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Abstract— In this work we present the methodology for the development of the EMBalance diagnostic 

Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders 

have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed 

methodology uses various data, ranging from demographic characteristics to clinical examination, auditory 

and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support 

for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide 

recommendations for the appropriate information and data to be requested at each step of the diagnostic 

process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. 

Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. 

Index Terms—Balance disorders, data mining, decision support systems, vestibular system  
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I. INTRODUCTION 

Human balance requires vision, joint and muscle proprioception and the vestibular system. The integration of the 

above input and motor output to the visionary and muscle systems are required in order to achieve balance. If one 

of the three above mentioned systems or their integration fails, this could lead to several different pathologies that 

can cause balance disorders. The reasons that can cause balance disorders can be many and different [1]. In 

approximately 5%, the causes are mainly neurological; in 5% are medical; in 15% are psychological; in more than 

50% the causes are related to diseases of the inner ear while in the rest 25%, the causes are multiple. Balance 

disorders can lead to falls [2], which can subsequently lead to other complications  

 

The diagnosis of balance disorders is challenging, sometimes even for the expert otolaryngologists or expert 

neurologists [3]. A systematic history taking, followed by appropriate clinical examinations chosen on a patient 

and symptom specific basis are the cornerstones of diagnosis and are tasks where a Decision Support System 

(DSS) could be of great help, facilitating the diagnostic process, especially for medical practitioners with less 

expertise in balance disorders such as GPs. Only a few DSS have been developed in the past regarding the 

diagnosis of vestibular disorders. Mira et. al. [4] proposed an automated diagnosis system, VERTIGO, which is 

based on rules. CAMISEL is another DSS [5], which is based on a two-step approach for reaching a diagnosis. In 

the first step, the system suggests a potential diagnosis based on initial evidence, while in the second step the 

system confirms or rejects the diagnosis, taking into account information from the patient’s history and clinical 

examinations. Galactica is a machine learning approach [6, 7] which learns and develops diagnostic decision rules 

using data from 564 patients with vertigo, with as primary diagnoses Menière’s disease, vestibular schwannoma, 

traumatic vertigo, sudden deafness, benign paroxysmal positional vertigo (BPPV) and vestibular neuritis. 

OtoNeurological Expert (ONE) [8,9] developed diagnostic rules using 815 neuro-otology patients, which included 

the same diagnosis as Galactica and subsequently tested for 1030 cases, including cases with benign recurrent 

vertigo, vestibulopathia and central lesion. The best total classification accuracies using the combined knowledge 

bases with machine learning knowledge and experts’ knowledge, classified 82.5–84.7% of cases correctly within 
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the first and second diagnostic suggestion. NetSet has been developed using 815 patient cases with the same 

primary diagnoses [10]. NetSet showed a sensitivity, specificity, positive predictive value and total accuracy for all 

six diagnostic classes 85%, 83%, 96% and 95%, respectively. 

 

Miettinen and Juhola [11], employed Bayesian probabilistic models for the diagnosis of six otoneurological 

diseases. Additional experiments with the ONE diagnostic system were also presented in [12,13], using different 

machine learning methods, such as the k-nearest neighbor method, the Naïve Bayes classifier and Support Vector 

Machines. Finally, Dong et al. [14] developed a diagnostic system, through dynamic uncertain causality graphs. 

The graphs were developed using medical knowledge and validated in 60 patient cases, resulting in an average 

accuracy ranging from 81.7 to 88.3%.  

 

A newly developed diagnostic DSS is part of an integrated system, EMBalance (http://www.embalance.eu/), 

which is a system for the management of patients with balance disorders in terms of diagnosis, treatment and 

disease evolution. The EMBalance diagnostic platform goes beyond current state of the art in several directions. 

All previous works focus only on the development of data mining models for classifying patients in different 

diagnostic categories. The proposed methodology aims to provide a recommendation tool which is able to guide 

the GPs and experts in requesting the appropriate information for reaching the diagnosis. Another innovative 

feature of the proposed DSS is that due to the several data mining models developed for each one of the 

diagnoses, it can provide more than one diagnosis for each patient. An additional benefit of the EMBalance DSS 

is that while in previous systems, the patients’ data used for training and testing the algorithms contained 

approximately 10-240 features, the EMBalance repository characterizes patients using approximately 350 

features. This exhaustive patient characterization coupled with extensive experiments with feature selection 

algorithms enables the EMBalance DSS to identify the critical information needed for the diagnosis of the 

different pathologies. Finally, the proposed DSS has two different modules, one for expert use and the other for 

GP use, which utilize different features which are determined by the access that each of the two groups (GPs and 

http://www.embalance.eu/
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experts) has to specialized equipment and tests. Previous systems assumed only experts usage, judging on the 

features used by them for diagnosis. 

 

II. MATERIALS AND METHODS 

A. Dataset 

Data from 985 patients were collected from the National Hospital of Neurology and Neurosurgery, Queen Square, 

UK, the 1
st
 Otolaryngology University Clinic of Athens, Greece, the University of Antwerp, Belgium and the 

University Clinic of Freiburg, Germany. These data contained more than 350 features (variables), including 

epidemiological information, detailed medical history, disease related history, clinical findings and laboratory 

examination results (http://www.embalance.eu/). Furthermore, detailed information on different balance related 

types of symptoms together with symptom duration, symptom free intervals, association between symptoms and 

relevant triggers was collected, since these are important features for the diagnosis of vestibular disorders. It 

should be noted that in the GP case, only features corresponding to personal disease history, symptoms and 

clinical examinations were utilized, whereas in the expert case, all the above mentioned features were used. 

Diagnostic outcomes were classified into more than 100 diagnoses, using the standard ICD10 code, as well as 

additional, not as yet specified in the ICD code, diagnostic categories based on the Bárány Society proposed 

International Classification of Vestibular Disorders (see http://www.jvr-web.org/Barany-feedback.html). The 

study has been approved by the respective ethics committees of each Institute according to local/national 

regulations. Following numerous experiments and detailed analysis and collaboration with medical experts, 12 

diagnostic categories shown in Table I, along with the corresponding recommendation for specific features are 

supported by the proposed DSS. Diagnostic categories with a very small number of patients (i.e. less than 20) 

were excluded because it was not feasible to be analysed. The proposed DSS is based on the above described 

dataset and provides diagnosis for 12 different diseases as they are described in Table I.  

 

http://www.embalance.eu/
http://www.jvr-web.org/Barany-feedback.html
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B. Methods 

B1. Training 

To develop the DSS for the diagnosis of 12 balance disorders, a three stage methodology was implemented which 

is shown in Fig. 1. In the first step, preprocessing of the dataset was performed; this included the removal of 

features with more than 50% missing values and the development of the datasets per class. Due to the large 

number of target classes (12), 12 different binary classification models have been developed instead of a 12-class 

classification model. A different dataset was thus prepared per diagnostic category; each dataset per class 

contained all records from the target class and randomly the same number of records from the rest of the database.  

 

In the second step, feature selection was performed. Two different data mining frameworks have been tested for 

each diagnostic category (Fig. 1). In the first (upper part of Fig. 1), feature selection was applied separately in 

each category of features (Personal disease history, symptoms, vertigo-instability symptoms, tinnitus symptoms, 

clinical examinations, auditory tests, video-nystagmography, questionnaires, vestibular tests, imaging data) and 

selected features were collected at the end for the diagnostic process. In the second category (lower part of Fig. 1), 

feature selection was applied in all features from all categories and the optimal subset was used for the diagnostic 

process. Feature selection was applied on the training set of each diagnostic category (10 times since 10-fold cross 

validation was used). In our case, we employed feature subset selection methods, that consider the overall set of 

features collectively, compared to feature ranking methods that assess each feature independently. Further to that, 

feature subset selection methods can be classified into two categories: the filter [15], where the feature subset 

selection is independent of the training algorithm and removes irrelevant and high correlated features and the 

wrapper [16], where the feature subset selection is applied as a wrapper with the training algorithm and the 

optimal feature subset is identified based on its accuracy with the specific training algorithms. 

 

Finally, in the third step, classification algorithms were applied. The reduced subset of features from the second 

step is used as input to predict the target class. The best results were obtained using the second data mining 

framework (overall feature subset selection in all available features) with the combination of wrapper feature 
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selection (second step) and decision trees enhanced with a boosting algorithm, Adaboost (third step). Wrapper 

feature selection performs an exhaustive search within the space of available features, targeting the optimization 

of the accuracy of the selected classification algorithm. Decision trees are one of the most common data mining 

techniques, employed in several different domains, including clinical applications [9]. A key element of the 

decision trees that makes their usage appealing in the medical domain is that they can be transformed to rules and 

provide transparency and interpretation in the decisions made (in contrast for example to neural networks or 

support vector machines). Given an initial dataset, with instances characterized by features, there are 

exponentially different decision trees that can be induced. For the development of diagnostic models for each of 

the diagnoses, decision trees were used as basic models, induced using the C4.5 algorithm. The C4.5 algorithm 

for decision tree induction creates a tree structure form with nodes, edges and leaves. The nodes correspond to 

features, the edges to different values or ranges of values of the features of the nodes and the leaves are the 

decisions of the tree. 

 

In order to identify which feature to have in which node and in which values to divide this feature, the notion of 

information gain was considered. Details can be found in [17,18]. After the induction of the decision tree, the tree 

is pruned in order to avoid overfitting in leaves where only a small number of instances applies. Boosting is a 

procedure performed in an iterative manner and is used to change the distribution of the training instances so that 

the base classifier, in our case the decision tree induced using the C4.5 algorithm, focuses more on examples that 

are difficult to classify correctly. Boosting assigns weight to each training instance and then tunes the weight of 

all instances; instances easily classified receive a reduced weight, while instances not classified correctly receive 

an increased weight. 

 

The assigned instance weights are then used in the sampling distribution in order to draw a set of bootstrap sample 

from the original dataset. A specific type of boosting is the algorithm Adaboost, which works as follows: Let 

                  denote the set of N training instances, where    are the features characterizing record j and 
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   is the class. Adaboost assigns different weights in the base classifiers   , depending on the error rate of each 

classifier, given as: 

   
 

 
                

 
                                             (1) 

where        if part p is true and 0 otherwise. i is the number of base of classifier. The weight of the    is 

given by: 

   
 

 
   

    

  
 ,                                                (2) 

which is used to define also the weight of the training instances as follows: 

  
     

 
  

   

  
  

                 
                

 ,                                     (3) 

where    is the normalization factor that ensures that    
     

   . The weight equation (Eq. 3) increases the 

weight of the instances classified incorrectly and decreases the weight of those instances that are classified 

correctly. After the definition of the weights of the instances and of the base classifiers, the classification is 

performed according to the weight of each base classifier. In this way, base classifiers with low accuracy rate 

receive less weight and are used less in the classification. 

 

It should be noted that several different combinations of classification schemes were tested prior to the resulting 

wrapper-decision trees and Adaboost approach. Besides wrapper, also filter based approaches were tested for 

feature selection. Due to the requirement of the collaborating clinicians and vestibular experts to provide the 

ability for interpretation for the decisions made, several classification methodologies were not selected (artificial 

neural networks, support vector machines, k-nearest neighbors) or due to their reduced reported results compared 

to decision trees and Adaboost (ripper algorithm [19], ridor algorithm [20], naïve Bayes algorithm). Moreover, 

instead of Adaboost, bagging and random forests were also tested. Additionally, due to the large number of 

classes, the 12 binary classification models approach was selected compared to the multiclass classification 

problem. An additional advantage to select binary diagnostic models was the nature of the vestibular diagnosis 
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problem; several subjects present with more than one pathology at the same time. A multiclass classification 

setting would not be able to address this requirement and assign two or more classes at the same time for a 

subject. The utilization of binary diagnostic models allows addressing this, by providing more than one diagnosis 

at the same time. For the C4.5 algorithm, the initial settings for pruning were set to 0.25 pruning factor and 

minimum instances per leaf to 5. The second value was tuned in each of the diagnostic categories. Adaboost was 

set to 10 different iterations and thus resulted in the generation of 10 decision trees per category. 

 

B2. Testing 

Fig. 2 shows the diagnostic (test) process which involves: (a) a recommendation tool that guides the GPs and 

experts in requesting the appropriate information (features), and (b) the diagnostic DSS, which has a different 

model/tree for each one of the 12 diagnoses. The recommendation system, based on the identified informative 

features for each diagnosis, recommends to the GP/Expert which parameter, clinical examination, and/or test to 

request in order to continue the diagnostic process. Specifically, the recommendation system proposes to the 

GP/Expert the feature identified in the respective path of the decision tree that is needed each time for the 

continuation of the tree parsing until the diagnosis is reached (Table I). 

 

III. RESULTS 

The 10-fold cross validation was used to evaluate the DSS. Sensitivity, specificity, positive predictive value, 

negative predictive value and accuracy were estimated for each diagnosis. Table II presents the results obtained 

for each different diagnosis considered, for both GPs and experts (since experts have access to specialized 

equipment and thus additional information compared to GPs). The first line of the results corresponds to the 

results obtained for the GPs, while the second line corresponds to the results for the experts. Also, the two 

columns, Features for GPs, Features for Experts, correspond to the resulting reduced subset of features identified 

for each diagnosis, for GPs and experts, respectively. This is due to the fact that GPs usually do not have access to 

the necessary equipment to perform specific tests (e.g. videonystagmography, auditory tests and vestibular tests). 
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For this reason, the first column (Features for GPs) contains only features made available to the GPs during the 

diagnostic process. The second column (Features for experts), contains additional features that can be acquired 

using sophisticated equipment, available only to expert settings. It should be noted that these two DSS modes 

were obtained and finalized after a series of experiments with different algorithms and different parameters. The 

reported results range in terms of all metrics in the different diagnoses taken into consideration, as well as, in 

terms of the features used. Overall, the metrics used for GPs are quite lower from the corresponding results of the 

experts. This is an expected finding, since the DSS developed for the experts, contains more sophisticated features 

(audiological and vestibular tests, imaging). When these test features are added, the corresponding metrics, as 

well as the diagnostic abilities, are improved in almost all cases.  

 

The developed EMBalance DSS addresses the 4 most prevalent balance disorders (Migrainous vertigo, Typical 

Benign paroxysmal positional vertigo, Vestibular Neuritis and Menière’s disease), as well as another 8 less 

prevalent (Possible Benign paroxysmal positional vertigo, Unilateral Peripheral Dysfunction/Failure, 

Psychological Disorders, Bilateral Vestibular failure/dysfunction, Cerebellar/Pontine lesion, CPA Acoustic 

neuroma, Chronic Subjective Dizziness Persistent Postural-Perceptual Dizziness, Vestibular Paroxysmia). For the 

4 most prevalent diseases except Vestibular neuritis, quite high results have been reported, both for the GP and 

expert DSS modules. The best results were reported for Menière’s disease, reaching an accuracy of 92.1% for the 

experts, while the lowest ones were reported for Unilateral Peripheral Dysfunction/Failure, with an accuracy of 

59.3% for the GPs. 

 

Based on the different number of records for each of the 12 classes, the classification framework used (feature 

subset selection, boosting, training of decision trees), required maximum 1 minute (in the case of Migrainous 

Vertigo, expert model). Regarding the testing time, decision trees are efficient classification structures and the 

testing time for a new record is negligible. 
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IV. DISCUSSION 

The diagnosis of balance disorders is a difficult task, not only for the GPs but also for the experienced medical 

professionals which include otolaryngologists, audiovestibular physicians, neurologists, and audiologists. For 

those lacking the specialised medical training and the long clinical experience, the diagnostic process of vestibular 

disorders can be fraught with difficulties, and it may not be possible to gather all necessary information or to 

interpret such information meaningfully in order to conclude in the correct diagnosis. A DSS that would 

successfully address diagnosis of such disorders would address a significant public health need. The impact of this 

achievement includes better diagnostic outcomes and consequently improved quality of life for a large patient 

group, reduction of falls and fall related injuries, equity in health services access and cost reduction via referrals 

and follow up assessment decrease.  

 

In this work we have presented the EMBalance diagnostic DSS for balance disorders, which includes one GP and 

one expert module, which reflect the availability of sophisticated tests and equipment in primary vs. 

secondary/tertiary clinical setups. According to Table II, for the unilateral peripheral dysfunction/failure, the 

diagnostic accuracy results for the GP mode are quite low. However, the diagnostic accuracy results are increased 

substantially in the expert module when the audiological test characteristics, which are very informative for 

unilateral diseases are added to the diagnostic process. Since audiological equipment is usually not available for 

the GPs, audiometry tests were not taken into consideration in this specific analysis for the GP DSS module. In 

the case of psychological disorders, the same simple models have been developed both for the GP and for the 

expert module, taking into consideration anxiety and/or depression validated questionnaire score levels and the 

existence or not of visual vertigo symptoms. For the Bilateral Vestibular failure/dysfunction case, the same 

models with quite accurate results have been developed for both GPs and experts, taking into consideration the 

same simple clinical history and examination features. In the Cerebellar/Pontine lesion case, the addition of 

vestibular tests improves the results from the GP to expert case, proving that vestibular tests are quite essential for 

this diagnosis. When considering the cerebellopontine angle (CPA) acoustic neuroma case, in the GP module, the 
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sensitivity obtained was quite low, which was increased substantially in the expert module, when the results of 

imaging tests are added. According to the medical expert module results, imaging and especially magnetic 

resonance imaging (MRI) is required to clearly identify a CPA acoustic neuroma. Nevertheless, in the GP module, 

results show that even with more easily acquired features, CPA lesions can be identified with satisfactory 

sensitivity. For Chronic Subjective Dizziness Persistent Postural-Perceptual Dizziness (PPPD), the results for GPs 

and experts are quite similar. Furthermore, the addition of the Videonystagmography (VNG) caloric test (canal 

paresis) category (a laboratory examination which is not available to the GPs) increases the accuracy for the 

identification of this diagnosis. In the vestibular neuritis case, the results are quite low in both modules. Still it can 

be seen that the addition of the VNG caloric test canal paresis category, improves the results for this diagnosis. In 

Menière’s disease, quite high results are reported both for GPs and experts. Still, the addition of some auditory 

test results (low frequency 250-500 Hz hearing loss) increases the accuracy of the DSS for Menière’s disease. 

Migrainous vertigo (vestibular migraine) is an important balance disorder, not addressed by most of the previous 

DSS in the literature [9-13]. For this diagnosis, the same model was developed and used for GP and expert DSS 

modules. 

 

The diagnostic accuracy results for Vestibular paroxysmia are quite low in the case of the GPs, however those are 

substantially increased in the expert module, especially with the addition of the imaging results which are a key 

diagnostic feature for this disorder. Finally, the results for the posterior canal BPPV, both typical and atypical 

have been presented. The differentiation between typical and atypical BPPV depends on the existence or not of 

nystagmus in the Dix Hallpike examination. With a positive Dix Hallpike, i.e. typical posterior BPPV, the 

obtained results are quite satisfactory both for GPs and experts. In the case of the negative Dix Hallpike and the 

atypical posterior BPPV, the two modules report the same results. 

 

Our work goes beyond the state of the art in many ways: A much more detailed feature vector has been 

formulated, accounting for more than 350 features including parameters regarding the medical history, symptoms, 

clinical examinations, audiological and imaging findings, questionnaire and, posturography results. In addition, an 
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advantage compared to the previously developed DSSs is that the EMBalance diagnostic DSS harnessed several 

different data mining models with a different model developed for each disease, which allowed the extraction of 

more than one diagnosis for each patient, since this is often required for patients with balance disorders. Through 

the decision tree based diagnostic DSSs, the medical professionals are thus able to obtain decision support in two 

tasks: (i) acquisition of patient’s data, through the recommendation tool that has been developed based on the 

parsing of the decision trees, by requesting the specific features and in the correct order and, (ii) interpretations for 

the decisions made due to the decision tree based nature. More specifically, for each diagnosis made through the 

diagnostic decision support system, the corresponding rules that were applied for each patient case are presented 

to the medical expert.  

 

Table III presents a summary of the current and of previous related works reported in the literature for the 

diagnosis of balance disorders including detailed accuracy for the common diagnosis (Benign Paroxysmal 

Positional Vertigo, Vestibular Neuritis and Menière’s Disease) and high risk diagnosis (Vestibular Schwanoma-

CPA acoustic neuroma). A direct comparison cannot be performed due to the different datasets and different 

methodologies (ranging from expert systems developed using expert knowledge [12] to more sophisticated 

modelling of knowledge with dynamic uncertain causality graphs [14], Bayesian networks analysis [11], artificial 

neural networks [10] etc.) that were employed by the different research groups. However, as it can be seen in 

Table III, the strength of the EMBalance DSS compared to DSSs presented in the literature include: (i) the 

number of different features used to inform the diagnostic process, allowing for a more detailed analysis of all 

available features and identification of the most informative ones per pathology. All previous works started their 

analysis from a smaller set, not taking into consideration several important features that the proposed DSS and 

analysis does. (ii) The number of different diagnostic classes considered. The proposed DSS can provide 

diagnosis for 12 different pathologies. All previous works reach up to 9 pathologies, limiting the exploitation of 

the DSS by a vestibular expert. An exception is the methodology presented in [14], which, however, was tested in 

a limited set of 60 patient cases, limiting its credibility in larger populations. Apart from the larger number of 

classes considered, the proposed DSS can provide simultaneously two or more diagnosis, which is typical for 
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several patients suffering from vestibular disorders. (iii) The comparable number of patient cases. As it is 

presented in Table III, the number of patient cases range from 60 to 1283; the 985 cases, using 10-fold cross 

validation used in our approach allows to consider the reported results credible and the DSS reliable.  (iv) The 

availability of both GP and expert modules. This is an innovative point of the proposed DSS, compared to 

previous works that consider only usage by experts. In several healthcare systems, GPs are the first point of 

patient access for diagnosis; the GP mode of the proposed DSS allows GPs to perform the diagnostic process, 

helping them also during data acquisition.  

 

In the future, the EMBalance DSS will be clinically evaluated in a multi-centre proof of concept clinical trial that 

will be conducted on a minimum of 200 prospective patients. Additionally, since in some of the diagnostic 

categories (Bilateral Vestibular failure/dysfunction, CPA Acoustic neuroma, Chronic Subjective Dizziness 

Persistent Postural-Perceptual Dizziness and Vestibular Paroxysmia), the number of available records was 

relatively small and the data highly skewed, in the future, when the EMBalance DB increase in terms of samples 

in these categories, retraining will be performed. Moreover, techniques for oversampling will be tested (e.g. 

Wilcoxon signed-rank, Friedman’s, Iman-Davenport post hoc tests, Synthetic Minority Oversampling Technique) 

in order to address the relatively small number of records in the specific cases. 

 

V. CONCLUSIONS 

A methodology based on data mining techniques (feature selection, boosting algorithms, decision trees) has been 

employed for the development of a recommendation tool and a diagnostic DSS for 12 balance disorders, to assist 

GPs and experts, firstly in requesting the necessary information from the patients to reach a potential diagnosis 

and secondly to support the diagnosis of balance disorders. The reported results in most of the cases are 

satisfactory and the features used for each diagnosis are in line with clinical knowledge and guidelines. An 

increase in overall accuracy is presented, from the GP to the expert module, which is attributed to the additional 
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and more sophisticated features used by the experts. Further application of the diagnostic DSSs in real clinical 

settings could reveal the potential of the proposed approach. 
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Figures and Tables  

 

 

Figure 1: The building blocks of the methodology for developing the diagnostic models. The two data mining 

frameworks that were used are also shown. In the first, feature selection is applied to each different source of 

features and then the results are summarized in order to train the classification algorithms for balance disorders. 
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Figure 2: The interaction between the recommendation tool, which utilizes the features encountered in the paths of 

the decision trees, and the diagnostic decision support system, which is composed by the 12 different decision 

trees, one for each diagnosis as shown above. The outcome is the list of the recommended diagnosis.  

 

 

 

  



 

 

 

19 

 

TABLE I: DIAGNOSES CONSIDERED IN THE EMBALANCE DSS AND THE CORRESPONDING NUMBER OF CASES 

A/A Diagnosis 
# of 

cases 

1 
Unilateral Peripheral 

Dysfunction/Failure 
134 

2 Psychological Disorders 40 

3 
Bilateral Vestibular 

failure/dysfunction 
23 

4 Cerebellar/Pontine lesion 43 

5 CPA Acoustic neuroma 34 

6 

Chronic Subjective Dizziness 

Persistent Postural-Perceptual 

Dizziness (PPPD) 

35 

7 Vestibular Neuritis 89 

8 Menière’s disease 127 

9 
Migrainous vertigo (Vestibular 

Migraine) 
222 

10 Vestibular Paroxysmia 30 

11 
Typical Posterior Benign Paroxysmal 

Positional Vertigo (Typical BPPV) 
156 

12 

Possible Posterior Benign 

Paroxysmal Positional Vertigo 

(Atypical BPPV)
1
 

52 

 Total 985 

 

 

 

 

 

  

 
1 As possible BPPV cases were considered those cases with a consistent history but negative Dix Hallpike examination. 
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Table II: Results for the 12 different diagnoses in terms of sensitivity, specificity, positive predictive value, negative 

predictive value accuracy and features used for the GPs and the experts are presented. The first line in the reported 

results are the measurements for the GPs and the second line for the experts 

 
SE 

(%) 

SP 

(%) 

PPV 

(%)  

NPV 

(%) 

ACC 

(%) 

Features for GPs Features for Experts 

Unilateral 

Peripheral 

Dysfunction/ 

Failure 

58.2 

 

76.1 

60.4 

 

74.6 

59.5 

 

75.0 

59.1 

 

75.8 

59.3 

 

75.4 

[patient_sex] [patient_age] 

[patient_ability_to_work] 
[patient_smoking] [symptoms_fall] 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 
[vertigo_instability_symptoms] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_difficulty_walking_ 
in_darkness] 

[symptom_type_headache] 

symptom_type_tinnitus] 
[vertigo_trigger_head_movement] 

[symptom_type_dizziness] 

[vestibular_test_sinusoidal_rotation] 
[auditory_test_PTA_250_AC_right] 

[auditory_test_PTA_8000_AC_right] 

[auditory_test_PTA_250_AC_left] 
[auditory_test_PTA_500_AC_left] 

[auditory_test_hearing_right_manual] 

[auditory_test_hearing_left_manual] 
[caloric_observational_test_canal_ 

paresis_category] 

[caloric_vng_canal_paresis_category] 
[questionnaire_dizziness_emotional_subscore] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_drunken_feeling] 

[vertigo_trigger_head_movement] 

[vertigo_trigger_standing_up_rapid_ascents] 
[symptom_type_dizziness] 

Psychological 

Disorders 

75.0 

 
75.0 

85.0 

 
85.0 

83.3 

 
83.3 

77.3 

 
77.3 

80 

 
80 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

Bilateral 

Vestibular 

Failure/ 

dysfunction 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_ 

in_darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_in_ 

darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

Cerebellar/ 

Pontine lesion 

79.1 

 
88.4 

79.1 

 
83.7 

79.1 

 
84.4 

79.1 

 
87.8 

79.1 

 
86.1 

[patient_age] [patient_smoking] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_romberg] 

[clinical_examination_gait] 

[personaldisease_bundle_name] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_drunken_feeling] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

[symptom_type_visual_vertigo] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_gait] 

[vestibular_test_sinusoidal_rotation] 

[vertigo_instability_symptom_symptom_type] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

CPA Acoustic 

neuroma 

79.4 

 

85.3 

91.2 

 

91.2 

90 

 

90.6 

81.6 

 

86.1 

85.3 

 

88.2 

[clinical_examination_gaze_test] 
[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 

[personaldisease_bundle_name] 
[tinnitus_symptom_tinnitus_symptom_type] 

[tinnitus_symptom_frequency] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_cervicalgia] 

[symptom_type_headache] 

[symptom_type_hearing_loss] 

[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 
[vertigo_trigger_rolling_over_in_bed] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 
[imaging_imaging_result] 

[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 
[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 

Chronic 

Subjective 

Dizziness 

PPPD 

77.1 

 

77.1 

68.6 

 

71.4 

71.1 

 

73.0 

75.0 

 

75.8 

72.9 

 

74.3 

[patient_sex] [patient_age] 

[clinical_examination_head_thrust] 

[clinical_examination_romberg] 
[clinical_examination_tandem_gait] 

[symptoms_hearing_loss] 
[tinnitus_symptom_tinnitus_symptom_type] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 
[symptom_type_headache] 

[symptom_type_muscle_weakness] 

[patient_sex] [clinical_examination_romberg] 
[clinical_examination_tendency_to_fall] 

[caloric_vng_canal_paresis_category] 

[questionnaire_hospital_anxiety_subscore] 
[symptom_type_anxiety_and_or_depression] 

[symptom_type_headache] 

[symptom_type_tinnitus] 
[symptom_type_dizziness] 
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[symptom_type_phonophobic] 
[symptom_type_dizziness] 

Vestibular 

Neuritis 

69.7 
 

73.0 

74.2 
 

79.8 

72.9 
 

78.3 

71.0 
 

74.7 

71.9 
 

76.4 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_instability_symptom_frequency]  
[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 

[caloric_vng_canal_paresis_category] 

[symptoms_hearing_loss] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_instability_symptom_frequency] 

[preceding_event_bundle_name] 

Menière’s 

disease 

88.2 

 
89.8 

91.3 

 
94.5 

91.1 

 
94.2 

88.5 

 
90.2 

89.8 

 
92.1 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_dizziness] 

[auditory_test_PTA_250_AC_right] 
[auditory_test_PTA_500_AC_left] 

[symptoms_hearing_loss] 
[symptoms_hearing_loss_evolution] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_dizziness] 

Migrainous 

vertigo  

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

[clinical_examination_romberg] 

[symptoms_hearing_loss] 
[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_cervicalgia] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_lightheaded] 

[symptom_type_phonophobic] 

[symptom_type_scotoma] 
[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 

environments] 

[clinical_examination_romberg] 

[symptoms_hearing_loss] 
[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_cervicalgia] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_lightheaded] 

[symptom_type_phonophobic] 

[symptom_type_scotoma] 
[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 

environments] 

Vestibular 

Paroxysmia 

60.0 
 

80.0 

76.7 
 

86.7 

72.0 
 

85.7 

65.7 
 

81.3 

68.3 
 

83.3 

[personaldisease_bundle_name] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 

caloric_vng_directional_preponderance_ 

category] 

imaging_imaging_result] 
vertigo_instability_symptom_symptom_type] 

vertigo_instability_symptom_duration_ 

time_interval] 
vertigo_symptom_type_bundle_name] 

preceding_event_bundle_name] 

symptom_type_hearing_loss] 
vertigo_trigger_standing_up_rapid_ascents] 

Typical 

Posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

86.5 

 

86.5 

87.8 

 

89.1 

87.7 

 

88.8 

86.7 

 

86.9 

87.2 

 

87.8 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[personaldisease_bundle_name] 

[tinnitus_symptom_tinnitus_symptom_type] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_hearing_loss] 

[symptom_type_motion_sickness] 

[symptom_type_tinnitus] 
[vertigo_trigger_head_movement] 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[vestibular_test_sinusoidal_rotation] 

[vestibular_test_smooth_pursuit] 

[caloric_vng_canal_paresis_category] 
[caloric_vng_directional_preponderance_ 

category] 

[symptoms_hearing_loss] 
[symptoms_hearing_loss_evolution] 

[diagnosed_nystagmus_nystagmus_direction] 

[personaldisease_bundle_name] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[nystagmus_type_bundle_name] 

[vertigo_trigger_bending_over] 
[symptom_type_dizziness] 

Atypical 

posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

[patient_sex]  

[clinical_examination_dix_hallpike] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 
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Table III: Comparison of previous works for the diagnosis of balance disorders 

Refere

nce 

Results (Accuracy %) 

Method 

# of 

feat

ures 

# of 

cla

sse

s 

# of cases 
Evaluatio

n method 

Vestibular 

Schwanno

ma (CPA 

Acoustic 

neuroma) 

Benign 

Paroxysmal 

Positional 

vertigo 

Meniere

’s 

Disease 

Vestibul

ar 

Neuritis 

[9] 
95.4% (128 

cases) 

99.5% (59 

cases) 

94.1% 

(243 

cases) 

99.5 (60 

cases) 

Decision trees 

(C4.5 and 

C5.0 

algorithms) 

123 6 564 

10 fold 

cross 

validation 

[10] 

92% 

(130+1 

cases)  

88% 

(147+27 

cases) 

84% 

(313+37 

cases) 

95% 

(120+37 

cases) 

Artificial 

neural 

networks 

38 6 815+116 

10 fold 

cross 

validation, 

independe

nt testing 

[11] 
98% (130 

cases) 

96% (146 

cases) 

94% 

(313 

cases) 

98% 

(120 

cases) 

Bayesian 

probabilistic 

models 

40 6 815 

10 fold 

cross 

validation 

[12] 
78.9% (131 

cases) 

64.9% (173 

cases) 

 

13.8% (80 

new cases) 

95.9% 

(350 

cases) 

 

78.9% 

(128 

new 

cases) 

80.5% 

(157 

cases) 

 

30% (20 

new 

cases) 

66.9-

80.5 

Expert 

knowledge, k-

nearest 

neighbours, 

fitness values 

optimization 

266 9 1030+253 

10 fold 

cross 

validation, 

independe

nt testing 

[13] 

1 vs 1 

approach 

95% (131 

cases) 

1 vs all 

90.7%  

1 vs 1 

approach 

79% (173 

cases) 

1 vs all 

78.6%  

1 vs 1 

approac

h 93.1% 

(350 

cases) 

1 vs all 

91.5%  

1 vs 1 

approac

h 88.2% 

(157 

cases) 

1 vs all 

85.4%  

k-nearest 

neighbours 

and support 

vector 

machines (1 vs 

1 and 1 vs all) 

94 9 1030 

10 fold 

cross 

validation 

[14]  - 91.7% Overall 81.7-88.3% 

Clinical 

knowledge 

modelled with 

Dynamic 

Uncertain 

Causality 

Graphs 

249 18  60 
60 cases 

for testing 

This 

work 

88.2% (34 

cases) 

82.7% (52 

cases)-

87.8% 

(156 cases) 

92.1

% 

(127 

cases) 

76.4 (89 

cases) 

Wrapper 

based feature 

selection, 

Adaboost and 

decision trees 

(C4.5 

algorithm) 

350 12 985 

10 fold 

cross 

validation 
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Abstract— In this work we present the methodology for the development of the EMBalance diagnostic 

Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders 

have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed 

methodology uses various data, ranging from demographic characteristics to clinical examination, auditory 

and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support 

for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide 

recommendations for the appropriate information and data to be requested at each step of the diagnostic 

process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. 

Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. 

Index Terms—Balance disorders, data mining, decision support systems, vestibular system  
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I. INTRODUCTION 

Human balance requires vision, joint and muscle proprioception and the vestibular system. The integration of the 

above input and motor output to the visionary and muscle systems are required in order to achieve balance. If one 

of the three above mentioned systems or their integration fails, this could lead to several different pathologies that 

can cause balance disorders. The reasons that can cause balance disorders can be many and different [1]. In 

approximately 5%, the causes are mainly neurological; in 5% are medical; in 15% are psychological; in more than 

50% the causes are related to diseases of the inner ear while in the rest 25%, the causes are multiple. Balance 

disorders can lead to falls [2], which can subsequently lead to other complications  

 

The diagnosis of balance disorders is challenging, sometimes even for the expert otolaryngologists or expert 

neurologists [3]. A systematic history taking, followed by appropriate clinical examinations chosen on a patient 

and symptom specific basis are the cornerstones of diagnosis and are tasks where a Decision Support System 

(DSS) could be of great help, facilitating the diagnostic process, especially for medical practitioners with less 

expertise in balance disorders such as GPs. Only a few DSS have been developed in the past regarding the 

diagnosis of vestibular disorders. Mira et. al. [4] proposed an automated diagnosis system, VERTIGO, which is 

based on rules. CAMISEL is another DSS [5], which is based on a two-step approach for reaching a diagnosis. In 

the first step, the system suggests a potential diagnosis based on initial evidence, while in the second step the 

system confirms or rejects the diagnosis, taking into account information from the patient’s history and clinical 

examinations. Galactica is a machine learning approach [6, 7] which learns and develops diagnostic decision rules 

using data from 564 patients with vertigo, with as primary diagnoses Menière’s disease, vestibular schwannoma, 

traumatic vertigo, sudden deafness, benign paroxysmal positional vertigo (BPPV) and vestibular neuritis. 

OtoNeurological Expert (ONE) [8,9] developed diagnostic rules using 815 neuro-otology patients, which included 

the same diagnosis as Galactica and subsequently tested for 1030 cases, including cases with benign recurrent 

vertigo, vestibulopathia and central lesion. The best total classification accuracies using the combined knowledge 

bases with machine learning knowledge and experts’ knowledge, classified 82.5–84.7% of cases correctly within 
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the first and second diagnostic suggestion. NetSet has been developed using 815 patient cases with the same 

primary diagnoses [10]. NetSet showed a sensitivity, specificity, positive predictive value and total accuracy for all 

six diagnostic classes 85%, 83%, 96% and 95%, respectively. 

 

Miettinen and Juhola [11], employed Bayesian probabilistic models for the diagnosis of six otoneurological 

diseases. Additional experiments with the ONE diagnostic system were also presented in [12,13], using different 

machine learning methods, such as the k-nearest neighbor method, the Naïve Bayes classifier and Support Vector 

Machines. Finally, Dong et al. [14] developed a diagnostic system, through dynamic uncertain causality graphs. 

The graphs were developed using medical knowledge and validated in 60 patient cases, resulting in an average 

accuracy ranging from 81.7 to 88.3%.  

 

A newly developed diagnostic DSS is part of an integrated system, EMBalance (http://www.embalance.eu/), 

which is a system for the management of patients with balance disorders in terms of diagnosis, treatment and 

disease evolution. The EMBalance diagnostic platform goes beyond current state of the art in several directions. 

All previous works focus only on the development of data mining models for classifying patients in different 

diagnostic categories. The proposed methodology aims to provide a recommendation tool which is able to guide 

the GPs and experts in requesting the appropriate information for reaching the diagnosis. Another innovative 

feature of the proposed DSS is that due to the several data mining models developed for each one of the 

diagnoses, it can provide more than one diagnosis for each patient. An additional benefit of the EMBalance DSS 

is that while in previous systems, the patients’ data used for training and testing the algorithms contained 

approximately 10-240 features, the EMBalance repository characterizes patients using approximately 350 

features. This exhaustive patient characterization coupled with extensive experiments with feature selection 

algorithms enables the EMBalance DSS to identify the critical information needed for the diagnosis of the 

different pathologies. Finally, the proposed DSS has two different modules, one for expert use and the other for 

GP use, which utilize different features which are determined by the access that each of the two groups (GPs and 

http://www.embalance.eu/
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experts) has to specialized equipment and tests. Previous systems assumed only experts usage, judging on the 

features used by them for diagnosis. 

 

II. MATERIALS AND METHODS 

A. Dataset 

Data from 985 patients were collected from the National Hospital of Neurology and Neurosurgery, Queen Square, 

UK, the 1
st
 Otolaryngology University Clinic of Athens, Greece, the University of Antwerp, Belgium and the 

University Clinic of Freiburg, Germany. These data contained more than 350 features (variables), including 

epidemiological information, detailed medical history, disease related history, clinical findings and laboratory 

examination results (http://www.embalance.eu/). Furthermore, detailed information on different balance related 

types of symptoms together with symptom duration, symptom free intervals, association between symptoms and 

relevant triggers was collected, since these are important features for the diagnosis of vestibular disorders. It 

should be noted that in the GP case, only features corresponding to personal disease history, symptoms and 

clinical examinations were utilized, whereas in the expert case, all the above mentioned features were used. 

Diagnostic outcomes were classified into more than 100 diagnoses, using the standard ICD10 code, as well as 

additional, not as yet specified in the ICD code, diagnostic categories based on the Bárány Society proposed 

International Classification of Vestibular Disorders (see http://www.jvr-web.org/Barany-feedback.html). The 

study has been approved by the respective ethics committees of each Institute according to local/national 

regulations. Following numerous experiments and detailed analysis and collaboration with medical experts, 12 

diagnostic categories shown in Table I, along with the corresponding recommendation for specific features are 

supported by the proposed DSS. Diagnostic categories with a very small number of patients (i.e. less than 20) 

were excluded because it was not feasible to be analysed. The proposed DSS is based on the above described 

dataset and provides diagnosis for 12 different diseases as they are described in Table I.  

 

http://www.embalance.eu/
http://www.jvr-web.org/Barany-feedback.html
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B. Methods 

B1. Training 

To develop the DSS for the diagnosis of 12 balance disorders, a three stage methodology was implemented which 

is shown in Fig. 1. In the first step, preprocessing of the dataset was performed; this included the removal of 

features with more than 50% missing values and the development of the datasets per class. Due to the large 

number of target classes (12), 12 different binary classification models have been developed instead of a 12-class 

classification model. A different dataset was thus prepared per diagnostic category; each dataset per class 

contained all records from the target class and randomly the same number of records from the rest of the database.  

 

In the second step, feature selection was performed. Two different data mining frameworks have been tested for 

each diagnostic category (Fig. 1). In the first (upper part of Fig. 1), feature selection was applied separately in 

each category of features (Personal disease history, symptoms, vertigo-instability symptoms, tinnitus symptoms, 

clinical examinations, auditory tests, video-nystagmography, questionnaires, vestibular tests, imaging data) and 

selected features were collected at the end for the diagnostic process. In the second category (lower part of Fig. 1), 

feature selection was applied in all features from all categories and the optimal subset was used for the diagnostic 

process. Feature selection was applied on the training set of each diagnostic category (10 times since 10-fold cross 

validation was used). In our case, we employed feature subset selection methods, that consider the overall set of 

features collectively, compared to feature ranking methods that assess each feature independently. Further to that, 

feature subset selection methods can be classified into two categories: the filter [15], where the feature subset 

selection is independent of the training algorithm and removes irrelevant and high correlated features and the 

wrapper [16], where the feature subset selection is applied as a wrapper with the training algorithm and the 

optimal feature subset is identified based on its accuracy with the specific training algorithms. 

 

Finally, in the third step, classification algorithms were applied. The reduced subset of features from the second 

step is used as input to predict the target class. The best results were obtained using the second data mining 

framework (overall feature subset selection in all available features) with the combination of wrapper feature 
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selection (second step) and decision trees enhanced with a boosting algorithm, Adaboost (third step). Wrapper 

feature selection performs an exhaustive search within the space of available features, targeting the optimization 

of the accuracy of the selected classification algorithm. Decision trees are one of the most common data mining 

techniques, employed in several different domains, including clinical applications [9]. A key element of the 

decision trees that makes their usage appealing in the medical domain is that they can be transformed to rules and 

provide transparency and interpretation in the decisions made (in contrast for example to neural networks or 

support vector machines). Given an initial dataset, with instances characterized by features, there are 

exponentially different decision trees that can be induced. For the development of diagnostic models for each of 

the diagnoses, decision trees were used as basic models, induced using the C4.5 algorithm. The C4.5 algorithm 

for decision tree induction creates a tree structure form with nodes, edges and leaves. The nodes correspond to 

features, the edges to different values or ranges of values of the features of the nodes and the leaves are the 

decisions of the tree. 

 

In order to identify which feature to have in which node and in which values to divide this feature, the notion of 

information gain was considered. Details can be found in [17,18]. After the induction of the decision tree, the tree 

is pruned in order to avoid overfitting in leaves where only a small number of instances applies. Boosting is a 

procedure performed in an iterative manner and is used to change the distribution of the training instances so that 

the base classifier, in our case the decision tree induced using the C4.5 algorithm, focuses more on examples that 

are difficult to classify correctly. Boosting assigns weight to each training instance and then tunes the weight of 

all instances; instances easily classified receive a reduced weight, while instances not classified correctly receive 

an increased weight. 

 

The assigned instance weights are then used in the sampling distribution in order to draw a set of bootstrap sample 

from the original dataset. A specific type of boosting is the algorithm Adaboost, which works as follows: Let 

                  denote the set of N training instances, where    are the features characterizing record j and 
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   is the class. Adaboost assigns different weights in the base classifiers   , depending on the error rate of each 

classifier, given as: 

   
 

 
                

 
                                             (1) 

where        if part p is true and 0 otherwise. i is the number of base of classifier. The weight of the    is 

given by: 

   
 

 
   

    

  
 ,                                                (2) 

which is used to define also the weight of the training instances as follows: 

  
     

 
  

   

  
  

                 
                

 ,                                     (3) 

where    is the normalization factor that ensures that    
     

   . The weight equation (Eq. 3) increases the 

weight of the instances classified incorrectly and decreases the weight of those instances that are classified 

correctly. After the definition of the weights of the instances and of the base classifiers, the classification is 

performed according to the weight of each base classifier. In this way, base classifiers with low accuracy rate 

receive less weight and are used less in the classification. 

 

It should be noted that several different combinations of classification schemes were tested prior to the resulting 

wrapper-decision trees and Adaboost approach. Besides wrapper, also filter based approaches were tested for 

feature selection. Due to the requirement of the collaborating clinicians and vestibular experts to provide the 

ability for interpretation for the decisions made, several classification methodologies were not selected (artificial 

neural networks, support vector machines, k-nearest neighbors) or due to their reduced reported results compared 

to decision trees and Adaboost (ripper algorithm [19], ridor algorithm [20], naïve Bayes algorithm). Moreover, 

instead of Adaboost, bagging and random forests were also tested. Additionally, due to the large number of 

classes, the 12 binary classification models approach was selected compared to the multiclass classification 

problem. An additional advantage to select binary diagnostic models was the nature of the vestibular diagnosis 
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problem; several subjects present with more than one pathology at the same time. A multiclass classification 

setting would not be able to address this requirement and assign two or more classes at the same time for a 

subject. The utilization of binary diagnostic models allows addressing this, by providing more than one diagnosis 

at the same time. For the C4.5 algorithm, the initial settings for pruning were set to 0.25 pruning factor and 

minimum instances per leaf to 5. The second value was tuned in each of the diagnostic categories. Adaboost was 

set to 10 different iterations and thus resulted in the generation of 10 decision trees per category. 

 

B2. Testing 

Fig. 2 shows the diagnostic (test) process which involves: (a) a recommendation tool that guides the GPs and 

experts in requesting the appropriate information (features), and (b) the diagnostic DSS, which has a different 

model/tree for each one of the 12 diagnoses. The recommendation system, based on the identified informative 

features for each diagnosis, recommends to the GP/Expert which parameter, clinical examination, and/or test to 

request in order to continue the diagnostic process. Specifically, the recommendation system proposes to the 

GP/Expert the feature identified in the respective path of the decision tree that is needed each time for the 

continuation of the tree parsing until the diagnosis is reached (Table I). 

 

III. RESULTS 

The 10-fold cross validation was used to evaluate the DSS. Sensitivity, specificity, positive predictive value, 

negative predictive value and accuracy were estimated for each diagnosis. Table II presents the results obtained 

for each different diagnosis considered, for both GPs and experts (since experts have access to specialized 

equipment and thus additional information compared to GPs). The first line of the results corresponds to the 

results obtained for the GPs, while the second line corresponds to the results for the experts. Also, the two 

columns, Features for GPs, Features for Experts, correspond to the resulting reduced subset of features identified 

for each diagnosis, for GPs and experts, respectively. This is due to the fact that GPs usually do not have access to 

the necessary equipment to perform specific tests (e.g. videonystagmography, auditory tests and vestibular tests). 
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For this reason, the first column (Features for GPs) contains only features made available to the GPs during the 

diagnostic process. The second column (Features for experts), contains additional features that can be acquired 

using sophisticated equipment, available only to expert settings. It should be noted that these two DSS modes 

were obtained and finalized after a series of experiments with different algorithms and different parameters. The 

reported results range in terms of all metrics in the different diagnoses taken into consideration, as well as, in 

terms of the features used. Overall, the metrics used for GPs are quite lower from the corresponding results of the 

experts. This is an expected finding, since the DSS developed for the experts, contains more sophisticated features 

(audiological and vestibular tests, imaging). When these test features are added, the corresponding metrics, as 

well as the diagnostic abilities, are improved in almost all cases.  

 

The developed EMBalance DSS addresses the 4 most prevalent balance disorders (Migrainous vertigo, Typical 

Benign paroxysmal positional vertigo, Vestibular Neuritis and Menière’s disease), as well as another 8 less 

prevalent (Possible Benign paroxysmal positional vertigo, Unilateral Peripheral Dysfunction/Failure, 

Psychological Disorders, Bilateral Vestibular failure/dysfunction, Cerebellar/Pontine lesion, CPA Acoustic 

neuroma, Chronic Subjective Dizziness Persistent Postural-Perceptual Dizziness, Vestibular Paroxysmia). For the 

4 most prevalent diseases except Vestibular neuritis, quite high results have been reported, both for the GP and 

expert DSS modules. The best results were reported for Menière’s disease, reaching an accuracy of 92.1% for the 

experts, while the lowest ones were reported for Unilateral Peripheral Dysfunction/Failure, with an accuracy of 

59.3% for the GPs. 

 

Based on the different number of records for each of the 12 classes, the classification framework used (feature 

subset selection, boosting, training of decision trees), required maximum 1 minute (in the case of Migrainous 

Vertigo, expert model). Regarding the testing time, decision trees are efficient classification structures and the 

testing time for a new record is negligible. 
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IV. DISCUSSION 

The diagnosis of balance disorders is a difficult task, not only for the GPs but also for the experienced medical 

professionals which include otolaryngologists, audiovestibular physicians, neurologists, and audiologists. For 

those lacking the specialised medical training and the long clinical experience, the diagnostic process of vestibular 

disorders can be fraught with difficulties, and it may not be possible to gather all necessary information or to 

interpret such information meaningfully in order to conclude in the correct diagnosis. A DSS that would 

successfully address diagnosis of such disorders would address a significant public health need. The impact of this 

achievement includes better diagnostic outcomes and consequently improved quality of life for a large patient 

group, reduction of falls and fall related injuries, equity in health services access and cost reduction via referrals 

and follow up assessment decrease.  

 

In this work we have presented the EMBalance diagnostic DSS for balance disorders, which includes one GP and 

one expert module, which reflect the availability of sophisticated tests and equipment in primary vs. 

secondary/tertiary clinical setups. According to Table II, for the unilateral peripheral dysfunction/failure, the 

diagnostic accuracy results for the GP mode are quite low. However, the diagnostic accuracy results are increased 

substantially in the expert module when the audiological test characteristics, which are very informative for 

unilateral diseases are added to the diagnostic process. Since audiological equipment is usually not available for 

the GPs, audiometry tests were not taken into consideration in this specific analysis for the GP DSS module. In 

the case of psychological disorders, the same simple models have been developed both for the GP and for the 

expert module, taking into consideration anxiety and/or depression validated questionnaire score levels and the 

existence or not of visual vertigo symptoms. For the Bilateral Vestibular failure/dysfunction case, the same 

models with quite accurate results have been developed for both GPs and experts, taking into consideration the 

same simple clinical history and examination features. In the Cerebellar/Pontine lesion case, the addition of 

vestibular tests improves the results from the GP to expert case, proving that vestibular tests are quite essential for 

this diagnosis. When considering the cerebellopontine angle (CPA) acoustic neuroma case, in the GP module, the 
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sensitivity obtained was quite low, which was increased substantially in the expert module, when the results of 

imaging tests are added. According to the medical expert module results, imaging and especially magnetic 

resonance imaging (MRI) is required to clearly identify a CPA acoustic neuroma. Nevertheless, in the GP module, 

results show that even with more easily acquired features, CPA lesions can be identified with satisfactory 

sensitivity. For Chronic Subjective Dizziness Persistent Postural-Perceptual Dizziness (PPPD), the results for GPs 

and experts are quite similar. Furthermore, the addition of the Videonystagmography (VNG) caloric test (canal 

paresis) category (a laboratory examination which is not available to the GPs) increases the accuracy for the 

identification of this diagnosis. In the vestibular neuritis case, the results are quite low in both modules. Still it can 

be seen that the addition of the VNG caloric test canal paresis category, improves the results for this diagnosis. In 

Menière’s disease, quite high results are reported both for GPs and experts. Still, the addition of some auditory 

test results (low frequency 250-500 Hz hearing loss) increases the accuracy of the DSS for Menière’s disease. 

Migrainous vertigo (vestibular migraine) is an important balance disorder, not addressed by most of the previous 

DSS in the literature [9-13]. For this diagnosis, the same model was developed and used for GP and expert DSS 

modules. 

 

The diagnostic accuracy results for Vestibular paroxysmia are quite low in the case of the GPs, however those are 

substantially increased in the expert module, especially with the addition of the imaging results which are a key 

diagnostic feature for this disorder. Finally, the results for the posterior canal BPPV, both typical and atypical 

have been presented. The differentiation between typical and atypical BPPV depends on the existence or not of 

nystagmus in the Dix Hallpike examination. With a positive Dix Hallpike, i.e. typical posterior BPPV, the 

obtained results are quite satisfactory both for GPs and experts. In the case of the negative Dix Hallpike and the 

atypical posterior BPPV, the two modules report the same results. 

 

Our work goes beyond the state of the art in many ways: A much more detailed feature vector has been 

formulated, accounting for more than 350 features including parameters regarding the medical history, symptoms, 

clinical examinations, audiological and imaging findings, questionnaire and, posturography results. In addition, an 
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advantage compared to the previously developed DSSs is that the EMBalance diagnostic DSS harnessed several 

different data mining models with a different model developed for each disease, which allowed the extraction of 

more than one diagnosis for each patient, since this is often required for patients with balance disorders. Through 

the decision tree based diagnostic DSSs, the medical professionals are thus able to obtain decision support in two 

tasks: (i) acquisition of patient’s data, through the recommendation tool that has been developed based on the 

parsing of the decision trees, by requesting the specific features and in the correct order and, (ii) interpretations for 

the decisions made due to the decision tree based nature. More specifically, for each diagnosis made through the 

diagnostic decision support system, the corresponding rules that were applied for each patient case are presented 

to the medical expert.  

 

Table III presents a summary of the current and of previous related works reported in the literature for the 

diagnosis of balance disorders including detailed accuracy for the common diagnosis (Benign Paroxysmal 

Positional Vertigo, Vestibular Neuritis and Menière’s Disease) and high risk diagnosis (Vestibular Schwanoma-

CPA acoustic neuroma). A direct comparison cannot be performed due to the different datasets and different 

methodologies (ranging from expert systems developed using expert knowledge [12] to more sophisticated 

modelling of knowledge with dynamic uncertain causality graphs [14], Bayesian networks analysis [11], artificial 

neural networks [10] etc.) that were employed by the different research groups. However, as it can be seen in 

Table III, the strength of the EMBalance DSS compared to DSSs presented in the literature include: (i) the 

number of different features used to inform the diagnostic process, allowing for a more detailed analysis of all 

available features and identification of the most informative ones per pathology. All previous works started their 

analysis from a smaller set, not taking into consideration several important features that the proposed DSS and 

analysis does. (ii) The number of different diagnostic classes considered. The proposed DSS can provide 

diagnosis for 12 different pathologies. All previous works reach up to 9 pathologies, limiting the exploitation of 

the DSS by a vestibular expert. An exception is the methodology presented in [14], which, however, was tested in 

a limited set of 60 patient cases, limiting its credibility in larger populations. Apart from the larger number of 

classes considered, the proposed DSS can provide simultaneously two or more diagnosis, which is typical for 
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several patients suffering from vestibular disorders. (iii) The comparable number of patient cases. As it is 

presented in Table III, the number of patient cases range from 60 to 1283; the 985 cases, using 10-fold cross 

validation used in our approach allows to consider the reported results credible and the DSS reliable.  (iv) The 

availability of both GP and expert modules. This is an innovative point of the proposed DSS, compared to 

previous works that consider only usage by experts. In several healthcare systems, GPs are the first point of 

patient access for diagnosis; the GP mode of the proposed DSS allows GPs to perform the diagnostic process, 

helping them also during data acquisition.  

 

In the future, the EMBalance DSS will be clinically evaluated in a multi-centre proof of concept clinical trial that 

will be conducted on a minimum of 200 prospective patients. Additionally, since in some of the diagnostic 

categories (Bilateral Vestibular failure/dysfunction, CPA Acoustic neuroma, Chronic Subjective Dizziness 

Persistent Postural-Perceptual Dizziness and Vestibular Paroxysmia), the number of available records was 

relatively small and the data highly skewed, in the future, when the EMBalance DB increase in terms of samples 

in these categories, retraining will be performed. Moreover, techniques for oversampling will be tested (e.g. 

Wilcoxon signed-rank, Friedman’s, Iman-Davenport post hoc tests, Synthetic Minority Oversampling Technique) 

in order to address the relatively small number of records in the specific cases. 

 

V. CONCLUSIONS 

A methodology based on data mining techniques (feature selection, boosting algorithms, decision trees) has been 

employed for the development of a recommendation tool and a diagnostic DSS for 12 balance disorders, to assist 

GPs and experts, firstly in requesting the necessary information from the patients to reach a potential diagnosis 

and secondly to support the diagnosis of balance disorders. The reported results in most of the cases are 

satisfactory and the features used for each diagnosis are in line with clinical knowledge and guidelines. An 

increase in overall accuracy is presented, from the GP to the expert module, which is attributed to the additional 
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and more sophisticated features used by the experts. Further application of the diagnostic DSSs in real clinical 

settings could reveal the potential of the proposed approach. 
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Figures and Tables  

 

 

Figure 1: The building blocks of the methodology for developing the diagnostic models. The two data mining 

frameworks that were used are also shown. In the first, feature selection is applied to each different source of 

features and then the results are summarized in order to train the classification algorithms for balance disorders. 
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Figure 2: The interaction between the recommendation tool, which utilizes the features encountered in the paths of 

the decision trees, and the diagnostic decision support system, which is composed by the 12 different decision 

trees, one for each diagnosis as shown above. The outcome is the list of the recommended diagnosis.  
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TABLE I: DIAGNOSES CONSIDERED IN THE EMBALANCE DSS AND THE CORRESPONDING NUMBER OF CASES 

A/A Diagnosis 
# of 

cases 

1 
Unilateral Peripheral 

Dysfunction/Failure 
134 

2 Psychological Disorders 40 

3 
Bilateral Vestibular 

failure/dysfunction 
23 

4 Cerebellar/Pontine lesion 43 

5 CPA Acoustic neuroma 34 

6 

Chronic Subjective Dizziness 

Persistent Postural-Perceptual 

Dizziness (PPPD) 

35 

7 Vestibular Neuritis 89 

8 Menière’s disease 127 

9 
Migrainous vertigo (Vestibular 

Migraine) 
222 

10 Vestibular Paroxysmia 30 

11 
Typical Posterior Benign Paroxysmal 

Positional Vertigo (Typical BPPV) 
156 

12 

Possible Posterior Benign 

Paroxysmal Positional Vertigo 

(Atypical BPPV)
1
 

52 

 Total 985 

 

 

 

 

 

  

 
1 As possible BPPV cases were considered those cases with a consistent history but negative Dix Hallpike examination. 
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Table II: Results for the 12 different diagnoses in terms of sensitivity, specificity, positive predictive value, negative 

predictive value accuracy and features used for the GPs and the experts are presented. The first line in the reported 

results are the measurements for the GPs and the second line for the experts 

 
SE 

(%) 

SP 

(%) 

PPV 

(%)  

NPV 

(%) 

ACC 

(%) 

Features for GPs Features for Experts 

Unilateral 

Peripheral 

Dysfunction/ 

Failure 

58.2 

 

76.1 

60.4 

 

74.6 

59.5 

 

75.0 

59.1 

 

75.8 

59.3 

 

75.4 

[patient_sex] [patient_age] 

[patient_ability_to_work] 
[patient_smoking] [symptoms_fall] 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 
[vertigo_instability_symptoms] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_difficulty_walking_ 
in_darkness] 

[symptom_type_headache] 

symptom_type_tinnitus] 
[vertigo_trigger_head_movement] 

[symptom_type_dizziness] 

[vestibular_test_sinusoidal_rotation] 
[auditory_test_PTA_250_AC_right] 

[auditory_test_PTA_8000_AC_right] 

[auditory_test_PTA_250_AC_left] 
[auditory_test_PTA_500_AC_left] 

[auditory_test_hearing_right_manual] 

[auditory_test_hearing_left_manual] 
[caloric_observational_test_canal_ 

paresis_category] 

[caloric_vng_canal_paresis_category] 
[questionnaire_dizziness_emotional_subscore] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_drunken_feeling] 

[vertigo_trigger_head_movement] 

[vertigo_trigger_standing_up_rapid_ascents] 
[symptom_type_dizziness] 

Psychological 

Disorders 

75.0 

 
75.0 

85.0 

 
85.0 

83.3 

 
83.3 

77.3 

 
77.3 

80 

 
80 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

Bilateral 

Vestibular 

Failure/ 

dysfunction 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_ 

in_darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_in_ 

darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

Cerebellar/ 

Pontine lesion 

79.1 

 
88.4 

79.1 

 
83.7 

79.1 

 
84.4 

79.1 

 
87.8 

79.1 

 
86.1 

[patient_age] [patient_smoking] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_romberg] 

[clinical_examination_gait] 

[personaldisease_bundle_name] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_drunken_feeling] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

[symptom_type_visual_vertigo] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_gait] 

[vestibular_test_sinusoidal_rotation] 

[vertigo_instability_symptom_symptom_type] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

CPA Acoustic 

neuroma 

79.4 

 

85.3 

91.2 

 

91.2 

90 

 

90.6 

81.6 

 

86.1 

85.3 

 

88.2 

[clinical_examination_gaze_test] 
[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 

[personaldisease_bundle_name] 
[tinnitus_symptom_tinnitus_symptom_type] 

[tinnitus_symptom_frequency] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_cervicalgia] 

[symptom_type_headache] 

[symptom_type_hearing_loss] 

[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 
[vertigo_trigger_rolling_over_in_bed] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 
[imaging_imaging_result] 

[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 
[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 

Chronic 

Subjective 

Dizziness 

PPPD 

77.1 

 

77.1 

68.6 

 

71.4 

71.1 

 

73.0 

75.0 

 

75.8 

72.9 

 

74.3 

[patient_sex] [patient_age] 

[clinical_examination_head_thrust] 

[clinical_examination_romberg] 
[clinical_examination_tandem_gait] 

[symptoms_hearing_loss] 
[tinnitus_symptom_tinnitus_symptom_type] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 
[symptom_type_headache] 

[symptom_type_muscle_weakness] 

[patient_sex] [clinical_examination_romberg] 
[clinical_examination_tendency_to_fall] 

[caloric_vng_canal_paresis_category] 

[questionnaire_hospital_anxiety_subscore] 
[symptom_type_anxiety_and_or_depression] 

[symptom_type_headache] 

[symptom_type_tinnitus] 
[symptom_type_dizziness] 
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[symptom_type_phonophobic] 
[symptom_type_dizziness] 

Vestibular 

Neuritis 

69.7 
 

73.0 

74.2 
 

79.8 

72.9 
 

78.3 

71.0 
 

74.7 

71.9 
 

76.4 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_instability_symptom_frequency]  
[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 

[caloric_vng_canal_paresis_category] 

[symptoms_hearing_loss] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_instability_symptom_frequency] 

[preceding_event_bundle_name] 

Menière’s 

disease 

88.2 

 
89.8 

91.3 

 
94.5 

91.1 

 
94.2 

88.5 

 
90.2 

89.8 

 
92.1 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_dizziness] 

[auditory_test_PTA_250_AC_right] 
[auditory_test_PTA_500_AC_left] 

[symptoms_hearing_loss] 
[symptoms_hearing_loss_evolution] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_dizziness] 

Migrainous 

vertigo  

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

82.9 
 

82.9 

[clinical_examination_romberg] 

[symptoms_hearing_loss] 
[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_cervicalgia] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_lightheaded] 

[symptom_type_phonophobic] 

[symptom_type_scotoma] 
[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 

environments] 

[clinical_examination_romberg] 

[symptoms_hearing_loss] 
[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_cervicalgia] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_lightheaded] 

[symptom_type_phonophobic] 

[symptom_type_scotoma] 
[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 

environments] 

Vestibular 

Paroxysmia 

60.0 
 

80.0 

76.7 
 

86.7 

72.0 
 

85.7 

65.7 
 

81.3 

68.3 
 

83.3 

[personaldisease_bundle_name] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 

caloric_vng_directional_preponderance_ 

category] 

imaging_imaging_result] 
vertigo_instability_symptom_symptom_type] 

vertigo_instability_symptom_duration_ 

time_interval] 
vertigo_symptom_type_bundle_name] 

preceding_event_bundle_name] 

symptom_type_hearing_loss] 
vertigo_trigger_standing_up_rapid_ascents] 

Typical 

Posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

86.5 

 

86.5 

87.8 

 

89.1 

87.7 

 

88.8 

86.7 

 

86.9 

87.2 

 

87.8 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[personaldisease_bundle_name] 

[tinnitus_symptom_tinnitus_symptom_type] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_hearing_loss] 

[symptom_type_motion_sickness] 

[symptom_type_tinnitus] 
[vertigo_trigger_head_movement] 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[vestibular_test_sinusoidal_rotation] 

[vestibular_test_smooth_pursuit] 

[caloric_vng_canal_paresis_category] 
[caloric_vng_directional_preponderance_ 

category] 

[symptoms_hearing_loss] 
[symptoms_hearing_loss_evolution] 

[diagnosed_nystagmus_nystagmus_direction] 

[personaldisease_bundle_name] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[nystagmus_type_bundle_name] 

[vertigo_trigger_bending_over] 
[symptom_type_dizziness] 

Atypical 

posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

82.7 
 

82.7 

[patient_sex]  

[clinical_examination_dix_hallpike] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 

[patient_sex] 

[clinical_examination_dix_hallpike] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 
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Table III: Comparison of previous works for the diagnosis of balance disorders 

Refere

nce 

Results (Accuracy %) 

Method 

# of 

feat

ures 

# of 

cla

sse

s 

# of cases 
Evaluatio

n method 

Vestibular 

Schwanno

ma (CPA 

Acoustic 

neuroma) 

Benign 

Paroxysmal 

Positional 

vertigo 

Meniere

’s 

Disease 

Vestibul

ar 

Neuritis 

[9] 
95.4% (128 

cases) 

99.5% (59 

cases) 

94.1% 

(243 

cases) 

99.5 (60 

cases) 

Decision trees 

(C4.5 and 

C5.0 

algorithms) 

123 6 564 

10 fold 

cross 

validation 

[10] 

92% 

(130+1 

cases)  

88% 

(147+27 

cases) 

84% 

(313+37 

cases) 

95% 

(120+37 

cases) 

Artificial 

neural 

networks 

38 6 815+116 

10 fold 

cross 

validation, 

independe

nt testing 

[11] 
98% (130 

cases) 

96% (146 

cases) 

94% 

(313 

cases) 

98% 

(120 

cases) 

Bayesian 

probabilistic 

models 

40 6 815 

10 fold 

cross 

validation 

[12] 
78.9% (131 

cases) 

64.9% (173 

cases) 

 

13.8% (80 

new cases) 

95.9% 

(350 

cases) 

 

78.9% 

(128 

new 

cases) 

80.5% 

(157 

cases) 

 

30% (20 

new 

cases) 

66.9-

80.5 

Expert 

knowledge, k-

nearest 

neighbours, 

fitness values 

optimization 

266 9 1030+253 

10 fold 

cross 

validation, 

independe

nt testing 

[13] 

1 vs 1 

approach 

95% (131 

cases) 

1 vs all 

90.7%  

1 vs 1 

approach 

79% (173 

cases) 

1 vs all 

78.6%  

1 vs 1 

approac

h 93.1% 

(350 

cases) 

1 vs all 

91.5%  

1 vs 1 

approac

h 88.2% 

(157 

cases) 

1 vs all 

85.4%  

k-nearest 

neighbours 

and support 

vector 

machines (1 vs 

1 and 1 vs all) 

94 9 1030 

10 fold 

cross 

validation 

[14]  - 91.7% Overall 81.7-88.3% 

Clinical 

knowledge 

modelled with 

Dynamic 

Uncertain 

Causality 

Graphs 

249 18  60 
60 cases 

for testing 

This 

work 

88.2% (34 

cases) 

82.7% (52 

cases)-

87.8% 

(156 cases) 

92.1

% 

(127 

cases) 

76.4 (89 

cases) 

Wrapper 

based feature 

selection, 

Adaboost and 

decision trees 

(C4.5 

algorithm) 

350 12 985 

10 fold 

cross 

validation 

 


