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Abstract

This paper presents novel algorithms which exploit the intrinsic algebraic and
combinatorial structure of the matrix completion task for estimating missing en-
tries in the general low rank setting. For positive data, we achieve results out-
performing the state of the art nuclear norm, both in accuracy and computational
efficiency, in simulations and in the task of predicting athletic performance from
partially observed data.

1 Introduction
Matrix completion (MC) is the task of filling in the missing entries of a matrix. The
most popular statistical model to this end is the low-rank matrix model. Recently,
an algebraic-combinatorial approach to the low rank-matrix completion problem was
developed, where the authors derived the first:

1. algorithms which determine which entries of a matrix may be estimated exactly
in the limit of low-noise, in arbitrary rank and with any method whatsoever [7].

2. algorithms for the rank 1 case which utilize all information available with regard
to missing entries and are thus optimal for this case [6], outperforming, for ex-
ample, the nuclear norm approach [1]. These algorithms work locally on each
missing entry, leading to a fraction of the computational cost of completing all
missing entries.

3. error guarantees and computable error bounds for the rank 1 case on the single
entries [6].

In this paper, we extend these benefits to the general low-rank setting, when the true
matrix takes positive values, as in, e.g. the Netflix challenge. We propose algebraic-
combinatorial algorithms which are
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1. more accurate in simulations in certain regimes (high noise and low-noise, low-
medium observation probability) and on real-world data.

2. considerably faster than the nuclear norm approach in completing the entire ma-
trix.

3. even faster when only certain entries of a matrix are required to be completed,
since the algebraic-combinatorial algorithms operate locally on the observed ma-
trix.

Related work
Low-rank matrix completion has received a great deal of attention from the machine
learning community. Three main strands of research have developed: (1) convex re-
laxations of the rank constraints (e.g., [1, 10, 12, 4, 13]) (2) spectral methods (e.g.,
[5, 9, 2]), and (3) the novel algebraic approach discussed above [7, 6].

The approaches (1) and (2) focus on (i) estimating every missing entry; (ii) denois-
ing every observed entry; and (iii) minimizing the MSE over the whole matrix. The
algebraic approach (3) allows for the construction of single-entry estimators which
minimize the error of the entry under consideration.

2 Theory

2.1 Positive Low Rank Model
We assume that we observe some incomplete set of entries E ⊆ [m] × [n] of an
unknown matrix A ∈ Rm×n with all-positive entries. We also assume that A is a
low-rank perturbation (with potentially multiplicative or additive noise) of a low rank
“true”matrix.

Positive data of this form are common in applications, e.g. the NetFlix challenge
dataset (and in general in machine learning e.g. motivating non-negative matrix fac-
torization [8, 3]). This paper presents methods which outperform the state of the art
algorithms, nuclear norm [1] and OptSpace [5], for positive data.

2.2 Circuits
In this section we describe how one obtains polynomials from the observed matrix,
which include variables corresponding to missing entries and which must vanish, in
limit of low noise, in order that the matrix has rank r. This will then yield in the
following section a strategy for completing the missing entries in A.

The starting point here is the following classical theorem.

Theorem 2.1. Let A ∈ Cm×n. Then A is of rank r or less, if and only if all determi-
nants of (r + 1)× (r + 1)-submatrices of A vanish.
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Thus, given any submatrix of size (r + 1) × (r + 1), the polynomial given by its
determinant with variables at its missing positions, must vanish, otherwise A cannot
have rank ≤ r.

If, this polynomial contains only one variable, Xs, then the polynomial may be
solved uniquely, since linear in Xs (the monomials in the determinant never repeat
entries). This solution may be then taken, in the noise free case as the completed entry
(we approach the noisy case below).

However, in some cases, the subdeterminant may contain multiple variables. Sup-
pose we are interested in completing just one entry s, i.e. solving for Xs. In order
to make this feasible, we need to find additional polynomials containing the remaining
variables. These additional polynomials, however, may in turn again contain additional
variables. A solution forXs is thus only possible if a joint solution set may be obtained
by this process which has zero degrees of freedom. If the number of variables only pro-
liferates with the number of polynomials added, no solution for Xs will be possible.

This observation leads us to define circuits of a given rank, which formalizes the
notion of the locations on the matrix covered by this process and in particular, circuits
which allow us to complete entries in principle. The term circuit is suggestive of the
fact that there is a graph theoretic interpretation to this process, which is discussed
in [6]; in this context, a purely algebraic formulation is possible.

First we consider collections of potential entries in the matrix which are plausible
given the rank r assumption

Definition 2.2. Let S be a collection of indices, let Bs ∈ C, s ∈ S be an indexed
collection of numbers. Then we say that the (Bs)s∈C is compatible with rank r, if
there exists matrix A ∈ Cm×n, of rank r or less, with As = Bs for all s ∈ C.

Definition 2.3. Let C ⊆ [m]× [n] be a subset of indices. Then C is called a circuit of
rank r if:

(i) For every proper subset S ( C, any collection of numbers Bs ∈ C, s ∈ S is
compatible with rank r.

(ii) For any e ∈ C, and almost all collections of numbers Bs ∈ C, s ∈ C \ {e}, there
are at most finitely many Be yielding a collection Bs, s ∈ C that is compatible
with rank r.

This definition formalizes the notion, outlined above, that the polynomials we ob-
tain from the matrix should at some point yield finitely many solutions for the missing
entries. The simplest circuit of rank r is the support of an (r+1)× (r+1)-submatrix.
(i) and (ii) hold since each sub-minor with one missing entry admits exactly one com-
patible completion, except in a zero set of pathological cases where there are more, e.g.
when all observed entries vanish.

For an (r + 1) × (r + 1) sub matrix, one naturally obtains a polynomial, viz. the
determinant including the missing entries as variables, which vanishes whenever the
submatrix is compatible with rank r. It is possible to generalize this polynomial to
arbitrary circuits of rank r. Thus, with each circuit, one may associate a unique circuit
polynomial, which coincides with the determinant polynomial for subminors [7].
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Proposition 2.4. Let C ⊆ [m] × [n] be a circuit of rank r. Then, there is a(n) (up to
multiplicative constant) unique irreducible polynomial θC in variables Xs, s ∈ [m]×
[n] such that: Bs ∈ C, s ∈ C is compatible with rank r if and only if θC(Bs, s ∈ C) =
0.

One can prove the following theorem [7] which generalizes Theorem 2.1:

Theorem 2.5. Let A ∈ Cm×n, let E ⊆ [m] × [n] be a set of observed entries. Then,
the collection Ae, e ∈ E is compatible with rank r if and only if for all circuits C ⊆ E,
the circuit polynomial evaluations θC(Ae, e ∈ E) vanish.

3 Reconstruction by variance minimization

3.1 Reconstruction by circuits
Theorem 2.5 implies that the circuit polynomial of any circuit running through the
observed entries and an unobserved entry should vanish in the low-noise limit – thus
yielding a solving strategy for that single entry.

Definition 3.1. Let E ⊆ [m] × [n] be a set of observed entries, let e ∈ [m] × [n]
(observed or unobserved). A circuit C ⊆ E ∪ {e} of rank-r with e ∈ C is called
solving circuit for e (w.r.t. E). If θC has degree 1 in Xe, we call C a unique solving
circuit.

Every unique solving circuit gives rise to a rational solving equation of the form
[7]:

Ae =
fC(As, s ∈ S)
gC(As, s ∈ S)

, where S = C \ {e}.

In the case of a (r + 1) × (r + 1)-submatrix, the solving equation takes the form of
monomials of the determinant not containing Xe on the numerator of the right hand
side, and on the denominator, monomials containing Ae, but with Ae factored out.

In the absence of noise, it would suffice to find exactly one such equation and
substitute the observed As. If noise is present, we will follow a linear variance-
minimization strategy as in the pseudocode detailed as Algorithm 1, which fulfills the
desideratum that an estimate should be subject to the minimum variance when a class
of estimators is under consideration.

Crucial to note at this point that a variance estimate is simultaneously an error
estimate on the prediction of individual matrix entries we obtain.

Algorithm 1 variance-minimizing local completion
1: Find solving circuits C1, . . . , Cm for Ae
2: Compute candidate estimates a1, . . . , am via the Ci
3: Compute (co-)variance estimates σ1, . . . , σm, from se
4: return a linear combination Âe = α1a1 + · · ·+ αmam with minimal variance

We will present two prototypical algorithms employing this strategy: one for rank
1 and one for general local rank r matrix completion.
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3.2 Variance minimizing reconstruction: rank 1

For rank 1, we use a variant of the algebraic algorithm (which we refer to as Algebraic
Combinatorial Completion in Rank One - ACCRO) presented in [6]. In that algorithm,
computations are performed for logarithmic entries ae = logAs, for which circuits
become linear equations. In order to speed up computations, we will only consider
circuits of length 4 or less (=determinants and the entry itself, if observed) for recon-
struction, also we assume that the multiplicative noise is equal on all log-entries. An
additional speed-up is possible if one neglects the correlations between circuits. We
will refer to this variant as fACCRO - fast ACCRO. An informal description can be
found in Algorithm 2. The algorithm follows a variance minimizing strategy as out-
lined in Algorithm 1; the weighting used is the logarithmic weighting of Equation (4).
This may in principle be used to estimate the error of the estimate. The reason that
fACCRO is fast is that, if multiple entries are required, Step 5. may be performed en
masse.

Algorithm 2 fACCRO; input incomplete matrix A, missing index (i, j); output com-
pleted entry Âi,j

1: Find all l where A(i, l) is observed.
2: Find all pairs A(k, l), A(k, j) where both are observed.
3: Compute wk = |A(k, l)|.
4: Normalize the wk so that

∑
k wk =1

5: Store bl = exp(
∑
k wk(log(Ak,j)− log(Ak,l)))

6: Estimate Âki,j = Ai,lbl
7: Compute weights w′l = |A(i, l)| and normalize

∑
k w
′
l =1

8: Estimate Âi,j = exp(
∑
w′llogA(i, l))

3.3 Variance minimizing reconstruction: rank r

For general low rank, it is not the case that each circuit of rank r determines exactly
one solution when the circuit polynomial’s variables are substituted by generic entries
in all but one variable Xs.

However, when the circuit is a unique solving circuit, and there is noise on the
matrix, then θC(As) ≈ 0, where A is the true matrix.

In this higher rank case, the variance of the estimate given by a circuit C must
be approximated. To do this we perform a Taylor expansion of θC(As) around the
solution for the exact underlying matrix in Section A of the Appendix.

The considerations of this section and the previous section lead us to define the
following algorithm: For any missing entry at position s, require that any determinant
of a r + 1 × r + 1 minor through that entry is 0. For each such minor k, estimate the
variance of the estimate by Equation (4), ws and the solutions given by the solving the
minor determinant equations by Âks . Then average these estimates by Algorithm 1, to
yield an estimate of minimum variance. For large matrices, a set number of sub minors
should be chosen at random for computational gains. If the observation probability is
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low, then one decreases r until sufficient minors are present for a stable solution. See
Algorithm 3.

Algorithm 3 vm-Closure; input A, missing position (i,j) in almost complete r+1×r+1
subminors;output estimate Âi,j of Ai,j

1: Find minors of A including Ai,j with all entries but one missing: Bk for k = 1 . . .
iterations of size r̂ + 1× r̂ + 1 s.t. Bkr+1,r+1 = Ai,j

2: Set Bk0 to be Bk with a zero in the bottom corner, and Bk1 a 1.
3: Set a1 = det(Bk1 ) and a0 = det(Bk0 )
4: Set δBk = 1

|a1−a0| +
|a0|

(a1−a0)2

5: Define a probability measure q(k) over k by normalizing
∑
k′

1
(δBk′ )2

δ(k − k′)
6: Complete Âi,j = 1

iterations

∑
k q(k)(1−

a0
a1−a0 )

3.4 Spectral meta-Algorithms
In the example depicted in Figure 1, we generate a sample from model of Equation 1, in
the noise free case, where the true matrix is of rank 2. We then apply the ACCRO algo-
rithm to this matrix. Although this algorithm is motivated by the assumption of a rank 1
truth in its solution strategies, we observe that the singular values (left) of the estimated
matrices nevertheless reveal the rank 2 structure of the true matrix. In the right hand
panel, we see, moreover, that the second singular vector well approximates the singular
true singular vector. We compare the same graphics (red), but for completion with the
mean as per [2] ( [2] proposes a simple algorithm for matrix completion: truncation of
the SVD with 0s for missing entries). We see that the singular values in this case do not
reveal a clear rank 2 structure, and the 2nd singular vector provides a poorer approxi-
mation to the true 2nd singular vector. Our meta-Algorithms 4 and 5 use the fact that
we may obtain the rank 2 upwards singular vectors via the algebraic algorithms in rank
1. Both obtain the singular vectors using the output of one of the previous algorithms.
The Spectral matrix completion bootstrap (SMCB), Algorithm 4 completes the full
matrix by solving linearly for each row of A. Optspace [5] is an approach which first
fills 0s into the missing entries, performs certain trimming operations, and then trun-
cates the SVD of this coarse completion; this truncation is then fed into an optimization
routine which further refines the estimate. Our meta-OptSpace (mOS), Algorithm 5,
initializes the OptSpace optimization, instead, with the output of any of the previous
algorithms. Thus we obtain algorithm instances such as mOS(SMCB(ACCRO)).

These algorithms are justified by the considerable gains in accuracy over competing
spectral methods such as OptSpace observed in our simulations (Sections 4.2) and
application (Section 5). Further work will aim at understanding their asymptotics.
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Figure 1: The figure displays in the left hand panel the difference between the 2nd
and 3rd, 3rd and 4th, ... singular values on the matrix completed, by the mean (red)
and by the ACCRO algorithm (blue), from left to right, when the true matrix has rank
r = 2 and the noise level, ε = 0, p = 0.5, N = M = 50. The ACCRO exhibits
a prominent separation between the second and remaining eigenvalues, whereas, the
completion by the mean, poor separation. This is again reflected in the singular vectors
(right hand panel), where the ACCRO’s output (blue) well approximates the true 2nd
singular vector(black) and whereas the mean completion approach approximates only
poorly (red).

Algorithm 4 SMCB; input incomplete matrix A, initial estimate Ainit; output com-
pleted estimated Â

1: Let USV > be the SVD of Ainit
2: for i = rows of A do
3: Let Y = [V1, . . . , Vr, A

>
i ]
>

4: Rearrange the rows of Y to give Y =

[
A11 A12

A21 A22

]
where

[
A11 A12

]
contain

the singular vectors, A22 corresponds to the unobserved entries and A21 the
observed entries of Ai (ith row of A)

5: Set A22 = A21(A11)
+A12 where Z+ is the Moore-Penrose pseudo inverse of a

matrix Z.
6: Complete the corresponding entries of Ai using A22

7: end for

Algorithm 5 meta-OptSpace; input incomplete matrix A, initial estimate Ainit; output
completed estimated Â

1: Initialize Â1 as Ainit, using any of the algebraic algorithms.
2: Perform an SVD truncation of Â1 to rank r.
3: Perform the optimization loop of OptSpace starting at Â1, to output Â
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Figure 2: The figure displays the results of the simulation described in Section 4.2. The
left hand panel displays the results for additive noise.

4 Experiments on Simulated Data

4.1 Simulated Data
For simulated data subject to multiplicative noise, we sample:

A = (UV >) ◦ E (1)

For simulated data subject to additive noise, we sample

A = UV > + E (2)

Each entry of U , V is sampled independently from |z|, where z is a standard Gaus-
sian. For multiplicative noise we consider each entry of E as sampled independently
from a log-normal centered around 1 (exp(εz), where ε is the noise level). For addi-
tive noise we consider each entry to sampled from ε|z|. Each entry of the mask M is
sampled independently from {0, 1} from a Bernouilli distribution with parameter p.

4.2 Accuracy in the Matrix Completion Task
The aim of this simulation is to assess the accuracy of the algebraic methods, baselining
against the Nuclear Norm algorithm and OptSpace.

In the first simulation, 100 matrices with additive noise and masks are realized for
ε = 0.01 and for each probability that an entry is missing, p = 0.1, . . . , 0.9.

In the second simulation, 100 matrices with multiplicative noise and masks are
realized for ε = 0.02, 0.04, . . . , 0.2 and with the probability that an entry is missing,
p = 0.6. In both cases compare Nuclear Norm, OptSpace, SMCB(fACCRO), vm-
Closure and mOS(SMCB(fACCRO).

The results are displayed in Figure 2. The left hand panel displays the results of the
first simulation: the vm-Closure algorithm outperforms Nuclear at medium observation
probability. Moreover, the efficient algorithms SMCB(fACCRO) and mOS(SMCB(fACCRO)
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Figure 3: The figure displays the results of the simulation described in Section 4.3. The
left hand panel displays computation time in log coordinates of the tested methods (leg-
end), Nuclear Norm, OptSpace and SMCB(fACCRO). The right hand panel displays
the raw computation time. The results show that SMCB(fACCRO) outperforms Nu-
clear Norm (while performing on a similar level in accuracy; see Section 4.2) whereas
although OptSpace is the fastest, it yields the poorest matrix completion performance.

far outperform OptSpace. The right hand panel displays the results of the second sim-
ulation. Here, the meta-algorithms, initialized by algebraic-combinatorial solutions,
SMCB(fACCRO) and mOS(SMCB(fACCRO), outperform Nuclear Norm for higher
noise levels; all algebraic-combinatorial algorithms far outperform OptSpace.

4.3 Computational Efficiency
The aim of this simulation is to compare the computational efficiency of our fastest
rank r algorithm, SMBC(fACCRO), with the baselines nuclear norm (with cross vali-
dation) and OptSpace. Optspace, and our methods do not require cross validation since
an estimate of the rank may be computed from the singular value spectrum. We gen-
erate samples from the model for p = 0.5, ε = 0 and N = M = 20, . . . 150 and
record the computation times. The results show that SMCB(fACCRO) is considerably
more efficient than Nuclear Norm, and yields competitive accuracy; SMCB(fACCRO)
outperformed in efficiency by OptSpace but provides considerably greater accuracy, as
seen in the previous simulation.

5 Application of Methods to Prediction of Athletic Per-
formance

The publicly available data of a subset of runners was obtained from http://www.
thepowerof10.info/, which is a database cataloguing the performances of Great
British runners, both professional and amateur. Each athlete in the database is tagged
with information on the date, location, distance as well as the performance (in hours,
minutes and seconds) over each distance.
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Existing methods for the prediction of running performance have used only simple
parametric models which implicitly assume that the true model has rank 1. The best
known prediction (Riegel formula) predicts linearly in log space [11]:

T2 = T1 × (D2/D1)
1.06 (3)

Here, Ti refers to the times and Di to the corresponding distances.
We show that we can learn a higher rank model from the data which outperforms

this rank 1 method. The existence of such a solution is tantamount to the possibility of
building estimated athlete-specific information into the predictor.

The commonly attempted distances are 100m, 200m, 400m, 800m, 1500m, 1Mile,
5000m, 10000m, Half Marathon (21.1km), Marathon (42.2km), thus we obtain a ma-
trix of size no.athletes×10. For each athleteA, we choose his/her best event relative to
the population (the event for which the likelihood that another athleteB is superior than
A’s best performance event is lowest). A’s best performance is entered in seconds into
the corresponding column of the matrix. In addition, we fill in the remaining columns
of the matrix with times achieved over the remaining distances which occurred within
1 year of the best performance in A’s best event. The remaining entries are recorded as
unobserved. In this paper we consider those athletes having attempted at least 7 events
(no.athletes ≈ 400).

Clearly the matrix takes positive values. Also important to note here is that the
noise is multiplicative. This is since, a) e.g. the expected deviation in a Marathon is on
the order of minutes, whereas over 100m on the order of tenths of seconds; b) slower
runners are also more inconsistent.

5.1 Matrix Completion Performance
We test the MC performance, for 100 randomly deleted entries, of Nuclear Norm,
OptSpace, mOS(SMCB(ACCRO)) and mOS(SMCB(vm-Closure rank 2)); the Riegel
formula (given by Equation (3)), serves as a baseline. After deletion, we divide each
column by the mean of that column, so as to bring the columns on to the same scale;
otherwise the mean squared error is dominated by performances over longer distances.

The results show that a higher rank model yields a better predictor than the Riegel
rank 1 predictor and that the algebraic methods significantly outperform all baselines,
including nuclear norm. Intriguing is the fact that OptSpace, when improperly initial-
ized yields the highest MSE but when properly initialized, the lowest. This is remi-
niscent of recent insights in deep learning, that an intelligent initialization of a deep
network yields considerable performance gains.

6 Discussion and Conclusion
In this paper we presented algebraic combinatorial algorithms which outperform the
state of the art on positive low-rank matrices in terms of accuracy and computational
cost. Furthermore, the algebraic method is the only existing method which allows for
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method mOS(SMCB(ACCRO)) nn mOS(SMCB(vm-Cl r2)) Riegel OS
MSE ×102 0.35 0.42 0.35 2.31 10.3
±2σ 0.019 0.026 0.019 0.086 0.19

Table 1: Error given as MSE in dimensionless units (squared percentage of the mean
time for any given distance). The percentiles are ±2 standard deviations estimated via
a bootstrap with 1000 iterations.

the reconstruction of single entries and makes possible error estimates for them. We
conjecture that the algorithms may be generalized to non-positive or complex matrices
or other incomplete data imputation tasks following a different model.
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A Derivation of the weighting
Using the notation of Section 3.1 one can consider the first order approximation to the
estimated standard deviation of an approximate solution, as follows:

δAe = g−1C
∑
s∈S

fC,s · δAs −
fC
g2C

∑
s∈S

gC,s · δAs,

where we denote fC,s = ∂fC
∂Xs

, gC,s =
∂gC
∂Xs

and evaluate at As. If the noise is closer to
multiplicative, considering the logarithms gives a better approximation, yielding

δ logAe =
δAe
Ae

= f−1C
∑
s∈S

fC,s · δAs − g−1C
∑
s∈S

gC,s · δAs

=
δAe
Ae

= f−1C
∑
s∈S

fC,s ·As · δ logAs − g−1C
∑
s∈S

gC,s ·As · δ logAs

For the determinant, both expressions take a particularly simple form. Consider an
(r+1)×(r+1) matrixA, where all entries but the bottom right entryA11 are observed.
Write ak for the determinants ofAwhereA11 is replaced by k. Note that gC = a1−a0
and fC = a0. This yields

δA11 = (a1 − a0)−1
∑
s∈S

fC,s · δAs −
a0

(a1 − a0)2
∑
s∈S

gC,s · δAs,

δ logA11 = (a0)
−1
∑
s∈S

fC,s · δAs − (a1 − a0)−1
∑
s∈S

gC,s · δAs

= (a0)
−1
∑
s∈S

fC,s ·As · δ logAs − (a1 − a0)−1
∑
s∈S

gC,s ·As · δ logAs.

The sums are not easy to evaluate, even if all δAs are known or are of similar
order of magnitude (the computation of a permanent can be obtained as a special case).
However, we expect for randomly sampled data that the components of the sum lie on
a single order of magnitude, therefore yielding the two approximations

δA11 ≈
1

|a1 − a0|
+

|a0|
(a1 − a0)2

and δ logA11 ≈
1

|a0|
+

1

|a1 − a0|
(4)
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