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In well networked communities, information is often shared informally among an individual’s di-
rect and indirect acquaintances. Here we study a modified version of a model previously proposed
by Jackson and Wolinsky to account for communicating information and allocating goods in so-
cioeconomic networks. The model defines a utility function of node i which is a weighted sum of
contributions from all nodes accessible from i. First, we show that scale-free networks are more effi-
cient than Poisson networks for the range of average degree typically found in real world networks.
We then study an evolving network mechanism where new nodes attach to existing ones preferen-
tially by utility. We find the presence of three regimes: scale-free (rich-get-richer), fit-get-rich, and
Poisson degree distribution. The fit-get-rich regime is characterized by a decrease in average path
length.

I. INTRODUCTION

The study of socioeconomic networks is a burgeoning
field in the physics and economics literature, with ma-
jor progress having been attained over the last decade
[1, 2, 3, 4, 5, 6]. Individuals and firms interact through
networks to share information and resources, exchange
goods and credit, make new friendships or partnerships
etc. The structure of the network through which interac-
tions take place may thus have an important effect on the
success of the individual or the productivity of the firm
[1]. Furthermore, the network of interactions among so-
cioeconomic agents plays an important role for the stabil-
ity and efficiency of socioeconomic systems [7]. Theories
about how interaction networks form are thus essential
for a deeper understanding of the development and orga-
nization of society as a whole.

The economics literature focuses mainly on equilib-
rium networks and the network formation mechanisms
are based on utility maximization and costs minimiza-
tion. The aim of most economic papers is to identify,
among the set of equilibrium networks, the geometry that
optimizes efficiency [31] in the sense of social benefit.
Likewise, economists are interested in the stability [32]
of equilibrium networks under link deletion, addition or
rewiring [1, 2]. A shortcoming of these models is that the
equilibrium networks are often too simple in their geom-
etry (stars, complete networks, interlinked stars, etc.),
typically as a consequence of the symmetries that need
to be assumed in the payoff functions in order to make
the models analytically tractable [8].

The physics literature, instead, has mainly focused on
the characterization of the structure of real networks and
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proposed dynamic models, mostly based on probabilistic
rules, capable of reproducing the observed geometrical
structures (Poisson, stretched exponential and scale-free
networks) [9, 10, 11].

In this paper we try to combine the physics and
economic approaches, by introducing a stochastic net-
work formation mechanism inspired by economists’ util-
ity maximization models, which naturally extends the
well known physicists’ preferential attachment rule [12].

One of the most interesting models of socioeconomic
network formation was introduced by Jackson and Wolin-
sky in 1996 [1]. In their model, the formation and evolu-
tion of links is driven by a utility maximization mecha-
nism. The model is based on the assumption that agents
may derive benefit not only from the nodes to which
they are directly connected (their nearest neighbours),
but also from the ones they are connected to indirectly
(possibly via long paths). The utility of node i is defined
as:

ui = wii +
∑

j 6=i

wijδ
dij −

∑

j∈V(i)

cij (1)

where the contribution to the utility of i from j may
depend on the weight wij of the edge between i and j
(or, alternatively, on the fitness of node j); 0 ≤ δ <
1 captures the idea that the utility gain from indirect
connections decreases with distance; dij is the number
of links in the shortest path between i and j (dij = ∞
if there is no path between i and j); V(i) is the set of
nearest neighbours of i; and cij are the (node specific)
costs to establish a directed connection between i and j
[33]. Costs can also be differentiated in costs of initially
creating or maintaining an edge [2].

The papers by Jackson and Wolisnky [1], as well as the
one by Bala and Goyal [2], are mainly concerned with
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stability and efficiency of the network resulting from dif-
ferent dynamic updating rules. In particular, Jackson
and Wolisnky study pairwise stability when agents can
only update a link at a time (either delete it or create
it), while Bala and Goyal allow agents to rearrange all
their connections at once. The updating is determinis-
tic in both models, and a new configuration is accepted
only if it increases the utility of the agent. These two
papers show that the star network is both efficient and
stable for a wide range of the parameters when δ = 1.
Nonetheless, a multiplicity of network architectures exist
in [2] for 0 < δ < 1 which could be a strict Nash equilib-
ria, and to which the system may converge depending of
the initial conditions. Feri [13] has shown that for suffi-
ciently large networks the star network is stochastically
stable for almost all the range of parameters, even for
0 < δ < 1.

Here we focus on a simplified version of the Jackson
and Wolisnky model, i.e. the case wij = 1, wii = 0 and
cij = 0. In this case, the utility can be rewritten as

ui =

l(i)max∑

l=1

∑

{k|dik=l}

δl =

l(i)max∑

l=1

δlz
(i)
l (2)

where the sum in l is over all shortest paths of length l
from node i, the sum in k is over all nodes whose shortest

path from i is dik = l, l
(i)
max is the path length of the node

the furthest away from node i, and z
(i)
l is the number of

lth-nearest neighbours of node i. The utility of a node
is expressed in (2) as a weighted sum of the number of
nodes accessible from i on outward ”layers” of increasing
distance from i. Thus, we start at node i and multiply
δ by the number of nodes that are joined by an edge to
i–this being the first layer. We then add δ2 times the
number of nodes that are joined by an edge to a node in
the first layer–this is the second layer. We continue in this
way until no new nodes are found. Hence, expression (2)
incorporates implicitly the well known breath-first search
algorithm [14].

We first study how the average utility in a network,
when individual utility is defined by (2), depends on the
underlying network topology. We derive analytical re-
sults in this respect by using the generating function ap-
proach [15]. We then focus on network growing mech-
anisms. We assume that new nodes arrive steadily and
create links with existing nodes in a probabilistic way,
proportionally to existing nodes’ utility. In this way,
we build on the preferential attachment growth rule of
Barabási and Albert [9, 12] which can be recovered from

equation (2) when l
(i)
max = 1.

If each new node attached deterministically to the ex-
isting node with maximal utility, the resulting network
would be a star. The randomness generated by the prob-
abilistic attaching rule, can be interpreted as costs, bar-
riers, or bounded rationality all of which limit the ability
to establish links in an optimal way, thus possibly gen-
erating more realistic geometries than the star network.
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FIG. 1: Average number of first and second-neighbours
(z1 (γ, a) and z2 (γ, a)) in networks with degre distribution
given by (10). From left to right, we plot z1 (γ, a) (full curves)
and z2 (γ, a) (dashed curves) for a = 0 (black), 1 (blue), 2
(green) and 3 (red). The values of z1 (γ ≤ 3, a) for which
z2 (γ, a) is not defined are plot in grey, as well as regions of
the curves for which z1 (γ, a) > z2 (γ, a). The circles denote
the intersection of the two curves, z1 (γ, a) and z2 (γ, a), for
each value of a.

Furthermore, preferential attachment is, arguably, the
most extensively studied mechanism of network forma-
tion and one that has revealed insights into properties
observed in real networks. Therefore, it is important to
understand the robustness of the specific rule of linear
preferential attachment by node degree, which is one of
the aims of this paper.

II. ANALYTICAL RESULTS FOR RANDOM

NETWORKS

An interesting question to ask (for example, from the
point of view of the social planner) is which network
structure maximizes the total, or the average, utility
(networks that satisfy this condition are said to be effi-
cient in economics). We show that it is possible to derive
analytical results for the average utility in star, Poisson
and scale-free networks. By comparing average utility
in different network topologies with the same size and
the same average degree (which is equivalent to fixing
the number of nodes and number of links), we show that
scale-free networks are more efficient than Poisson ran-
dom networks (even though less efficient than the star).

The average utility of a star network is given by:

u∗ (δ) = δz1

(
1 + δ

N − 2

2

)
(3)

where z1 = 2(N−1)/N . For N large, z1 ≃ 2 and u∗ (δ) ∼
Nδ2.

To derive an expression for average utility in generic
random networks we average both sides of (2):
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FIG. 2: Analytical results for scaled average utility in net-
works with power-law (full curves) and Poisson (dashed
curves) degree distributions as a function of δ, z1 and γ for
N = 105. Curves have been shifted vertically for different
values of γ for clarity. Values of z1 increase from bottom to
top.

u (δ) =
l∑

l=1

δlzl (4)

where zl is the average number of lth neighbours of a
node and l is the average path length.

When the number of nodes zl at a distance l away from
a given node is equal to N , then l is roughly equal to the
average path length, l [16, 17]:

1 +

l∑

l=1

zl = N (5)

If the sum in (2) was to be evaluated up to distance

l
(i)
max = 1 for every node, expression (4) would simplify to
u (δ) = δz1, i.e. average utility would be independent of
the specific network topology and all networks with the
same number of nodes and links would be equally effi-
cient. Thus we need to introduce long range interactions

(l
(i)
max > 1) to be able to rank networks in terms of their

efficiency.

Now that we have expressed average utility in terms
of the breadth-first search algorithm, we can derive a
closed form of expression (4) if we have access to analyt-
ical expressions for average path length and the average
number of lth neighbours. This can be accomplished by
generating functions, which are particularly useful when
determining means, standard deviations and moments of
distributions [15].
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m=1 (BA)
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m=5 (BA)
Star with z1=2
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FIG. 3: Average utility for the simulation results (solid curve
and symbols) and the BA model (solid curve, open symbols)
for m = 1 (z1 = 2), 2 (z1 = 4) and 5 (z1 = 10). We also plot
the analytical curves for average utility in Poisson (dotted
curve) and scale-free (dashed curve) networks for z1 = 2, 4
and 10 and γ = 3.1 (for scale-free networks). Curves were
computed for networks with N = 5 × 103 vertices and have
been shifted vertically for distinct values of z1. The curve in
gray is the average utility of a star with N = 5 × 103 and
z1 ≃ 2 . Simulation results were averaged over 30 runs.

The average number of neighbours (average degree)
and the average number of second neighbours of a node
can be derived from the probability generating function
of node degree, G0 (x) =

∑∞
k=0 pkxk, as long as the de-

gree distribution, pk, is specified. The beauty of the gen-
erating function formalism is that one can derive zl as a
function of z1 and z2 only [16, 17, 18]:

zl =

[
z2

z1

]l−1

z1 (6)

Replacing equation (6) in equation (4) yields

u (δ) = δz1

l∑

l=1

(δZ)
l−1

=
δz1((δZ)l − 1)

δZ − 1
(7)

where Z = z2/z1 and l is the average path length. For
Z > 1 and N > z1 + 1, which are conditions satisfied by
most networks, l can be calculated as a function of N , z1

and z2 from (5) and (6) as [16]:

l =
ln[(N − 1) (Z − 1) /z1 + 1]

ln (Z)
(8)

In what follows, we investigate the behaviour of (7) for
Poisson and scale-free random networks.
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Poisson random networks are characterized by z1 =
pN and z2 = z2

1 [16], thus (8) yields lP =

ln(N(z1−1)+1
z1

)/ ln(z1). In this case, (7) becomes:

uP (N, δ, z1) =
z1δ

(
(δz1)

ln(N+ 1−N
z1

)/ ln(z1) − 1
)

δz1 − 1
(9)

for N > z1 + 1, 0 < δ ≤ 1 and z1 > 1.
Next, we consider scale-free networks with degree dis-

tribution of the form:

pk (γ, a) =
1

ζ (γ, 1 + a)
(a + k)−γ , a ≥ 0 (10)

where the normalizing factor ζ (γ, a + 1) =
∑∞

k=1(a +

k)−γ is the Hurwitz zeta function (γ > 1). The gen-
erating function for the probability distribution is given
by

G0 (x, γ, a) =

∞∑

k=1

pkxk =
xΦ(x, γ, a + 1)

ζ (γ, a + 1)
(11)

where Φ(x, γ, a) =
∑∞

k=0
xk

(a+k)γ is the Lerch transcen-

dent. For our purposes, only the first two derivatives of
Φ(x, γ, a + 1) with respect to x are relevant as the av-
erage number of first and second-neighbours are given,

respectively, by z1 (γ, a) = ∂G0(x)
∂x

∣∣∣
x=1

and z2 (γ, a) =

∂2G0(x)
∂x2

∣∣∣
x=1

. Hence

z1 (γ, a) =
Φ(1, γ − 1, a + 1) − aΦ(1, γ, a + 1)

ζ(γ, a + 1)
, γ > 2 ∧ a ≥ 0 (12)

z2 (γ, a) =
ζ(γ − 1, a + 1)

ζ(γ, a + 1)
z1 (γ − 1, a) − (a + 1)z1 (γ, a) , γ > 3 ∧ a ≥ 0 (13)

Thus

Z (γ, a) =
ζ(γ − 1, a + 1)

ζ(γ, a + 1)

z1 (γ − 1, a)

z1 (γ, a)
− a − 1 , γ > 3 ∧ a ≥ 0 (14)

Substituting (12) and (14) into (8), we find

lSF (N, γ, a) =
ln

(
− (a+2)(N−1)

z1(γ,a) + z1(γ−1,a)ζ(γ−1,a+1)(N−1)
z1(γ,a)2ζ(γ,a+1) + 1

)

ln
(
−a + z1(γ−1,a)ζ(γ−1,a+1)

z1(γ,a)ζ(γ,a+1) − 1
) , N > z1 (γ, a)+1∧γ > 3∧a ≥ 0∧Z (γ, a) > 1 (15)

and thus average utility is given by

uSF (N, δ, γ, a) =
δz1 (γ, a)

(
(δZ (γ, a))

lSF (N,γ,a)
− 1

)

δZ (γ, a) − 1
, N > z1 (γ, a) + 1 ∧ 0 < δ ≤ 1 ∧ γ > 3 ∧ a ≥ 0 ∧ Z (γ, a) > 1

(16)

where z1 (γ, a), Z (γ, a) and lSF (N, γ, a) are given by
(12), (14) and (15), respectively.

When a = 0, the distribution of degree, (10), becomes
a pure power-law pk (γ) = 1

ζ(γ)k
−γ . In this case, we have

ζ (γ, a + 1)|a=0 = ζ (γ) and Φ(x, γ, a + 1)|a=0 =
Liγ(x)

x ,
therefore (11) becomes

G0 (x, γ) =
Liγ (x)

ζ (γ)
(17)

This generating function is also obtained for the power-
law distribution with exponential cut-off, proposed in [19,
20], pk (γ, κ) = Ck−γe−k/κ, in the limit κ → ∞.

Expression (17) implies

z1 (γ)|a=0 =
ζ (γ − 1)

ζ (γ)
, γ > 2 (18)

z2 (γ)|a=0 =
ζ (γ − 2) − ζ (γ − 1)

ζ (γ)
, γ > 3 (19)

Therefore, in pure power-law networks, when N → ∞,
the average number of second-neighbours, z2 (γ), is fi-
nite only for γ > 3. However, the Riemann zeta func-
tion, ζ (γ), is a decreasing function of γ (for γ > 3) and
z1 (γ = 3) = π2/6ζ(3) ≃ 1.36843. In other words, the
existence of z2 (γ) implies z1 (γ) < z1 (γ = 3) ≃ 1.36843,
which is a non-realistically low value for average degree
in real networks. This explains why we have chosen the
modified scale-free distribution (10).
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The generating function (11) encapsulates all the mo-
ments of the degree distribution [16]. Hence, the ex-
pressions for z1 (γ, a) and z2 (γ, a), (12) and (13), are
only exact in the limit N → ∞. Further, lSF (N, γ, a)
and uSF (N, δ, γ, a), both of which depend on z2 (γ, a),
are only defined where z2 (γ, a) is finite, i.e. for γ > 3.
Therefore, it is essential to understand the behaviour of
z1 (γ, a) and z2 (γ, a) in scale-free networks. Figure 1
shows z1 (full curves) and z2 (dashed curves) within the
range γ > 3 ∧ Z > 1 (where lSF (N, γ, a) is defined) for,
from left to right, a = 0, 1, 2 and 3.

Having deduced closed-form expressions for average
utility in Poisson and scale-free networks, we can now
compare both networks under the condition that z1 is the
same. Figure (2) is a plot of scaled average utility versus
δ when z1 = {2, 4, 10} and N = 105 for Poisson and scale-
free networks. The average utility of Poisson networks is
completely specified by N, δ and z1, but scale-free net-
works defined by (10) have one extra degree of freedom
in z1 (γ, a). In this case, we compute z1 numerically by
solving (12) for z1 (γ, a) = {2, 4, 10} when γ = {3.1, 4, 5}.
Comparisons among the star, Poisson and scale-free net-
works are only valid when z1 ≃ 2 as this is the average
degree of the star network in the limit N → ∞. We have
plot the scaled average utility for these networks in Fig-
ure 3 when N = 5×103 and z1 = 2, where the curves for
the star, Poisson and scale-free networks appear in gray,
black dotted and black dashed, respectively. As is clear
in Figure 3, the star network has a much higher average
utility than the Poisson or scale-free networks for all val-
ues of δ, confirming the well known result that the star
network is efficient [1, 2].

Finally, note that both uP and uSF grow slower than
N . As a consequence, when N → ∞,

ũSF =
uSF

N
= ũP =

uP

N
=

{
0 ⇐ 0 < δ < 1
1 ⇐ δ = 1

, (20)

thus comparisons between the curves in Figure (2) are
only valid for finite N .

III. EVOLVING NETWORKS

In the classic Barabási and Albert model [12], a net-
work is grown by adding, at every time step, a new node
that attaches to m existing nodes with a probability pro-

portional to their degree, Π(ki) = ki/
∑N

j=1 kj . At time t,
the resulting network has size Nt = m0+t, where m0 ≥ m
is the size of the (fully connected) network at time t = 0.
Preferential attachment generates a scale-free probability
density of incoming links that leads to the stationary re-
sult p(k) = 2m2/kγ , with γ = 3 independently of m. The
model is characterized by a clustering coefficient larger
than the one found for the Erdös Rényi networks (for
m > 1) and no clear assortative/disassortative behaviour
[9].

The linear preferential attachment hypothesis is very
sensitive, as the scale-free nature of the network is de-

6

5

4

3

2

1

FIG. 4: Schematic layout of network growth when m = m0 =
1. The addition of a new node, 6, implies an increase of the
utility of nodes 1 to 5 which is simply δd, where d is the
path length from node 6. The simplicity of this updating
mechanism allowed simulations to be run with N = 105 when
m = 1.

stroyed by a non-linear attachment rule Π(ki) ∼ kα
i

[9]. Several models have been proposed lately to investi-
gate extensions of the preferential attachment mechanism
through edge removal and rewiring, inheritance, redirec-
tion or copying; node competition, aging and capacity
constraints; and accelerated growth of networks to name
just a few (see [9, 10, 22] for reviews). Of particular rele-
vance to our approach are fitness models [23, 24, 25, 26],
where the probability of attaching to a node is propor-
tional to node fitness

Π(ki) ∼
fiki∑N

j=1 fjkj

. (21)

Here we extend the preferential attachment rule by in-
troducing a growing mechanism inspired on the work of
Jackson and Wolisnky [1]. Our contribution is to pro-
pose preferential attachment by node utility. Thus, the
probability that a new node j will be connected to an
existing node i depends on the utility of i, such that

Πi =
ui∑N

k=1 uk

(22)

where the utility of node i, ui, is given by (2). All nodes
have the same utility for δ = 0 and δ = 1:

{
ui = 0 ∀i when δ = 0
ui = N ∀i when δ = 1

(23)

so attachment happens randomly in these cases and we
recover a Poisson distribution of node degree. The prefer-
ential attachment rule (22) is invariant up to multiplica-
tive factors in (2), so for δ 6= 0 the qualitative behaviour
of the model remains unchanged if we define utility as

u
′

i =
ui

δ
= ki +

l(i)max∑

l=2

∑

k∈Vk
i

δl (24)
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FIG. 5: Cumulative distribution function of degree (panels a), b) and c)), utility (panels d), e) and f)) and betweenness
centrality (panels g), h) and i)) for several values of δ ∈ ]0, 1], and m = 1, 2 and 5. We also plot the corresponding distribution
of degree and betweenness for the BA model (curves were shifted vertically). Simulations were averaged over 30 runs in networks
with N = 105 (m = 1) or N = 5 × 103 (m = 2 and 5). Coloured bands around the curves are 95% confidence intervals.

where ki is the degree of node i. Thus, as δ → 0 our
model converges to the Barabási-Albert model and the
network becomes scale-free.

Our model has resemblances with the fitness models
discussed above. However, there is a fundamental dis-
crepancy: we regard utility as a time-dependent measure
of node fitness, whereas existing models assume that node
fitness does not change with time.

At each time step, a new node j joins the network and
the utility of existing nodes changes. When m = 1, the
utility increment to an existing node i at distance l from j
is given by ∆ui = δj and therefore, at each time step, the
computation of utility for the network can be completed
in O(N) time. Figure 4 is a diagram of a possible network
configuration with m = m0 = 1 after t = 5 time steps,
showing the change in utility of existing nodes ∆ui =
δj . When m > 1, the increment in the utility of node i
depends on the existing network geometry and ∆ui > δj .
Therefore, when m > 1, we need to re-compute the utility

of all existing nodes at every time step, and therefore the
computation runs in O(N2) time as it involves running
a breadth-first-search algorithm from every node. This
is the reason why we have ran simulations for N = 105

when m = 1, but only up to N = 5 × 103 when m > 1.
Existing nodes i at a higher distance than a certain

lmax from new node j receive a contribution ∆ui =
δd(j,i) < 10−precison which is less than the number of
significant digits that the computer can store (typically
precison = 32 in double precision), and do not need to
have their utility updated in the simulations. This max-
imal distance lmax is defined as

10−precision > δlmax ⇔ lmax > −
precision

log10 δ
(25)

Our implementation of the algorithm updates the utility
of all nodes accessible from the new node j up to distance
lmax = −32/ log10 δ. The code was implemented in C++
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FIG. 6: Kamada-Kawai spring layout [21] for m = 1 and N = 103. Panel a) is a sample layout for δ = 0.01, b) for δ = 0.2,
c) for δ = 0.7 and d) for δ = 1. On each panel, nodes are coloured by their utility on a gray scale from minimal (white) to
maximal (black) utility.

and ran in a Condor framework (high throughput com-
puting) [27] for several values of δ. Ensemble averages
were taken over 30 runs.

Figure 3 shows the simulation results for scaled aver-
age utility in our model and the Barabási-Albert model
(solid and open symbols on solid curves, respectively)
overlaid with the analytical curves for average utility of
Poisson and scale-free networks (dotted and dashed lines,
respectively) as δ is varied. We observe that average util-
ity in our model is higher than in Poisson networks, but
smaller than in the Barabási-Albert model and scale-free
networks.

Expressions (23) and (24) predict the existence of two
distinct regimes: a scale-free regime as δ → 0 (δ 6= 0) and
a Poisson regime for δ = {0, 1}. However, preferential

attachment by utility introduces a third, fit-get-rich [28],
regime between these two when m = 1. Next we discuss
each of these regimes.

We start with the scale-free regime. Expression (24)
implies that, for small enough δ, preferential attachment
by degree is indistinguishable from preferential attach-
ment by utility and the probability density of both quan-
tities should decay like p (x) ∼ x−γ with γ = 3. Figure
5, panels a) to f), which are plots of the distribution of
degree and utility for m = 1, 2 and 5 show, for small δ,
a scale-free decay of the distribution of both degree and
utility with the same exponent as the Barabási-Albert
model. However, the distribution would only be scale-
free exactly at δ = 0, whereas in our model there is a
discontinuity at this parameter value and the distribu-
tion becomes Poisson as all nodes have the same utility.
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FIG. 7: Average path length, a), and clustering coefficient,
b), for the simulation results when m = 1, 2 and 5. Curves
were scaled by, respectively, average path length and cluster-
ing coefficient for δ = 1 (Poisson network). Coloured bands
around the curves are 95% confidence intervals.

Therefore, the scale-free regime is only an approximation.
In the Barabási-Albert model, the degree distribution de-
cays as a power-law with exponent γ = 3 independently
of m. However, this behaviour, which seems to be a con-
sequence of the peculiar linear preferential attachment
mechanism, is destroyed with perturbations. In fact, in
our model, a higher m has the effect of homogenizing the
utility of the network nodes, with the consequence that,
for the same values of δ, the degree distribution is closer
to a Poisson with increasing m.

The ”fit-get-rich” regime, which appears for m = 1,
is a consequence of the preferential attachment rule by
node utility and is characterized by the emergence of a
few utility hubs which do not coincide necessarily with
the degree hubs. The effect is that nodes with high utility
will receive more links. The relevant property of preferen-

tial attachment by utility is that, for δ small, the nearest
neighbours of nodes with high utility will also have high
utility, and thus attract more links than nodes faraway
from the utility hubs. The preferential attachment mech-
anism by node utility rewards the utility hubs and their
neighbours, independently of their degree and newcom-
ers which attach to a utility hub will inherit a proportion
of the hubs’ utility. These newcomers will then have a
high probability of receiving a new link in the next time
step, although their degree will be m = 1. The conse-
quence is a stratification of utility values and a lowering
of the network radius. In this regime (m = 1), the dis-
tribution of utility shows a step-like behaviour which is
indicative of the presence of characteristic values in util-
ity, i.e. most nodes can be classified into a small set
of distinct utilities. This phenomenon can be observed
in Figures 5d) and 6 for networks of N = 105 and 103

nodes, respectively. In parallel, the fit-get-rich regime is
characterised by the decrease of average path length, as
can be observed in Figure 7a) where we plot scaled l. As
δ increases from 0 to 1, the newcomers will be assigned
a higher percentage of the utility of the node they are
attaching to, but node utility will also become more ho-
mogeneously distributed throughout the network nodes
and eventually the fit-get-rich regime disappears. This
regime is clearly identifiable for m = 1, but seems to be
destroyed for higher values of m.

Finally, the Poisson regime happens at δ = 1, when all
nodes have the same utility, i.e. u = N . In this case,
preferential attachment by node utility is equivalent to
random attachment and the degree distribution is Pois-
son as can be observed in Figure 5a) to c).

Betweenness centrality is plot in Figure 5g), h) and i)
as m is varied. Recent results show also that the distri-
bution of loads (or betweenness) scales with a power law
[29, 30] p(g) ∼ g−α where α = 2 for a tree (and hence
for m = 1). This justifies the collapse of the curves of
the distribution of betweenness in Figure 5g). Also the
load is fixed given the degree g ∼ kη and η = γ−1

α−1 . As

can be observed in Figure 5h) and i), the distribution of
betweenness deviates from the power-law behaviour as m
is increased. We plot the clustering coefficient in Figure
7b) and observe that it decreases with the increase of δ
from the value for the Barabási-Albert model, until, for
δ = 1, the value for Poisson random networks.

IV. DISCUSSION

We have studied models of socioeconomic networks
with long-range interactions inspired by the work of Jack-
son and Wolinsky [1] where the connection costs are re-
duced to zero. The last assumption is justified by the
fact that if costs are node independent they do not play
any role in the growing model. Similarly, costs do not
play a significative role if we restrict the comparison of
average utility in section II to networks with the same
size and the same degree.
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The derivation of analytical expressions for average
utility in Poisson and scale-free networks reveals that the
latter have higher u for the range of parameters that is
of significance in real-world networks (z1 ≥ 2). This sug-
gests a novel mechanism which may explain the ubiqui-
tous presence of scale-free networks, in particular in sit-
uations where collaboration, interaction and information
sharing among the nodes are of paramount relevance.

Comparisons with the star network can only be made
for z1 = 2 and, in this case, the star has the highest util-
ity of the networks studied here. Nevertheless, the star
network is of little practical relevance as the average de-
gree of large real networks is not necessarily constrained
to z1 = 2.

The growth mechanism we have proposed is a natural
extension of the Barabási-Albert preferential attachment
by degree to preferential attachment by node utility. Our
analysis shows that for small values of δ, the utility de-
cay parameter, the network retains a scale-free structure
that is nonetheless destroyed when δ increases. We have
identified a fit-get-richer regime in δ where the network
is characterized by a lower average path length than the

scale-free network and a step-like distribution of utility.
As δ approaches one, the range of different node utilities
is reduced and, eventually, at δ = 1, all nodes have the
same utility equal to the network size, u = N .
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