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1 Introduction

We are currently witnessing the rise of a new form of distributed economy, which
emerges from the combination of digital communication infrastructures and the big
data revolution. Peer-to-peer decentralized economies and finance have the potential
to provide citizens with direct control over their activities, by removing intermedia-
tion layers and fostering inclusion. Blockchain is providing the technology to make
this happen in a secure and reliable way. Distributed systems are being constructed
around an egalitarian ethos according to which “peers” freely exchange goods and
information without the need of a central authority to establish trust, verify identity,
or enforce commitments. Yet, we are witnessing that many of such idealistic egalitar-
ian forms of economic organization are changing their nature as they evolve. In fact,
these systems show a strong tendency to naturally evolve towards structures where a
small portion of nodes has a large influence over the whole system. This has been for
instance observed in the evolution of the mining pools in bitcoin, where the system
has evolved form a fairly egalitarian network of miners, in which individuals were
able to mine their coins at home, to highly specialized and concentrated industrial-
scale mining activities. A similar evolution has been observed in the world wide web,
which started from a distributed community of people and companies, and evolved
into a highly centralized system where. For instance, Facebook owns 1.49 billion
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active users profiles [1] and 99.9% of web searches in US are run through 5 search
engines only, with Google accounting for over 64% [1] of them. This concentration
is due to simple economic rules that demand greater efficiency and lower costs. This
return-to-scale economic law introduces however new forms of information asymme-
try [2] and new kinds of risk related to the presence of very large quantities of personal
information held in a few places only. Within the context of distributed systems that
generate consensus with majority vote, such tendency towards concentration can be
very dangerous.

In this chapter we discuss the relation between the structure of communication
network and the functional properties of peer-to-peer systems. In particular, we
discuss the relation between level of equality between nodes in the network, and
efficiency and scalability.

The chapter is structured as follows: we present in Section 2 a short introduction
to complex networks, and we discuss in Section 3 how the properties of information
spreading processes depend on the network topology. We then present in section 4 an
application to bitcoin blockchain, and we study in particular how the occurrence of
blockchain forks is related with the properties of the underlying network. In Chapter
4 we present conclusions.

2 A brief introduction to complex networks

Networks are the most general way to represent systems made of several entities
characterized by pairwise interactions. A network is defined in terms of a set of
nodes {1, 2, . . . , N} and a set of links {e1, e2, . . . , eM}, where each link connects a
pair of nodes. Nodes connected by a link are said to be neighbors, and the number of
neighbors of a node is the node’s degree. A convenient way of representing a network
is in terms of its adjacency matrix A, whose element Aij is 1 if node i is connected to
node j, and zero otherwise. Each node in a network can interact with its neighbors,
that are the nodes connected to it through links.

Several dynamical processes take place on networks. Certain processes, such as
searches on the Internet or propagation in power grids, happen on physical networks.
Other processes are mediated by non-physical network structures, such as, e.g., the
spreading of epidemics or the word of mouth diffusion of information in a social sys-
tem. In both cases the topological properties and the heterogeneity of the underlying
networks play a crucial role in driving the evolution and, possibly, determining the
outcome of the dynamics at hand. Countless network topology models, and their
impact on dynamical processes, have been studied in the dedicated literature (see for
instance [3–6]). In the following, we outline the properties of the two most common
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random network classes. In this context, random does not mean chaotic or disor-
ganized. On the contrary, we shall focus on ensembles whose individual realizations
all share a number of well defined statistical properties. In particular, it has been
shown that the degree distribution P (k) of a network, that defines the probability
of a node to have degree k, strongly affects the dynamical properties of processes
taking place on networks [6–8]. Here we are interested in exploring the effect of
the network structure on its capability to efficiently propagate information, which
is at the basis of the validation mechanism in blockchain systems and is directly
related with efficiency and egalitarianism. We will therefore focus on two classes of
networks with very different degree distributions: the Poisson distribution, that is
rather equalitarian, and the power-law distribution, that is dis-equalitarian, being
characterized by a few hub nodes with very large degrees, and a multitude of other
nodes with small degree.

2.1 Erdős-Rényi networks

The Erdős-Rényi (ER) random network model was devised in the late fifties, and it
represents the most popular benchmark model for networks featuring mild hetero-
geneity. It consists of N nodes, and each of the N(N − 1)/2 pairs of nodes in the
network have a fixed probability p to be connected. Clearly, this formation scheme
creates, on average, a total number of pN(N − 1)/2 links, with an average degree of
〈k〉 = p(N − 1).

What about individual nodes? The probability that a given node i will be con-
nected to exactly k neighbors (in network jargon this is referred to as node i having
degree ki = k) is proportional to the probability of independently “hitting” k nodes
(each with probability p) and “missing” the other N − k − 1, which is a bimodal
distribution:

Prob(ki = k) =

(
N − 1

k

)
pk(1− p)N−k−1 . (1)

From the above equation it is straightforward to compute that the probability of
hitting a fraction αN of nodes becomes exponentially small in N when α → 1, i.e.
Prob(ki = αN) ∝ exp(αN log p). Taking the large N approximation of equation
(1), one can also show that the degree distribution of a large network is very well
approximated by a Poisson distribution

P (k) =
(pN)k

k!
e−pN . (2)

The above result means that both the average and the variance of the ER model’s
degree distribution are given by pN . All in all, these results justify the previous hint
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at mild heterogeneity or, in other words, egalitarianism: in the ER model there are
no nodes that dominate the network by linking to a disproportionately large fraction
of peers, and the Poisson degree distribution (2) concentrates most of the probability
within a limited set of degrees around the average.

Processes on ER networks can reach the entirety of the network by starting form
a single node in a number of steps that is proportional to the logarithm of the total
number of nodes N . This is called the small world effect. Intuitively, given that each
node has on average pN neighbors, one expects the number of nodes at a distance
d from a given node i to scale as (pN)d: on average, node i has pN neighbors, and
so do they and the nodes higher upstream from i. For sufficiently large values of d,
the number of nodes found at distance d from i is a finite fraction of all nodes in the
network. From this consideration, one finds that the average distance between pairs
of nodes in an ER network scales as

d ' logN

log(pN)
' logN

log〈k〉 . (3)

Therefore a process evolving on the network form any given node will reach any other
node in average after a number d ∝ logN of steps.

2.2 Scale-free networks

Many real-life networks are not egalitarian, and are dominated by a small fraction
of hubs connected to a substantial fraction of nodes. In mathematical terms, this is
best described in terms of a power law, hence scale-free, distribution of the degrees,
i.e.

P (k) ∼ k−γ , (4)

the tail index γ > 0 is a very important parameter. Networks with smaller values of
γ have larger hubs and are less egalitarian as we shall see shortly.

Quite interestingly, modeling the topology of scale-free networks requires de-
scribing their growth and evolution, in a way which is quite revealing about the
mechanisms leading to the emergence of dominant nodes. Such description is pro-
vided by the Barabasi-Albert model of preferential attachment [9]. Starting from a
small group of nodes, the network is built by adding nodes one at a time, and each
newcomer connects to one of the already existing nodes. In particular, the new node
connects to a given node i with a degree-dependent probability π that reads

π(ki) =
ki∑M
j=1 kj

, (5)
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where ki is node i’s degree, and M is the number of nodes present in the network.
The preferential attachment growth rule (5) gives a competitive advantage to nodes
that already have a high degree, in a rich-get-richer fashion. This mechanism indeed
gives rise (for large N) to a power law degree distribution (4), with a tail exponent
γ = 3. Exponents γ with values other than three can be achieved with generalizations
of the preferential attachment rule (5) (see, e.g., [10]).

2.3 Network egalitarianism

The egalitarianism, or lack thereof, of a network can be measured directly from
its degree sequence in terms of Gini coefficient, i.e. the most popular measure of
inequality in a population. Despite having been originally intended and still being
mostly used as a measure of wealth inequality, the Gini coefficient can be used to
assess how unevenly a generic quantity is distributed across a given population. Let
us then consider the sequence ki, i = 1, . . . , N , of degrees in a network. The Gini
index G of the sequence is defined as

G =

∑
i<j |ki − kj|
N
∑N

i=1 ki
. (6)

The above expression can be easily manipulated to show that it corresponds to half
the average absolute difference between degrees (normalized to the average degree in
the network), i.e. G = 〈|ki − kj|〉/(2〈k〉). The Gini coefficient is bounded between
zero, which is achieved under complete equality (ki = k, ∀ i), and one, which is
achieved asymptotically under complete concentration on one node (formally ki = k
for a given node i and kj = 0, for all other nodes j 6= i, even though this does not
correspond to a feasible degree sequence).

An alternative inequality measure is represented by the Theil index, which is akin
to an entropy measure and is also bounded between zero (complete equality) and one
(complete concentration on one node). It reads

T =
1

N logN

N∑
i=1

ki
〈k〉 log

ki
〈k〉 . (7)

In Figure 1 we show the average behavior of the Gini and Theil indices computed
from networks with degree sequences distributed according to Eq. (4).
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Figure 1: Gini (blue circles) and Theil (purple squares) indices as a function of the tail exponent γ
of a power law distributed degree sequence (4). For each value of γ results are obtained by averaging
over 100 networks made of 104 nodes, with a fixed average degree 〈k〉 = 8 (the value does not affect
the behavior of the Gini coefficient).

As Figure 1 reveals, networks with extremely heavy tailed degree sequences
(γ ' 1.25) show very large Gini coefficient values (G ∼ 0.65), comparable to those
measured, e.g., for individual wealth distribution in those countries with the high-
est observed wealth inequality levels. This reflects the strong centralization induced
by the degree distribution (5) for low values of γ, which generates a few hubs with
O(N) links, and leaves the vast majority of the nodes with a few connections only.
Increasing the tail exponent reduces centralization, which is very well captured by the
corresponding monotonic decrease of the Gini coefficient shown in Figure 1. When
the tail exponent is large enough to ensure the convergence of the first few moments
(i.e. γ & 3.5), the network degree distribution is de facto egalitarian, despite still
being power law, as the Gini coefficient is quite close to zero and well within ranges
that are naturally observed in systems characterized by mild heterogeneity. For in-
stance an Erdős-Rényi network with 〈k〉 = 8, as the one used in the example in
Figure 1, has a Gini coefficient around 0.08. Similar considerations can be made
from the behavior of the Theil index, which also decays to values very close to zero
for γ & 3.5.

The presence of heavily connected hubs in scale-free networks improves the com-
munication between nodes by providing additional paths with respect to more ho-
mogeneous topologies, e.g., ER networks. In fact, for γ ≥ 3, the average distance
between nodes in scale-free networks scales logarithmically in N , as in (3), but it is
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systematically smaller than that of ER networks when comparing systems with the
same average degree (see [3]). When 2 < γ < 3 the distance between nodes scales as
log logN and when γ ≤ 2 the distance becomes a few steps only independently from
the size of the network [5].

Facilitated communication between nodes comes at a price, as scale-free networks
are much less resilient than their more egalitarian counterparts. Attacks aimed at
destroying hubs can have severely disruptive effects on the transport properties. On
the other hand, ER networks are more resilient to targeted attacks, as no node (or
group of nodes) is particularly central in the topology.

2.4 Collective properties of networks

The topology of networks strongly affects their collective properties. For instance,
the threshold for the emergence of a giant component is very different in ER vs
scale-free networks. A network of N nodes has a giant component if the size S of
its largest connected component (a connected component is a set of nodes such that
any pair amongst them is connected by at least one path) is formed by an extensive
number of nodes, i.e. limN→∞ S/N > 0. For uncorrelated networks (i.e. networks
with no correlations between degrees of neighboring nodes), it is possible to show [4]
that a giant component is present if

〈k2〉
〈k〉 > 2 , (8)

where 〈k〉 and 〈k2〉 are the first and second moments of the degree distribution. From
the above criterion, it follows that ER networks always have a giant component if
〈k〉 > 1, whereas scale-free networks display a giant component if γ ≤ 3.

Similarly, it is possible to show that disease spreading processes on scale-free
networks always lead to an epidemic outbreak whenever γ ≤ 3, while on ER networks
this does not happen if the rate of contagion is low enough [11].

In the following section, we consider a simple model of information spreading,
and we discuss how this process is affected by the structure of the network.

3 A network model of blockchain forks: efficiency

and egalitarianism

In the context of bitcoin [12], each node is a server that keeps a ledger containing a
record of all past transactions. Different ledgers are synchronized at regular intervals
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by broadcasting a block created by one node. A block contains all transaction that
have been recorded by a node since the last block was broadcasted and verified by
all nodes in the system. When a new block, A, is found by a node, the node will
broadcast it to its neighbors, these in turn will broadcast it to their neighbors, and
so on. A conflict may arise if an alternative block B is independently discovered
by a node before the block A has reched all nodes in the system. Such a conflict
is called fork. Blockchain forks should be avoided because they effectively amount
to inconsistencies in the system. In the following, we consider the model introduced
in [13] to show how the structural properties of networks affect the propagation of
information through the network.

We consider a model in which we have a network of N nodes. Each node is
endowed with an integer variable σi ∈ {−1, 0, 1}. When σi = 0 no new block has
been discovered or verified by node i since the previous synchronization, while states
±1 represent two conflicting blocks. We consider a very simple dynamics in which
at time t = 0 all nodes are in state 0 except a randomly chosen fraction, which
are in state 1. The dynamics then runs as follows: at rate β, a node i in state
+1 will broadcast its block to its neighbors in state 0, while potentially conflicting
blocks can be discovered by any node in state 0 with rate η. Whenever a conflicting
block is found, the node responsible for its discovery switches to state −1 and starts
propagating to its neighbors in state 0 at rate β.

In the following, we will present an analytical description of the model for Erdős-
Rényi random networks, for which we will compute the probability of observing a
fork as a function of the average degree of the network, its size (i.e. the number of
nodes), as well as the fraction of nodes to which the block has been broadcasted.
We will then present a comparison between the performance of Erdős-Rényi and
scale-free networks.

3.1 Erdős-Rényi networks

We are interested in computing the probability that the initial block is broadcasted
to a fraction n∗ of nodes in the system before an alternative block is discovered.
Until no new blocks are discovered, the dynamics of the system is equivalent to that
of a Susceptible-Infected (SI) process [6]. The SI model on an Erdős-Rényi random
network can be described in terms of the following rate equation:

dnA(t)

dt
= βnA(t)(1− nA(t)) , (9)
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where nA(t) is the fraction of nodes to which block A has been broadcasted to
(informed nodes), and β is the rate at which the signal coming from an informed
node reaches one of its uninformed neighbors. For Erdős-Rényi networks we can write
β = 〈k〉cp0/〈l〉, where c is the speed at which the signal travels, 〈l〉 is the average
distance between two nodes, and p0 the rate at which the informed node sends the
signal. Equation (9) can be intuitively understood as follows: In a time interval of
length dt each node in state +1 will broadcast the block B to its neighbors with
probability βdt, hence the term βnA(t) in the equation. A node that is broadcasting
will propagate the block to its neighbors that have not been yet informed, whose
number can be approximated as 〈k〉(1−nA(t)), i.e. the average number of neighbors
of a node times the probability that a node is in state 0.

The solution of equation (9) is given by (see for instance [6])

nA(t) =
nA(0)eβt

1 + nA(0) (eβt − 1)
. (10)

If nA(0) is the fraction of nodes that know the block A at time zero, we can
compute the time T (n∗) needed for block A to be broadcasted to a fraction n∗ ∈
[nA(0), 1− 1/N ] of the system. This time can be computed by solving the equation
nA(T (n∗)) = n∗, which gives

T (n∗) = β−1 log

(
n∗(1− nA(0))

nA(0)(1− n∗)

)
. (11)

From this equation we can compute the time needed for a block to be broadcasted
to 50% of the nodes without alternative blocks being discovered. If we assume the
process to start from a single informed node (i.e. nA(0) = 1/N) we have

T (50%) ' logN

β
. (12)

From this we see that the time needed for information to be propagated in the
network increases logarithmically with the size of the network and it is inversely
proportional to β = 〈k〉cp0/〈l〉. 1 Therefore, propagation speed can be increased by
increasing the average connectivity.

1More in general, it is possible to show that the initial phases of the propagation process are
characterized by an exponential behavior for the fraction of informed nodes over time. This increases

with a characteristic time τ = 1/β,with β = cp0
〈l〉
〈k2〉−〈k〉
〈k〉 . Note that, for a scale-free network with a

tail exponent 2 < γ ≤ 3, if we consider the natural cut-off N1/(γ−1) for the degree distribution [4],
we find that β scales as β ∼ 〈k2〉/〈k〉 ∼ N1/(γ−1) for large values of N . This would alter the
dependence of T (0.5) on N in equation (12), speeding up the propagation.
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Equation (11) can be calibrated to obtain an estimate for the minimum time
Tmin(50%) needed for a block to reach 50% in a realistic situation. A rough estimate
of Tmin(50%) can be given as follows: Let us consider N nodes that are randomly
placed on a spherical surface of radius R0, the radius of the Earth. The average
distance between these nodes is πR0/2. Since information cannot propagate faster
than light, we have that the minimum average time for a block to be propagated
between two nodes is πR0

2c
and therefore the minimum time to reach 50% of the nodes

in the network is

Tmin(50%) =
πR0 logN

2c〈k〉 ≈ 0.033
logN

〈k〉 seconds; (13)

considering that in the blockchain there are N ≈ 6000 nodes, and 〈k〉 ≈ 10 we
have Tmin(50%) ' 30 milliseconds. From this result we note that in a network with
〈k〉 > logN the average time to reach 50% of the nodes can be faster than the
time needed in average to reach all the neighbors of a given node. This is not a
contradiction, and it is due to the fact that the first neighbors to be informed start
broadcasting the information to their neighbors, and, among these, those which
receive the information start broadcasting it to their neighbors, and so on.

From equation (11) we can also compute the probability that, given a discovering
rate η, no new block is discovered before block A has been broadcasted to a fraction
n∗ of the system. In the continuous time limit we have that

q(n∗) = 1− (1− η)N
∫ T (n∗)
0 (1−nA(t))dt . (14)

Plugging equation (11) into equation (14), we can write q(n∗) as

q(n∗) = 1− (1− η)Nf(n
∗,β) , (15)

where

f(n∗, β, nA(0)) = β−1 log

(
n∗

nA(0)

)
, (16)

from which we easily find that

q(n∗) = 1− (1− η)βN log(n∗/nA(0)) (17)

= 1−
(

n∗

nA(0)

)βN log(1−η)

.

Equations (15) and (16) can be used to characterize the performance of the network
as a function of all its structural parameters, such as its average degree and size. In
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the following, we will measure the efficiency of a network in terms of the probability
q(50%) that block A reaches 50% of the network before block B is discovered. Other
metrics could be used, for instance the fork probability can be computed from the
above equations as the probability that the block A is broadcasted to N − 1 nodes
before an alternative block is found2.

In figures 2 and 3 we show the behavior of q(50%) as a function of the average
degree of the network and its size. In both cases there is very good agreement between
numerical simulations and analytical results from equation (17). Figure 2 highlights
the role played by the network’s density, as measured by the average degree. In
fact, an increase in density (at fixed N) corresponds to an increase in the average
number of connections each node can exploit to broadcast a newly discovered block,
therefore speeding up the overall propagation process and ensuring a fast convergence
to consensus. On the other hand, very sparse networks are rather inefficient, as
low connectivity practically corresponds to low average numbers of paths connecting
distant nodes, i.e. to the de facto separation between different regions of the network.

Figure 3 shows instead that network expansion at fixed density has adverse effects
on the efficiency of block propagation, as the presence of larger numbers of nodes
increases the likelihood of discovering conflicting blocks.

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

〈k〉

q
(5

0
%

)

Figure 2: Effect of connectivity on block propagation: Probability of reaching 50% of the
network before a conflicting block is discovered as a function of the network’s average degree 〈k〉 for a
system with N = 1000, η = 10−3, and nA(0) = 0.1. Dots: results from numerical simulations. Solid
line: analytical result from Eq.17. There is an overall good match between analytical and numerical
results, which show that an increase in connectivity is beneficial to the network’s efficiency.

2Note here that the analytical equations are not defined for n∗ = 1.
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Figure 3: Scalability with respect to network size: Probability of reaching 50% of the network
before a conflict as a function of network size for a system with 〈k〉 = 7, η = 10−3, and nA(0) = 0.1.
Dots: results from numerical simulations. Solid line: analytical results from Eq.17. As can be seen,
there is a very good agreement between analytical and numerical results, which show that network
expansion at fixed densities, i.e. at fixed average degree 〈k〉, increasingly prevents the likelihood of
reaching consensus in the system.

Lastly, Figure 4 shows the probability of informing 50% of the network (at fixed
density and number of nodes) conditional on having already informed a fraction nA(0)
of nodes at an initial time t = 0. As one would expect intuitively, efficiency increases
monotonically with nA(0). However, let us note that there are remarkable marginal
gains in efficiency for relatively small increases of the initially informed fraction of
nodes. This is shown in the inset in Figure 4, where we plot the discrete derivative
of q(50%) that corresponds to incrementing the number of initially informed nodes
by one node at a time.
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Figure 4: Dependence on initial condition: Probability of reaching 50% of the network con-
ditional on a given fraction nA(0) of nodes being already informed for a system with 〈k〉 = 7,
η = 10−3, and N = 1000. Dots: results from numerical simulations. Solid line: analytical results
from Eq.17. Inset: zoom in the region of small nA(0). Controlling 5% of the system allows to reach
the majority of the system without observing conflicts in about 70% of the cases.

3.2 Comparing the performance of different networks: Erdős-
Rényi vs scale-free networks

In the previous section we have seen how properties such as the size of an Erdős-
Rényi network and its average degree affect the probability that a block reaches the
majority of the system before a conflict occurs. We now turn to the comparison of
the performance of Erdős-Rényi with respect to that of scale-free networks. To this
end we resort to numerical simulations, because there is no analytical solution for the
case of scale-free networks. For scale-free networks, we consider networks generated
through a linear preferential attachment rule [9]. This mechanism generates networks
whose degree distribution has a tail exponent equal to γ = 3. This is a rather
common exponent value for real networks [5]. In figure 5 we plot the ratio between
the probability of reaching the majority of the network before a conflict in scale-free
vs. Erdős-Rényi networks with the same average degree 〈k〉 = 8, and for different
values of N . From the plot, we see that networks generated through preferential
attachment become more efficient as N increases. The increased efficiency of scale-
free networks is due to the presence of hubs, that connect most of the nodes in
the network through short paths. However, the presence of hubs also increases the
fragility of the network with respect to targeted attacks. In fact, it has been shown [5]
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that an attack protocol that seeks to remove nodes starting from those with the
highest degree quickly breaks a scale-free networks into disconnected components.
For instance, the fraction of nodes that need to be removed for the giant component
to disappear is, in the case of scale-free networks, typically of a few percent [14,15].
Although the scale-free networks we have used in our simulations have a tail exponent
γ = 3, we expect the higher efficiency of scale-free networks to hold also for smaller
values of γ, as lowering the tail exponent increases the probability of having hubs in
the system.
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Figure 5: Scalability of Erdős-Rényi vs scale-free networks: Ratio between the probability
of reaching 50% of the networks before a new block is discovered on scale-free over Erdős-Rényi
networks with the same average degree 〈k〉 = 8 as a function of the network size. As the size
increases scale-free networks become more efficient than Erdős-Rényi networks.

4 Conclusion

Topology strongly affects the behavior of dynamical processes taking place on net-
works. In this chapter we have shown how egalitarianism is in conflict with efficiency.
This was shown by reviewing the main features of two common ensembles of random
networks, Erdős-Rényi and scale-free. Erdős-Rényi networks have a Poisson degree
distribution, while scale-free networks have a power-law degree distribution. The
latter implies the existence of hubs in the network, i.e. nodes with significantly more
connections than the average degree, that are not present in Erdős-Rényi networks.
Therefore, as suggested by the Gini coefficient associated with the degree distribu-
tion of these network ensembles, the two can be considered as prototypical examples
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of egalitarian and non-egalitarian networks.
We have discussed that the difference in the degree distributions of these two

classes of networks has profound consequences on their behavior, for instance re-
garding the emergence of a giant component of connected nodes, or the propagation
speed of signals in the network. The focus of this chapter was to understand how the
propagation of information on networks is affected by their topology. In particular,
we have considered a stylized model of block-propagation in the blockchain. In the
model, we assume that a new block has been discovered and has to be propagated
to the whole network before an alternative block is found, leading to a conflict. Two
competing processes take therefore place in the network. On one hand, nodes that
have been informed about the new block broadcast it to their neighbors, on the other
hand nodes that have not yet been informed can find an alternative block.

We have provided an analytical formula for the probability that a conflict arises
in an Erdős-Rényi network, and we have characterized its dependence on the size
of the network and its average degree. By means of numerical simulations, we have
compared the performance of Erdős-Rényi and scale-free networks, and we have
shown that the latter perform better as the size of the network increases. This
finding suggests the existence of a trade-off between efficiency and nodes’ equality.
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[15] Sergey N Dorogovtsev and José FF Mendes. Physical review letters,
87(21):219801, 2001.

16


