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Abstract—A common and natural intuition among software
testers is that test cases need to differ if a software system
is to be tested properly and its quality ensured. Consequently,
much research has gone into formulating distance measures for
how test cases, their inputs and/or their outputs differ. However,
common to these proposals is that they are data type specific
and/or calculate the diversity only between pairs of test inputs,
traces or outputs.

We propose a new metric to measure the diversity of sets of
tests: the test set diameter (TSDm). It extends our earlier, pairwise
test diversity metrics based on recent advances in information
theory regarding the calculation of the normalized compression
distance (NCD) for multisets. A key advantage is that TSDm is a
universal measure of diversity and so can be applied to any test set
regardless of data type of the test inputs (and, moreover, to other
test-related data such as execution traces). But this universality
comes at the cost of greater computational effort compared to
competing approaches.

Our experiments on four different systems show that the test
set diameter can help select test sets with higher structural and
fault coverage than random selection even when only applied
to test inputs. This can enable early test design and selection,
prior to even having a software system to test, and complement
other types of test automation and analysis. We argue that
this quantification of test set diversity creates a number of
opportunities to better understand software quality and provides
practical ways to increase it.

I. INTRODUCTION

Testing is a critical activity to ensure that software has
sufficient quality and reliability. Since software projects often
exceed the time and resources allocated to them, testing
frequently has to make the most use of the least resources.
This limits the number of test cases that can be selected even if
automated techniques are used for test execution and/or when
creating tests. Even if there is ample time to plan for testing
and develop test cases, the tests will typically be re-executed
frequently, within each iteration or prior to each release, which
means that we need as small and as effective a set of tests as
possible. Thus, a fundamental problem in software testing is
how to select a small set of test cases that most efficiently tests
a software system.

To achieve these goals a natural intuition among testers is
to select a small set of diverse test cases. The idea is that test
cases that differ are more likely to better cover the intended
as well as the actual software behavior. This approach also

has support in the research literature. For example, adaptive
random testing [1] only adds a new, randomly-generated test
case if it has large distance to existing test cases. But Chen
et al. [1] also note that a number of testing methods such as
Restricted- [2], Anti- [3], and Quasi- [4] Random Testing are
all based on the same idea: ‘evenly spreading’ test cases over
the input domain. Critical to the success of these techniques
is a generically applicable diversity measure and Chen et al.
go as far as saying that ‘We have come to realise that “even
spreading” can be better described as a form of diversity’ [1].
They describe a distance calculation scheme based on the
category-partition (partition testing) method, but it requires that
the tester manually identifies categories and levels which can
be varied.

Most approaches to quantifying diversity among test cases
are specific to a certain type of data. It is common to assume
that the data is numeric since there are a multitude of existing
distance functions that can then be applied. One example is
the approach of Bueno et al. [5] which selects test sets that
maximize the sum of the distances from each test input to
its nearest neighbor. In their empirical work they use the
Euclidean distance which requires the inputs to be numerical
vectors. For data types for which it is not as simple to
define distance functions, researchers typically revert back to
basic forms of distance, such as binary distance, rather than
quantifying it. For example, Alshawan et al. [6] proposed to
select test cases for web application testing based on unique
system outputs. Their empirical study [7] applied several
uniqueness measures defined on the HTML output of five
web applications. All of the uniqueness measures are binary
in nature since they are based on comparing equality among
parts of the HTML output.

Feldt et al. [8] proposed a test diversity metric with a
stronger theoretical basis by using the concept of information
distance from the field of Information Theory [9]. Although
information distance is based on Kolmogorov complexity [10]
which can only be approximated in practice, such approx-
imations using modern compression algorithms have shown
wide applicability [11]–[13]. One such distance metric calcu-
lated using compression algorithms is Cilibrasi and Vitanyi’s
normalised compression distance (NCD) [14]. Apart from
the theoretical motivation there are also practical benefits to
their proposal: since information distance is universal and
applies to any strings of data, it can be used regardless of
data type investigated. The benefit to developers of testing



systems would be immediate. They need no longer develop
specific metrics for each application domain or type of data. By
basing diversity measurements on the normalized compression
distance (NCD) automated testing systems can search for
diverse tests in general [8].

A fundamental gap in the proposal of Feldt et al. is how
the resulting diversity metric is to be used. Since NCD is a
pairwise metric it can calculate a distance matrix between all
pairs of (here) test cases, but it is not clear how to leverage that
information for selecting test cases. In their study, Feldt et al.
used a general approach (also employed in the original papers
that proposed the NCD metric) to cluster the studied objects
based on the distances. The result of such an analysis is a tree
that defines an approximate order among the test cases. But
Feldt et al. did not investigate concrete ways for selecting test
cases to form a small, diverse test set.

This paper applies more recent results in Information
Theory that extends NCD to multisets [15]. This gives a
general approach to solve test selection problems that can work
for any type of test input, output or other information collected
about a test, such as its execution trace. Our conjecture is that
such a theoretically motivated approach to test selection based
on the diversity of a set can create more efficient test sets
than heuristic methods such as the maximize-mean-diversity
used by Bueno et al [5] and the maximize-min-diversity used
in adaptive random testing [1]. The NCD for multisets can
calculate the diversity in the whole set in a theoretically well-
founded manner instead of approximating it based on pairwise
comparisons. And since the underlying distance metric itself
can be used for any data type, the approach can also be applied
for as yet unknown data types or in new application domains.

Section II introduces NCD and its extension to multisets
and Section III defines test set diameter and a test selection pro-
cedure based on it. The empirical study in Section IV presents
the research questions, software under test, experimental pro-
cedures, and results. Finally, we discuss the implications of
our results in Section IV and place them in the context of
related work in Section VI, before we conclude the paper in
Section VII.

II. NORMALIZED COMPRESSION DISTANCE FOR
MULTISETS

In this section we describe the concepts from Information
Theory that are used in this work: the information distance,
its practical approximation as the normalized compression
distance (NCD), and the recent extension of NCD to multisets.

A. Information Distance and its approximation

The Kolmogorov complexity of a string of symbols, x,
is the length of the shortest program (typically measured in
bits) that outputs x [10]. It is a measure of the information
contained in x, which we denote here as K(x). The conditional
Kolmogorov complexity of x given y, K(x|y), is the length
of the shortest program that outputs x given the input y.

Bennett et al. proposed information distance as a similarity
measure that is calculated using conditional Kolmogorov com-
plexity [9] (for our purposes, we treat similarity as the inverse
of diversity: a test set in which the inputs are very similar lacks

diversity). For two strings, x and y, the information distance
is:

ID(x, y) = max{K(x|y),K(y|x)} (1)

In other words, the similarity between entities x and y is the
length of the shortest program that converts x to y, or the
shortest program that converts y to x, whichever is larger.
Bennett et al. show that information distance is a universal
measure of similarity in the sense that if any other admissable
metric detects a similarity between x and y, then so will the
information distance.

The Kolmogorov complexity of a long string will be, in
general, larger than that of a short string. For this reason,
the information distance between two long strings will be, in
general, larger than that between two short strings. In order to
be able to compare similarities between pairs of strings across
a range of sizes, Li et al. proposed the normalized information
distance (NID) that normalizes the information distance using
the Kolmogorov complexity of the two strings [16]:

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

(2)

NID takes values in the interval [0, 1], where values closer to
0 indicate greater similarity. This particular choice of normal-
ization has the advantage that NID retains the characteristics
of a metric, i.e. that (i) NID(x, x) = 0 (identity axiom); (ii)
NID(x, y)+NID(y, z) ≥ NID(x, z) (triangle axiom); and, (iii)
NID(x, y) = NID(y, x)) (symmetry axiom).

In practice, it is not generally feasible to determine the
shortest program that outputs a given string, and thus the Kol-
mogorov complexities that are used to calculate NID. Cilibrasi
and Vitáyni describe a practical alternative: the normalized
compression distance (NCD) [14].

NCD is based on the observation that size of the output
when compressing a string with real-world compression pro-
grams, such as gzip and bzip2, is a good approximation of its
Kolmogorov complexity. If C(x) is the length of the string
x after compression by a chosen compression program, then
NCD is given by:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(3)

where xy denotes the concatenation of x and y. NCD takes
values in the range [0, 1+ ε] where ε is a small positive value
that depends on the degree to which the compression program
approximates the Kolmogorov complexity.

B. Extending NCD to Multisets

NCD is a pairwise metric: it measures the degree of
similarity between two strings. Of more interest in some
situations is a notion of similarity between a multiset of strings
(we use the strict terminology of multiset rather than set since
the collection may contain the same string more than once).
This is the case in this paper where we are interested in
the similarity (or conversely, diversity) of a set of test cases
considered as a whole.

Recently Cohen and Vitányi have extended the notion of
NCD to multisets for this purpose. For a multiset X , the NCD



is calculated via an intermediate measure, NCD1, as [15]:

NCD1(X) =
C(X)−minx∈X{C(x)}
maxx∈X{C(X \ {x})}

(4)

NCD(X) = max

{
NCD1(X),max

Y⊂X
{NCD(Y )}

}
(5)

Here C(X) denotes the length of compressing the strings in
X after concatenating them in some specific order (Cohen
and Vitányi proposes length-increasing, lexicographic order
in [15]). By defining the NCD of a set of one string to be
0, the NCD of a multiset of two strings is identical to the
pairwise NCD between the two strings.

Since the term maxY⊂X{NCD(Y )} requires the recursive
evaluation of NCD for each proper subset of X, the calculation
of NCD for multisets has time complexity O(2N ) where N is
the size of the multiset. This is likely to make the calculation
of NCD impractical for anything but the smallest multisets.

Cohen and Vitányi suggest instead an algorithm that has
time complexity O(N2) to approximate NCD for multi-
sets [15] using the intermediate measure NCD1 defined in (4)
above. The algorithm starts from the multiset Y0 = X =
{x1, x2, . . . , xn}, and proceeds as:

1) Find index i that maximizes C(Yk \ {xi}).
2) Let Yk+1 = Yk \ xi .
3) Repeat from step 1 until the subset contains only two

strings.
4) Calculate NCD(X) as: max0≤k≤n−2{NCD1(Yk)}.

III. TEST SET DIAMETER

Information distance, and its practical realization as the
normalized compression distance (NCD), has an appealing
characteristic when used to assess the similarity (or diversity)
of software tests: it is universal in the sense that it “discov-
ers all effective feature similarities or cognitive similarities
between two objects” [9]. If information distance is used to
measure diversity between inputs, it can therefore be applied
to inputs of any data type and so may obviate the need
for domain-specific distance metrics such as the Euclidean
distance between numeric inputs used by Bueno et al. [5].
Once one has determined a consistent way to dump the input
data types to strings NCD can be applied.

The generic applicability and universality of the metric also
permits a much wider range of information to be considered
when determining the diversity of test cases. This benefit was
investigated in the earlier work of Feldt et al. on the application
of NCD to software testing [8]. The authors proposed a vari-
ability model that identifies a wide number of aspects in which
test cases may differ. These aspects include: the setup of the
SUT prior to executing the test, the test inputs, the execution
trace of the SUT, the SUT’s output, and non-functional aspects
of the execution such as the performance. Feldt et al. proposed
that any of these aspects, or combinations of them, carry
information that may be used to assess the similarity of test
cases, and an empirical investigation demonstrated the use of
pairwise NCD for this purpose.

In this paper, we investigate how the extension of NCD for
multisets described recently by Cohen and and Vitányi [15]
enables similarity to be measured by a universal metric at the

level of entire sets of test cases rather between pairs of test
cases.

We introduce the term Test Set Diameter (TSDm) to be the
diversity of a test set measured using the NCD for multisets
metric defined in the previous section. Using the aspects
identified in the variability model of Feldt et al. [8], we may
define a family of such metrics: Input TSDm where NCD
is calculated on the multiset of test inputs, Output TSDm
calculated from the multiset of outputs, Trace TSDm calculated
from the multiset of execution traces etc.

In this paper we investigate the use of TSDm for selecting
a diverse test set of a specified size from a larger pool of
potential test cases. For this purpose, we leverage the NCD1

algorithm proposed by Cohen and Vitányi to approximate NCD
for multisets that was described in section II-B above. Since
this algorithm uses the NCD1 metric to approximate NCD,
we refer to this procedure for selecting diverse test cases as
TSDm1.

The TSDm1 procedure is provided with a pool of potential
test cases, the size of the pool being as least as great as the
size of the desired test set. At each iteration of the algorithm a
subset of the pool is created by removing a test case in order to
maximise the NCD1 metric as described in section II-B. Thus
a sequence of test sets of decreasing size is created by the
procedure, and the subset of the desired size in this sequence
is then chosen as the diverse test set.

IV. EMPIRICAL STUDY

We focus on evaluating the use of the test set diameter in
selecting test cases based on input diversity, i.e. Input TSDm
(I-TSDm). Our motivation is that this is a more ambitious and
novel use case for automation in software testing. If possible it
could allow the selection and thus design of test suites prior to
even having started the implementation of the software system.
As long as at least a partial specification and description of
the interface of the software is present we could generate test
inputs based on them and, via I-TSDm, select a small, diverse
test set from them. Future work will investigate applications
of TSDm to test execution traces (as in [8]), outputs from the
software under test (SUT), as well as to different combinations
of test inputs, trace information, and outputs.

Below we describe the design of our experiments by
detailing the five research questions, the four experimental
subjects and the methods and measures common to all of
the investigations. For each research question, in turn, we
subsequently describe the specific methods used to answer it
as well as the results.

A. Research questions

Since the test set diameter is a new test metric there are a
number of both fundamental as well as practical experiments
that are needed. The basic assumption implicit in the test
heuristic ‘select diverse test cases’ is that such test cases are
more likely to cover diverse parts of the specification and thus
of the software (since it implements the specification). At the
most fundamental level we thus would expect that test sets
with higher test set diameter have higher code coverage. If
this is not the case it would seem very unlikely that we can



exploit any TSDm metric to improve testing. The first research
question we investigate is thus:

RQ1 – Correlation to code coverage: Are higher levels
of I-TSDm associated with higher levels of code coverage?

We do not expect any such correlation to be perfect, but
there must exist at least some correlation that any automated
method can then exploit. To investigate RQ1 we consider large
numbers of sets of test inputs randomly sampled from an initial
pool of randomly generated test inputs. We additionally vary
the size of the subsets to better understand the sensitivity to
the test set size of any observed correlation. Since we have
no reason to expect that either the TSDm values or the code
coverage values are normally distributed, we use the Spearman
rank correlation coefficient to study the association between
TSDm and code coverage. This is a nonparametric dependence
measure which is not sensitive to the underlying distributions
of values [17].

If we can find any correlation in RQ1, it is then natural to
study if the TSDm1 selection procedure described in section III
can be used in practice to select better test sets.

RQ2 – Structural coverage ability: Do test sets selected
based on I-TSDm lead to higher code coverage than randomly
selected test sets?

We compare to random selection of test sets since this
is the baseline technique available at a very early stage of
software development. More sophisticated testing techniques
would require an executable version of the software under test
and are thus not comparable. To provide an upper limit for
the level of coverage that could reasonably be expected, we
compare the results to a post-hoc greedy algorithm (described
in section IV-C below) and normalize the attained coverage
level in relation to its results. This way we can compare results
between different softwares under test. For all three methods
we study how quickly the coverage grows as the test set size
increases.

During preliminary experimentation it was evident that the
size of each test input is a key feature in determining diversity
and thus of exploiting I-TSDm: the TSDm1-based selection
would include any long test inputs first in the test sets and then
gradually include shorter test inputs. In retrospect this makes
sense since, on average, the longer a test input is, the more
room there is for it to be different from others. However, this
means there is a risk that any effect seen when investigating
RQ2 is due simply to the input size rather than to diversity
between inputs of a given size.

RQ3 – Structural coverage ability w. size constraints:
Do test sets selected based on I-TSDm lead to higher code
coverage than randomly selected test sets when we control for
the size of test inputs?

Even though the test data generation technique we use [18]
can be used to generate data with a specific size, we use here
a simpler approach in order to avoid introducing unnecessary
biases into the generated inputs: a large number of inputs are
generated and only those close to a target size are selected.
We vary the target size and include generated inputs that are
within 10% of the target in the initial pool of test cases to
select from.

It is not enough to cover larger parts of a program; what
we ultimately want is to find faults so that we can eliminate
them. By studying a SUT for which there are seeded faults we
can investigate any benefits in fault finding ability.

RQ4 – Fault finding ability: Do test sets selected based
on I-TSDm lead to higher fault coverage than test sets based
on random selection?

The I-TSDMm metric, being based on the Cohen and
Vitnyis algorithm described in section II-B, will theoretically
scale as O(N2) (see section II-B) where N is the size of
the initial pool of tests selected from. We investigate the
scalability, in practice, of an implementation of the selection
procedure, and give an indication of the actual times that may
be expected for realistically sized test sets.

RQ5: Selection time: How does the time to execute the
selection method scale as the size of the initial pool increase?

B. Software Subjects

JEuclid 3.1.9 is a Java library that renders images from
MathML, an XML format for describing the presentation
of mathematical equations [19]. The library is exercised by
an application that takes MathML as input and renders the
equation it describes in SVG format as output. The inputs
for this subject are generated based on the XML Schema
specification of MathML 2.0; the reader is referred to [20] for
details. Since rendering to SVG is only one of a number of
capabilities JEuclid, we restrict our measurement of coverage
to the JEuclid core rendering and document handling module
rather than the entire library. The core module has 11,556 non-
comment, non-blank lines of code (SLOC).

ROME 1.0 is a Java library for parsing and converting
RSS and Atom XML formats for syndication feeds [21]. The
library is exercised by an application that takes an Atom feed
as input, parses the feed, and outputs the contents and structure
as text. The inputs are generated based on the XML Schema
specification of Atom 1.0. We measure coverage of the entire
ROME library, which has 11,704 SLOC.

NanoXML is a small Java library for parsing XML.
We use the version of NanoXML from the Software-artifact
Infrastructure Repository (SIR) maintained by the University
of Nebraska-Lincoln [22]. The library is exercised by an
application that is a variant of software provided by SIR for
this purpose. The application takes XML as input, parses it,
and outputs the contents and structure as text. These inputs
are generated using the MathML generator that is also used
for JEuclid. We measure coverage of the entire NanoXML
library, which has 1,630 SLOC.

Replace is a C application from the Software-artifact
Infrastructure Repository that performs pattern matching and
substitution. It takes three inputs: a string to be modified, a
regular expression that defines matching text, and a string that
replaces the matched text. The regular expression is generated
using a custom generator based on the specification of Replace;
the string to be modified and replacement string are generated
as random sequences of characaters of size between 0 and 32
characters. The application has 538 SLOC.



C. Measures

All experiments were run on a MacBook Pro (Retina,
Mid 2012) with a 2.7Ghz Intel Core i7 CPU and 16GB
of DDR3 memory. The experimental framework as well as
the TSDm and NCD related code were implemented in the
Julia programming language [23]. For all experiments we
used Julia version 0.3.8 (2015-04-30). All experiments used
10 independent repetitions unless otherwise stated.

1) Coverage: JaCoCo 0.7.4 [24] was used to measure
the structural coverage of the Java subjects: JEuclid, ROME,
and NanoXML. JaCoCo collects coverage information at the
bytecode level while the Java Virtual Machine is running and
thus does not require the code to be instrumented. JaCoCo
evaluates a number of structural coverage metrics: for this
work the metric used was instruction coverage.

For the Replace subject, coverage was assessed in terms of
the detection of seeded faults in the application. This assess-
ment used 32 variants of application provided by the Software-
artifact Infrastructure Repository: each variant contained one
fault that had been manually seeded (for reasons related to
the framework used to perform the experiments, 1 of the 32
variants was excluded and so considered undetected by any
test case). A fault was considered to be detected by a test case
if the output and/or return status from the variant differed from
that of the unmodified application.

2) Greedy Coverage Algorithm: The greedy algorithm
starts with an empty test set. At each iteration, it considers
all the test cases remaining in the pool and selects from these
the test case that, if added to set, would improve the coverage
the set achieves the most. This test case is then removed
from the pool and added to the test set. This form of greedy
algorithm is termed the ‘additional’ approach in the context
of regression testing [25]. While I-TSDm uses only the test
inputs themselves to select test cases, the greedy algorithm uses
information obtained by dynamically executing the software
under test using the test inputs. For this reason we consider
the coverage achieved by the greedy algorithm as the best that
could reasonably be achieved using the given pool of test cases.

D. Experiment 1: Correlation to code coverage

In order to investigate the relationship between I-TSDm
and code coverage we would like a large number of test sets
with as wide a range as possible of test set diameters. We
could then measure their code coverage and study if there is
any correlation. If we were to randomly sample subsets, it is
likely we get mostly test sets with an average diameter and thus
would be unable to assess the correlation over its full range of
values. Simply increasing the sample size is not feasible since
it would take a very long time evaluate code coverage for all
of them.

We thus opted for a stratified sampling of test subsets
based on an initial application of I-TSDm to 1000 randomly
generated test inputs. These test inputs are considered in the
order in which they are removed during the I-TSDm selection
procedure and are divided into 10 consecutive strata: strata
1 includes test inputs numbered 1 to 100, strata 2 include
numbers 101 to 200, and so on. To select test sets for
experiment 1 we randomly select a strata and then randomly

TABLE I. SPEARMAN RANK CORRELATION VALUES BETWEEN
I-TSDM AND INSTRUCTION COVERAGE FOR THREE DIFFERENT SUTS AND

THREE DIFFERENT TEST SET SIZES.

Test Set Size
SUT 10 25 50
JEuclid 0.59 0.67 0.52
NanoXML 0.50 0.40 0.26
ROME 0.60 0.57 0.82

sample inputs within the strata. We repeat this procedure 100
times for each of the subset sizes 10, 25, and 50. This stratified
sampling ensures a better spread of TSDm values and allows
us to study any correlation to code coverage.

In Table I we can show the Spearman rank correlation
values for each of the three investigated SUTs and for each
investigated subset size. In all cases we are able to reject the
null hypothesis that there is no correlation between I-TSDm
and instruction coverage at p-values less than 10−4, with the
alternative hypothesis that the correlation is higher than 0.

The correlation values are in the range 0.40 to 0.82
with one outlier (NanoXML at subset size 50) with a lower
correlation value (0.26). Overall the correlation between I-
TSDm and instruction coverage can be considered a moderate
positive correlation. In Figure 1 the three sets for each subject
are plotted next to each other using the same scales for the
instruction coverage (y axis) and I-TSDm (x axis). The pattern
can be seen most clearly that as I-TSDm values increase on
average as the test set size increase, and the same trend can
be seen for the coverage values. For example, for ROME the
average coverage is 0.254, 0.277, and 0.285 for test set sizes
10, 20, and 50 respectively. Note also that the spread of TSDm
values shrinks as the subset size increases and that there is in
general more variation for the smaller subset sizes.

Test sets with higher input diameter (I-TSDm) on
average have higher code coverage.

E. Experiment 2: Structural coverage

Since Experiment 1 demonstrated a correlation between I-
TSDm and code coverage, we may reasonably expect that the
TSDm selection procedure can be used to select high-coverage
test sets. The results of Experiment 2 confirm that this is the
case.

Figure 2 is a typical example of the coverage achieved by
test sets selected using I-TSDm. The graph plots the instruction
coverage of the ROME library against size for test sets selected
using the greedy algorithm (red), I-TSDm1 procedure (green),
and random algorithm (blue) from an initial pool of 250
randomly-generated MathML inputs. The results are averaged
over 10 runs and normalized to the maximum coverage attained
by the test sets derived using the greedy algorithm.

Interpreting the same results in a different way, Table II
shows the average size of the test sets that are needed to
reach 90%, 95%, and 99% of the maximum coverage using I-
TSDm or random selection. On average, the random selection
procedure require test sets that are 2 to 6 times larger than sets
selected using I-TSDm. For example, test sets that achieve 95%
normalised coverage are 77% (ROME), 80% (NanoXML),
and 83% (JEuclid) smaller when selected using the I-TSDm1

procedure than when selected randomly.
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Fig. 1. Scatterplots showing the correlation between Input-TSDm (x axes) with instruction coverage (y axes) for test sets of three different sizes (10, 25, and
50 test inputs respectively) randomly sampled from 10 different strata. Test sets with darker colors are sampled from strata with test inputs that are selected by
the I-TSDm selection procedure when the subset is the smallest.
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Fig. 2. Instruction coverage (normalized) of the ROME library against size
for test sets selected using the greedy algorithm (red), I-TSDm1 procedure
(green), and random algorithm (blue) from an initial pool of 250 randomly-
generated MathML inputs. The plots show the average values over 10 runs.

TABLE II. AVERAGE TEST SET SIZE NEEDED TO REACH 90%, 95%,
AND 99% OF THE MAXIMUM INSTRUCTION COVERAGE REACHED BY THE

GREEDY ALGORITHM WHEN SELECTING TEST INPUTS USING THE
I-TSDM1 PROCEDURE AND THE RANDOM ALGORITHM FROM AN INITIAL

POOL OF 250 INPUTS.

Avg. Test Set Size
I-TSDm Random

SUT 90% 95% 99% 90% 95% 99%
JEuclid 3.6 6.8 49.3 20.2 39.2 100.8
NanoXML 3.5 8.7 75.3 13.9 43.1 183.8
ROME 1.4 3.0 12.5 8.8 13.1 58.5

Test sets selected for highest test input diameter lead
to higher code coverage than randomly selected test
sets.

However, if we look at the length of test inputs as selected
by the I-TSDm1 procedure we can see an almost perfect
correlation between test case length and the size of the test set
in which they are first included. Figure 3 plots the length of
the test inputs for one such sequence of test sets (for JEuclid).
The Spearman rank correlation was 0.96 in this case, 0.93 for
ROME and 0.96 for NanoXML.

In hindsight this effect is rather obvious: the longer the
input the more opportunity there will be for the input to
exercise different parts of the software under test. This suggests
that rather than using elaborate test design strategies such as
TSDm, simply selecting a few, large test inputs might be
enough to cover a diverse set of aspects of the input space.
In the next experiment we investigate whether I-TSDm is
beneficial when the effect of input length is controlled for.

F. Experiment 3: Structural coverage under a length con-
straint

In this experiment, the benefit of I-TSDm is explored when
the length of the test inputs is restricted to a small range.
This corresponds to a requirement in practice to limit the
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Fig. 3. Length of test inputs (for JEuclid) selected by the I-TSDm1 procedure
from an initial pool size of 250 plotted against the size of the test set in which
they are first included, for one sequence of test sets. The mean value of 351.4
is indicated with the grey horizontal line.
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Fig. 4. Instruction coverage (normalized) of the ROME library against size
for test sets selected using the greedy algorithm (red), I-TSDm1 procedure
(green), and random algorithm (blue) from an initial pool of 250 randomly-
generated MathML inputs with lengths between 90 and 110 bytes. The plots
show the average values over 10 runs.

length of test inputs: even when the test generation process
is automated, the oracle is likely to be manual and thus the
longer the test inputs the more difficult, and more costly, it
will be to apply the oracle [26]. To evaluate if TSDm can help
in this situation we re-ran Experiment 2 but limited the length
of inputs in the initial pool to within 10% of a target length
using a generate-and-filter approach, i.e. random inputs were
generated and inputs outside the allowed length interval were
discarded.



TABLE III. AVERAGE TEST SET SIZE NEEDED TO REACH 90%, 95%,
AND 99% OF THE MAXIMUM INSTRUCTION COVERAGE REACHED BY THE

GREEDY ALGORITHM WHEN SELECTING TEST INPUTS USING THE
I-TSDM1 PROCEDURE AND THE RANDOM ALGORITHM FROM AN INITIAL

POOL OF 250 INPUTS WITH LENGTHS BETWEEN 90 AND 110 BYTES.

Avg. Test Set Size
I-TSDm Random

SUT 90% 95% 99% 90% 95% 99%
JEuclid 29.9 40.9 90.3 82.2 135.3 217.3
NanoXML 1.9 19.4 75.1 18.7 38.2 207.2
ROME 9.1 21.7 51.3 21.9 51.0 129.0

Figure 4 shows the graphs for how instruction coverage
(normalized) grows as the size of the test set increases. This
corresponds to Figure 2 above but here the length of the inputs
in the initial pool has been limited to range of 90-110 bytes. We
can see that the coverage of the test sets selected using I-TSDm
is now less competitive compared to the greedy algorithm than
when the input length was unconstrained. However, it still
maintains a considerable advantage compared to randomly-
selected test sets. We tested with several target lengths, all with
an arbitrary length range of +/- 10% for the generate-and-filter
approach to be practical, and the patterns persist until the target
length is large and the advantage to select based on diversity
diminishes. It seems that when each input is long enough to
exercise a large part of the intended behavior we can pick any,
i.e. random selection ‘catches up’. Selection based on diversity
thus seems to have a use for applications of automated test
generation where humans will look at the generated tests, since
humans will generally prefer shorter over longer test inputs and
test cases.

Table III shows the average test set size to reach different
levels of the maximum instruction coverage reached by any
of these test sets. We note that for a given coverage level, a
test set selected using the I-TSDm1 procedure is 2 to 9 times
smaller than a randomly selected set. For example, test sets
that achieve 95% normalised coverage are 49% (NanoXML),
57% (ROME), and 70% (JEuclid) smaller when selected using
the I-TSDm1 procedure than when selected randomly.

Comparing these results to Table II, it is clear that larger
test sets are required than when the input length is uncon-
strained, and this occurs for both I-TSDm and the random
algorithm. For ROME a test set of approximately 22 inputs
is required to reach the 95% coverage using I-TSDm, while
only 3 inputs are needed when the length is constrained.
However, we exercise caution in comparing these tables since
the unnormalized coverage values reached differ for some of
the SUTs. For NanoXML and ROME a similar coverage level
is obtained with and without a length constraint—36.1% and
32.8% respectively; but for JEuclid a coverage of 46.8% is
reached when input length is constrained, and 59.8% when it
is unconstrained.

Test set diameter can lead to higher code coverage
even if we control for the size of test inputs; test
diversity is more than simply the input length.

We note that in future work one should investigate if the
coverage ability per bit (or byte) of a test set is a useful metric
when comparing and searching for test sets. Our results on the
importance of test case length implies that considering the total
length of a test set is very important.
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Fig. 5. Fault coverage (normalized) of the Replace SUT against size for test
sets selected using the greedy algorithm (red), I-TSDm1 procedure (green),
and random algorithm (blue) from an initial pool of 250 randomly-generated
inputs with the length of the regular expression between 9 and 11 bytes. The
graphs are the average values over 10 repeated runs.

G. Experiment 4: Fault-finding ability

For effective testing, structural coverage is not enough;
ultimately the objective is to find faults. In this experiment
we used the variants of Replace SUT with seeded faults to
compare the fault-finding ability of the different procedures for
selecting test inputs. As discussed in section IV-B, this SUT
takes three inputs, but the regular expression input is by far the
most important in determing the execution path. We therefore
consider, and control for, only the length of this input.

Figure 5 shows that I-TSDm selects test sets with higher
fault coverage than randomly selected ones, on average, and
the greedy algorithm has a fault-finding ability that is substan-
tially better than both. Test sets that achieve 95% normalised
fault coverage are 45% smaller when selected using the
I-TSDm1 procedure than when selected randomly.

Test sets with larger test set diameter (I-TSDm) may
have better fault-finding ability.

Of course, additional experiments that apply I-TSDm to the
selection of test sets for a wider range of SUTs is necessary
to be confident of the generality of this result.

H. Experiment 5: Test set selection time

By collecting the run times of the I-TSDm test selection
procedure during the experiments above, we are able to model
its performance. Since we expected a O(N2) overall scaling
(see section II), we investigated a few different models that
included this term. We found that a model of the form
Savg × N2 where Savg is the average length of the strings
being selected and N is the number of elements in the initial
pool explains the observed times very well. This is natural; we
expect a linear scaling in the average length of the elements



being compressed, as well as the O(N2) scaling from the
NCD1 reduction procedure. The R2 goodness-of-fit had a value
of over 0.99 when we fit this model with ordinary least squares
regression.

The TSDm test selection procedure scales quadrati-
cally in the size of the initial pool of tests to select
from, and linearly with the average length of the tests.

In practice this means that 40-60 minutes of compute time
were required on the machine we experimented on for an initial
pool of 1000 test inputs with an average size of a couple of
hundred bytes. Future work should investigate ways to speed
up the process; possibly one can parallelize the calculations
and/or exploit approximations based on initial filtering using
pairwise NCD calculations.

V. DISCUSSION

We have proposed the test set diameter (TSDm) as a family
of diversity metrics with general applicability for software test
generation and analysis. Our empirical study applied TSDm to
the selection of test sets from a pool of randomly-generated test
inputs and confirmed that it has a moderate to high correlation
with structural code coverage. This is important since it can
then be used early in a development process and uses a metric
which is neither data type nor domain specific and thus can be
applied in general, without further specialisation. An important
result from the study is the superiority of TSDm selection
procedure compared to selecting test sets at random. For three
Java software systems that take XML-based inputs, TSDm
selects test sets that are 2 to 9 times smaller than randomly-
selected sets that reach the same, high level of coverage. And
on a software function implemented in C using a pool of
inputs generated by a naively-implemented generator, TSDm
demonstrated improved fault coverage compared to random
selection. However, calculating TSDm is not cheap; even its
approximation scales quadratically with the size of the pool
from which test cases are selected.

Our results have implications for both theory and practice.
There is a general lack of theories in Software Engineer-
ing [27], but as already noted by Chen et al [27] when
discussing the merits of adaptive random testing, diversity is a
common thread to a large number of results in software testing.
By taking a theoretically well-founded perspective of diversity
based on Information Theory [9], [10], we can formalize what
diversity means in software testing and explore if there are
limiting laws. As we have argued elsewhere [28] there are a
number of connections from Information Theory to software
testing but diversity quantification is an important one and
should be explored further. Our results on the importance of
considering the length of test inputs generated should also be
a word of caution to other researchers in automated software
testing; are their results valid for different sizes of generated
test cases?

For practice, there are numerous implications of our results.
It is clear that TSDm can be used to select test sets that are
more effective than randomly selected ones. Even if this will
not always hold true there seems to be little risk in applying
I-TSDm since there are so few alternative techniques that
apply at early software development phases. Even if testers

will continue to manually select test cases they can then use
TSDm to search for additional test cases that most increase the
overall test set diameter [18], [29]. This process could even be
interactive: the tester is iteratively presented with a selection
of highly diverse test cases to choose from [30], [31].

An intriguing practical implication of our results is that
we can use TSDm to analyse existing test suites. For example,
ordering manually created test cases in a test set by TSDm,
visualizing the results and discussing them with the testers
might lead to insights into the relative importance of test cases
in a similar way to what have been achieved for historical test
outcomes [32]. This can also help guide reductions of the test
set as well as evaluation of newly proposed test cases that
would most increase test set diversity.

Apart from the quadratic scaling of the test selection
procedure time, there are a number of other limitations to
our approach. One disadvantage to using NCD is that it is
unclear what is the basis for a difference between two test
cases. Test sets are not solely used for finding faults or ensuring
coverage, but are also important elements in arguments for the
quality, reliability and safety of a software system. For this use
case there would be a benefit in a method that could not only
select test cases but could explain why it has made a certain
selection. Creating such a system based on NCD seems harder
than creating one based on data type specific metrics.

Another limitation is that we do not yet understand the
effect that the choice of compression algorithm has on NCD
metrics. In informal investigations we have found TSDm
results to be robust to variations in the compression algorithm
used. However, many compression algorithms have some id-
iosyncratic design or implementation choices that might make
them more or less suitable for the NCD calculation. For
example, we tried to switch the default Zlib compressor for
some of the faster ones in the Blosc library [33]. However,
they do not compress at all if the input string is less than 128
bytes. Such discontinuities might negatively impact the value
from applying NCD based metrics. Preliminary investigations
indicate that this is less of a problem for NCD for multisets that
for pairwise NCD calculations since the former concatenates
several strings and thus, in general, leads to longer strings.

The generality of NCD for multisets might make it at-
tractive also to analyze and exploit non test-related software
information in testing. For example, the text that can be
found in software artefacts such as requirements, specifica-
tions, design documents, and source code might be used to
find both test cases that are close to or different from such
information. However, we note that the base NCD measure
might not be applicable for things that are named rather than
self-describing. Cilibrasi and Vitányi have proposed to instead
use the Normalized Web Distance for such information [34].
Exploring this metric for software testing purposes remains an
important area of future work.

An alternative method against which to compare I-TSDm
test set selection would be manual selection, i.e. test sets
created by humans. For two of the SUTs we have studied
the Software-artifact Infrastructure Repository (SIR) provides
test sets, but the test strategy used to create the test cases is
not always clear, and we could not reliably use them for this
purpose. For this study we thus consider maximum coverage



level attained by the greedy selection algorithm as a good
approximation of what a human tester could achieve. Future
research should nevertheless investigate the comparison to
manual selection in more detail.

VI. RELATED WORK

The notion that more diverse test sets are beneficial for
software testing has been around for some time; what has
varied in the literature is the definition of the distance on which
the diversity is defined. In a very limited sense, diversity can
be interpreted as trying not to use the same subset of test
cases repeatedly. Kim and Porter implemented this idea as
the history-based test prioritization, in which the chance of
selecting a test case is proportional to the elapsed time since
its last execution [35]. Yoo et al. argued that repeated use
of the same subset can ‘wear out’ the selected test cases, and
recommended using different subsets at each test iteration [36].
While these works can be considered to concern test diversity,
they are limited to making the best use of a given set of tests
and cannot help test engineer to compare two sets of tests.

Test execution traces have been used as the basis of a richer
diversity measure. Leon and Podgurski [37] used the propor-
tional binary distance (a variation of Euclidean distance for
binary strings) to cluster test coverage vectors, and concluded
that the more diverse the chosen subset of tests is, the higher
the fault detection capability is. Nikolik has incorporated both
control and data flow information to the definition of test
diversity [38]. Ciupa et al. introduced the object distance
for object oriented programming languages by defining the
distance between two object instances as the weighted sum
of the distances between primitive members [39]. Bueno et
al [5] introduced a pairwise test set diversity measure based on
Euclidean distance, and applied a metaheuristic search in the
context of adaptive random testing. In a later study the authors
mention that other distance measures could be used but the
empirical work investigates numerical vectors only [40]. The
common thread in the existing work is the underlying use of
Euclidean, Hamming, or Levenshtein distance, which either
limits the applicability of the technique to numerical data,
or loses high-level semantics. In contrast, we use a universal
distance measure, NCD, which is free from the dependence
on numerical vectors and has been proven to handle high-
level semantics in the data. Feldt et al. [8] applied NCD to
test execution traces but in a pairwise manner and thus could
not help test engineers to compare sets of test cases, as we
do here. Related is the work by Hemmati et al [41] that study
a large number of different similarity functions applied pair-
wise to abstract test cases in model-based testing. Their paper
can serve as an extensive overview of many of the pair-wise
distance functions that exist.

Obtaining test execution traces requires instrumentation of
the SUT. Alsahwan and Harman focused instead solely on the
output of the SUT [6], [7] and showed that the test set with
more diverse output can produce correspondingly higher fault
detection capability and structural coverage. While Alsahwan
and Harman’s work focused on the diversity in the observed
output, the current paper focuses on the diversity in the test
input, thereby allowing the analysis to take place even before
test execution or system implementation. Since multiset NCD
can be applied also to outputs a more fundamental difference

is that Alshawan and Harman’s output uniqueness measures
are essentially binary since they only judge if two output
are different or not. In contrast, the NCD metric used here
can also quantify how different, for example, outputs are.
This should be important for software systems with large
output spaces where most inputs are likely to return unique
outputs or, in general, since it gives a more graded response
than binary. Alshawan and Harman’s measures instead filter
the outputs before judging uniqueness and can thus consider
uniqueness for different aspects. However, filters can also be
used prior to applying NCD as noted by [8]. Future work
should investigate the relative benefits of filters and/or binary
uniqueness versus continuous measures such as NCD, for both
inputs and outputs.

VII. CONCLUSIONS

Even though it has been long-argued that test sets with
more diverse test cases are better, this notion has remained
fuzzy and has been hard to apply in practice. Previous research
has either focused on measuring distance only between pairs
of test cases, or has been limited to specific data types. In this
paper, we propose a metric called the test set diameter (TSDm)
that measures the diversity of the test set as a whole. It has a
formal basis in Kolmogorov complexity and applies to any data
type and source of test related information. By approximating
its calculation using modern compression algorithms it can be
put to practical use for test selection and analysis.

Our empirical work evaluated the TSDm applied to test
inputs. This is one of the more ambitious and difficult tasks
in automated testing; one in which we need not even have
started to implement the software we are going to test. Our
results show that the input TSDm measure shows moderate
to high positive correlation to instruction coverage for three
open-source Java systems. A test selection procedure based on
TSDm can approach a post-hoc greedy test selection procedure
that needs actual coverage information from all test inputs in
an initial pool. However, TSDm’s success appeared to be in
part achieved by selecting large test inputs early By controlling
for input size we show that TSDm still gives a considerable
advantage compared to random selection. Finally, we applied
the input TSDm selection procedure to a software implemented
in C which has seeded faults. There is a positive effect on fault
coverage: test sets that reach the same fault coverage level are
27 to 45% smaller than those selected at random.

We argue that being able to rank test sets based on their
diversity is important for software quality in general. However,
diversity quantification is not enough; based on our empirical
study we conjecture that many factors together determine the
effectiveness of a test set including the diversity of the test
data generator and the size and diversity of the initial pool
selected from. Future work should evaluate them in detail and
quantify their effect. We propose that this can lead both to
a more fundamental understanding of test quality as well as
practical techniques that improve it.
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