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What is already known about this subject  

 Deferiprone pharmacokinetics has been characterised in adults and adolescents  

 After oral administration, deferiprone is rapidly and well absorbed, and plasma levels 

show peak concentrations within 1 hour of administration 

 Essentially no pharmacokinetic information is available in children below 6 years of 

age despite the long clinical experience with this iron chelator 

 

What this study adds 

 The pharmacokinetics of deferiprone has been characterised in children below 6 

years of age after administration of single oral doses. 

 Body weight is a covariate on clearance and volume of distribution across the 

paediatric population. 

 The approved dosing regimen for deferiprone yields exposure in children 

comparable to that observed in adults and adolescents. 

 A dosing regimen of 25 mg/kg t.i.d. is recommended in children below 6 years, with 

the possibility of titration up to 33.3 mg/kg t.i.d. 
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Abstract 

Aims: Despite long clinical experience with deferiprone, there is limited information on its 

pharmacokinetics in children < 6 years of age. Here we assess the impact of developmental 

growth on the pharmacokinetics of deferiprone in this population using a population 

approach. Based on pharmacokinetic bridging concepts, we also evaluate whether the 

recommended doses yield appropriate systemic exposure in this group of patients.  

Methods: Data from a study in which 18 paediatric patients were enrolled were available 

for the purposes of this analysis.  Patients were randomised to three deferiprone dose levels 

(8.3, 16.7 and 33.3 mg/kg). Blood samples were collected according to an optimised 

sampling scheme in which each patient contributed to a maximum of five samples. A 

population pharmacokinetic model was developed using NONMEM v.7.2. Model selection 

criteria were based on graphical and statistical summaries. 

Results: A one-compartment model with first-order absorption and first-order elimination 

best described the pharmacokinetics of deferiprone. Drug disposition parameters were 

affected by body weight, with both clearance and volume increasing allometrically with size. 

Simulation scenarios show that comparable systemic exposure (AUC) is achieved in children 
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and adults after similar dose levels in mg/kg, with median (5-95th quantiles) AUC values 

respectively of 340.6 (223.2-520.0) and 318.5 (200.4-499.0) µmol/L*h at 75 mg/kg/day and 

453.7 (297.3-693.0) and 424.2 (266.9-664.0) at 100 mg/kg/day t.i.d. doses.  

Conclusions: Based on the current findings, a dosing regimen of 25 mg/kg t.i.d. is 

recommended in children below 6 years of age, with the possibility of titration up to 33.3 

mg/kg t.i.d. 

 

 

Introduction 

Patients with haemoglobinopathies, such as β-thalassaemia or sickle cell disease, affecting 

the ability to synthesize haemoglobin may require life-long blood transfusion therapy to 

survive. This chronic intervention results in a series of potential complications, with iron 

overload being an inevitable consequence within a few years.  Chelation therapy is 

therefore required to prevent potentially fatal iron-related complications. In most cases, the 

disease is diagnosed within the first year of life and blood transfusion regimen is started 

immediately after diagnosis. Chelation therapy is subsequently initiated when  serum 

ferritin levels reach a threshold of about 1000 µg/L,  which occurs on average about 1 year 

after the start of blood transfusions (1–5). Deferiprone is a hydroxypyridinone, which was 

authorised in Europe in 1999 for the treatment of iron overload in patients with β-

thalassaemia major when deferoxamine is contraindicated or inadequate. The 

recommended dose of deferiprone is 75 mg/kg/day given as t.i.d. regimen; the dose can be 

increased up to 100 mg/kg/day, if necessary. When administered orally, deferiprone is 

rapidly and well absorbed. Plasma levels show peak concentrations (Cmax) within 1 hour of 

administration. Food reduces its absorption rate without much of an effect on the overall 
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exposure to the drug. In patients with -thalassaemia, the administration of deferiprone at 

doses of 37.5 mg/kg twice-daily yields Cmax of 34.6 mg/L and area under the plasma 

concentration-time curve (AUC) of 137.5 mg/L • h (6,7). On the other hand,  peak serum 

concentrations were 17.53 mg/L and 11.82 mg/L in fasting and fed states, respectively after 

a dose of 25 mg/kg (8). Deferiprone is for the most part inactivated by glucuronidation 

(>85%) and more than 90% of the drug is cleared from plasma within 6 hours of ingestion, 

with an elimination half-life of 1 to 2.5 hours in patients affected by β-thalassaemia (5,6,9–

16). The chelating effect of deferiprone results from the formation of  a 3:1 complex with 

iron, which is eliminated mainly through the kidneys, as is the free parent drug.  

Despite the extensive clinical experience with deferiprone, PK data in children are sparse, 

and there is effectively no data in children under 6 years of age. To cover this gap, 

deferiprone was included in the list of priority prepared by the PDCO-EMA. The main 

objective of this analysis is to appropriately characterise the systemic exposure to 

deferiprone in paediatric patients aged less than 6 years using a model-based approach and 

to assess the effect of demographic and physiological factors on the drug’s 

pharmacokinetics. Furthermore, it is our endeavour to identify the dose levels yielding drug 

exposure comparable to adults.  

 

Methods 

Clinical Study 

This experimental and modelling study is a multi-centre, randomised, single blind, single 

dose PK study to evaluate the pharmacokinetics of deferiprone in children aged less than 6 

years affected by transfusion-dependent haemoglobinopathies.  



 

 
This article is protected by copyright. All rights reserved. 

The pharmacokinetics of deferiprone was evaluated using data collected from the DEEP-1 

Pharmacokinetic Study (EudraCT, 2012-000658-67, clinicaltrial.gov reference number: 

NCT01740713), in which enrolled patients were randomised to one of three dose levels (8.3, 

16.7 and 33.3 mg/kg). Deferiprone was administered as a single oral dose (80 mg/ml 

solution). This study was sponsored and performed by the DEEP Consortium 

(www.deep.cvbf.net) according to an approved PIP (EMEA-001126-PIP01-10). Patients 

undergoing a chronic transfusion program (receiving at least 150 ml/kg/year of packed red 

blood cells) and, if naïve to any chelation therapy, having ferritin levels > 800 ng/ml were 

considered eligible for the study. In addition, amongst other criteria, patients with Hb levels 

less than 8 g/dl, abnormal liver function, and severe heart dysfunction secondary to iron 

overload or serum creatinine levels above the upper normal level were excluded from the 

study. The study protocol was approved by national Ethics Committees and parental 

consent was obtained for patients’ enrolment. All experimental procedures were performed 

in accordance to good clinical practice guidelines and to the 1964 Helsinki declaration and its 

later amendments. In brief, 18 children aged less than 6 years (9 males and 9 females) who 

had received the active medication were included in the analysis. Recruitment of up to 30 

patients was provided for by protocol to ensure a minimum sample size of 18 evaluable 

subjects. In practice, the use of nonlinear mixed-effects modelling allowed completing the 

study with the data of the first 18 evaluable subjects by providing accurate and precise 

estimates of the main parameters of interest. Blood samples (2 ml) for the evaluation of DPF 

concentrations were collected according to WHO guidelines, with total blood volume 

collected per patient not exceeding the maximum recommended values. A matrix was used 

for sampling purposes, including one pre-dose sample and the following sampling times 

after dosing: 0.167, 0.25, 0.333, 0.67, 0.83, 0.916, 1.083, 1.167, 1.25, 1.416, 4.5, 5.5, 6, 7 and 

http://www.deep.cvbf.net/
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8 hours. A maximum of 5 post-dose samples were collected per subject according to 3 

different sampling schemes derived from an optimal design analysis previously performed 

by our group (unpublished results). Blood samples were drawn by peripheral venous 

catheter following discard of 2 ml of blood; catheters were filled with saline (i.e., saline lock) 

between sampling times. Samples were collected in citrate tubes and maintained at 4 °C in 

water and ice until centrifugation; a maximum interval of 1 hour was allowed between 

sample collection and centrifugation. Samples were then centrifuged at 2000 x g for 10 

minutes at 4 °C and plasma was thereafter transferred into a cryo-vial and stored at -80 °C 

until analysis.  

 

Bioanalysis 

Deferiprone plasma concentrations were analysed by the laboratory of the Division of 

Pharmacology (Leiden, the Netherlands) using a validated method previously developed by 

ApoPharma (Toronto, Canada) consisting of high performance liquid chromatography with 

UV detection (HPLC-UV) without internal standard (17). Extraction of deferiprone from 

supernatant was performed after precipitation of plasma proteins by trichloroacetic acid 

(TCA - 15%) and centrifugation at 10,000 g for 20 minutes at 4 ºC.  The analytical column 

used for the analysis was a Hamilton PRP-1 and separation of the chromatogram of interest 

was achieved using an isocratic mobile phase (pH 7.0). Mean retention time for deferiprone 

was 5.945 min (standard deviation: 0.087 min). The analytical range was between 3.13 and 

800 µM (equivalent to 0.43 to 111 g/ml) and an R2 value > 0.98 was used as acceptance 

criterion for the calibration curve. The lower limit of quantification (LLOQ) was 0.238 µM 

(equivalent to 0.033 g/ml). Inter- and Intra-day accuracy and precision were always below 

6 %, except for the inter-day precision at 3.13 M which was found to be 10.7 %.  
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Pharmacokinetic modelling 

Nonlinear mixed effects modelling was performed in NONMEM version 7.2 (Icon 

Development Solutions, USA). Model building criteria included: (i) successful minimisation, 

(ii) standard error of estimates, (iii) number of significant digits, (iv) termination of the 

covariance step, (v) correlation between model parameters and (vi) acceptable gradients at 

the last iteration.  

Fixed and random effects were introduced into the model in a stepwise manner. Inter-

individual variability in pharmacokinetic parameters was assumed to be log-normally 

distributed. A parameter value of an individual i (post hoc value) is therefore given by the 

following equation: 

θi = θTV * eηi 

in which θTV is the typical value of the parameter in the population and ηi is assumed to be 

a random variable with zero mean and variance ω2. Residual variability, which comprises 

measurement and model error, was described with a proportional error model. This means 

for the jth observed concentration of the ith individual, the relation Yij: 

Yij = Fij + εij * W 

where Fij is the predicted concentration and εij the random variable with mean zero and 

variance σ2. W is a proportional weighing factor for ε. 

Goodness of fit was assessed by graphical methods, including population and individual 

predicted vs. observed concentrations, conditional weighted residual vs. observed 

concentrations and time, correlation matrix for fixed vs. random effects, correlation matrix 

between parameters and covariates and normalised predictive distribution error (NPDE) 

(18,19).  Comparison of hierarchical models was based on the likelihood ratio test. A 
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superior model was also expected to reduce inter-subject variability terms and/or residual 

error terms.  

With the objective of increasing the stability of the model and reducing the uncertainty 

around the parameters of interest, the use of the Normal-Inverse Wishart Prior (NWPRI) 

approach was used in NONMEM (20) to test the impact on the estimates of the fixed and 

random effects in the pharmacokinetic model under development. Primary PK parameters 

estimated with a previously developed model in adults (21) were used as prior information 

for the pharmacokinetic analysis of deferiprone in the target population. 

 

Covariate analysis 

Continuous and categorical covariates were tested during the analysis. The relationship 

between individual PK parameters (post-hoc or conditional estimates) and covariates was 

explored by graphical methods (plot of each covariate vs. each individual parameter). 

Relevant demographic covariates (body weight, height, age and gender) were entered one 

by one into the population model (univariate analysis). After all significant covariates had 

been entered into the model (forward selection), each covariate was removed (backward 

elimination), one at a time. The model was run again and the objective function recorded. 

The likelihood ratio test was used to assess whether the difference in the objective function 

between the base model and the full (more complex) model was significant. The difference 

in – 2Log likelihood (DOBJF) between the base and the full model is approximately χ2 

distributed, with degrees of freedom equal to the difference in number of parameters 

between the two hierarchical models. Because of the exploratory nature of this 

investigation, for univariate analyses, additional parameters leading to a decrease in the 

objective function of 3.84 was considered significant (p<0.05). During the final steps of the 
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model building, only the covariates which resulted in a difference of objective function of at 

least 7.88 (p<0.005) were kept in the final model. 

 

Model validation 

The validation of the final pharmacokinetic model was based on graphical and statistical 

methods, including visual predictive checks (18). Given the importance of the validation 

procedures for the subsequent use of a model for simulation purposes, in this study we 

have included a wide range of diagnostic methods to assess the accuracy of the parameter 

estimates and the predictive performance of the model (19). Bootstrap was used to identify 

bias, stability and accuracy of the parameter estimates (standard errors and confidence 

intervals). The bootstrap procedures were performed in PsN v3.5.3 (University of Uppsala, 

Sweden) (22), which automatically generates a series of new data sets by sampling 

individuals with replacement from the original data pool, fitting the model to each new data 

set. Subsequently, parameter estimates were used to simulate plasma concentrations in 

subjects with similar demographic characteristics, dosing regimens and sampling scheme as 

in the original clinical studies. Mirror plots were also generated to evaluate the variance-

covariance structure of the parameters in the model, which is reflected by the degree of 

similarity between the original fit and the pattern obtained from the fitting of the simulated 

data sets using the final pharmacokinetic model. 

 

PK bridging and dosing recommendations 

To optimise the deferiprone dosing regimen in the target population, simulations were 

performed to achieve systemic exposure values similar to the adult reference population 

(21). Simulations were carried out to explore how differences in demographic covariates 
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might affect steady-state exposure to deferiprone treatment. Sampling frequency and times 

were based on a serial sampling scheme for the purposes of estimating AUC, Cmax and Css 

over the dosing interval. Integration of the concentration time data was applied according 

to the trapezoidal rule to ensure realistic estimates of variability.  The adequacy of the 

simulated dosing regimens was assessed graphically by determining the fraction of the 

paediatric population reaching systemic exposure comparable to the target value based on 

PKPD reference in adults. 

A study including a one week treatment according to a t.i.d. regimen was chosen for the 

simulation. Each scenario consisted of 1000 simulations. Two dosing regimens were 

simulated in both populations: 75 and 100 mg/kg/day as three daily doses of 25 and 33.3 

mg/kg respectively. The pharmacokinetic parameters of interest (AUC, Cmax and Css) were 

measured after administration of the first dose on day 7. 

A pharmacokinetic model developed in adult healthy volunteers (21) was used to simulate 

deferiprone exposure in the reference population. A population of 100 subjects (50 males 

and 50 females) with a body weight distribution of mean 55 and sd 7.5 kg was used to 

characterise a standard adult thalassaemic population. 

The final PK model developed during this analysis was used to simulate deferiprone 

exposure in the population of interest. A population of 100 subjects (50 males and 50 

females) with a body weight distribution of mean 16 and sd 2.0 kg was used to characterise 

a standard thalassaemic population of children below 6 years of age. 
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Results 

Population Pharmacokinetic Modelling 

Data from 18 evaluable children (9 males and 9 females) were used for the pharmacokinetic 

analysis. Patients were randomised to 3 dose levels (8.3, 16.7 and 33.3 mg/kg) with 6 

patients assigned to each group. 16 patients were diagnosed with β-thalassaemia major and 

2 with thalassodrepanocytosis. Median (range) body weight, height and age of the children 

were respectively 15.8 (11-22.5) kg, 99.2 (83-117) cm and 3.4 (1.2-5.9) years.  An overview 

of the baseline demographic characteristics is presented in table 1. 

The pharmacokinetics of deferiprone after oral administration to paediatric patients was 

described by a one-compartment open model with first-order absorption and elimination 

processes. The absorption rate constant (Ka) represents a first order process. The 

disposition processes includes (apparent) clearance (CL/F) and (apparent) volume of 

distribution (V/F).  

Between subject variability (BSV) was tested on each parameter, and was included in the 

final model on CL/F and V/F. An omega block was implemented in the estimation of BSV for 

CL/F and V/F, accounting for the expected correlation between these two parameters. The 

inclusion of the omega block significantly decreased the OBJF. 

Different error models were tested to characterise residual variability; e.g., additive, 

proportional, exponential, combined, etc. The proportional error model provided the best 

results and was kept to describe the residual variability. 

The use of the Normal-Inverse Wishart Prior (NWPRI) approach was used in NONMEM to 

estimate the fixed effect on the PK parameter Ka and the BSV for CL/F and V/F. The use of a 

prior allowed a better description of the data, reducing significantly the uncertainty around 

the parameters above mentioned. The prior information was derived from a population PK 
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analysis performed in healthy adults receiving deferiprone as a 100 mg/ml solution (21). The 

following values were used for the different parameters: 8.2 h-1 for Ka with an uncertainty 

of 4.02; 0.057 (23.8%) variation on CL/F and 0.0278 (16.6%) variation on V/F with an omega 

block of 0.0345. 54 degrees of freedom were chosen for the prior on the BSV parameters 

given that 55 individuals were used for the final population PK model in the healthy adults.  

During covariate model selection, after a visual explorative analysis of the correlations 

between covariates and model parameters, the effect of weight, height, gender, and age 

was tested on the different parameters. The inclusion of body weight on CL/F and V/F 

according to fixed allometric scaling (23) led to the highest improvement in the model fitting 

and allowed a better description of the data, increasing the model performance. The 

exponent was fixed to 0.75 and 1 for CL/F and V/F respectively. The final parameter 

estimates are summarised in table 2. 

A bootstrap analysis was performed to assess model stability. The mean parameter 

estimates from the bootstrap analysis were found to be in close agreement with the final 

model estimates, and the CV values were found to be all below 15%, indicating that the final 

estimates are indeed reliable. Results of the bootstrap analysis can also be found in Table 2. 

Internal model validation diagnostics were satisfactory. Individual predicted profiles and 

goodness-of-fit plots revealed that the model provides an adequate and non-biased 

description of the data, as shown in Figures 1 and S1. In addition, NPDE summaries (Figure 

S2) show that the discrepancy between predicted and observed values can be assumed to 

be normally distributed. The predictive performance of the model in subsequent simulations 

was deemed critical to achieve the objective of our analysis. To this purpose, visual 

predictive checks were therefore used to assess whether the variance and covariance 



 

 
This article is protected by copyright. All rights reserved. 

structures have been well characterised (Figure 2). Overall these diagnostic techniques 

confirm that the final model is suitable for the purposes of data simulation. 

 

PK bridging and dosing recommendations 

The results of the simulations are shown in Figures 3 and 4 and Table 3. A similar exposure is 

achieved in adults and children in terms of AUC and Css when receiving the current 

recommended dosing regimen; with median (5-95th quantiles) AUC values respectively of 

340.6 (223.2-520) and 318.5 (200.4-499) µmol/L*h at 75 mg/kg/day and 453.7 (297.3-693) 

and 424.2 (266.9-664) at 100 mg/kg/day t.i.d. doses. The simulation generated a 29% 

increase in Cmax in children when compared to the adult population.  

The performance of an individualised dosing regimen was tested on the target population, 

but the results show that it does not change significantly the exposure in children when 

compared to the non-individualised one (at 75 mg/kg/day); not shown here.  

Results suggest that the currently approved dosing regimen for the adult population is 

suitable also for children below 6 years of age in order to achieve a similar and effective 

exposure. 

 

 
Discussion 

 

In spite of the changes in legislation for the approval of new medicines for children, the dose 

rationale for many of the drugs currently approved for paediatric diseases remains 

unsupported or relies upon weak empirical evidence. Accurate dosing recommendations are 

critical for the implementation of concepts such as personalised medicines and essential for 
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the advancement of therapeutics in children.  In this context, model-based approaches can 

be critical for therapeutic decisions when limited evidence is available. This is certainly the 

case for rare diseases such as haemoglobinopathies, especially when considering young 

paediatric patients, where practical and ethical constraints make paediatric clinical 

investigation a true challenge (24,25). 

The need for better understanding of the pharmacokinetics, efficacy and safety in the 

paediatric population led to the establishment of the DEEP consortium 

(www.deep.cvbf.net). Within this project, a model-based approach has been used to 

overcome the specific challenge to explore the implications of potential pharmacokinetic 

differences and ensure adequate dosage in the <6 years of age group. Supporting evidence 

for the dose rationale was deemed critical before progressing with the evaluation of efficacy 

and safety in this group of patients. More specifically, the lack of  experimental data 

available on the paediatric use of deferiprone, and in particular deferiprone 

pharmacokinetics in this group of patients, hampered our ability to assess whether doses 

used in adults, adjusted linearly for differences in body weight (i.e., doses in mg/kg) produce 

comparable exposure across the two populations.   

There should be little doubt about the therapeutic relevance of defining the appropriate 

starting dose and dosing regimen for chronic interventions, as in the case or iron chelating 

agents for the management of iron overload in transfusion-dependent 

haemoglobinopathies. Modelling and simulation (M&S) techniques have become an 

invaluable tool for the evaluation of the dose rationale and personalisation of dosing 

regimens for subgroups of patients and special populations, allowing the characterisation 

and quantification of the contribution of different sources of variability to an agent’s overall 

pharmacokinetic properties, reducing at the same time the experimental burden on such a 

http://www.deep.cvbf.net/
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vulnerable population (26–28). In addition, M&S techniques can be used in conjunction with 

other advanced statistical concepts to optimise protocol design, increasing the quality of the 

information gathered. Two concrete advantages of the approach include the reduction in 

the number of patients required and the use of sparse blood sampling. Here we have shown 

the implementation of these concepts in the design, conduct and analysis of a clinical study. 

Our results clearly show the importance of establishing the dose rationale before evaluating 

the efficacy and safety of deferiprone in paediatric patients affected by transfusion-

dependent haemoglobinopathies.  

 

Pharmacokinetic modelling 

The pharmacokinetics of deferiprone after oral administration to paediatric patients was 

successfully characterised by a model-based approach. As shown in the results section a 

one-compartment open model with first-order absorption and elimination processes 

described satisfactorily the PK profile of the drug under investigation, allowing precise and 

accurate characterisation of the main PK parameters of interest (Table 2). Body weight was 

found to be a significant predictor of changes in the distribution and elimination processes 

of the drug; the relationship with CL/F and V/F was described by fixed allometric scaling. 

Furthermore, the use of prior information in the adult population allowed a more stable 

characterisation of the absorption profile, showing once more how M&S techniques can 

overcome the limited evidence generated in the clinical study. Of note is the fact that the 

use of a dosing regimen based on mg/kg deferiprone did produce comparable systemic 

levels, despite the nonlinear (allometric) relationship between body weight and clearance. 

There are a number of possible reasons that may explain our findings.  In fact, previous 

publications have shown linear correlation between dose, body weight and clearance for 
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biologicals and some small molecules. In general, such a linear correlation is likely to occur 

for drugs with small volumes of distribution, which correspond to the drug distribution in 

plasma and lymph (e.g., warfarin) or total body water (e.g. theophylline).  By contrast, 

deferiprone shows a relatively large apparent volume of distribution (i.e., approximately 

1.12 L/kg), but these values could well be the consequence of the 3:1 ratio for deferiprone-

iron complex formation, rather than due to distribution beyond total body water (29-30).  

 

Dosing recommendations 

Given that paediatric patients are likely to initiate chelation therapy approximately after one 

year from the start of blood transfusions,  the use of chelating agents is not clinically 

justified before 1.5-2 years of age. The therapeutic context in which deferiprone should be 

used in this patient population has therefore been accurately captured by the 

pharmacokinetic modelling approach here. It can be assumed that differences in drug 

disposition are determined by the effect of size (body weight). The impact of metabolic 

maturation at the start of chelation therapy can be considered minor. 

The availability of a population pharmacokinetic model in children allows bridging concepts 

to applied, enabling the assessment of the dosing requirements to achieve drug levels which 

correspond to the efficacious exposure in adults. Using the pharmacokinetic parameter 

estimates from the current study and from a model developed previously in adults (21), 

simulations were performed to demonstrate how exposure to deferiprone in children below 

6 years of age compares to drug levels in the adult patient population after administration 

of the currently recommended dosing regimen.  

As shown in Figures 3 and 4, AUC and Css distributions are comparable at 75 mg/kg/day and 

100 mg/kg/day respectively, whereas an increase in peak concentrations (Cmax) is predicted 
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in children. This increase is most probably due to differences in the volume of distribution 

between the two groups, and is expected to have limited clinical implications. Overall 

exposure (AUC and Css) is the determinant of the response, and changes in Cmax are not 

expected to modify the safety profile of the drug. This is confirmed in literature where 

previous studies in children exposed to a 100 mg/kg/day dosing regimen have safety profiles 

similar to those reported in adults (31–33).  

 

In conclusion, based on these findings, a dosing regimen of 25 mg/kg t.i.d. (75 mg/kg/day) is 

recommended for children younger than 6 years of age, with the possibility of titration up to 

33.3 mg/kg t.i.d. (100 mg/kg/day), if necessary. It is worth mentioning that this dose will be 

used to conduct an efficacy-safety comparative phase III study and will be adopted in future 

SmPC modifications. 
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Table and figure legends 

Table 1: Baseline and demographic characteristics of the pharmacokinetic analysis 
population. 

N=18 Mean SD 

Weight (kg) 16.08 3.18 

Height (cm) 98.95 9.16 

Age (year) 3.62 1.33 
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Table 2: Population pharmacokinetic parameters of deferiprone in children below 6 years of 

age and bootstrap results. 

Model predicted primary PK parameters 

 Estimate SE 
Bootstrapa 

(mean) 
CV (%) 

CL/F (L/h) 8.3 0.569 8.30 8.07 

V/F (L) 18.7 1.16 18.74 7.95 

Ka (h-1) 9.13 1.41 8.91 10.54 

WT on V/F 
Fix allom. 

1 FIX / 1 FIX / 

WT on CL/F 
Fix allom. 

0.75 FIX / 0.75 FIX / 

Error (prop) 0.0953 0.0182 0.0916 39.3 

IIV CL/Fb 0.0644 0.0115 0.0642 11.37 

IIV V/Fb 0.0392 0.0077 0.0393 13.23 

Block CL-V 0.031 0.0058 0.0313 12.14 

Model predicted secondary PK parameters stratified per dose level 

 Median (5th and 95th quantiles) 

 8.3 mg/kg 16.7 mg/kg 33.3 mg/kg 

AUC0-8 (μmol/L*h) 116.7 (90.6-129.0) 210.0 (173.1-266.6) 428.8 (291.4-547.8) 

Cmax (μmol/L) 61.7 (45.1-80.7) 119.8 (106.0-154.0) 229.5 (179.7-278.1) 

Tmax (h) 0.33 (0.19-0.92) 0.33 (0.21-0.63) 0.37 (0.27-0.42) 

Css (μmol/L) 2.1 (1.6-2.3) 3.7 (3.1-4.9) 7.7 (5.1-10.0) 

Cmin (μmol/L) 1.5 (0.92-2.6) 1.9 (0.79-5.5) 6.8 (3.1-13.9) 
a 0 minimisation terminated out of 500 
b Eta shrinkage was -11% and 0% for CL/F and V/F respectively 
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Table 3: Summary statistics of the simulation scenarios for the PK bridging study. 

  

 75 mg/kg/day 100 mg/kg/day 

 Adults Children Adults Children 

 AUC Cmax Css AUC Cmax Css AUC Cmax Css AUC Cmax Css 

Median 318.5 132.2 5.5 340.6 170.7 5.9 424.2 176.0 7.4 453.7 227.4 7.9 

1st quartile 263.9 109.2 4.6 286.6 145.0 5.0 351.5 145.4 6.1 381.8 193.2 6.6 

3rd quartile 383.0 159.0 6.7 404.7 200.5 7.0 510.0 211.9 8.8 539.0 267.1 9.4 

5th quantile 200.4 81.6 3.5 223.2 114.9 3.9 266.9 108.7 4.6 297.3 153.1 5.2 

95th quantile 499.0 205.6 8.7 520.0 253.0 9.0 664.0 273.9 11.5 693.0 337.0 12.0 

 
AUC: µmol/L*h; Cmax: µM/L; Css: µM/L 
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Figure 1: Goodness-of-fit plots. Upper panels show the observed data (Obs) vs. individual 

predictions (IPred) (left) and the observed data vs. population predictions (Pred) (right). 

Lower panels show the conditional weighted residuals (CWRES) vs. population predictions 

(left) and the CWRES vs. time (left). 
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Figure 2: Visual Predictive Check (VPC): observed data are plotted using blue circles; the 

black solid line represents the median of the simulated data; the red dashed lines represent 

the 5th and 95th percentiles of the simulated data. The left, mid and right panels show 

respectively dose group 1 (8.3 mg/kg), 2 (16.7 mg/kg) and 3 (33.3 mg/kg). 
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Figure 3: Predicted deferiprone exposure expressed as AUC 0-8 (upper panel), Cmax (mid 

panel) and Css (lower panel) for children below 6 years of age receiving 75 mg/kg/day. The 

black line represents the median of the reference population (adults’ thalassaemic 

population), whereas the orange lines represent 1st and 3rd quartiles and the red lines 

represent 5th and 95th percentiles of the same reference population. Percent of total 

indicates the percentage of cases for each beam of 1000 simulations with 100 patients in 

each simulated trial. 
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Figure 4: Predicted deferiprone exposure expressed as AUC 0-8 (upper panel), Cmax (mid 

panel) and Css (lower panel) for children below 6 years of age receiving 100 mg/kg/day. The 

black line represents the median of the reference population (adult thalassaemic 

population), whereas the orange lines represent 1st and 3rd quartiles and the red lines 

represent 5th and 95th percentiles of the same reference population. Percent of total 

indicates the percentage of cases for each beam of 1000 simulations with 100 patients in 

each simulated trial. 
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Figure S1: Individual plots: observed data are plotted using blue circles; the black solid line 

represents the population prediction (Pred) and the red solid line represents the individual 

predictions (IPred). Panel A, B and C depict patients in dose group 1 (8.3 mg/kg), dose group 

2 (16.7 mg/kg) and dose group 3 (33.3 mg/kg), respectively. 

  



Figure S2: 

 

Figure S2: Normalised prediction distribution errors: upper panels show the QQ-plot of the 

distribution of the NPDEs for a theoretical N (0, 1) distribution (left) and the histogram of 

the distribution of the NPDE together with the density of the standard normal distribution 

(right). Lower panels show the NPDEs vs. time (left) and NPDEs vs. individual predictions 

(right). 
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