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Abstract  25 

 26 

Objectives  27 

In children there is often lack of sufficient information concerning the pharmacokinetics (PK) and 28 

pharmacodynamics (PD) of a study drug to support dose selection and effective evaluation of efficacy 29 

in a randomised clinical trial. Therefore, one should consider the relevance of relatively small PKPD 30 

studies, which can provide the appropriate data to optimize the design of an RCT.  31 

 32 

Methods  33 

Based on the experience of experts collaborating in the EU-funded Global Research in Paediatrics 34 

(GRiP) consortium, we aim to inform clinician-scientists working with children on the design of 35 

investigator initiated PKPD studies.  36 

 37 

Key findings  38 

The importance of the identification of an optimal dose for the paediatric population is explained, 39 

followed by the differences and similarities of dose-ranging and efficacy studies. The input of clinical 40 

pharmacologists with modelling expertise is essential for an efficient dose-finding study.  41 

 42 

Conclusions 43 

The emergence of new laboratory techniques and statistical tools allows for the collection and 44 

analysis of sparse and unbalanced data, enabling the implementation of (observational) PKPD studies 45 

in the paediatric clinic. Understanding of the principles and methods discussed in this paper is 46 

essential to improve the quality of paediatric PKPD-investigations, and to prevent the conduct of 47 

paediatric RCTs that fail because of inadequate dosing. 48 

 49 

Keywords: pharmacokinetics, pharmacodynamics, paediatrics 50 

51 
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How to optimize drug study design: PKPD studies introduced to paediatricians 52 
 53 

“It is unfortunate that a communication gap still exists between paediatricians and clinical pharmacologists, 54 

who can apply methodologies to validate current prescription practice, in many cases without the need for 55 

additional prospective trials.”[1] 56 

 57 

Introduction 58 

Children have traditionally been protected from participation in medical (drug) research, and as a 59 

consequence medications have not been appropriately labelled for them.[2] Regulatory initiatives 60 

such as the Paediatric Research Equity Act (PREA) and Best Pharmaceuticals for Children’s Act (BPCA) 61 

in the United States (US) and the Paediatric Regulation in the European Union (EU) provide incentives 62 

for pharmaceutical companies to investigate new drugs in children. Sponsors can submit a Paediatric 63 

Investigation Plan to support the authorisation of a new drug for children.[3] However, off-label 64 

dosing recommendations for currently marketed drugs need to be revisited [1, 4-8], especially for 65 

older, off-patent medications.[7] Given the general lack of interest in the ‘paediatric-use marketing 66 

authorisation’ (PUMA) opportunity, which provides sponsors incentives for research on off-patent 67 

drugs, the initiative to gather empirical evidence to support the dose rationale for older drugs is left 68 

to non-commercial (academic) paediatric clinician-scientists.[9] In fact, the need for increasing 69 

awareness of paediatricians about the value of Investigator Initiated trials in children is 70 

acknowledged in the revision of Directive of the European Commission (EC) in 2014, which tries to 71 

correct the bias toward trials sponsored by pharmaceutical companies, “while those with non-72 

commercial sponsors were overlooked”.[10, 11] Another element that has been highlighted in the 73 

revised directive is the role of paediatric networks to help consolidate available knowledge about 74 

medicines and translate it into practice. [12, 13] To meet the demand for clinical trials, “the pediatric 75 

research enterprise must act with diligence to address deficiencies in our current preclinical and 76 

clinical research systems that often give rise to irreproducible data. Historically, most federally 77 

funded pediatric research programs were designed to generate data for publication rather than 78 

regulatory review, the latter a standard that needs to withstand independent validation down to 79 

individual elements”.[13] Paediatric drug research poses challenges but innovations in trial design 80 

and pharmacology prompt Rieder and Hawcutt (2016) to conclude that ‘there has never been a 81 

better time for conducting drug studies in children’.[14] 82 
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The general principles of randomised clinical trials to study drug efficacy and effectiveness are well 83 

known among most paediatricians. However, they may be unaware that other types of studies, i.e. 84 

studies to identify the appropriate dose and dosing regimen in children might have a higher priority 85 

on the research agenda. Failure to perform these studies can lead to a negative trial result, not 86 

because of insufficient statistical power (type II error), but because of inadequate dose selection, i.e. 87 

the drug dose that is compared to placebo or another comparator results in too low exposure to 88 

ensure the required clinical response in children. This was illustrated by a retrospective investigation 89 

of the design aspects that might have caused the failure of several antihypertensive dose-response 90 

trials submitted to the Food and Drug Administration from 1998 to 2005.[15] The authors 91 

recommend that “future pediatric antihypertensive trials should incorporate a wide range of doses 92 

and use information from adult trials to account for potential pharmacological differences between 93 

adult and pediatric populations.” As long as there are no safety concerns, for dose-response trials 94 

these authors advise to use a lowest dose that is lower than the lowest approved relative dose (per 95 

kg or per m2) in adults, and a highest relative dose that is at least 2-fold higher than the highest 96 

approved relative dose in adults. We would be more cautious and more specific about how to 97 

evaluate a medicine, but we agree that characterisation of the exposure-response curve requires the 98 

evaluation of dose levels that result in a wide range of drug exposure, including in some cases 99 

nominal dose levels that may be lower or higher than the currently approved therapeutic doses in 100 

adults. 101 

  102 

This paper aims to close the communication gap between clinical pharmacologists and paediatricians 103 

and provide a starting point for the design of paediatric dose finding studies in such a way that the 104 

results can be used to justify the dose rationale for children and consequently to support the 105 

development of clinical guidelines and labelling changes. We want to make clear (1) why the 106 

identification of an optimal dose for the paediatric population is important, (2) what the differences 107 

and similarities are in the design and conduct between dose-ranging and efficacy studies, and (3) 108 

which information is needed for the planning of a dose-finding study and how this can be obtained.  109 

  110 

1. Why the identification of an optimal dose for the paediatric population is important 111 

Many drugs used in daily paediatric practice lack a scientifically sound, evidence-based dosing 112 

regimen.[16, 17] Off-label doses in children are often the result of an extrapolation exercise, i.e., they 113 

are based on the adult dose corrected only for differences in body size (e.g. body weight or body 114 

surface area). Such extrapolations often rely on the assumption of a linear correlation between dose 115 
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and size. In fact, when using doses per kg or per square meter, one implicitly assumes that 116 

fractioning of the dose will result in comparable drug levels, i.e. concentrations change in a linear 117 

fashion with weight or body surface area, respectively. This practice also assumes that children and 118 

adults are comparable with regard to body composition and have similar gastro-intestinal, renal and 119 

hepatic function (primary organs determining the absorption, distribution and metabolism of drugs), 120 

as well as concentration-response relationships. Since developmental changes are mostly non-linear, 121 

this so-called ‘empirical’ dosing can lead to over- or under-dosing, especially in specific age groups 122 

such as neonates and (extremely) low birth weight infants, thereby increasing the risk of toxicity or 123 

reduced efficacy. The heterogeneity within the paediatric population, ranging from very small 124 

premature neonates to, sometimes overweight or obese, 18-year olds, cannot be overemphasized. 125 

To ensure that the aforementioned points are considered for the selection of the dose and design of 126 

a clinical study, a few basic concepts should be highlighted. Pharmacokinetics (PK) describes what 127 

happens to a drug when it enters the body (including absorption, distribution, metabolism and 128 

excretion), and pharmacodynamics (PD) refers to the effect the drug has on the body. Historically, a 129 

major constraint for the evaluation of the dose rationale has been the lack of information about drug 130 

exposure. Traditional PK studies involve the collection of multiple blood samples in each patient, 131 

usually taken according to a rigidly timed and structured protocol, within a relatively small patient 132 

population (e.g., n = 12). This ‘data-rich’ approach has severe limitations in paediatric practice for 133 

both ethical and practical reasons: the fixed sampling strategy potentially interferes with patient 134 

care; and the requirement for multiple blood samples (perhaps 12–15) raises concerns about venous 135 

access and blood loss. Population PK (using sparse sampling schemes in which less blood samples are 136 

taken per individual without the need for a rigid sampling time as compared to classical PK studies) 137 

and PKPD modelling (using statistical models to characterise the exposure-response relationship of a 138 

drug) are now well established.[18-23] This approach prevents children being exposed to the practice 139 

of large numbers and volumes of blood sampling seen in adult PK and PKPD studies. 140 

 141 

Whereas the conduct of a PK study may suffice to support the dose rationale in some cases (e.g., 142 

when evidence exists of comparable exposure-response relationships in adults and children), 143 

clinicians and investigators are less familiar with the requirements and conditions in which a PKPD 144 

study is necessary. The criteria were initially set out in a regulatory guidance, in which the FDA 145 

proposed a ‘paediatric study decision tree’ [24]. This diagram shows the requirements for using adult 146 

data (or any other reference group or population) to extrapolate or infer efficacy and safety in 147 

(specific groups of) children. Evidence that disease progression, PKPD relationships and endpoints are 148 
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similar or comparable both in adults and children allows the use of PK (bridging) studies to support 149 

the dose rationale for the paediatric population. However, if these requirements are not met, the 150 

decision tree clearly indicates the need for further PKPD or efficacy studies. It is important to 151 

understand that regulatory views in the European Union are slightly different from the USA.  152 

According to a reflection paper released by the European Medicines Agency (EMA), extrapolation 153 

may be generally defined as: ‘Extending information and conclusions available from studies in one or 154 

more subgroups of the patient population (source population), or in related conditions or with 155 

related medicinal products, to make inferences for another subgroup of the population (target 156 

population), or condition or product, thus reducing the need to generate additional information 157 

(types of studies, design modifications, number of patients required) to reach conclusions for the 158 

target population, or condition or medicinal product.’(EMA 2012; 2)[25] Instead of a decision tree, 159 

the European regulators propose a framework to systematically determine whether extrapolation 160 

can be applied, introducing the requirement for an extrapolation plan and what such a plan should 161 

entail. [26]  162 

 163 

The creation of a framework for extrapolations has also made explicit which are the requirements for 164 

data generation, in particular how studies should be designed following the extrapolation plan, 165 

including the relevance of PKPD and dose ranging studies. The extrapolation plan represents 166 

therefore a mechanism to ensure the accurate use of current knowledge as well as the criteria for 167 

the use of biomarkers and clinical endpoints, many of which have not been evaluated or qualified to 168 

support a regulatory application. An example of a study that has led to incorporation of the starting 169 

dose and titration scheme (of argatroban) in the US prescribing information is a study by Madabushi 170 

et al. (2011)[27] An example of  the use of a PD endpoint that has been validated for use in children 171 

is the measurement of pain in young children in De Cock et al. (2011)[28]. 172 

 173 

As these types of study have been an area of expertise within pharmaceutical R&D, academic 174 

investigators still have limited experience with their implementation. It should therefore be clear that 175 

before performing a RCT, the doses to be tested need to be selected and justified; otherwise trials 176 

may fail as has happened in the past.[15] Most importantly, paediatricians need to understand that 177 

body size (weight) is not necessarily a surrogate or proxy for differences in physiological or organ 178 

function across the various subgroups of the paediatric population. During the planning and 179 

evaluation of the suitable dose(s) and dosing regimens for children, different factors may need to be 180 

considered in an integrated manner, taking into account differences (as compared to adults) due to 181 
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demographic and clinical factors as well as the role of organ maturation, ontogeny of enzymes and 182 

developmental growth.[29]  183 

It is also worth mentioning that whereas maturation and ontogeny play a critical role in very young 184 

children (e.g. preterm newborns, term newborns, infants, toddlers), the use of postnatal or even 185 

postmenstrual age does not necessarily provide insight into organ function at an individual patient 186 

level. For instance, one can use postmenstrual age to refer to the average (patho)physiological 187 

difference in glomerular filtration in preterm newborns, but one should measure cystatin C to obtain 188 

accurate estimates of the organ function in a given patient. In other words, the use of age as a proxy 189 

or surrogate for function is of limited value, given the large heterogeneity in organ maturation.[30] 190 

Given the wide weight variation (see e.g., quartiles of the weight by age growth curves for male and 191 

female patients from the World Health Organization and  National Center for Health Statistics [31, 192 

32], the use of age as criterion for dosing medicines in older children yields even larger errors. 193 

Similarly, there is little scientific basis to support the use of dosing based on body surface area (BSA), 194 

as BSA does not accurately reflect differences in organ or metabolic function. ‘Scaling for function’ is 195 

suggested [1] in which the dosing accounts for developmental growth and different 196 

(patho)physiological conditions.[24]. BSA was introduced as a correction factor for dosing regimens 197 

associated with poor tolerability, and dates back to the introduction of cytotoxic medicines in 198 

oncology. Current understanding of drug disposition and PKPD relationships strongly suggests that 199 

weight or biomarker banded-dosing regimens or should be used if large heterogeneity is anticipated 200 

in a given group of patients or disease condition (e.g. renally impaired patients).  201 

 202 

2. Differences and similarities in the design and conduct between dose-finding and efficacy 203 

studies 204 

Dose-ranging studies, also known as Phase II studies, occupy a key position in clinical drug 205 

development. If properly designed and accurately performed a dose-finding study will save time and 206 

effort during the assessment of efficacy in comparative and large scale trials in phase 3. Moreover, 207 

evidence from these studies may help to minimize the numbers of patients required in subsequent 208 

phases of development or even eliminate the need for additional data. [33] 209 

A key goal of phase II is to determine the effective dose(s) that will inform a phase III trial. Often the 210 

results of Phase II studies will substantiate the dose and dosing regimen that will be used on the 211 

product label submitted for approval as part of the new drug application. Whereas current regulatory 212 

guidelines highlight the importance of identifying an effective and safe dose as the basis for approval 213 

of a novel medicine, an overwhelming number of examples show that the characterization of the 214 
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exposure-response curve and subsequent selection of the optimal dose range can have important 215 

implications for the development of the medicinal product.[34] An optimal dose is a dose that is high 216 

enough to demonstrate efficacy in the target population taking into account the impact of variability 217 

in pharmacokinetics and pharmacodynamics. Yet, this dose should ensure minimum safety concerns 218 

and adverse events. There are different strategies or approaches to determine the optimal dose, the 219 

three most common dose finding study designs are described below. 220 

1. Parallel Dose Comparison: Parallel dose comparison studies are the classical dose finding 221 

studies.[35] This is still one of the most common (but also the least efficient) study designs. In a 222 

parallel dose comparison study, several potential doses are selected and subjects are randomized to 223 

receive one of the doses or placebo for the entire study period. At the end of the study, the outcome 224 

in each treatment group is compared to the placebo group. Given that these designs are not 225 

staggered, all treatment groups, including the higher dose cohorts, may be evaluated in parallel. 226 

Therefore, this study design is best suited for situations where there is some confidence about the 227 

location of the exposure-response curve and no concern about the safety profile of the compound. 228 

On the other hand, parallel dose comparisons are very inefficient designs. They can make the 229 

identification of the optimal dose and dosing regimen rather challenging if limited information is 230 

available about the location of the dose-response curve. Empirical choice of the doses to be used in a 231 

(paediatric) study may lead to biased estimates of the parameters describing the dose-response 232 

curve. Dose-finding parallel group studies are difficult to perform in children due to the relatively 233 

narrow dose range, the small interval between tested doses, the inter-individual variability of the 234 

parameters measured and therefore the lack of statistical power. The ‘continual re-assessment 235 

method’ (CRM) has been used in several instances in children. This method allocates doses 236 

sequential to groups of patients. The first group is treated with the first dose level, whereas dose 237 

levels for the subsequent groups are determined according to the model estimates of the dose–238 

efficacy and dose–safety relationships.[36, 37] The implications of traditional approaches vs. model-239 

based data analysis for antidepressant drugs were evaluated by Santen et al (2009).[38, 39] 240 

2. Staggered Dose Escalation: If there is uncertainty about the safety profile of a medicinal product, 241 

one can start exposing subjects to lower doses first before progressing to higher doses. In this type of 242 

study, one starts with one group of subjects (often referred to as a cohort) and assigns them to a low 243 

dose treatment, during which the group is observed for some period of time. If no safety issues are 244 

encountered, a new group of subjects can be enrolled and assigned to a higher dose. This process is 245 

repeated until the clinical response is achieved or the maximum tolerated dose is reached. This 246 

design increases patient safety because you can start by exposing a small number of subjects to the 247 
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lowest dose possible, which might discriminate drug response from baseline or control treatment. By 248 

doing so, one mitigates risk both by limiting the initial number of subjects and limiting the exposure 249 

of each subject to study drug. As indicated above, control subjects can be included along with each 250 

cohort if the objective is to compare efficacy with standard of care or other reference treatment.[33] 251 

3. Intrapatient Dose Titration: In a dose titration study, titration is aimed at achieving a pre-defined 252 

clinical response or maximum tolerated dose within a subject. This means that each subject will start 253 

at a low dose and receive an incrementally higher dose until a predefined clinical response or 254 

maximum tolerated dose is reached. Dose titration studies work well in chronic conditions where a 255 

drug will be used for a long period of time, and where it is likely that significant differences will be 256 

seen in the way each subject reacts. Epilepsy is a good example of a condition where dose titration is 257 

useful.[40] There is considerable variability in how individual patients respond to anti-epileptic 258 

products and with titrating the dose, one can tailor treatment with lower doses to patients who are 259 

more responsive to treatment and higher doses to those who do not respond optimally to the same 260 

dose level. 261 

Whereas main stream data analysis in efficacy trials in adults relies primarily on treatment 262 

comparisons, as assessed by hypothesis testing (e.g., ANOVA), paediatric dose finding studies can 263 

benefit enormously from a model-based approach, in which treatment effects are not estimated 264 

primarily based on pair-wise comparisons, but by PKPD parameter estimates. Among the many 265 

advantages, PKPD modelling [41] of dose-finding data allows effective separation of the variability in 266 

response associated with differences in drug exposure from other factors known to cause variation in 267 

response. Moreover, data analysis can be complemented by simulations, including scenarios which 268 

expand the population characteristics to include characteristics of virtual subjects who were not 269 

included in the empirical study, providing insight into the implications of the dose and response 270 

across the overall target population. 271 

 272 

Another potential benefit of the use of model-based approaches (using statistical models for 273 

predicting the effect and efficacy of a drug) is the possibility of eliminating the need for additional 274 

data, thereby avoiding the exposure of children to unnecessary experimental protocol procedures. In 275 

contrast to traditional (descriptive) experimental protocols, the use of modelling does not limit to 276 

summarising the experimental variables. It relies on the estimation of parameters, which describe 277 

either the disposition (e.g. clearance, distribution volume) or PKPD relationships (e.g., potency) as 278 

the basis for extrapolation and prediction of drug exposure and response in a new patient or group 279 

of patients, taking into account individual characteristics and variability in drug PK or PD parameters.  280 
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Given that assumptions can be made about the magnitude of the changes associated with growth 281 

and maturation, mathematical functions exist that allow for scaling of model parameters. For 282 

instance volume of distribution and clearance are known to change with body weight. By using 283 

allometric scaling it is possible to predict how volume decreases as body weight becomes smaller. 284 

Examples where adult data has been used to support paediatric dose selection include the work 285 

performed by Avramis et al. (2007) [42], Piana et al [23]. 286 

 287 

In addition, population PK and PKPD models allow for the identification of additional covariate 288 

effects, including demographic and clinical factors, such as creatinine clearance. Evidence of the 289 

influence of such covariates on PK and/or PKPD relationships can be used to predict the impact of 290 

overall variability on drug exposure and treatment response. Most importantly, the parameter 291 

estimates obtained by extrapolation can be directly used as the basis for dosing recommendations. 292 

[43, 44].  293 

One can also characterize the effect of demographic and clinical factors on pharmacokinetics and 294 

discriminate them from factors that influence the variability in pharmacodynamics, e.g. disease 295 

severity or baseline conditions. This stepwise approach is often referred to in specialized literature as 296 

hierarchical modelling and has the main advantage of describing both identifiable and non-297 

identifiable sources of variability. Each ‘variability’ component is expressed in a hierarchical model as 298 

a different parameter. Identifiable sources of variability are converted into covariate factors during 299 

the analysis, whereas non-identifiable sources are expressed as statistical distributions. Variability, in 300 

this context, is typically split into between-subject variability, between-occasion variability (within 301 

the same subject on different occasions during the course of treatment), and residual variability in 302 

the measurements.[22] The implementation of this type of analysis can be performed using different 303 

techniques and software programmes. The most commonly used software for population PK and 304 

PKPD modelling is NONMEM (Icon Development Plc, USA). However, other tools exist that can be 305 

used that support the development of nonlinear mixed effects modelling include for example SAS, 306 

Monolix, USC*PAC, MATLAB, and ADAPT .[45, 46] 307 

 308 

In addition to the advantages relative to the methodological aspects described above, the use of a 309 

model-based approach allows one to take into account additional challenges that are faced when 310 

collecting and interpreting paediatric data.  For instance, it is possible to consider a more mechanistic 311 

approach through incorporation of physiologically based pharmacokinetic models, which are able to 312 

factor in the contribution of maturation processes in drug disposition in very young children. 313 

 314 
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 In the era of Evidence Based Medicine, randomized clinical trials remain the best known approach 315 

for the evaluation of efficacy. The main difference between PKPD studies or dose finding studies and 316 

randomized efficacy trials is the type of information that is generated and the objective of the study. 317 

In a typical RCT the main objective is to establish the statistical significance of the mean difference in 318 

outcomes between the intervention groups. The entire study design is aimed at minimizing variability 319 

or ‘noise’ around this ‘signal’. In a PKPD study, on the other hand, the main objective is to establish 320 

how response changes with varying exposure and whenever possible identify the causes or sources 321 

of within- and between-subject variability. In this respect, patient characteristics such as e.g. age, 322 

renal function, maturation status, disease severity, can all play an important role and lead to biased 323 

estimates of the exposure-response curve, if not adjusted for. Basically, this difference can be 324 

observed as a variation on the distinction in two (psychological) scientific paradigms that was 325 

described by Cronbach in 1957 [47], i.e. (1) the correlational approach, in which the investigator uses 326 

variation between subjects to study the correlation with the determinants of this variation, and (2) 327 

the experimental approach, where the investigator attempts to measure change due to an 328 

intervention (the signal) with as much precision (as little noise) as possible.   329 

The ‘learning-confirming’ paradigm proposed by Sheiner (1997),[48] which has been acknowledged 330 

by the FDA as an important step to establish exposure-response and support dose rationale, enables 331 

optimisation of the process to learn about exposure-response relationship if knowledge cannot be 332 

extrapolated from adult studies. 333 

 334 

3. Information needed for the planning of a dose-finding study, and how this can be obtained 335 

The following provides basic information on the elements that should be considered when planning a 336 

dose-finding study. We want to emphasise that the first step when planning such a study is to consult 337 

all the important players: clinicians, nurses, patients/parents, pharmacists, geneticists, and clinical 338 

pharmacologists with modelling expertise.  Obviously, the exact composition of the team will depend 339 

on the investigational product. The clinical pharmacologist can advise on the design of the study and 340 

minimisation of patient samples. The GRIP initiative offers an educational programme for paediatric 341 

investigators interested in this type of research.[49] 342 

One of the consequences of the difference between typical RCTs for the evaluation of efficacy and 343 

PKPD studies is the different emphasis, i.e. from statistical power and sample size for hypothesis 344 

testing to parameter accuracy and precision for model fitting. The precision of PK and exposure-345 

response parameters is critical in the sample size calculation for paediatric PKPD studies. Prior 346 

knowledge of the disease, exposure, and response from adults and other relevant paediatric data, 347 

such as that related to variability, can be used to derive the optimal sample size for ensuring precise 348 
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parameter estimation. The investigators should account for all potential sources of variability, 349 

including inter-subject and intra-subject variability, and differences between the adult and paediatric 350 

populations in the final selection of the sample size for each age group. Simulations can play a key 351 

role in that process, as variability is not considered to be only random. Moreover, it is the evidence of 352 

an exposure-response relationship that should define the success of the trial, not the statistical 353 

significance of eventual differences between treatment arms.  354 

The distinct age groups to be studied should be chosen based upon what is known about the 355 

prevalence and incidence of the disease, taking into account the role of developmental growth, 356 

maturation processes and ontogeny, all of which can affect pharmacokinetics, pharmacodynamics 357 

and the safety profile of a drug.  358 

If the drug is intended for use in newborn infants, the paediatric study plan should specify whether 359 

premature or small for gestational age infants will be included in the study population. Given the 360 

influence of different factors on pharmacokinetic and pharmacodynamic variability, it is important to 361 

ensure all relevant information is captured for each patient, for instance, gestational age and serum 362 

creatinine or cystatin C for pre-term infants, birth weight and actual weight for infants and toddlers. 363 

In 2012 the FDA discussed a proposal, ultimately rejected by the Advisory Committee, for a sample 364 

size standard for paediatric pharmacokinetic studies, which stated that a study had to be powered 365 

with at least 80% to target a confidence interval with no more than 20% relative standard error in the 366 

pharmacokinetic parameter estimates,[50] but with nonlinear mixed effects methods, also known as 367 

population approach, sample size is not the only relevant aspect. Sample size calculations are well 368 

explained by Roberts et al. [51], who also describe the software programs available for this purpose. 369 

Although these authors show that for every situation an ‘optimal’ sample size and study design can 370 

and should be determined, they seem to overlook important feasibility issues that need to be 371 

considered, especially when dealing with newborns and toddlers. Important for paediatricians is that 372 

PKPD studies do not necessarily follow the same design route as classical RTCs. PKPD studies are 373 

designed with the objective of learning about the appropriate dose, and hence must not follow the 374 

logic of the classical study that aims to determine the difference in outcome between groups. 375 

Noncompartmental analysis (NCA) based on rich PK sampling has been common practice for a large 376 

number of paediatric trials. The use of frequent blood sampling has led to important ethical and 377 

practical challenges in the implementation of clinical trials. This situation can be improved by better 378 

understanding of paediatricians about the value of model-based approaches. Population PK and 379 
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PKPD modelling analysis based on sparse PK sampling can achieve sufficient precision for the 380 

characterization of PK and PKPD parameters.[50] 381 

From the above, it is evident that the number of blood samples collected in the clinical pharmacology 382 

study is as critical as the number of patients available and the dose levels under consideration for the 383 

study.[18, 51] Tools have been developed in statistical research to provide insight into the 384 

contribution of (individual) input data to the overall precision of parameter estimates.[52] These 385 

techniques can become powerful when combined with new sampling techniques such as dried blood 386 

spots or microsampling, particularly in special paediatric patient groups such as neonates. Clinical 387 

study simulations can be further implemented to illustrate the impact of different sampling and 388 

design scenarios, thereby justifying the proposed sampling scheme and overall protocol design. On 389 

the other hand, one should also consider that additional sampling for drug or metabolite may be 390 

required if more than efficacy is to be established. Opportunistic (ad hoc) sampling should be 391 

considered when acute adverse events occur.  392 

One last keynote on the advantages of PKPD studies is the possibility of establishing the clinical 393 

relevance of covariate factors known to affect pharmacokinetics and/or pharmacodynamics in 394 

children. Therefore attention must be given to the way information is collected in these kinds of  395 

trials, especially the so-called time-varying covariates, such as age, body weight, body surface area 396 

and many biochemical and haematological parameters (clinical labs) which may be closely linked to 397 

organ function and reflect differences in drug disposition and/or pharmacodynamics. In addition, 398 

information regarding the onset of disease, phenotype, genotype, time since diagnosis, concomitant 399 

and recent drug therapy should also be considered as relevant factors in some diseases. It should be 400 

noted that some covariate factors will be relevant only in a subgroup of patients, e.g., organ 401 

maturation, whereas others can affect the whole patient population.   402 

 403 
Conclusions  404 

Paediatricians can and should perform Investigator Initiated clinical pharmacological research in 405 

children as there are many gaps in the knowledge about drugs used for children. In order to develop 406 

rational, patient tailored dosing schemes, population PKPD studies in children and infants are 407 

needed. The emergence of new laboratory techniques and statistical tools  allows for the analysis of 408 

sparse and unbalanced data and has increased the possibilities to perform (observational) PKPD 409 

studies in the paediatric clinic. To improve the quality of future paediatric PKPD investigations, and to 410 

prevent the conduct of paediatric RCTs that are doomed to fail because of inadequate dosing, the 411 
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experience and knowledge about these tools is shared in this paper. If performed well, the results of 412 

these studies will contribute to the evidence base underlying clinical guidelines and regulatory 413 

decisions concerning labelling adjustments. 414 

In contrast to the design of randomized clinical trials for the assessment of efficacy, in which the aim 415 

is to minimize the signal to noise ratio, studies aimed at the characterisation of the exposure-416 

response curve and subsequent dose selection of a drug need to consider the sources of variation in 417 

the target population. This means that in the design of a paediatric PKPD study, intrinsic factors 418 

determining variability in drug exposure and response, such as age, weight, gender, will have to be 419 

accounted for carefully to maximize the amount of information gathered from the smallest possible 420 

number of participating children. 421 

 422 

 423 
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