is organized as follows. §2 presents

a historical perspective and reviews notions of consistency and tech-
niques both in traditional computer networks as well as in Software-
Defined Networks. §3 then presents a classification and taxonomy
of the different variants of the consistent network update problems.
§4, §5, and §6 review models and techniques for connectivity con-
sistency, policy consistency, and performance consistency related
problems, respectively. §7 discusses proposals to further relax con-
sistency guarantees by introducing tighter synchronization. In §8,
we identify practical challenges. After highlighting future research
directions in §9, we conclude our paper in §10.

2. THE NETWORK UPDATE PROBLEM
FROM THE ORIGINS TO SDN

Any computer network needs to provide basic mechanisms and
protocols to change forwarding rules and network routes, and hence,
the study of consistent network updates is not new and the topic to
some extent evergreen. For example, a forwarding loop can quickly
deplete switch buffers and harm the availability and connectivity
provided by a network, and protocols such as the Spanning Tree
Protocol (STP) have been developed to ensure loop-free layer-2
forwarding at any time. However, consistency problems may also
arise on higher layers in the OSI stack.

In this section, we provide a historical perspective on the many re-
search contributions that lately focused on guaranteeing consistency
properties during network updates, that is, while changing device
configurations (and how they process packets).

We first discuss update problems and techniques in traditional
networks (§2.1-2.2). In those networks, forwarding entries are com-
puted by routing protocols that run standardly-defined distributed

algorithms, whose output is influenced by both network topology
(e.g., active links) and routing configurations (e.g., logical link costs).
Pioneering works then aimed at avoiding transient inconsistencies
due to modified topology or configurations, mainly focusing on
IGPs, i.e., the routing protocols that control forwarding within a sin-
gle network. A first set of contributions tried to modify IGP protocol
definitions, mainly to provide forwarding consistency guarantees
upon link or node failures. Progressively, the research focus has
shifted to a more general problem of finding a sequence of IGP
configuration changes that lead to new paths while guaranteeing
forwarding consistency, e.g., for service continuity (§2.1). More
recent works have also considered reconfigurations of protocols dif-
ferent or deployed in addition to IGPs, mostly generalizing previous
techniques while keep focusing on forwarding consistency (§2.2).

Subsequently (§2.3), we discuss update problems tackled in the
context of logically-centralized networks, implementing the Soft-
ware Defined Networking (SDN) paradigm. SDN is predicated
around a clear separation between controller (implementing the con-
trol logic) and dataplane elements (applying controller’s decision
on packets). This separation arguably provides new flexibility and
opens new network design patterns, for example, enabling security
requirements to be implemented by careful path computation (done
by the centralized controller). This also pushed network update tech-
niques to consider additional consistency properties like policies
and performance.

We rely on the generic example shown in Fig. 1 for illustration.
The figure shows the intended forwarding changes to be applied for
a generic network update. Observe that possible forwarding loops
can occur during this update because edges (v1, v2) and (v2, v3) are
traversed in opposite directions before and after the update.

s	

v2	

v3	

v1	

d	

(a) Surpassed state

s	

v2	

v3	

v1	

d	

(b) Down state

Figure 1: A network update example, where forwarding paths
have to be changed from the Surpassed (Fig. 1a) to the Down
(Fig. 1b) state. Arrows represent paths on which traffic (e.g.,
from s to d) is forwarded, while (gray) undirected edges be-
tween nodes represent unused links.

2.1 IGP Reconfigurations
In traditional (non-SDN) networks, forwarding paths are com-

puted by distributed routing protocols. Link-state Interior Gateway
Protocols (IGPs) are the most popular of those protocols used to
compute forwarding paths within a network owned by the same
administrative entity. Link-state IGPs are based on computing
shortest-paths on a weighted graph, representing a logical view
of the network, which is shared across routers. Parameters influenc-
ing IGP computations, like link weights of the shared graph, are set
by operators by editing router configurations.

As an illustration, Fig. 2 shows a possible implementation for
the update example presented in Fig. 1. In particular, Fig. 2 reports
the IGP graph (consistent with the physical network topology) with
explicit mention of the configured link weights. Based on those
weights, for each destination (e.g., d in this example), all routers

independently compute the shortest paths, and forward the corre-
sponding packets to the next-hops on those paths. Consequently,
the IGP configurations in Figs. 2a and 2b respectively produce the
forwarding paths depicted in Figs. 1a and 1b.

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

(a) Surpassed state

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

(b) Down state

Figure 2: Possible implementation of pre- and post-update for-
warding paths for the update in Fig. 1 in a traditional, IGP-
based network. Numbers close to network links represent the
corresponding IGP weights.

When the IGP graph is modified (e.g., because of a link failure, a
link-weight change or a router restart), messages are propagated by
the IGP itself from node to node, so that all nodes rebuild a consis-
tent view of the network: This process is called IGP convergence.
However, IGPs do not provide any guarantee on the time and order
in which nodes receive messages about the new IGP graphs. This po-
tentially triggers transient forwarding disruptions due to temporary
state inconsistency between a set of routers. For example, assume
that we simply remove link (v3, d) from the IGP graph shown in
Fig. 2a. This will eventually lead us to the configuration presented
in Fig. 2b. Before the final state is reached, the notification that
(v3, d) is removed has to be propagated to all routers. If v3 receives
such notification before v2 (e.g., because closer to the removed link),
then v3 would recompute its next-hop based on the new information,
and starts forwarding packets for d to v2 (see Fig. 1b). Nevertheless,
v2 keeps forwarding packets to v1 as it still forwards as (v3, d) is
still up. This creates a loop between v3 and v2: The loop remains
until v2 is notified about the removed link. A similar loop can occur
between v2 and v1.

Guaranteeing disruption-free IGP operations has been considered
by research and industry since almost two decades. We now briefly
report on the main proposals.

Disruption-free IGPs have been studied. Early contributions fo-
cused on modifying the routing protocols, mainly to avoid forward-
ing inconsistencies. Among them, protocol extensions have been
proposed [76, 86, 88] to gracefully restart a routing process, that is,
to avoid forwarding disruptions (e.g., blackholes) during a software
update of a router. Other works focused on preserving forwarding
consistency, that is, avoiding loops, upon network failures. For
example, François et al. [21] propose oFIB, an IGP extension that
guarantees the absence of forwarding loops after topological changes
(link/node addition or removal). The key intuition behind oFIB is to
use explicit synchronization between routers in order to constrain
the order in which each node changes its forwarding entries. In par-
ticular, each router (say, v2 in our example) is forced not to update
its forwarding entry for a given destination (d in our example) until
all its final next-hops (v1) use their own final next-hops (d in our
case). Fu et al. [24] generalize the previous approach by defining
a loop-free ordering of IGP-entry updates for arbitrary forwarding
changes. Moreover, PLSN [87] specializes oFIB: It allows routers
to dynamically avoid loops by locally delaying forwarding changes
that are not safe. A variant of oFIB, studied by Shi et al. [89], also

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

(a) Initial

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10⟿31	

(b) Step 1

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

31⟿51	

(c) Step 2

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

51⟿∞	

(d) Final

Figure 3: Illustration of how intermediate IGP weights (for link (v3, d) in this case) enable to achieve a loop-free reconfiguration for
the update example in Fig. 1.

extends the reconfiguration mechanism to consider traffic congestion
in addition to forwarding consistency.

Modifying protocol specifications may seem the most straightfor-
ward solution to deal with reconfigurations in traditional networks,
but it actually has practical limitations. First, this approach cannot
accommodate custom reconfiguration objectives. For instance, or-
dered forwarding changes generally work only on a per-destination
basis [21], which can make the reconfiguration process slow if many
destinations are involved – while one operational objective could
be to exit transient states as quickly as possible. Second, protocol
modifications are typically targeted to specific reconfiguration cases
(e.g., single-link failures), since it is technically hard to predict the
impact of any configuration change on forwarding paths. Finally,
protocol extensions are not easy to implement in current IGPs, be-
cause of the need for passing through vendors (to change proprietary
router software), the added complexity and the potential overhead
(e.g., load) induced on routers.

Limited practicality of protocol modifications quickly motivated
new approaches, based on coordinating operations in order to eventu-
ally replace the initial configuration with the final one on all network
nodes, while guaranteeing absence of disruptions throughut the
process. Those approaches, summarized in the following, mainly
focused on support for planned operations.
Optimization algorithms can minimize disruptions. As a first
attempt, Keralapura et al. [45] studied the problem of finding the
optimal way in which devices and links can be added to a network
to minimize disruptions. Many following contributions focused on
finer-grained operations to gain additional degrees of freedom in
IGP reconfiguration problems.

A natural choice among finer-grained operations readily sup-
ported by traditional routers is tweaking IGP link weights. For
example, in [80] and [81], Raza et al. propose a theoretical frame-
work to formalize the problem of minimizing a certain disruption
function (e.g., link congestion) when the link weights have to be
changed. The authors also propose a heuristic to find an ordering in
which to modify several IGP weights within a network, so that the
number of disruptions is minimal.

While easily applicable to real reconfiguration cases, those ap-
proaches assume primitives which are quite coarse grained (e.g.,
addition of a link, or weight changes), and cannot guarantee the
absence of disruptions in several cases: The scenario in Fig. 2 is
an example where coarse-grained operations (link removal) cannot
prevent forwarding loops.
Progressively changing link weights can avoid loops. Intermedi-
ate IGP link weights can be used during a reconfiguration to avoid
disruptions – at the cost of increasing the size of the update sequence
and slowing down the update. Consider again the example in Fig. 2,
and let the final weight for link (v3, d) conventionally be ∞. In

this case, the forwarding loops potentially triggered by the IGP re-
configuration can be provably prevented by using two intermediate
weights for link (v3, d), as illustrated in Fig. 3. The first of those
intermediate weights (see Fig. 3b) is used to force v1 and only v1 to
change its next-hop, from v2 to d: Intuitively, this prevents the loop
between v2 and v1. The second intermediate weight (see Fig. 3c)
similarly guarantees that the loop between v3 and v2 is avoided, i.e.,
by forcing v2 to use its final next-hop before v3. Of course, find-
ing intermediate weights that guarantee the absence of disruptions
becomes much trickier when multiple destinations are involved.

Such a technique can be straightforwardly applied to real routers.
For example, an operator can progressively change the weight of
(v3, d) to 31 by editing the configuration of v3 and d, then check
that the all IGP routers have converged on the paths in Fig. 3b, repeat
similar operations to reach the state in Fig. 3c, and safely remove
the link. Even better, it has been shown [23] that a proper sequence
of intermediate link weights can always avoid all possible transient
loops for any single-link reweighting. Obviously, the weight can
be changed on multiple links in a loop-free way, by progressively
reweighting links one by one.

Additional research contributions then focused on minimizing the
number of intermediate weights that ensure loop-free reconfigura-
tions. Surprisingly, the problem is not computationally hard, despite
the fact that all destinations have potentially to be taken into account
when changing link weights. Polynomial-time algorithms have been
proposed to support planned operations at the per-link [12, 23] (e.g.,
single-link reweighting) and at a per-router [13, 14] (e.g., router
shutdown/addition) granularity.

Ships-in-the-Night (SITN) techniques generalize the idea of in-
cremental changes to avoid loops. To improve the update speed in
the case of many link changes and deal with generalized reconfigu-
rations (from changing routing parameters to replacing an IGP with
another), both industrial best practices and research works often
rely on a technique commonly called Ships-in-the-Night [29]. This
technique builds upon the capability of traditional routers to run
multiple routing processes at the same time. Thanks to this capa-
bility, both the initial and final configurations can be installed (as
different routing processes) on all nodes at the same time. Fig. 4
shows the setup for a Ships-in-the-Night reconfiguration for the
reconfiguration case in Fig. 2.

In SITN, the reconfiguration process then consists in swapping
the preference of the initial configuration with the final one on every
node, potentially for a single destination. Hence, at any moment
in time, every node uses only one of the two configurations, but
different nodes can use different configurations. This implies that
(1) for each destination, every switch either uses its initial next-hops
or its final ones, meaning that the update does not add overhead
to the hardware memory of any node; but (2) inconsistencies may

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

50	
50	

50	
10	

10	

Figure 4: Ships-in-the-Night setup: All routers run two routing
processes, one with the initial configuration (blue, solid lines)
and the other with the final configuration (green, dashed and
dotted segments).

arise from the mismatch between routing processes used by distinct
nodes. For example, Fig. 5 shows a SITN-based reconfiguration that
mimicks the progressive link weight increment depicted in Fig. 3.

SITN reconfiguration techniques are more powerful than IGP
link reweighting. The Ships-in-the-Night framework enables to
change the forwarding next-hop of each router independently from
the others, hence providing a finer-grained reconfiguration primitive
with respect to IGP weight modifications (which influence all routers
for all destinations). Moreover, SITN techniques can be applied
to arbitrary changes of the IGP configuration, rather than just link
reweighting.

On the flip side, the Ships-in-the-Night approach also opens a new
algorithmic problem, that is, to decide a safe order in which to swap
preferences on a per-router basis. Indeed, naive approaches in swap-
ping configuration preferences cannot guarantee disruption-free
reconfigurations. For example, replacing the initial configuration
with the final one on all nodes at once provides no guarantee on the
order in which new preferences are applied by nodes, hence poten-
tially triggering packet losses and service disruptions (in addition
to massive control-plane message storms). Even worse, such an
approach could leave the network in an inconsistent, disrupted and
hard-to-troubleshoot state if any reconfiguration command is lost or
significantly delayed. Similarly, industrial best practices (e.g., [29,
78]) only provide rules of thumb which do not apply in the general
case, and do not guarantee lossless reconfiguration processes.

To guarantee the absence of disruptions, configuration prefer-
ence must then be swapped incrementally, in a carefully-computed
order [93]. This called for research contributions. Prominently,
Vanbever et al. [93, 94] proposed various algorithms (based on
Linear Programming, and heuristic ones) to deal with many more
IGP reconfiguration scenarios, including the simultaneous change
of multiple link weights, the modification of other parameters (e.g.,
OSPF areas) influencing IGP decisions, and the replacement of one
IGP protocol with another (e.g., OSPF with IS-IS). To minimize the
update time, the proposed algorithms also try to touch each router
only once, i.e., modifying its forwarding entries to all possible des-
tinations altogether. As such, they also generalize the algorithms
behind protocol-modification techniques, especially oFIB [21], that
restrict to per-destination operational orderings. Beyond providing
ordering algorithms, [93, 94] also describe comprehensive system
to carry out loop-free IGP reconfigurations in automatically or semi-
automatically, i.e., possibly waiting the input from the operator
to perform the next set of operations in the computed operational
sequence.

2.2 Generalized Routing Reconfigurations in
Traditional Networks

Research contributions have been devoted to reconfigurations in
more realistic settings, including other protocols than just an IGP.
Enterprise networks, with several routing domains. As a first
example, the Ships-in-the-Night framework has been used to carry
out IGP reconfigurations in enterprise networks. Those networks
typically use route redistribution [50], a mechanism enabling the
propagation of information from one routing domain (e.g., running
a given IGP) to another (e.g., running a different IGP). Unfortu-
nately, route redistribution may be responsible for both routing
(inability to converge to a stable state) and forwarding (e.g., loop)
anomalies [50]. Generalized network update procedures have been
proposed in [98] to avoid transient anomalies while (i) reconfig-
uring a specific routing domain without impacting another, and/or
(ii) arbitrarily changing the size and shape of routing domains.
Internet Service Providers (ISPs), with BGP and MPLS. In ISP
networks, the BGP and often MPLS protocols are pervasively used
to manage transit Internet traffic, for which both the source and the
destination is external to the network. Vanbever et al. [92] showed
that even techniques guaranteeing safe IGP reconfigurations can
cause transient forwarding loops in those settings, because of the
interaction between IGP and BGP. They also proved conditions to
avoid those BGP-induced loops during IGP reconfigurations, by
leveraging MPLS or BGP configuration guidelines.

In parallel, a distinct set of techniques aimed at supporting BGP
reconfigurations. Those contributions range from mechanisms to
avoid churn of BGP messages during programmed operations (e.g.,
router reboots or BGP session maintenance [22]) to techniques for
safely moving virtual routers [101] or part of physical-router con-
figuration (e.g., BGP sessions) [44]. A framework that guarantees
strong consistency for arbitrary changes of the BGP configuration is
presented in [99]: It is based on implemeting Ships-in-the-Night in
BGP and using packet tags to uniformly apply either the initial or
the final forwarding at all routers.

Internet-level problems, like maintaining global connectivity upon
failures, have also been explored (see, e.g., [48]).
Protocol-independent reconfiguration frameworks. By design,
all the above approaches are dependent on the considered (set of)
protocols and even on their implementation.

Protocol-independent reconfiguration techniques have also been
proposed. Prominently, in [1], Alimi et al. generalize the ship-in-
the-night technique, by re-designing the router architecture. This
re-design would allow routers not only to run multiple configurations
simultaneously but also to select the configuration to be applied on
every packet based on the value of a specific bit in the packet header.
The authors also describe a commitment protocol to support the
switch between configurations without creating forwarding loops.

Mechanisms for consensus routing have been explored in [38].

2.3 Software-Defined Networks
Recently, Software Defined Networking (SDN) has grown in

popularity, thanks to its promises to spur abstractions, mitigate com-
pelling management problems and avoid network ossification [62].

Software-defined networks differ from traditional ones from an
architectural viewpoint: In SDN, the control is outsourced and con-
solidated to a logically-centralized element, the network controller,
rather than having devices (switches and routers) run their own
distributed control logic. In pure SDN networks, the controller com-
putes (according to operators’ input) and installs (on the controlled
devices) the rules to be applied to packets traversing the network: No
message exchange or distributed computation are needed anymore
on network devices.

Fig. 6 depicts an example of an SDN network, configured to im-
plement the initial state of our update example (see Fig. 1). Beyond

d	 v3	

s	 v1	

v2	

(a) Initial

d	 v3	

s	 v1	

v2	

(b) Step 1

d	 v3	

s	 v1	

v2	

(c) Step 2

d	 v3	

s	 v1	

v2	

(d) Final

Figure 5: Illustration of a Ships-in-the-Night reconfiguration that mimicks the progressive link reweighting shown in Fig. 3. In each
figure, the colors of router names indicate their respective control-plane preferences at the represented reconfiguration step.

the main architectural components, the figure also illustrate a classic
interaction between them. Indeed, the dashed lines indicate that the
SDN controller instructs the reprogrammable network devices, typi-
cally switches [62]), on how to process (e.g., forward) the traversing
packets. An example command sent by the controller to switch s is
also reported next to the dashed line connecting the two.

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(v1)	

SDN	
controller	

Figure 6: Implementation of the surpassed state in Fig. 1 in an
SDN network.

The SDN architecture makes the role of network updates even
more frequent and critical than in traditional networks. On the
one hand, controllers are often intended to support several differ-
ent requirements, including performance (like optimal choice of
per-flow paths), security (like firewall and proxy traversal) and
packet-processing (e.g., through the optimized deployment of virtu-
alized network functions) ones. On the other hand, devices cannot
provide any reaction (e.g., to topological changes) like in traditional
networks. In turn, this comes at the risk of triggering inconsistencies,
e.g., creating traffic blackholes during an update, that are provably
impossible to trigger by reconfiguring current routing protocols [96].
As a consequence, the controller has to carry out a network update
for every event (from failures to traffic surges and requirement mod-
ification) that can impact the computed forwarding entries, while
typically supporting more critical consistency guarantees and per-
formance objectives than in traditional networks.

An extended corpus of SDN update techniques have already been
proposed in the literature, following up on the large interest raised
by SDN in the last decade. This research effort nicely complements
approaches to specify [20], compile [9, 75], and check the imple-
mentation of [42, 43] network requirements specified by operators
in SDN networks.

Historically speaking, the first cornerstone of SDN updates is
represented by the work by Reitblatt et al. in [82, 83]. This work
provides a first analysis of the additional (e.g., security) require-
ments to be considered for SDN updates, extending the scope of
consistency properties from forwarding to policy ones. In particular,
it focuses on per-packet consistency property, imposing that packets

have to be forwarded either on their initial or on their final paths
(never a combination of the two), throughout the update.

The technical proposal is centered around the 2-phase commit
technique, which relies on tagging packets at the ingress so that
either all initial rules or all final ones can be consistently applied
network-wide. Initially, all packets are tagged with the “old label”
(e.g., no tag) and rules matching the old label are pre-installed on
all the switches. In a first step, the controller instructs the internal
switches to apply the final rule to packets carrying the “new label”
(i.e., no packet at this step). After the internal switches have con-
firmed the successful installation of these new rules, the controller
then changes the tagging policy at the ingress switches, requiring
them to tag packets with the “new label”. As a result, packets are
immediately forwarded along the new paths. Finally, the internal
switches are updated (to remove the old rules), and an optional
cleaning step can be applied to remove all tags from packets. Fig. 7
shows the operational sequence produced by the 2-phase commit
technique for the update case in Fig. 3.

Several works have been inspired by the 2-Phase technique pre-
sented in [82]. On the one hand, a large set of contributions fo-
cused on additional guarantees that can be provided by building
upon that technique, e.g., to avoid congestion during SDN updates
(from [31] to [6, 7, 19, 37, 52, 56, 102]). On the other hand, several
algorithms [16, 18, 53, 54, 94] to compute a set of ordered rule
replacements have been proposed to deal with specific SDN update
cases (e.g., where only forwarding consistency is needed) avoid
adding rules and wasting critical network resources (i.e., expensive
and rare switch TCAM memory slots).

In the following sections, we detail most of those contributions
and the insights on different update problems that globally emerge
from them.

3. TAXONOMY
With this historic perspective and traditional network update prob-

lems and techniques in mind, we now present a general formulation
of network update problem (§3.1), which abstracts from assumptions
and settings considered in different works. This formulation enables
us to classify research contributions on the basis of the proposed
techniques (e.g., simultaneous usage of multiple configurations on
nodes or not) and algorithms, independently of their application to
traditional and SDN networks (§3.2).

3.1 Generalized Network Update Problems
In order to compare and contrast research contributions, we first

provide a generalized statement for network update problems. We
use again Fig. 1 for illustration.

Basic Problem. Generally speaking, a network update problem
consists in computing a sequence of operations that changes the

d	 v3	

s	 v1	

v2	

dst(d),	 tag	 à	 fwd(d)	

dst(d),	 tag	 à	 fwd(v1)	

(a) Step 1

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(v1),tag	

dst(d)	
à	 fwd(v

2),tag	

(b) Step 2

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(d)	

dst(d)	 à	 fwd(v1)	

(c) Step 3

Figure 7: Application of the 2-phase commit technique for carrying out our update example (see Fig. 3). A final (optional) step
consists in cleaning the configuration by removing packet tags, i.e., reverting tagging at v3 and s as enforced by Step 2.

packet-processing rules installed on network devices. Consider any
communication network: It is composed by a given set of inter-
connected devices, that are able to process (e.g., forwarding to the
next hop) data packets according to rules installed on them. We
refer to the set of rules installed on all devices at a given time
as network state at that time. Given an initial and final state, a
network update consists in passing from the initial state to the final
one by applying operations (i.e., adding, removing or changing
rules) on different devices. In Fig. 1, the initial state forces packets
from source s to destination d along the path (s, v1, v2, v3, d). In
contrast, the final state forwards the same packets over (s, v1, d), as
well as packets from v3 to d on (v3, v2, v1, d). The network update
problem consists in replacing the initial rules with the final ones, so
that the paths for d are updated from (s, v1, v2, v3, d) to (s, v1, d)
and (v3, v2, v1, d).

Operations. To perform a network update, a sequence of operations
has to be computed. By operation, we mean any modification
of a device behavior in processing packets. As an example, an
intuitive and largely-supported operation on all network devices
is rule replacement: instructing any device (e.g., v3) to replace an
initial rule (e.g., forward the s − d packet flow to v2) with the
corresponding final one (e.g., forward the s− d flow to d).

Consistency. The difficulty in solving network update problems
is that some form of consistency must be guaranteedly preserved
throughout the update, for practical purposes like avoiding service
disruptions and packet losses. Preserving consistency properties,
in turn, depends on the order in which operations are executed by
devices – even if both the initial and the final states comply with
those properties. For example, if v3 replaces its initial rule with its
final one before v2 in Fig. 1, then the operational sequence triggers
a forwarding loop between v2 and v3 that interrupts the connectiv-
ity from s to d. In §3.2, we provide an overview of consistency
properties considered in prior work.

The practical need for guaranteeing consistency has two main
consequences. First, it forces network updates to be carried out incre-
mentally, i.e., conveniently scheduling operations over time so that
the installed sequence of intermediate states is provably disruption-
free. Second, it requires a careful computation of operational
sequences, implementing specific reasoning in the problem-solving
algorithms (e.g., to avoid replacing v3’s rule before v2’s one in the
previous example).

Performance. Another algorithmic challenge consists in optimiz-
ing network-update performance. As an example, minimizing the
time to complete an update is commonly considered among those
optimization objectives. Indeed, carrying out an update generally
requires to install intermediate configurations, and in many cases it
is practically desirable to minimize the time spent in such interme-

diate states. We provide a broader overview of performance goals
considered by previous works in §3.2.
Final Operational Sequences. Generally, the solution for an up-
date problem can be represented as a sequence of steps or rounds,
that both guarantees consistency properties and optimizes update
performance. Each step is a set of operations that can be started
at the same time. Note that this does not mean that operations in
the same step are assumed to be executed simultaneously on the
respective devices. Rather, all operations in the same step can be
started in parallel because target consistency properties are guaran-
teed irrespectively of the respective order in which those operations
are executed. Examples of operational sequences, computed by
different techniques, are reported in §2 (see Figs. 3 and 5).

3.2 Update Techniques
In this section, we provide an overview of the problem space

and classify existing models and techniques. Previous contributions
have indeed considered several variants of the generalized network
update problem as we formulated in §3.1. Those variants differ
in terms of both consistency constraints, performance goals and
operations that can be used to solve an update problem.
Routing Model. We can distinguish between two alternative routing
models: destination-based and per-flow routing.

1. Destination-based Routing: In destination-based routing,
routers forward packets based on the destination only. An
example for destination-based routing is IP routing, where
routers forward packets based on the longest common IP
destination prefix. In particular, destination-based routing de-
scribes confluent paths: once two flows from different sources
destined toward the same destination intersect at a certain
node, the remainder (suffix) of their paths will be the same. In
destination-based routing, routers store at most one forward-
ing rule per specific destination.

2. Per-flow Routing: In contrast, according to per-flow routing,
routes are not necessarily confluent: the forwarding rules at
the routers are defined per-flow, i.e., they may depend not
only on the destination but for example also on the source.
In traditional networks, flows and per-flow routing could for
example be implemented using MPLS: packets belonging to
the same equivalence class resp. packets with the same MPLS
tag are forwarded along the same path.

Operations. Techniques to carry out network updates can be clas-
sified in broad categories, depending on the operations that they
consider.

1. Rule replacements: A first class of network update algo-
rithms is based on partitioning the total set of updates S

to be made at the different switches into different rounds:
S = (S1, S2, . . . , Sk), where Si∩Sj = ∅ for all i, j ∈ [1, k]
and where St denotes the set of switches which is updated
in round t. Consistent node ordering update schedules have
the property that the updates in each round St may occur
asynchronously, i.e., in an arbitrary order, without violating
the desired consistency properties (e.g., loop-freedom). The
next batch of updates St+1 is only issued to the switches after
the successful implementation of the St updates has been
confirmed (i.e., ACKed) by the switches.

2. Rule additions: A second class of network update algorithms
is based on adding rules to guarantee consistency during the
update. The following two main variants of this approach
have been explored so far.

(a) 2-Phase commit: In this case, both the initial and the
final rules are installed on all devices in the central steps
of the updates. Packet are tagged at the border of the
network to enforce that the internal devices either (i) all
use the initial rules, or (ii) all use the final rules. See
Fig. 7 for an example.

(b) Additional helper rules: For the purpose of the update,
additional rules may be introduced temporarily, which
do not belong neither to the old path nor to the new
path. These rules allow to divert the traffic temporarily
to other parts of the network, and are called helper rules.

Consistency properties. Another canonical classification can be
defined along the fundamental types of consistency properties:

1. Connectivity consistency: The most basic form of consis-
tency regards the capability of the network to continuously
deliver packets to their respective destinations, throughout the
update process. This boils down to guaranteeing two correct-
ness properties: absence of blackholes (i.e., paths including
routers that cannot forward the packets further) and absence of
forwarding loops (i.e., packets bouncing back and forth over
a limited set of routers, without reaching their destinations).

2. Policy consistency: Paths used to forward packets may be
selected according to specific forwarding policies, for ex-
ample, security ones imposing that given traffic flows must
traverse specific waypoints (firewalls, proxies, etc.). In many
cases, those policies have to be preserved during the update.
Generally speaking, policy consistency properties impose con-
straints on which paths can be installed during the update (as
a consequence of the partial application of an operational
sequence). For example, a well-studied policy consistency
property, often referred to as strong consistency, requires that
packets are always forwarded along either the pre-update or
the post-update paths, but never a combination of the two.

3. Performance consistency: A third class of consistency prop-
erties takes into account actual availability and limits of net-
work resources. For instance, many techniques account for
traffic volumes and the corresponding constraints raised by
the limited capacity of network links: They indeed aim at
respecting such constraints in each update step, e.g., to avoid
transient congestion during updates.

This classification is also reflected in the structure of this survey.
Performance goals. We can distinguish between three broad classes
of performance goals.

Round-Based

Objectives

P
er

-P
ac

k
et

 C
o
n

si
st

en
cy

Connectivity Consistency Policy Consistency

L
o
o

p
 F

re
ed

o
m

W
ay

p
o

in
t

E
n
fo

rc
em

en
t

B
la

ck
h

o
le

F
re

ed
o

m

Taxonomy of Consistent

Network Update Problems

Linked-Based

Objectives

Cross-Flow

Objectives

Augmentation Touches

Performance Consistency

C
o

n
g

es
ti

o
n
-A

w
ar

e

L
at

en
cy

-A
w

ar
e

Figure 8: Types of consistent network update problems.

1. Link-based: A first class of consistent network update proto-
cols aims to make new links available as soon as possible, i.e.,
to maximize the number of switch rules which can be updated
simultaneously without violating consistency.

2. Round-based: A second class of consistent network update
protocols aims to minimize the number of inter-actions be-
tween the controller and the switches.

3. Cross-Flow Objectives: A third class of consistent network
update protocols targets objectives arising in the presence of
multiple flows.

(a) Augmentation: Minimize the extent to which link ca-
pacities are oversubscribed during the update (or make
the update entirely congestion-free).

(b) Touches: Minimize the number of interactions with the
router.

Link-based and round-based objectives are usually considered
for node-ordering algorithms and for weak-consistency models.
Congestion-based objectives are naturally considered for capaci-
tated consistency models.

Fig. 8 gives an overview of different types of network update
problems.

4. CONNECTIVITY CONSISTENCY
In this section, we focus on update problems where the main con-

sistency property to be guaranteed concerns the delivery of packets
to their respective destinations. Packet delivery can be disrupted dur-
ing an update by forwarding loops or blackholes transiently present
in intermediate states. We separately discuss previous results on
how to guarantee loop-free and blackhole-free network updates. We
start from the problem of avoiding forwarding loops during updates,
because they are historically the first update problems considered –
by works on traditional networks (see §2). This is also motivated by
the fact that blackholes cannot be created by reconfiguring current
routing protocols, as proved in [96]. We then shift our focus on
avoiding blackholes during arbitrary (e.g., SDN) updates.

4.1 Loop-Freedom
Loop-freedom is a most basic consistency property and has hence

been explored intensively already.

4.1.1 Definitions
We distinguish between flow-based and destination-based routing:

in the former, we can focus on a single (and arbitrary) path from s
to d: forwarding rules stored in the switches depend on both s and
d, can flows can be considered independently. In the latter, switches
store a single forwarding rule for a given destination: once the paths
of two different sources destined to the same destination intersect,
they will be forwarded along the same nodes in the rest of their
route: the routes are confluent.

Moreover, once can distinguish between two different definitions
for loop-free network updates: Strong Loop-Freedom (SLF) and
Relaxed Loop-Freedom (RLF) [54]. SLF requires that at any point in
time, the forwarding rules stored at the switches should be loop-free.
RLF only requires that forwarding rules stored by switches along
the path from a source s to a destination d are loop-free: only a
small number of “old packets” may temporarily be forwarded along
loops.

4.1.2 Algorithms and Complexity
Node-based objective (“greedy approach”). Mahajan and Watten-
hofer [58] initiated the study of destination-based (strong) loop-free
network updates. In particular, the authors show that by scheduling
updates across multiple rounds, consistent update schedules can be
derived which do not require any packet tagging, and which allow
some updated links to become available earlier. The authors also
present a first algorithm that quickly updates routes in a transiently
loop-free manner. The study of this model has been refined in [18,
19], where the authors also establish hardness results. In particular,
the authors prove that for two destinations and for sublinear x, it is
NP-hard to decide if x rounds (cf. round-based objectives) of up-
dates suffice. Furthermore, maximizing the number of rules updated
for a single destination is NP-hard as well, but can be approximated
well.

Ludwig et al. [54, 55] initiated the study of arbitrary route up-
dates: routes which are not necessarily destination-based. The
authors show that the update problem in this case boils down to
an optimization problem on a very simple directed graph: initially,
before the first update round, the graph simply consists of two con-
nected paths, the old and the new route. In particular, every network
node which is not part of both routes can be updated trivially, and
hence, there are only three types of nodes in this graph: the source s
has out-degree 2 (and in-degree 0), the destination d has in-degree
2 (and out-degree 0), and every other node has in-degree and out-
degree 2. The authors also observe that loop-freedom can come in
two flavors, strong and relaxed loop-freedom [54].

Despite the simple underlying graph, however, Amiri et al. [2]
show that the node-based optimization problem is NP-hard, both
in the strong and the relaxed loop-free model (SLF and RLF). As
selecting a maximum number of nodes to be updated in a given
round (i.e., the node-based optimization objective) may also be
seen as a heuristic for optimizing the number of update rounds (i.e.,
the round-based optimization objective), the authors refer to the
node-based approach as the “greedy approach”.

Amiri et al. [2] also present polynomial-time optimal algorithms
for the following scenarios: Both a maximum SLF update set as well
as a maximum RLF update set can be computed in polynomial-time
in trees with two leaves. Regarding polynomial-time approximation
results, the problem is 1/2-approximable in general, both for strong
and relaxed loop-freedom. For additional approximation results for
specific problem instances, we refer the reader to Amiri et al. [2].
Round-based objective (“greedy approach”). Ludwig et al. [54]
initiate the study of consistent network update schedules which
minimize the number of interaction rounds with the controller: How

many communication rounds k are needed to update a network in a
(transiently) loop-free manner?

The authors show that answering this question is difficult in the
strong loop-free case. In particular, they show that while deciding
whether a k-round schedule exists is trivial for k = 2, it is already
NP-complete for k = 3. Moreover, the authors show that there
exist problem instances which require Ω(n) rounds, where n is the
network size. Moreover, the authors show that the greedy approach,
aiming to “greedily” update a maximum number of nodes in each
round, may result in Ω(n)-round schedules in instances which ac-
tually can be solved in O(1) rounds; even worse, a single greedy
round may inherently delay the schedule by a factor of Ω(n) more
rounds.

However, fast schedules exist for relaxed loop-freedom: the au-
thors present a deterministic update scheduling algorithm which
completes in O(logn)-round in the worst case.
Hybrid Approaches. Vissicchio et al. presented FLIP [95], which
combines per-packet consistent updates with order-based rule re-
placements, in order to reduce memory overhead: additional rules
are used only when necessary. Moreover, Hua et al. [32] initiated the
study of adversarial settings, and presented FOUM, a flow-ordered
update mechanism that is robust to packet-tampering and packet
dropping attacks.
Other Objectives. Dudycz et al. [16] initiated the study of how
to update multiple policies simultaneously, in a loop-free manner.
In their approach, the authors aim to minimize the number of so-
called touches, the number of updates sent from the controller to the
switches: ideally, all the updates to be performed due the different
policies can be sent to the switch in one message. The authors estab-
lish connections to the Shortest Common Supersequence (SCS) and
Supersequence Run problems [63], and show NP-hardness already
for two policies, each of which can be updated in two rounds, by a
reduction from Max-2SAT [51].

However, the authors also present optimal polynomial-time al-
gorithms to combine consistent update schedules computed for
individual policies (e.g., using any existing algorithm, e.g., [54, 58]),
into a global schedule guaranteeing a minimal number of touches.
This optimal merging algorithm is not limited to loop-free updates,
but applies to any consistency property: if the consistency prop-
erty holds for individual policies, then it also holds in the joint
schedule minimizing the number of touches. the Shortest Common
Supersequence (SCS) and Supersequence Run [63].

4.1.3 Related Optimization Problems
The link-based optimization problem, the problem of maximizing

the number of links (or equivalently nodes) which can be updated
simultaneously, is an instance of the maximum acyclic subgraph
problem (or equivalently: dual minimum feedback arc set prob-
lem). For the NP-hardness, reductions from SAT and Max-2SAT are
presented.

4.1.4 Concluding Remarks and Open Problems
Loop-free network updates still pose several open problems. Re-

garding the node-based objective, Amiri et al. [2] conjecture that
update problems on bounded directed path-width graphs may still
be solvable efficiently: none of the negative results for bounded
degree graphs on graphs of bounded directed treewidth seem to be
extendable to digraphs of bounded directed pathwidth with bounded
degree. More generally, the question of on which graph families net-
work update problems can be solved optimally in polynomial time in
the node-based objective remains open. Regarding the round-based
objective, it remains an open question whether strong loop-free up-
dates are NP-hard for any k ≥ 3 (but smaller than n): so far only

k = 3 has been proved to be NP-hard. More interestingly, it remains
an open question whether the relaxed loop-free update problem is
NP-hard, e.g., are 3-round update schedules NP-hard to compute
also in the relaxed loop-free scenario? Moreover, it is not known
whether Ω(logn) update rounds are really needed in the worst-case
in the relaxed model, or whether the problem can always be solved
in O(1) rounds. Some brute-force computational results presented
in [54, 58] indicate that if it is constant, the constant must be large.

4.2 Blackhole-Freedom
Another consistency property is blackhole freedom, i.e., a switch

should always have a matching rule for any incoming packet, even
when rules are updated (e.g., removed and replaced). This property
is easy to guarantee by implementing some default matching rule
which is never updated, which however could in turn induce for-
warding loops. A straightforward mechanism, if there is currently
no blackhole for any destination, is to install new rules with a higher
priority, and then delete the old rules [18, 58]. Nonetheless, in the
presence of memory limits and guaranteeing loop-freedom, finding
the fastest blackhole-free update schedule is NP-hard [18].

5. POLICY CONSISTENCY
While connectivity invariants are arguably the most intensively

studied consistency properties in the literature, especially in tradi-
tional networks, operators often have additional requirements to
be preserved. For example, operators want to ensure that packets
traverse a given middlebox (e.g., a firewall) for security reasons or a
chain of middleboxes (e.g., encoder and decoder) for performance
reasons, or that paths comply with Service Level Agreements (e.g.,
in terms of guaranteed delay). In this section, we discuss stud-
ied problems and proposed techniques aiming at preserving such
additional requirements.

5.1 Definitions
Additional requirements on forwarding paths that may have to

be respected during a network update can be modeled by routing
policies, that is, sub-paths that have to be traversed by transient
paths installed during network updates.

Over the years, several contributions have targeted policy-
preserving updates, typically focusing on specific policies. His-
torically, the first policy considered during network updates is per-
packet consistency (PPC), which ensures that every packet travels
either on its initial or on its final paths, never on intermediate ones.
This property is the most natural to (try to) preserve. Assume indeed
that both the initial and the final paths comply with high-level net-
work requirements, e.g., security, performance, SLA policies. The
most straightforward way to guarantee that those requirements are
not violated is to constrain all paths installed during the update to
always be either initial paths or final ones.

Nonetheless, guaranteeing per-packet consistency may be an un-
necessarily strong requirement in practice. Not always it is strictly
needed that transient paths must coincide with either the initial or the
final ones. For example, in some cases (e.g., for enterprise networks),
security may be a major concern, and many security requirements
may be enforced by guaranteeing that packets traverse a firewall.
We refer to this specific case where single nodes (waypoints) have to
be traversed by given traffic flows as waypoint enforcement (WPE).
An example WPE-consistent update is displayed in Fig. 9

More complex policies (i.e., beyond WPE) may also be needed
in general. Indeed, policies to be satisfied in SDN networks tend
to grow in number and complexity over time, because of both new
requirements (e.g., as dictated by use cases like virtualized infras-
tructure and network functions) and novel opportunities (e.g., pro-

s	

v2	

v3	

v1	

d	

(a) Surpassed state

s	

v2	

v3	

v1	

d	

(b) New state

Figure 9: A WPE-consistent update example, taken from [55],
where forwarding paths have to be changed from the Surpassed
(Fig. 9a) to the New (Fig. 9b) state, while preserving traversal of
the waypoint v2 (highlighted in the figure) at any time during
the update.

grammability and flexibility) opened by SDN. For example, it may
desirable that specific traffic flows follow certain sub-paths (e.g.,
with low delay for video streaming and online gaming applications)
or are explitictly denied to pass through other sub-paths (e.g., be-
cause of political or economical constraints). Such arbitrary policies
are also considered in recent SDN update works.

5.2 Algorithms and Complexity
2-Phase commit techniques. As described in §3.2, 2-Phase commit
techniques deploy carry out updates by (1) tagging packets at their
ingress in the network, and (2) using packet tags to use initial or
final paths consistently network-wide. Unsurprisingly, this approach
guarantees per-packet consistency (hence, potentially any policy
satisfied by both pre- and post-update paths).

While the idea is quite intuitive, some support is needed on the
devices, e.g., to tag packets and match packet tags. A framework
to implement this update approach in traditional networks has been
proposed by Alimi et al. in [1]. It requires invasive modification of
router internals, to manage tags and run arbitrary routing processes
in separate process spaces. The counterpart of such a framework
for SDN networks is presented in [82, 83]. Those works avoid the
need for changing device internals since it relies on OpenFlow, the
protocol classically used in SDN networks. They also argue on the
criticality of supporting PPC in the SDN case and the advantages of
integrating 2-phase commit techniques within an SDN controller.

A major downside of 2-phase commit is that it doubles the con-
sumed memory on switches, along with requiring header space,
tagging overhead, and complications with middleboxes changing
tags. It indeed requires devices to maintain both the initial and final
sets of forwarding rules throughout the update, in order to possibly
apply any of the two sets according to packet tags. To mitigate this
problem, a variant of the basic approach has been studied in [41].
The authors of the latter work proposed to break a given update into
several sub-updates, such that each sub-update changes the paths
for a different set of flows. Of course, this approach would make it
longer for the full update to be completed. In other words, it can
limit the memory overhead on each switch at any moment in time
but at the price of slowing down the update.

Actually, the switch-memory consumption of 2-phase commit
techniques remains a fundamental limitation of the approach, which
also motivated the exploration of alternatives.
SDN-based update protocols. McGeer [60, 61] presented two
protocols to carry out network updates and defined on top of Open-
Flow. The first update protocol [60] saves switch resources by
sending packets to the controller during updates. As a result, switch
resources (like precious TCAM entries) are saved, at the cost of

Model NP-hard Polynomial time Remarks
Rounds, strong LF Is there a 3-round loop-free update

schedule? [54] For 2-destination rules
and sublinear x: Is there a x-round

loop-free update schedule? [19]

Is there a 2-round loop-free update
schedule? [54]

In the worst case, Ω(n) rounds may be
required. [54], [18]. O(n)-round

schedules always exist [58]. Both applies
to flow-based & destination-based rules.

Rounds, relaxed LF No results known. O(logn)-round update schedules
always exist. [54]

It is not known whether o(logn)-round
schedules exist (in the worst case). No
approximation algorithms are known.

Links, strong LF Is it possible to update x nodes in a
loop-free manner? [2], [19]

Polynomial-time optimal algorithms
are known to exist in the following
cases: A maximum SLF update set

can be computed in polynomial-time
in trees with two leaves. [2]

The optimal SLF schedule is
2/3-approximable in polynomial time in
scenarios with exactly three leaves. For
scenarios with four leaves, there exists a

polynomial-time 7/12-approximation
algorithm. [2] Approximation algorithms
from maximum acyclic subgraph [2] and

minimum feedback arc set [18] apply.
Links, relaxed LF Is it possible to update x nodes in a

loop-free manner? [2]
Polynomial-time optimal algorithms
are known to exist in the following
cases: A maximum RLF update set

can be computed in polynomial-time
in trees with two leaves. [2]

No approximation results known. [2]

Table 1: Overview of results for loop-freedom. Results/references in italics are in the destination-based model.

adding delay on packet delivery, and consuming network bandwidth
and controller memory. The second update protocol [61] is based
on a logic circuit for the update sequence which requires neither
rule-space overhead nor transferring the packets to the shelter during
the update.

Both proposals need a dedicated protocol which is not currently
supported by devices out of the box.
Rule replacement ordering. Some works explored which policies
can be supported, and how, by only relying on (ordered) rule replace-
ments, given that this both (i) comes with no memory overhead and
(ii) is supported by both traditional and SDN devices.

Some works noticed that PPC can be an unnecessarily strong
requirements in several practical cases. Initial contributions mainly
focused on WPE consistency, e.g., to preserve security policies.
Prominently, [55] studies how to compute quick updates that pre-
serve WPE by only replacing initial with final rules, when any given
flow has to traverse a single waypoint. The authors propose WayUp,
an algorithm that guarantees WPE during the update and terminates
in 4 rounds. However, they also show that it may not be possible
to ensure waypointing through a single node and loop-freedom at
the same time. Fig. 9 actually shows one case in which any rule
replacement ordering either causes a loop or a WPE consistency vi-
olation. Those infeasibility results are extended to waypoint chains
in [53]. In that work, in particular, the authors show that flexibility
in ordering and placing virtualized functions specified by a chain
do not make the update problem always solvable. The two works
also show that it is computationally hard (NP-hard) to even decide if
an ordering preserving both WPE and loop-freedom exists. Mixed
integer program formulations to find an operational are proposed
and evaluated in both cases.

The more general problem of preserving policies defined by op-
erators is tackled in [59]. That paper describes an approach to
(i) model update-consistency properties as Linear Temporal Logical
formulas, and (ii) automatically synthesize SDN updates that pre-
serve input properties. Such a synthesis is performed by an efficient
algorithm based on counterexample-guided search and incremen-
tal model checking. Experimental evidence is provided about the
scalability of the algorithm (up to one-thousand node networks).

Finally, [97] explores algorithmic limitations of guaranteeing per-
packet consistency without relying on state duplication. The work
shows that a greedy strategy implements a correct and complete

approach in this case, meaning that it finds the maximal sequence
of rule replacements that do not violate PPC. Cerny et al. [10]
complement those findings, by presenting a polynomial-time syn-
thesis algorithm that preserves PPC while allowing the maximal
parallelism between per-switch updates. Also, an evaluation on
realistic update cases is presented in [97]. It shows that PPC can
be preserved while replacing many forwarding entries on the ma-
jority of the switches, despite updates can rarely be completed this
way. However, this observation motivates both approaches tailored
to a more restricted family of policies (like WPE-preserving ones,
described above), and efforts for mixed approaches (mixing rule
replacements and duplication, see below).
Mixed approaches. In [97], a basic mixed approach is considered
to ensure PPC in generalized networks running both traditional and
SDN control-planes (or any of the two). This approach consists in
first computing the maximal sequence of rule replacements that pre-
serve PPC, and then applying a restricted 2-phase commit procedure
on a subset of (non-ordered) devices and flows.

Vissicchio et al. [95] propose an algorithm addressing a larger
set of update problems with a more general algorithmic approach,
but restricting to SDN networks. This work focuses on the problem
of preserving generic policies during SDN updates. For each flow,
a policy is indeed defined as a set of paths so that the flow must
traverse any of those paths in each intermediate state. The proposed
algorithm interleaves rule replacements and additions (i.e., packet
tagging and tag matching) in the returned operational sequences and
during its computation – rather than considering the two primitives
in subsequent steps as in [97].

Both works argue that it is practically profitable to combine rule
replacements and additions, as it greatly reduces the amount of
memory overhead while keeping the operational sequence always
computable.

5.3 Related Optimization Problems
Many policy-preserving algorithms face generalized versions of

the optimization problems associated to connectivity-preserving
updates (see §4): While the most common objective remains the
maximization of parallel operations (to speed-up the update), policy
consistency requires that all possible intermediate paths comply
with certain regular expressions in addition to being simple (that
is, loop-free) paths. Mixed policy-preserving approaches focus on

even more general problems where (i) different operations can be
interleaved in the output operational sequence (which provides more
degrees of freedom in solving the input problems), and (ii) multiple
optimization objectives are considered at the same time (typically,
maximizing the update parallelism while also minimizing the con-
sumed switch memory).

5.4 Concluding Remarks and Open Problems
Unsurprisingly, preserving policies requires more sophisticated

update techniques, since it is generally harder to extract policy-
induced constraints and model the search space. Two major families
of solutions have been explored so far. On the one hand, 2-phase
commit techniques and update protocols sidestep the algorithmic
challenges, at the cost of relying on specific primitives (packet
tagging and tag matching) that comes with switch memory con-
sumption. On the other hand, ordering-based techniques directly
deal with problem complexities, at the cost of algorithmic simplicity
and impossibility to always solve update problems. Finding the
best balance between those two extremes is an interesting research
direction. Some initial work has started in this direction, with the
proposal of algorithms that can interleave different kinds of opera-
tions within the computed sequence (see mixed approaches in §5.2).
However, many research questions are left open. For example, the
computational complexity of solving update problems while mixing
rule additions (for packet tagging and matching) with replacements
is unknown. Moreover, it is unclear whether the proposed algorithms
can be improved exploiting the structure of specific topologies or
the flexibility of new devices (e.g., P4-compatible ones [5]), e.g., to
achieve better trade-offs between memory consumption and update
speed.

6. PERFORMANCE-AWARE CONSIS-
TENCY

Computer networks are inherently capacitated, and respecting
resource constraints is hence another important aspect of consis-
tent network updates. Congestion is known to significantly impact
throughput and increase latency, therefore negatively impacting user
experience and even leading to unpredictable economic loss.

6.1 Definitions
The capacitated update problem is to migrate from a multi-

commodity flow Fold to another multi-commodity flow Fnew,
where consistency is defined as not violating any link capacities and
not rate-limiting any flow below its demand in min (Fold,Fnew).
In few works, e.g., [6], Fnew is only implicitly specified by its de-
mands, but not by the actual flow paths. Some migration algorithms
will violate consistency properties to guarantee completion, as a
consistent migration does not have to exist in all cases.

Typically, four different variants are studied in the literature: First,
individual flows may either only take one path (unsplittable) or they
may follow classical flow-theory, where the incoming flow at a
switch must equal its outgoing flow (splittable). Secondly, flows can
take any paths via helper rules in the network during the migration
(intermediate paths), or may only be routed along the old or the new
paths (no intermediate paths).

To exactly pinpoint congestion-freedom, one would need to take
many detailed properties into account, e.g., buffer sizes and ASIC
computation times. As such, the standard consistency model does
not take this fine-grained approach, but rather aims at avoiding
ongoing bandwidth violations and takes a mathematical flow-theory
point of view. Introduced by [31], consistent flow migration is
captured in the following model: No matter if a flow is using the

rules before the update or after the update, the sum of all flow sizes
must be at most the links capacity.

6.2 Algorithms and Complexity

6.2.1 Algorithms
Current algorithms for capacitated updates of network flows use

the seminal work by Reitblatt et al. [82] as an update mechanism.
Analogously to per-packet consistency (cf. §5), one can achieve
per-flow consistency by a 2-phase commit protocol. While this
technique avoids many congestion problems, is not sufficient for
bandwidth guarantees: When updating the two flows in Fig. 10, the
lower green flow could move up before orange flow is on its new
path, leading to congestion.

An overview over all algorithmic approaches discussed here can
be found in Table 2.

Mizrahi et al. [65] prove that flow swapping is necessary for
throughput optimization in the general case, as thus algorithms are
needed that do not violate any capacity contraints during the network
update, beyond simple flow swapping as well.

The seminal work by Hong et al. [31] on SWAN introduces the
current standard model for capacitated updates. Their algorithmic
contribution is two-fold, and also forms the basis for zUpdate [52]:
First, the authors show that if all flow links have free capacity slack
s, consistent migration is possible using d1/se − 1 updates: E.g., if
the free capacity is 10%, 9 updates are required, always moving 10%
of the links’ capacity to the new flow paths. If the network contains
non-critical background traffic, free capacity can be generated for
a migration by rate-limiting this background traffic temporarily,
cf. Fig. 11: removing some background traffic allows for consistent
migration.

s

v2

v3

v1

d

(a) Initial

s

v2

v3

v1

d

(b) Final

Figure 11: In this network the task is again to migrate consis-
tently from the initial to the final state. If all flows and links
have unit size, no consistent migration is possible: The destina-
tion has just two incoming links of combined size two. Should
the flows just have a size of 2/3, one can migrate consistently in
d1/(1/3)e − 1 = 2 updates by moving half of the flow size of
1/3 each time in parallel.

Second, the authors provide an LP-formulation for splittable flows
which provides a consistent migration schedule with x updates, if
one exists. By performing a binary search over the number of
updates, the number of necessary updates can be minimized. This
approach allows for intermediate paths, where the flows can be
re-routed anywhere in the network. E.g., consider the example in
Fig. 11 with all flows and links having unit size. If there was an
additional third route to d, the orange flow could temporarily use this
intermediate path: we can then switch the green flow, and eventually
the orange flow could be moved to its desired new path.

This second LP-formulation was extended by Zheng et al. [102]
to include unsplittable flows as well via a MIP. Furthermore, using
randomized rounding with an LP, Zheng et al. can approximate

v

s2

d1

s1

d2

(a) Initial

v

s2

d1

s1

d2

(b) Congestion!

v1

s2

d1

s1

d2

(c) Orange first

v1

s2

d1

s1

d2

(d) Final

Figure 10: In this introductory network for flow migration, all links have unit bidirectional capacity, and both orange and green
flows have unit size as well. The task is to move both the green and orange flows from their initial paths in Fig. 10a to their final ones
shown in Fig. 10d. Updating both flows together could lead to the green flow being moved first, inducing congestion, see Fig. 10b.
However, this can be avoided by using succinct updates, first moving the orange flow as in Fig. 10c, and then moving the green flow.

the minimum congestion that will occur if the migration has to be
performed using x updates. Should intermediate paths be allowed
however, then their LP is of exponential size. Paris et al. [77] also
consider the tradeoff between reconfiguration effects and update
speed in the context of dynamic flow arrivals. In terms of tradeoffs,
Luo et al. [57] allow for user-specified deadlines (e.g., a flow has to
be updated until some time t) via an MIP or an LP-based heuristic.

The work by Brandt et al. [7] tackles the problem of deciding
in polynomial time if consistent migration is possible at all for
splittable flows with intermediate paths allowed. By iteratively
checking for augmenting flows that create free capacity (slack) on
fully-capacitated links, it is possible to decide in polynomial time if
slack can be obtained on all flow links. If yes, then the first technique
of [31] can be used, else no consistent migration is possible. Should
the output be no, they also provide an LP-formulation to check to
which demands it is possible to migrate consistently.

Jain et al. [37] also consider the variable update times of switches
in the network. For both splittable and unsplittable flows without
intermediate paths, they build a dependency graph for the update
problem. Then, this dependency graph is traversed in a greedy fash-
ion, updating whatever flows are currently possible. E.g., in Fig. 10,
the orange flow would be moved first, then the green flow next.
Should this traversal result in a deadlock, flows are rate-limited to
guarantee progress. Wang et al. [100] improve the local dependency
resolving to improve the greedy traversal. Luo et al. [56] provide
a MIP-formulation of the problem, and also provide a heuristic
framework using tiny MIPs.

Foerster and Wattenhofer [19] consider an alternative approach to
migrating unsplittable flows without intermediate paths: They split
each flow along its old and new path, changing the size allocations
during the updates, until the migration is complete. Their algo-
rithm has polynomial computation time, but has slightly stronger
consistency requirements than the model of [31].

Lastly, Brandt et al. [6] consider a modified migration problem by
not fixing the new multi-commodity flow, but just its demands. If the
final (and every intermediate) configuration has no congestion then
the locations of the flows in the network do not matter. In scenarios
with a single destination (or a single source), augmenting flows can
be used to compute the individual updates: Essentially, the flows
are changed along the routes of the augmenting flows, allowing for
a linear number of updates for splittable flows with intermediate
paths. The augmentation model cannot be extended to the general
case of multi-source multi-destination network flows.

6.2.2 Complexity
The complexity of capacitated updates can roughly be summa-

rized as follows: Problems involving splittable flows can be decided

in polynomial time, while restrictions such as unsplittable flows or
memory limits turn the problem NP-hard, see Table 3. In a way,
the capacitated update problems differs from related network up-
date problems in that it is not always solvable in a consistent way.
On the other hand, e.g., per-packet/flow consistency can always be
maintained by a 2-phase commit, and loop-free updates for a single
destination can always be performed in a linear number of updates.

One standard approach in recent work for flow migration is linear
(splittable flows) or integer programing (unsplittable flows): With
the number of intermediate configurations x as an input, it is checked
if a consistent migration with x intermediate states exists. Should
the answer be yes, then one can use a binary search over x to find
the fastest schedule. This idea originated in SWAN [31] for splittable
flows, and was later extended to other models, cf. Table 2.

However, the LP-approach via binary search (likewise for the
integer one) suffers from the drawback that it is only complete if
the model is restricted: If x is unbounded, then one can only decide
whether a migration with x updates exists, but not whether there is
no migration schedule with y steps, for some y > x. Additionally, it
is not even clear to what complexity class the general capacitated up-
date problem belongs to, cf. the decision problem hardness column
of Table 3.

The only exception arises in case of splittable flows without mem-
ory restrictions, where either an (implicit) schedule or a certificate
that no consistent migration is possible, is found in polynomial
time [7]. The authors use a combinatorial approach not relying on
linear programming. Adding memory restrictions turns this problem
NP-hard as well [37].

If the model is restricted to allow every flow only to be moved
once (from the old path to the new path), then the capacitated update
problem becomes NP-complete [19, 37]: Essentially, as the number
of updates is limited by the number of flows, the problem is in
NP. In this specific case, one can also approximate the minimum
congestion for unsplittable flows in polynomial time by randomized
rounding [102].

Hardly any (in-)approximability results exist today, and most
work relies on reductions from the Partition problem, cf. Table 4.
The only result that we are aware of is via a reduction from MAX
3-SAT, which also applies to unit size flows [7].

6.3 Related Optimization Problems
In a practical setting, splitting flows is often realized via deploy-

ing multiple unsplittable paths, which is an NP-hard optimization
problem as well, both for minimizing the number of paths and for
maximizing k-splittable flows, cf. [3, 26]. Another popular option
is to split the flows at the routers using hash functions; other major
techniques are flow(let) caches and round-robin splitting, cf. [27].

Nonetheless, splitting flows along multiple paths can lead to packet
reordering problems, which need to be handled by further tech-
niques, see, e.g., [39].

Many of the discussed flow migration works rely on linear pro-
gramming formulations: Even though their runtime is polynomial in
theory, the timely migration of large networks with many intermedi-
ate states is currently problematic in practice [31]. If the solution
takes too long to compute, the to-be solved problem might no longer
exist, a problem only made worse when when resorting to (NP-hard)
integer programming for unsplittable flows. As such, some tradeoff
has to be made between finding an optimal solution and one that
can actually be deployed.

Orthogonal to the problem of consistent flow migration is the
approach of scheduling flows beforehand, not changing their path
assignments in the network during the update. We refer to the recent
works by Kandula et al. [40] and Perry et al. [79] for examples.
Game-theoretic approaches have also been considered, e.g., [30].

Lastly, the application of model checking to consistent network
updates does not cover bandwidth problem restrictions yet [59, 103].

6.4 Concluding Remarks and Open Problems
The classification of the complexity of flow migration still poses

many questions, cf. Table 4: If every flow can only be moved once,
then the migration (decision) problem is clearly in NP. However,
what is the decision complexity if flows can be moved arbitrarily
often, especially with intermediate paths? Is the “longest” fastest
update schedule for unsplittable flows: linear, polynomial or expo-
nential, or even worse? Related questions are also open for flows of
unit or integer size in general.

The problem of migrating splittable flows without memory limits
and without intermediate paths is still not studied either: It seems as
if the methods of [7] and [19] also apply to this case, but a formal
proof is missing.

7. RELAXING SAFETY GUARANTEES
So far we studied network updates from the viewpoint that con-

sistency in the respective model must be maintained, e.g., no for-
warding loops should appear at any time. In situations where the
computation is no longer tractable or the consistency property can-
not be maintained at all, some of the discussed works opted to break
consistency in a controlled manner.

An orthogonal approach is to relax the consistency safety guaran-
tees, and try to minimize the time the network is in an inconsistent
state, with underlying protocols being able to correct the induced
problems (e.g., dropped packets are re-transmitted), as done in a
production environment in Google B4 [35].

One idea mainly investigated by Mizrahi et al. [73] is to synchro-
nize the clocks in the switches s.t. network updates can be performed
simultaneously: With perfect clock synchronization and switch ex-
ecution behavior, at least in theory, e.g., loop freedom could be
maintained. As the standard Network Time Protocol (NTP) does not
have sufficient synchronization behavior, the Precision Time Proto-
col (PTP) was adapted to SDN environments in [66, 67], achieving
microsecond accuracy in experiments. However, even if the time is
synchronized well enough, there will be unpredictable variations of
command execution time from network switches [37], motivating
the need for prediction-based scheduling methods [69, 71]. Even
worse, if a switch fails to update at all, the network can stay in an
inconsistent state until the controller is notified, then either rolling
back the update on the other switches or computing another update.
Additionally, ongoing message overhead for time synchronization
is required in the whole network, and controller-to-switch messages
can be delayed/lost. In contrast, at the expense of additional updates,

sequential approaches can verify the application of sent network
updates one by one, possibly moving forward (to the next update)
or back (if a command is not received or not yet applied) with no
risk of incurring ongoing safety violations.

Nonetheless, in some situations synchronized updates can be
considered optimal: E.g., consider the case in Fig. 11 where two
unsplittable flows need to be swapped [65], with no alternative paths
in the network available for the final links. Then, synchronizing the
new flow paths can minimize the induced congestion [70].

Still, timed updates cannot guarantee packet consistency on their
own, as packets that are currently on-route will encounter changed
forwarding rules at the next switch. In [64] some additional methods
are discussed how to still guarantee packet consistency by, e.g.,
temporarily storing traffic at the switches.

Time can be used similarly to a 2-phase commit though, by anal-
ogously using timestamps in the packet header as tags during the
update [72], with [72] also showing an efficient implementation
using timestamp-based TCAM ranges. Additional memory, as in
the 2-phase commit approach of Reitblatt et al. [82], will be used
for this method, but packets only need to be tagged implicitly by
including the timestamp (where often 1 bit suffices [68, 72]).

8. FROM THEORY TO PRACTICE
As a complement to the previously-described theoretical and algo-

rithmic results, we now provide an overview on practical challenges
to ensure consistent network updates. We also describe how pre-
vious works tackled those challenges in order to build automated
systems that can automatically carry out consistent updates.

1. Ensuring basic communication with network devices: Au-
tomated update systems classically rely on a logically-
centralized coordinator, which must interact with network
devices to both instruct them to apply operations (in a given
order). Such a device-coordinator interaction requires a com-
munication channel. Update coordinators in traditional net-
works typically exploit the command line interface of de-
vices [11, 93]. In SDN networks, the interaction is simplified
by their very architecture, since the coordinator is typically
embodied by the SDN controller which must be already able
to program (e.g., through OpenFlow [62] or similar protocols)
and monitor (e.g., thanks to a Network Information Base [47])
the controlled devices.

2. Applying operational sequences, step by step: Both de-
vices and the device-coordinator communication are not nec-
essarily reliable. For example, messages sent by the coor-
dinator may be lost or not be applied by all devices upon
reception [37]. Those possibilities are typically taken into
account in the computation of the update sequence (see §3).
However, an effective update system must also ensure that
operations are actually applied as in the computed sequences,
e.g., before sending operations in the next update step. To this
end, a variety of strategies are applied in the literature, from
dedicated monitoring approaches (based on available network
primitives like status-checking commands and protocols [11]
or lower-level packet cloning mechanisms [93]) of traditional
networks to acknowledgement-based protocols implemented
by SDN devices [49].

3. Working around device limitations: Applying carefully-
computed operational sequences ensures update consistency
but not necessarily performance (e.g., speed), as the latter also
depends on device efficiency in executing operations. This
aspect has been analyzed by several works, especially focused

Reference Approach (Un-)splittable
model

Intermediate
paths

Computation # Updates Complete (decides if con-
sistent migration exists)

[82] Install old and new rules,
then switch from old to
new

Both, move each
flow only once

No Polynomial 1 No bandwidth guarantees

[31] Partial moves according to
free slack capacity s

Splittable No Polynomial d1/se − 1 Requires slack on flow
links

[37] Greedy traversal of depen-
dency graph

Both, move each
flow only once

No Polynomial Linear No (rate-limit flows to
guarantee completion)

[56] MIP of [37] Both, move each
flow only once

No Exponential Linear Yes

[102] Minimize transient conges-
tion for fixed number of x
intermediate states via LP

Both No Polynomial Any x ∈ N For any given x, approx.
min. transient congestion
by logn factor

Yes Exponential

[102] ... via MIP Both Both Exponential Any x ∈ N For any given x yes, but
cannot decide in general

[31] Binary search of intermedi-
ate states via LP

Splittable Yes Polynomial in #
of updates

Unbounded Cannot decide if migration
possible

[7] Create slack with interme-
diate states, then use partial
moves of [31]

Splittable Yes Polynomial Unbounded Yes

[19] Split unsplittable flows
along old and new paths

2-Splittable No Polynomial Unbounded Yes

[6] Use augmenting flows to
find updates

Splittable, 1 dest.,
paths not fixed

Yes Polynomial Linear Yes

Further practical extensions
[52] Extends approach of SWAN [31] in a data center setting

[100] Extends approach of Dionysus [37] with local dependency resolving
[77] Considers reconfiguration for dynamic flow arrivals
[57] Allows for (un-)splittable flow migration (move each once) with user-specified deadlines and requirements via MIP (or LP heuristic)

Table 2: Compact overview of flow migration algorithms

Flow migration problem Intermediate paths Memory restrictions Decision problem hardness

Unsplittable
Yes Yes NP-hard [7]No

No Yes NP-hard [19]No

Unit size
Yes Yes NP-hard [7]No

No Yes Open (also for integer size)No

Splittable
Yes Yes NP-hard [37]

No P [7]

No Yes NP-hard [37]
No Open

Move every flow only once
Yes Yes Not allowed (model)No

No Yes NP-complete [37]
No NP-complete [19]

Table 3: Table summarizing decision problem results for flow migration. In general, it is unknown if flow migration is in NP if
flows can be moved more than once, except for the case of splittable flows without memory restrictions. We note that if a problem is
NP-hard without memory restrictions, it is also NP-hard with memory restrictions.

Ref. Reduction via (Un-)splittable
model

Intermediate
paths

Memory
limits

Decision problem
in general

Optimization problems/remarks

[37] Partition Splittable No Yes NP-hard NP-complete if every flow may only move once
[37] Partition Splittable No No – NP-hard (fewest rule modifications)
[7] – Splittable Yes No P Fastest schedule can be of unbounded length,

LP for new reachable demands if cannot migrate
[19] – 2-Splittable No No P studies slightly different model
[7] (MAX) 3-SAT Unsplittable Yes No NP-hard (also for

unit size flows)
NP-hard to approx. additive error of flow removal
for consistency better than 7/8 + ε

[102] Partition Unsplittable Yes & No No – NP-hard (fastest schedule)
[19] Partition Unsplittable No No NP-hard stronger consistency model, but proof carries over
[57] Part. & Subset Sum Unsplittable No No – NP-hard (does a 3-update schedule exist?)

Table 4: Compact overview of flow migration hardness techniques and results

on SDN updates which are more likely to be applied in real-
time (e.g., even to react to a failure). It has been pointed out
that SDN device limitations impact update performance in
two ways. First, SDN switches are not yet fast to change their
packet-processing rules, as highlighted by several measure-
ment studies. For example, in the Devoflow [15] paper, the
authors showed that the rate of statistics gathering is limited
by the size of the flow table and is negatively impacted by the
flow setup rate. In 2015, He et al. [28] experimentally demon-
strated the high rule installation latency of four different types
of production SDN switches. This confirmed the results of
independent studies [33, 84] providing a more in-depth look
into switch performance across various vendors. Second, rule
installation time can highly vary over time, independently on
any switch, because it is a function of runtime factors like
already-installed rules and data-plane load. The measurement
campaign on real OpenFlow switches performed in Diony-
sus [37] indeed shows that rule installation delay can vary
from seconds to minutes. Update systems are therefore engi-
neered to mitigate the impact of those limitations – despite
not avoiding per-rule update bottlenecks. Prominently, Diony-
sus [37] significantly reduces multi-switch update latency by
carefully scheduling operations according to dynamic switch
conditions. CoVisor [36] and [16] minimize the number of
rule updates sent to switches through eliminating redundant
updates.

4. Avoiding conflicts between multiple control-planes: For
availability, performance, and robustness, network control-
planes are often physically-distributed, even when logically
centralized as in the cases of replicated SDN controllers or
loosely SDN controller applications. For updates of tradi-
tional networks, the control-plane distribution is straightfor-
wardly taken into account, since it is encompassed in the
update problem definition (see §2). In contrast, additional
care must be applied to SDN networks with multiple con-
trollers: if several controllers try to update network devices at
the same time, one controller may override rules installed by
another, impacting the correctness of the update (both during
and after the update itself). This requires to solve potential
conflicts between controllers, either by pro-actively specify-
ing how the final rules have to computed (e.g., [75]) or by
reactively detecting and possibly resolving conflicts (e.g., [8]).
A generalization of the above setting consists in considering
multiple control-planes that may be either all distributed, all
centralized, or mixed (some distributed and some centralized).
Potential conflicts and general meta-algorithms to ensure con-
sistent updates in those cases are described in [96].

5. Updating the control-plane: In traditional networks, data-
plane changes can only be enforced by changing the configu-
ration of control-plane protocols (e.g., IGPs). In contrast, the
most studied case for SDN updates considers an unmodified
controller that has to change the packet-processing rules on
network switches. Nevertheless, a few works also consid-
ered the problem of entirely replacing the SDN controller
itself, e.g., upgrading it to a new version or replacing the
old controller with a newer one. Prominently, HotSwap [91]
describes an architecture that enable the replacement of an
old controller with a new one, by relying on a hypervisor
that maintains a history of network events. As an alternative,
explicit state transfer is used to design and implement the
Morpheus controller platform in [85].

6. Dealing with events occurring during an update: Oper-
ational sequences computed by network update algorithms
forcedly assume stable conditions. In practice, however, un-
predictable concurrent events like failures can modify the
underlying network independently from the operations per-
formed to update the network. While concurrent events can
be very unlikely (especially for fast updates), by definition
they cannot be prevented. A few contributions assessed the
impact of such unpredictable events on the update safety. For
instance, the impact of link failures on SITN-based IGP re-
configurations is experimentally evaluated in [94]. Another
example is represented by the recent FOUM work [32], that
aims at guaranteeing per-packet consistency in the presence
of an adversary able to perform packet-tampering and packet-
dropping attacks.

9. FUTURE RESEARCH DIRECTIONS
While we have already identified specific open research questions

in the corresponding sections, we now discuss more general areas
which we believe deserve more attention by the research community
in the future.

1. Charting the complexity landscape: Researchers have only
started to understand the computational complexities under-
lying the network update problem. In particular, many NP-
hardness results have been derived for general problem formu-
lations for all three of our consistency models: connectivity
consistency, policy consistency, and performance consistency.
So far, only for a small number of specific models polynomial-
time optimal algorithms are known. Even less is known about
approximation algorithms. Accordingly, much research is
required to chart a clearer picture of the complexity landscape
of network update problems. We expect that some of these
insights will also have interesting implications on classic opti-
mization problems.

2. Refining our models: While we believe that today’s network
models capture well the fundamental constraints and trade-
offs in consistent network update problems, these models are
still relatively simple. In partiular, we believe that there is
room and potential for developing more refined models. Such
models could for example account for additional performance
aspects (e.g., the impact of packet reorderings on throughput).
Moreover, they could e.g., better leverage predictable aspects
and models, e.g., empirical knowledge of the network behav-
ior. For example, the channel between SDN controller and
OpenFlow switches may not be completely asynchronous, but
it is reasonable to make assumptions on the upper and lower
bound of switch update times.

3. Considering new update problems: We expect future up-
date techniques to ensure consistency of higher-level network
requirements (like NFV, path delay, etc.), the same way as
recent SDN controllers are supporting them.

4. Dealing with distributed control planes: We believe that
researchers have only started to understand the design and
implication of more distributed SDN control planes. In par-
ticular, while for dependability and performance purposes,
future SDN control planes are likely to be distributed, this
also introduces additional challenges in terms of consistent
network updates and controller coordination.

10. CONCLUSION
The purpose of this survey was to provide researchers active in or

interested in the field of network update problems with an overview
of the state-of-the-art, including models, techniques, impossibility
results as well as practical challenges. We also presented a historical
perspective and discussed the fundamental new challenges intro-
duced in Software-Defined Networks, also relating them to classic
graph-theoretic optimization problems. Finally, we have identified
open questions for future research.

11. REFERENCES
[1] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as

a network management primitive. In Proc. ACM SIGCOMM,
2008.

[2] S. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid.
Transiently consistent sdn updates: Being greedy is hard. In
Proc. SIROCCO, 2016.

[3] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow
problem. Algorithmica, 42(3-4):231–248, 2005.

[4] Barefoot Networks. The world’s fastest and most
programmable networks (white paper).
https://barefootnetworks.com/white-paper/
the-worlds-fastest-most-programmable-networks/, 2016.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[6] S. Brandt, K.-T. Förster, and R. Wattenhofer. Augmenting
anycast network flows. In Proc. ICDCN, 2016.

[7] S. Brandt, K.-T. Förster, and R. Wattenhofer. On Consistent
Migration of Flows in SDNs. In Proc. IEEE INFOCOM,
2016.

[8] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. Software
transactional networking: Concurrent and consistent policy
composition. In Proc. ACM SIGCOMM HotSDN, August
2013.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
Proc. ACM SIGCOMM, 2007.

[10] P. Cerny, N. Foster, N. Jagnik, and J. McClurg. Optimal
consistent network updates in polynomial time. In Proc.
DISC, 2016.

[11] X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a
platform for automated and controlled network operations
and configuration management. In Proc. ACM CoNEXT,
2009.

[12] F. Clad, P. Merindol, J.-J. Pansiot, P. Francois, and
O. Bonaventure. Graceful Convergence in Link-State IP
Networks: A Lightweight Algorithm Ensuring Minimal
Operational Impact. IEEE/ACM Transactions on Networking
(TON), 22(1):300–312, February 2014.

[13] F. Clad, P. Merindol, S. Vissicchio, J.-J. Pansiot, and
P. Francois. Graceful Router Updates for Link-State
Protocols. In Proc. ICNP, 2013.

[14] F. Clad, S. Vissicchio, P. Mérindol, P. Francois, and J.-J.
Pansiot. Computing minimal update sequences for graceful
router-wide reconfigurations. IEEE/ACM Transactions on
Networking (TON), 23(5):1373–1386, 2015.

[15] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: Scaling flow

management for high-performance networks. SIGCOMM
Comput. Commun. Rev., 41(4):254–265, 2011.

[16] S. Dudycz, A. Ludwig, and S. Schmid. Can’t touch this:
Consistent network updates for multiple policies. In Proc.
IEEE/IFIP DSN, 2016.

[17] N. Feamster, J. Rexford, and E. Zegura. The road to sdn.
Queue, 11(12):20:20–20:40, Dec. 2013.

[18] K.-T. Förster, R. Mahajan, and R. Wattenhofer. Consistent
Updates in Software Defined Networks: On Dependencies,
Loop Freedom, and Blackholes. In Proc. IFIP Networking,
2016.

[19] K.-T. Förster and R. Wattenhofer. The Power of Two in
Consistent Network Updates: Hard Loop Freedom, Easy
Flow Migration. In Proc. ICCCN, 2016.

[20] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman,
N. P. Katta, C. Monsanto, J. Reich, J. Rexford,
C. Schlesinger, D. Walker, and R. Harrison. Languages for
software-defined networks. IEEE Communications
Magazine, 51(2):128–134, 2013.

[21] P. Francois and O. Bonaventure. Avoiding Transient Loops
During the Convergence of Link-State Routing Protocols.
IEEE/ACM Transactions on Networking (TON), 15(6):1280
–1292, December 2007.

[22] P. Francois, O. Bonaventure, B. Decraene, and P.-A. Coste.
Avoiding disruptions during maintenance operations on bgp
sessions. IEEE Transactions on Network and Service
Management, 4(3):1–11, 2007.

[23] P. Francois, M. Shand, and O. Bonaventure. Disruption-free
topology reconfiguration in OSPF Networks. In Proc. IEEE
INFOCOM, 2007.

[24] J. Fu, P. Sjodin, and G. Karlsson. Loop-Free Updates of
Forwarding Tables. IEEE Transactions on Network and
Service Management, 5(1):22–35, 2008.

[25] GitHub.
https://github.com/blog/1346networkproblemslastfriday. In
Website, 2016.

[26] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and
M. Segalov. How to split a flow? In Proc. IEEE INFOCOM,
2012.

[27] J. He and J. Rexford. Toward internet-wide multipath routing.
IEEE Network, 22(2):16–21, 2008.

[28] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash,
A. Akella, L. E. Li, and M. Thottan. Measuring control plane
latency in sdn-enabled switches. In Proc. ACM SIGCOMM
SOSR, 2015.

[29] G. Herrero and J. van der Ven. Network Mergers and
Migrations: Junos Design and Implementation. Wiley, 2010.

[30] M. Hoefer, V. S. Mirrokni, H. Röglin, and S. Teng.
Competitive routing over time. Theor. Comput. Sci.,
412(39):5420–5432, 2011.

[31] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utilization
with software-driven wan. SIGCOMM Comput. Commun.
Rev., 43(4):15–26, 2013.

[32] J. Hua, X. Ge, and S. Zhong. FOUM: A Flow-Ordered
Consistent Update Mechanism for Software-Defined
Networking in Adversarial Settings. In Proc. IEEE
INFOCOM, 2016.

[33] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity
switch models for software-defined network emulation. In
Proc. ACM SIGCOMM HotSDN, pages 43–48, 2013.

https://barefootnetworks.com/white-paper/the-worlds-fastest-most-programmable-networks/
https://barefootnetworks.com/white-paper/the-worlds-fastest-most-programmable-networks/
https://github.com/blog/1346networkproblemslastfriday

[34] J. Jackson. Godaddy blames outage on corrupted router
tables. In PC World, 2011.

[35] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4:
Experience with a globally-deployed software defined wan.
SIGCOMM Comput. Commun. Rev., 43(4):3–14, 2013.

[36] X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A
compositional hypervisor for software-defined networks. In
Proc. USENIX NSDI, pages 87–101, 2015.

[37] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
J. Rexford, R. Wattenhofer, and M. Zhang. Dionysus:
Dynamic scheduling of network updates. In Proc. ACM
SIGCOMM, 2014.

[38] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus routing: The internet as a
distributed system. In Proc. USENIX NSDI, 2008.

[39] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic
load balancing without packet reordering. SIGCOMM
Comput. Commun. Rev., 37(2):51–62, 2007.

[40] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula.
Calendaring for wide area networks. In Proc. ACM
SIGCOMM, 2014.

[41] N. P. Katta, J. Rexford, and D. Walker. Incremental
consistent updates. In Proc. ACM SIGCOMM HotSDN,
2013.

[42] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Proc. USENIX
NSDI, 2013.

[43] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: Static checking for networks. In Proc. USENIX
NSDI, 2012.

[44] E. Keller, J. Rexford, and J. Van Der Merwe. Seamless BGP
migration with router grafting. In Proc. USENIX NSDI, 2010.

[45] R. Keralapura, C.-N. Chuah, and Y. Fan. Optimal Strategy
for Graceful Network Upgrade. In Proc. ACM SIGCOMM
INM, 2006.

[46] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
Veriflow: Verifying network-wide invariants in real time.
SIGCOMM Comput. Commun. Rev., 42(4):467–472, Sept.
2012.

[47] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
large-scale production networks. In Proc. USENIX OSDI,
2010.

[48] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs.
R-BGP: Staying connected in a connected world. In Proc.
USENIX NSDI, 2007.

[49] M. Kuzniar, P. Peresini, and D. Kostić. Providing reliable fib
update acknowledgments in sdn. In Proc. ACM CoNEXT,
pages 415–422, 2014.

[50] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding
Light on the Glue Logic of the Internet Routing Architecture.
In Proc. ACM SIGCOMM, 2008.

[51] M. Lewin, D. Livnat, and U. Zwick. Improved rounding
techniques for the MAX 2-SAT and MAX DI-CUT
problems. In Integer Programming and Combinatorial
Optimization, pages 67–82. Springer, 2002.

[52] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. A. Maltz. zUpdate: Updating Data Center Networks with
Zero Loss. In Proc. ACM SIGCOMM, 2013.

[53] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently
secure network updates. In Proc. ACM SIGMETRICS, 2016.

[54] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling
loop-free network updates: It’s good to relax! In Proc. ACM
PODC, 2015.

[55] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good
network updates for bad packets: Waypoint enforcement
beyond destination-based routing policies. In Proc. ACM
HotNets, 2014.

[56] L. Luo, H. Yu, S. Luo, and M. Zhang. Fast lossless traffic
migration for SDN updates. In Proc. IEEE ICC, pages
5803–5808. IEEE, 2015.

[57] S. Luo, H. Yu, L. Luo, and L. Li. Arrange your network
updates as you wish. In Proc. of IFIP Networking, 2016.

[58] R. Mahajan and R. Wattenhofer. On Consistent Updates in
Software Defined Networks. In Proc. ACM HotNets, 2013.

[59] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient
Synthesis of Network Updates. In ACM SIGPLAN PLDI,
2015.

[60] R. McGeer. A safe, efficient update protocol for openflow
networks. In Proc. SIGCOMM HotSDN, pages 61–66, 2012.

[61] R. McGeer. A correct, zero-overhead protocol for network
updates. In Proc. SIGCOMM HotSDN, pages 161–162, 2013.

[62] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, 2008.

[63] M. Middendorf. Supersequences, runs, and cd grammar
systems. Developments in Theoretical Computer Science,
6:101–114, 1994.

[64] T. Mizrahi and Y. Moses. Time-based updates in software
defined networks. In Proc. ACM HotSDN, pages 163–164,
2013.

[65] T. Mizrahi and Y. Moses. On the necessity of time-based
updates in SDN. In Proc. USENIX ONS, 2014.

[66] T. Mizrahi and Y. Moses. Reverseptp: A software defined
networking approach to clock synchronization. In Proc.
ACM HotSDN, 2014.

[67] T. Mizrahi and Y. Moses. Using REVERSEPTP to Distribute
Time in Software Defined Networks . In Proc. IEEE ISPCS,
2014.

[68] T. Mizrahi and Y. Moses. The case for data plane
timestamping in sdn. In Proc. IEEE INFOCOM SWFAN,
2016.

[69] T. Mizrahi and Y. Moses. Oneclock to rule them all: Using
time in networked applications. In Proc. IEEE/IFIP NOMS,
2016.

[70] T. Mizrahi and Y. Moses. Software defined networks: It’s
about time. Proc. IEEE INFOCOM, 2016.

[71] T. Mizrahi and Y. Moses. Time Capability in NETCONF. In
RFC 7758, 2016.

[72] T. Mizrahi, O. Rottenstreich, and Y. Moses. Timeflip:
Scheduling network updates with timestamp-based tcam
ranges. In Proc. IEEE INFOCOM, pages 2551–2559, 2015.

[73] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network
updates in software defined networks. Trans. on Netw., 2016.

[74] R. Mohan. Storms in the cloud: Lessons from the amazon
cloud outage. In Security Week, 2011.

[75] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing Software Defined Networks. In Proc. USENIX
NSDI, 2013.

[76] J. Moy, P. Pillay-Esnault, and A. Lindem. Graceful OSPF
Restart. RFC 3623, 2003.

[77] S. Paris, A. Destounis, L. Maggi, G. S. Paschos, and
J. Leguay. Controlling flow reconfigurations in sdn. In Proc.
IEEE INFOCOM, 2016.

[78] I. Pepelnjak. Changing the Routing Protocol in Your
Network, 2007.

[79] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A centralized "zero-queue" datacenter
network. SIGCOMM Comput. Commun. Rev.,
44(4):307–318, Aug. 2014.

[80] S. Raza, Y. Zhu, and C.-N. Chuah. Graceful Network
Operations. In Proc. IEEE INFOCOM, 2009.

[81] S. Raza, Y. Zhu, and C.-N. Chuah. Graceful Network State
Migrations. IEEE/ACM Transactions on Networking (TON),
19(4):1097 –1110, 2011.

[82] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc. ACM
SIGCOMM, pages 323–334, 2012.

[83] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.
Consistent updates for software-defined networks: Change
you can believe in! In Proc. ACM HotNets, 2011.

[84] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. Oflops: An open framework for openflow switch
evaluation. In Proc. PAM, 2012.

[85] K. Saur, J. Collard, N. Foster, A. Guha, L. Vanbever, and
M. Hicks. Safe and Flexible Controller Upgrades for SDNs.
In SOSR, 2016.

[86] A. Shaikh, R. Dube, and A. Varma. Avoiding instability
during graceful shutdown of multiple OSPF routers. Trans.
on Netw., 14:532–542, June 2006.

[87] M. Shand and S. Bryant. A Framework for Loop-Free
Convergence. RFC 5715, IETF, January 2010.

[88] M. Shand and L. Ginsberg. Restart Signaling for IS-IS. RFC
5306, 2008.

[89] L. Shi, J. Fu, and X. Fu. Loop-Free Forwarding Table
Updates with Minimal Link Overflow. In Proc. IEEE ICC,
2009.

[90] United. United Airlines Restoring Normal Flight Operations
Following Friday Computer Outage.
http://newsroom.united.com/news-releases?item=124170,
2011.

[91] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford.
HotSwap: Correct and Efficient Controller Upgrades for
Software-defined Networks. In Proc. ACM SIGCOMM
HotSDN, 2013.

[92] L. Vanbever, S. Vissicchio, L. Cittadini, and O. Bonaventure.
When the cure is worse than the disease: the impact of
graceful igp operations on bgp. In Proc. IEEE INFOCOM,
2013.

[93] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and
O. Bonaventure. Seamless network-wide igp migrations. In
Proc. ACM SIGCOMM, pages 314–325, 2011.

[94] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure. Lossless migrations of link-state igps.
IEEE/ACM Transactions on Networking (TON),
20(6):1842–1855, 2012.

[95] S. Vissicchio and L. Cittadini. FLIP the (Flow) Table: Fast
LIghtweight Policy-preserving SDN Updates. In Proc. IEEE
INFOCOM, 2016.

[96] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and
L. Vanbever. On the Co-Existence of Distributed and
Centralized Routing Control-Planes. In Proc. IEEE
INFOCOM, 2015.

[97] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and
O. Bonaventure. Safe Update of Hybrid SDN Networks.
Technical report, UCLouvain, 2013.

[98] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and
O. Bonaventure. Safe Routing Reconfigurations with Route
Redistribution. In Proc. IEEE INFOCOM, 2014.

[99] S. Vissicchio, L. Vanbever, C. Pelsser, L. Cittadini,
P. Francois, and O. Bonaventure. Improving network agility
with seamless bgp reconfigurations. IEEE/ACM Transactions
on Networking (TON), 21(3):990–1002, June 2013.

[100] W. Wang, W. He, J. Su, and Y. Chen. Cupid: Congestion-free
consistent data plane update in software defined networks. In
Proc. IEEE INFOCOM, 2016.

[101] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford. Virtual routers on the move: live router migration
as a network-management primitive. In Proc. ACM
SIGCOMM, 2008.

[102] J. Zheng, H. Xu, G. Chen, and H. Dai. Minimizing transient
congestion during network update in data centers. In Proc.
ICNP, 2015.

[103] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey.
Enforcing customizable consistency properties in
software-defined networks. In Proc. USENIX NSDI, pages
73–85. USENIX Association, 2015.

http://newsroom.united.com/news-releases?item=124170

	1 Introduction
	1.1 The Network Update Problem
	1.2 Our Contributions
	1.3 Paper Organization

	2 The Network Update Problem from the Origins to SDN
	2.1 IGP Reconfigurations
	2.2 Generalized Routing Reconfigurations in Traditional Networks
	2.3 Software-Defined Networks

	3 Taxonomy
	3.1 Generalized Network Update Problems
	3.2 Update Techniques

	4 Connectivity Consistency
	4.1 Loop-Freedom
	4.1.1 Definitions
	4.1.2 Algorithms and Complexity
	4.1.3 Related Optimization Problems
	4.1.4 Concluding Remarks and Open Problems

	4.2 Blackhole-Freedom

	5 Policy Consistency
	5.1 Definitions
	5.2 Algorithms and Complexity
	5.3 Related Optimization Problems
	5.4 Concluding Remarks and Open Problems

	6 Performance-Aware Consistency
	6.1 Definitions
	6.2 Algorithms and Complexity
	6.2.1 Algorithms
	6.2.2 Complexity

	6.3 Related Optimization Problems
	6.4 Concluding Remarks and Open Problems

	7 Relaxing Safety Guarantees
	8 From Theory to Practice
	9 Future Research Directions
	10 Conclusion
	11 References

