
A Survey of the Use of Crowdsourcing in Software Engineering

Ke Mao⇤, Licia Capra, Mark Harman, Yue Jia
Department of Computer Science, University College London, Malet Place, London, WC1E 6BT, UK

Abstract

The term ‘crowdsourcing’ was initially introduced in 2006 to describe an emerging distributed problem-solving model by online
workers. Since then it has been widely studied and practiced to support software engineering. In this paper we provide a compre-
hensive survey of the use of crowdsourcing in software engineering, seeking to cover all literature on this topic. We first review the
definitions of crowdsourcing and derive our definition of Crowdsourcing Software Engineering together with its taxonomy. Then
we summarise industrial crowdsourcing practice in software engineering and corresponding case studies. We further analyse the
software engineering domains, tasks and applications for crowdsourcing and the platforms and stakeholders involved in realising
Crowdsourced Software Engineering solutions. We conclude by exposing trends, open issues and opportunities for future research
on Crowdsourced Software Engineering.

Keywords: Crowdsourced software engineering, software crowdsourcing, crowdsourcing, literature survey

1. Introduction

Crowdsourcing is an emerging distributed problem-solving
model based on the combination of human and machine compu-
tation. The term ‘crowdsourcing’ was jointly1 coined by Howe
and Robinson in 2006 (Howe, 2006b). According to the widely5

accepted definition presented in the article, crowdsourcing is
the act of an organisation outsourcing their work to an unde-
fined, networked labour using an open call for participation.

Crowdsourced Software Engineering (CSE) derives from
crowdsourcing. Using an open call, it recruits global on-10

line labour to work on various types of software engineering
tasks, such as requirements extraction, design, coding and test-
ing. This emerging model has been claimed to reduce time-to-
market by increasing parallelism (Lakhani et al., 2010; LaToza
et al., 2013a; Stol and Fitzgerald, 2014c), and to lower costs15

and defect rates with flexible development capability (Lakhani
et al., 2010). Crowdsourced Software Engineering is imple-
mented by many successful crowdsourcing platforms, such as
TopCoder, AppStori, uTest, Mob4Hire and TestFlight.

The crowdsourcing model has been applied to a wide range20

of creative and design-based activities (Cooper et al., 2010;
Norman et al., 2011; Brabham et al., 2009; Chatfield and Bra-
jawidagda, 2014; Alonso et al., 2008). Crowdsourced Software
Engineering has also rapidly gained increasing interest in both
industrial and academic communities. Our pilot study of this25

survey reveals a dramatic rise in recent work on the use of

⇤Corresponding author.
Email addresses: k.mao@cs.ucl.ac.uk (Ke Mao),

l.capra@ucl.ac.uk (Licia Capra), mark.harman@ucl.ac.uk (Mark
Harman), yue.jia@ucl.ac.uk (Yue Jia)

1Je↵ Howe attributes the creation of the term to Mark Robinson and himself
(Howe, 2006a).

crowdsourcing in software engineering, yet many authors claim
that there is ‘little work’ on crowdsourcing for/in software en-
gineering (Schiller and Ernst, 2012; Schiller, 2014; Zogaj et al.,
2014). These authors can easily be forgiven for this miscon- 30

ception, since the field is growing quickly and touches many
disparate aspects of software engineering, forming a literature
that spreads over many di↵erent software engineering applica-
tion areas. Although previous work demonstrates that crowd-
sourcing is a promising approach, it usually targets a specific 35

activity/domain in software engineering. Little is yet known
about the overall picture of what types of tasks have been ap-
plied in software engineering, which types are more suitable
to be crowdsourced, and what the limitations of and issues for
Crowdsourced Software Engineering are. This motivates the 40

need for the comprehensive survey that we present here.

The purpose of our survey is two-fold: First, to provide a
comprehensive survey of the current research progress on using
crowdsourcing to support software engineering activities. Sec-
ond, to summarise the challenges for Crowdsourced Software 45

Engineering and to reveal to what extent these challenges were
addressed by existing work. Since this field is an emerging,
fast-expanding area in software engineering yet to achieve full
maturity, we aim to strive for breadth in this survey. The in-
cluded literature may directly crowdsource software engineer- 50

ing tasks to the general public, indirectly reuse existing crowd-
sourced knowledge, or propose a framework to enable the real-
isation/improvement of Crowdsourced Software Engineering.

The remaining parts of this paper are organised as fol-
lows. Section 2 introduces the methodology on literature 55

search and selection, with detailed numbers for each step. Sec-
tion 3 presents background information on Crowdsourced Soft-
ware Engineering. Section 4 describes practical platforms for
Crowdsourced Software Engineering, together with their typ-

Preprint submitted to Journal of Systems and Software September 11, 2016

ical processes and relevant case studies. Section 5 provides60

a finer-grained view of Crowdsourced Software Engineering
based on their application domains in software development
life-cycle. Sections 6 and 7 describe current issues, open prob-
lems and opportunities. Section 8 discusses the limitations of
this survey. Section 9 concludes.65

2. Literature Search and Selection

The aim of conducting a comprehensive survey of all publi-
cations related to Crowdsourced Software Engineering necessi-
tates a careful and thorough paper selection process. The pro-
cess contains several steps which are described as follows:70

To start with, we defined the inclusion criteria of the sur-
veyed publications: The main criterion for including a paper in
our survey is that the paper should describe research on crowd-
sourcing2 that addresses at least one activity (directly or indi-
rectly) involved in software engineering. A ‘software engineer-75

ing activity’ can be any activity in the development, operation
and maintenance of software, according to the IEEE Computer
Society definition of software engineering (Abran et al., 2004).
Also, the literature must be presented in English as conference
papers, journal papers, theses, technical reports or books.80

We performed three types of searches on related publications
published before April 2015:

• Online library search using seven major search en-
gines: ACM Digital Library, IEEE Xplore Digital Li-
brary, Springer Link Online Library, Wiley Online Li-85

brary, Elsevier ScienceDirect, ProQuest Research Library
and Google Scholar. A list of search terms and their com-
binations we used are presented in Table 1. We searched
each of the term combinations using exact match queries
(e.g., “software crowdsourcing”, “crowdsourced software90

development”, “crowd testing”, etc.) in both the meta-data
and full-text (when available) of the publications.

• Issue-by-issue search of major conference proceedings
and journals in software engineering from January 2006
to March 2015. This process was conducted manually to95

find those relevant papers that cannot be retrieved by the
previous step. Our searched conference proceedings and
journals are listed in Table 2.

• Reference search for identifying missed publications by
going through citations from included ones (snowballing).100

We conducted a screening process3 to filter the collected lit-
erature by removing any that did not meet our inclusion crite-
ria. We read the title and abstract (and the full text when neces-
sary) of each publication carefully, applied the inclusion criteria

2Note that since the crowdsourcing concept itself is expanding, its definition
is still debated in the literature. Therefore, in order to ensure that our survey
remains comprehensive, our inclusion criteria cover not only studies that meet
our definition, but also those in which the authors claim to use crowdsourcing.

3The screening process is iterative, e.g., we also screened the publications
suggested by the authors contacted and the anonymous reviewers.

Online
Library
Search

476

Duplicate
records

132

Title and
abstract
(and full

text) review
397

Publications
meeting
inclusion
criteria

146

Final list of
unique

publications
210

Issue-by-
Issue search

53

Publications
identified from

authors
contacted and

referees
29

Reference
search

35

Publications
not meeting

inclusion
criteria

251

input added publications removed publications

Surveyed
Publications

210

Figure 1: Results of literature search and selection on using crowdsourcing to
support software engineering activities.

and filtered out unrelated publications manually. We also per- 105

formed a ‘pseudo-crowdsourced’ checking process for this sur-
vey. We contacted the authors (via email), to check whether we
had missed any important references and whether there was any
inaccurate information regarding our description of their work.
We then further revised the survey according to the authors’ 110

comments: we refined imprecise descriptions of their work and
further included relevant papers that satisfied our inclusion cri-
teria.

A detailed workflow of above steps and the number of result-
ing publications for each step are depicted in Fig. 1. The initial 115

type of search via online digital libraries produced 476 publica-
tions in total, where 132 of them are duplicated. The comple-
mentary issue-by-issue manual search led to another 53 unique
papers. In total, 397 publications were reviewed by examining
their titles and abstracts against our inclusion criteria. When 120

the title and abstract of one publication did not give enough in-
formation for making a decision, we further reviewed full-text
of the paper. This step excluded 146 publications that did not
meet the inclusion criteria. In addition, 35 publications were
identified from reference lists of eligible publications. Regard- 125

ing the ‘pseudo-crowdsourced’ step, for each included publica-
tion, we distributed the copy of this survey to at least one au-
thor. In total, we contacted 303 authors and received 83 replies.
Twenty-two publications were suggested by these authors and
another 7 were identified from the anonymous referees of this 130

survey. Finally, a list of 210 unique publications remained, and
were analysed in this survey. The growth trend in publications
is presented in Fig. 2. The distribution of these papers’ pub-
lication types and a specific list of Master/PhD theses can be
found in Fig. 3 and Table 3, respectively. As can be seen, there 135

is a noticeable rise in publications on Crowdsourced Software
Engineering, resulting in a significant body of literature which
we study in this survey.

We have built a repository which contains the meta-data of
our collected papers. The meta-data includes the author, title, 140

publication year, type and the conference proceeding/journal
information of the paper. Based on this repository, we con-

2

Table 1: Terms for Online Library Search

Category Terms

General
(software crowdsourcing)
(crowd OR crowdsourcing OR crowdsourced) AND (software engineering)
(crowd OR crowdsourcing OR crowdsourced) AND (software development)

Domain

(crowd OR crowdsourcing OR crowdsourced) AND (software requirements)
(crowd OR crowdsourcing OR crowdsourced) AND (software design)
(crowd OR crowdsourcing OR crowdsourced) AND (software coding)
(crowd OR crowdsourcing OR crowdsourced) AND (software testing)
(crowd OR crowdsourcing OR crowdsourced) AND (software verification)
(crowd OR crowdsourcing OR crowdsourced) AND (software evolution)
(crowd OR crowdsourcing OR crowdsourced) AND (software maintenance)

Table 2: Selected Conference Proceedings and Journals for Manual Search

Abbr. Source

ICSE International Conference on Software Engineering
ESEC/FSE European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering
OOPSLA Conference on Object-Oriented Programming Systems, Languages, and Applications
ASE International Conference on Automated Software Engineering
ISSTA International Symposium on Software Testing and Analysis
ICST International Conference on Software Testing, Verification and Validation
RE International Requirements Engineering Conference
CSCW Conference on Computer-Supported Cooperative Work and Social Computing
ISSC International Symposium on Software Crowdsourcing
CSI-SE International Workshop on Crowdsourcing in Software Engineering
TSE Transactions on Software Engineering
TOSEM Transactions on Software Engineering Methodology
IEEE SW IEEE Software
IET IET Software
IST Information and Software Technology
JSS Journal of Systems and Software
SQJ Software Quality Journal
SPE Software: Practice and Experience

ducted our analysis of the reviewed papers. This repository is
publicly available online4.

3. Definitions, Trends and Landscape145

We first review definitions of crowdsourcing, before proceed-
ing to the focus of Crowdsourced Software Engineering.

3.1. Crowdsourcing

The term ‘Crowdsourcing’ was first widely accepted in 2006.
Je↵Howe used the term in his article ‘The Rise of Crowdsourc-150

ing’, which was published in Wired (Howe, 2006b). In a com-
panion blog post (Howe, 2006a) to this article, the term was
defined explicitly:

4http://www.cs.ucl.ac.uk/sta↵/k.mao/cserep

“Crowdsourcing represents the act of a company or
institution taking a function once performed by em- 155

ployees and outsourcing it to an undefined (and gen-
erally large) network of people in the form of an open
call.”

According to this definition, the undefined, large networked
workforce and the open call format are the two prerequisites of 160

crowdsourcing. Howe argued that crowdsourced work can be
done by cooperation or by sole individuals (Howe, 2006b).

This idea echoes the earlier book ‘The Wisdom of the
Crowds’ (James, 2004) and also finds some resonance in the
principles of Open Source Software (OSS) development (Kogut 165

and Metiu, 2001). Indeed, although the term ‘crowdsourcing’
has attracted significant recent attention, the underlying con-
cepts can be found in many earlier attempts to recruit a large
suitably-skilled yet undefined workforce in an open call for a
specific task in hand. For example, we might trace the origins 170

of crowdsourcing back to the Longitude competition in 1714,
when the British government announced an open call (with

3

1 6
23

46

87

132

189
210

0

25

50

75

100

125

150

175

200

225

2008 2009 2010 2011 2012 2013 2014 2015

Figure 2: Cumulative growth of Crowdsourced Software Engineering papers
published before April 2015.

monetary prizes), for developing a method to measure a ship’s
longitude precisely (Sobel, 1995).

Turning to online crowdsourcing, early Internet-based175

crowdsourcing activities can be found in 2001, when ‘InnoCen-
tive’5 was funded by Eli Lilly to attract a crowd-based work-
force from outside the company to assist with drug develop-
ment. In the same year, the TopCoder platform was launched
by Jack Hughes, as a marketplace using crowdsourcing for soft-180

ware development. To facilitate the online distributed software
development activities, the TopCoder development method was
proposed (Hughes, 2010). At the time of writing, TopCoder
is the world’s largest platform for Crowdsourced Software En-
gineering. By March 2015, its community of software engi-185

neers had numbered 750,000 and it had already awarded over
$67,000,000 in monetary rewards for the Crowdsourced Soft-
ware Engineering tasks it facilitated.

There are many other definitions of crowdsourcing, with sub-
tle di↵erences and nuances, which we review here. In Brab-190

ham’s 2008 article (Brabham, 2008), crowdsourcing is viewed
as an online model for distributed production and problem-
solving. The Wikipedia page on crowdsourcing6 cites the def-
inition which appeared in the Merriam-Webster dictionary in
20117. It stresses the large group of workers and an online195

community, but drops any mention of ‘undefined labour’ and
‘open call’ format8. Estellés-Arolas et al. (2012) collected 40
definitions from 32 articles published during 2006 to 2011, and
proposed an integrated definition, which is compatible with the
ones we have introduced and further specifies the mutual ben-200

efits between workers and requesters. Based on these previous
definitions we can identify four common features that pertain to
crowdsourcing: the open access in production, the flexibility in
workforce, the free will in participation and the mutual benefits
among stakeholders.205

The claimed benefits of crowdsourcing include easy access to
a wide range of workers, diverse solutions, lower labour rates
and reduced time-to-market. The granularity of crowdsourced

5http://www.innocentive.com
6http://en.wikipedia.org/wiki/crowdsourcing
7http://www.merriam-webster.com/info/newwords11.htm
8http://www.merriam-webster.com/dictionary/crowdsourcing

Conference
Proceeding

68%

Journal
17%

Thesis
10%

Technical Report
4%

Book
2%

Figure 3: Publication type of surveyed papers.

tasks can be as finely grained as photo tagging or as coarsely
grained as software development (Kittur et al., 2011; Xiao and 210

Paik, 2014). A list of more than 160 crowdsourcing projects9

has been compiled (using crowdsourcing to compile the list).
Crowdsourcing has been used extensively in various dis-

ciplines, such as protein structure prediction (Cooper et al.,
2010; Khatib et al., 2011), drug discovery (Norman et al., 2011; 215

Johnson, 2014), transportation planning (Brabham et al., 2009;
Misra et al., 2014), weather forecasting (Chatfield and Bra-
jawidagda, 2014; Muller et al., 2015), information retrieval
(Alonso et al., 2008; Lease and Yilmaz, 2012), and software
engineering (Stol and Fitzgerald, 2014c; Breaux and Schaub, 220

2014; Schiller and Ernst, 2012; Cochran et al., 2015; Storey
et al., 2010; Stolee and Elbaum, 2010), to which we now turn.

3.2. Crowdsourced Software Engineering

We use the term ‘Crowdsourced Software Engineering’ to
denote the application of crowdsourcing techniques to support 225

software development (in its broadest sense). Some authors re-
fer to this as ‘Crowdsourced Software Development’, ‘Crowd-
sourcing Software Development’ and ‘Software Crowdsourc-
ing’ in previous studies (Usui and Morisaki, 2011; Wu et al.,
2013a,b; Tajedin and Nevo, 2013; Stol and Fitzgerald, 2014c; 230

Xu and Wang, 2014a; Tajedin and Nevo, 2014; Prikladnicki
et al., 2014; Li et al., 2015). However, we prefer the term
‘Crowdsourced Software Engineering’ since it emphasises any
software engineering activity included, thereby encompassing
activities that do not necessarily yield software in themselves. 235

Example activities include project planning, requirements elic-
itation, security augmentation and test case refinement.

However, although our definition is inclusive of all software
engineering activities, we wish to distinguish Crowdsourced
Software Engineering from the research activities on software 240

engineering that happen to be supported by Crowdsourcing (see
Fig. 4). Any research involving human subjects could poten-
tially be supported by crowdsourcing, in the sense that the
identification and recruitment of suitable human subjects for an

9http://en.wikipedia.org/wiki/list of crowdsourcing projects

4

Table 3: A List of Master and PhD Theses on Crowdsourced Software Engineering

Year Author Degree University Title

2010 Lim (2010) PhD University of New South Wales Social Networks and Collaborative Filtering for
Large-Scale Requirements Elicitation

2011 Manzoor
(2011)

Master KTH - Royal Institute of Tech-
nology

A Crowdsourcing Framework for Software Lo-
calization

2011 Kallenbach
(2011)

Master RWTH Aachen University HelpMeOut - Crowdsourcing Suggestions to
Programming Problems for Dynamic, Inter-
preted Languages

2011 Leone (2011) PhD ETH Zurich - Swiss Federal In-
stitute of Technology

Information Components as a Basis for Crowd-
sourced Information System Development

2012 Nag (2012) Master Massachusetts Institute of
Technology

Collabourative Competition for Crowdsourcing
Spaceflight Software and STEM Education Us-
ing SPHERES Zero Robotics

2012 Saengkhattiya
et al. (2012)

Master Lund University Quality in Crowdsourcing - How Software
Quality is Ensured in Software Crowdsourcing

2012 Gritti (2012) Master Universitat Politécnica de
Catalunya

Crowd Outsourcing for Software Localization

2012 Ponzanelli
(2012)

Master University of Lugano Exploiting Crowd Knowledge in the IDE

2012 Phair (2012) PhD Colorado Technical University Open Crowdsourcing: Leveraging Community
Software Developers for IT Projects

2012 Bruch (2012) PhD Technische Universität Darm-
stadt

IDE 2.0: Leveraging the Wisdom of the Soft-
ware Engineering Crowds

2012 Goldman
(2012)

PhD Massachusetts Institute of
Technology

Software Development with Real-time Col-
labourative Editing

2013 Mijnhardt
(2013)

Master Utrecht University Crowdsourcing for Enterprise Software Local-
ization

2013 Teinum (2013) Master University of Agder User Testing Tool: Towards a Tool for
Crowdsource-Enabled Accessibility Evaluation
of Websites

2013 Starov (2013) Master East Carolina University Cloud Platform for Research Crowdsourcing in
Mobile Testing

2013 Chilana (2013) PhD University of Washington Supporting Users After Software Deployment
through Selection-Based Crowdsourced Con-
textual Help

2013 Wightman
(2013)

PhD Queen’s University Search Interfaces for Integrating Crowdsourced
Code Snippets within Development Environ-
ments

2013 Xue (2013) PhD University of Illinois at Urbana-
Champaign

Using Redundancy to Improve Security and
Testing

2013 Lin (2013) PhD Carnegie Mellon University Understanding and Capturing Peoples Mobile
App Privacy Preferences

2014 Schiller (2014) PhD University of Washington Reducing the Usability Barrier to Specification
and Verification

2015 Snijders (2015) Master Utrecht University Crowd-Centric Requirements Engineering: A
Method based on Crowdsourcing and Gamifi-
cation

5

Crowdsourcing Software
Engineering

Crowdsourced
Software

Engineering

Crowdsourcing for
Software Engineering

Research

Software Engineering
for Crowdsourcing

Figure 4: Crowdsourcing and software engineering.

Table 4: Cited Crowdsourcing Definitions

Def. None Howe Wiki Own Other

Count 144 (69%) 37 (18%) 4 (2%) 7 (3%) 22 (10%)

experiment could be implemented using crowdsourcing tech-245

niques. In this application of crowdsourcing (to research stud-
ies), it is the identification of human subjects for experimenta-
tion that is important, rather than the particular research topic
investigated.

If the research topic happens to be software engineering, then250

this work will be interesting to software engineers, but the prin-
ciples and issues that arise will be more similar and relevant
to those arising in other research involving human subjects.
We call this application of crowdsourcing, ‘crowdsourcing for
software engineering research’, to distinguish it from Crowd-255

sourced Software Engineering. In this paper, we comprehen-
sively survey Crowdsourced Software Engineering. We do not
claim to cover crowdsourcing for software engineering research
as comprehensively, although we do survey this topic for com-
pleteness. In addition, as shown in Fig. 4, software engineer-260

ing techniques can also be used to support the implementation
of generic crowdsourcing, e.g., building a novel crowdsourcing
system to support the crowdsourcing process (Aparicio et al.,
2012). This type of study is out of the scope of this survey.

Despite the wide usage of crowdsourcing in various software265

engineering tasks, the concept of Crowdsourced Software En-
gineering is seldom explicitly defined. According to our anal-
ysis (as shown in Table 410), 69% of our surveyed papers use
(or echo) the concept of crowdsourcing without citing any def-
inition. For those papers that cite one or more definitions, the270

most widely cited is Howe’s definition (18%). Out of all the 210
publications we reviewed, only two give an explicit definition
of what it means for crowdsourcing to be applied specifically
to software engineering activities (Stol and Fitzgerald, 2014c;
Huhns et al., 2013).275

Stol and Fitzgerald’s definition (Stol and Fitzgerald, 2014c)
refines Howe’s crowdsourcing definition to the software devel-
opment domain, requiring the undefined labour force to have
requisite specialist knowledge. The definition from the 2013
Dagstuhl seminar on software crowdsourcing (Huhns et al.,280

10One single paper may cite multiple definitions.

2013)11 is formalised as a Wikipedia page12 on software crowd-
sourcing. It also specifies the tasks for software development,
according to which the labour force remains unconstrained, yet
the characteristic of a large potential workforce is not men-
tioned. 285

Since Howe’s definition is the most widely accepted crowd-
sourcing definition in the papers we surveyed, we choose to de-
fine Crowdsourced Software Engineering (CSE) simply as an
instantiation of Howe’s definition, as follows:

Crowdsourced Software Engineering is the act of un- 290

dertaking any external software engineering tasks by
an undefined, potentially large group of online work-
ers in an open call format.

Note that in this survey, we also include the work that uses
crowd knowledge to support software engineering activities, 295

which can be regarded as a form of indirect use of crowdsourc-
ing. For example, those ‘crowd debugging’ (Chen and Kim,
2015; Mujumdar et al., 2011; Hartmann et al., 2010) studies on
collecting and mining crowdsourced knowledge. We observed
that the software engineering community generally considers 300

this as an instance of using crowdsourcing to support software
engineering, because the knowledge used was gathered from
‘crowd workers’, as defined in Howe’s definition.

Crowdsourced Software Engineering generally involves
three types of actors (or stakeholders): Employers (aka re- 305

questers), who have software development work that needs to
be done; workers, who participate in developing software and
platforms, which provide an online marketplace within which
requesters and workers can meet. Fig. 5 briefly depicts these
three types of actors and the general process for Crowdsourced 310

Software Engineering. More detailed background knowledge
on the Crowdsourced Software Engineering actors, principles,
process and frameworks can be found in the recent book by Li
et al. (Li et al., 2015).

3.2.1. Claimed Advantages and Growth Trends 315

Crowdsourced Software Engineering has several poten-
tial advantages compared to traditional software development
methods. Crowdsourcing may help software development or-
ganisations integrate elastic, external human resources to re-
duce cost from internal employment, and exploit the distributed 320

production model to speed up the development process.
For example, compared to conventional software develop-

ment, the practice of TopCoder’s crowdsourced software devel-
opment was claimed to exhibit the ability to deliver customer
requested software assets with a lower defect rate at lower cost 325

in less time (Lakhani et al., 2010). TopCoder claimed that their
crowdsourced development was capable of reducing cost by
30%-80% when compared with in-house development or out-
sourcing (Lydon, 2012). Furthermore, in the TopCoder Amer-
ican Online case study (Lakhani et al., 2010), the defect rate 330

11Subsequently published as a book: http://www.springer.com/gb/
book/9783662470107

12http://en.wikipedia.org/wiki/crowdsourcing software development

6

http://www.springer.com/gb/book/9783662470107
http://www.springer.com/gb/book/9783662470107

Figure 5: Actors in Crowdsourced Software Engineering.

was reported to be 5 to 8 times lower compared with traditional
software development practices.

In another study published in Nature Biotechnology (Lakhani
et al., 2013), Harvard Medical School adopted Crowdsourced
Software Engineering to improve DNA sequence gapped align-335

ment search algorithms. With a development period of two
weeks, the best crowd solution was able to achieve higher accu-
racy and three orders of magnitude performance improvement
in speed, compared to the US National Institutes of Health’s
MegaBLAST.340

The increasing popularity of Crowdsourced Software En-
gineering revolves around its appeal to three di↵erent related
stakeholders:

1) Requesters: Crowdsourced Software Engineering is be-
coming widely accepted by companies and organisations, from345

the military domain and academic institutions to large IT
companies. DARPA created Crowdsourced Formal Verifica-
tion (CSFV) program13 for software formal verification and
launched the Verigames website to facilitate the practice14.
NASA and Harvard business school established the NASA350

Tournament Laboratory for crowdsourcing software solutions
for NASA systems15. Microsoft crowdsourced partial software
development activities in O�ce 201016, Windows 8.117 and
Windows 1018.

2) Workers: Based on an industrial report from Massolution355

(Massolution, 2012), the number of workers engaged in soft-
ware crowdsourcing increased by 151% in the year of 2011.

3) Platforms: There is a growing number of crowdsourcing
platforms built for software development domain, such as App-
Stori and Mob4Hire. These commercial platforms will be de-360

scribed in more detail in Section 4.

The flourishing Crowdsourced Software Engineering land-
scape is also revealed by the increasing number of relevant pub-
lications published in recent years, as shown in Fig. 2. Crowd-
sourced Software Engineering is also proving to be an attractive365

topic for student dissertations. Specifically, 20 out of the total
210 publications are Master/PhD theses. A detailed list of these
theses can be found in Table 3.

Figure 6: Taxonomy of research on Crowdsourced Software Engineering.

3.2.2. Research Topics
To classify the papers, we first carefully analysed the 210 370

papers we collected, revealing four top-level categories based
on their study types: Study of Practice, Theories and Models,
Applications to Software Engineering and Evaluations of Soft-
ware Engineering Research. We referred to the ACM Comput-
ing Classification System19, the IEEE Taxonomy of Software 375

Engineering Standards20 and the 2014 IEEE Keywords Taxon-
omy21 to formulate sub-categories for each of these four top-
level categories. Specifically, for applications to software engi-
neering, we created sub-categories based on di↵erent stages of
software development life-cycle addressed by the applications. 380

A detailed taxonomy of Crowdsourced Software Engineering
research is given in Fig. 6.

We manually classified the collected papers and assigned
them to each of the categories. The classification results were
cross-checked by three authors, reaching an average percentage 385

agreement of 91.2%. The distribution of the literature over the
research topics is shown in Fig. 7. The most prominent class is
Applications to Software Engineering (64%), followed by theo-
retical studies (19%) and practical studies (14%). A few studies

13http://www.darpa.mil/program/crowd-sourced-formal-verification
14http://www.verigames.com
15http://www.nasa.gov/sites/default/files/files/ntl-overview-sheet.pdf
16http://www.wired.com/2010/06/microsoft-o�ce-2010
17http://www.forbes.com/sites/andygreenberg/2013/06/19/microsoft-finally-

o↵ers-to-pay-hackers-for-security-bugs-with-100000-bounty
18http://thetechieguy.com/how-microsoft-is-cleverly-crowdsourcing-

windows-10-development-from-its-customers
19http://www.acm.org/about/class/class/2012
20http://ieeexplore.ieee.org/servlet/opac?punumber=2601
21http://www.ieee.org/documents/taxonomy v101.pdf

7

Pratical
14%

Theoretical
19%

Evaluations
3%

Coding
16%

Design
3%

Testing
15%

Verification
3%

Other
8%

Maintenance
9%

Requirements
10%

Applications
64%

Figure 7: Research topic distribution.

(3% in our collection of papers) employed crowdsourcing to390

evaluate software engineering research. This type of publica-
tion may not use crowdsourcing-related keywords in their meta
information. We performed extra manual retrievals for related
research. Nevertheless, there may be more papers which fall
into this category yet which remain uncovered in our survey;395

this category is not the focus of our survey.

3.2.3. CSE Research Landscape
We present the CSE research landscape from two views: a

specific view of the Software Development Life Cycle (SDLC)
and a general view of the problem-solving process. The former400

view illustrates a picture of the activities that have been covered
in published literature on applying crowdsourcing to software
engineering. The latter points out a series of questions and cor-
responding variables on why and how to use crowdsourcing to
tackle a problem in software engineering. These questions have405

not been widely discussed in a software engineering context.
The latter view also identifies several issues remaining open
to CSE researchers (who wish to design new crowdsourcing-
based approaches) and practitioners (who intend to adopt exist-
ing crowdsourcing-based approaches), thus reflecting the land-410

scape of future CSE research topics from a process perspective.
In Fig. 8, we illustrate the domains in which crowdsourcing

has been integrated into the SDLC. Crowdsourcing can be used
to support activities involved in the planning, analysis, design,
implementation and maintenance phases of a software system.415

For each specific activity in the SDLC, we also provide an ex-
ample reference on realising this integration. The summary of
the papers that apply crowdsourcing to software engineering ac-
tivities and their mappings to the SDLC are discussed in detail
in Section 5.420

When adopting crowdsourcing to support a certain activity in
an SDLC phase, it requires a general problem-solving process
which characterises the steps towards approaching and ratio-
nally solving a problem. We illustrate the CSE research land-
scape from such a general perspective of problem-solving pro-425

cess, as shown in Fig. 9, where important questions and as-
pects regarding a series of stages in realising CSE are sum-
marised. The stages follow Simon’s problem-solving model
(Simon, 1960), which consists of two phases: a decision phase
and an implementation phase. Since Simon’s problem-solving430

model has been adapted in several ways, each phase may vary in
stages. Our decision phase contains the three typical stages: in-

telligence, design and choice. While the implementation phase
includes an implementation stage and a following review stage.

Intelligence (why): In the intelligence stage, the problem 435

is defined and the requester should justify the motivation for
adopting CSE. What are the potential advantages and disad-
vantages? Previous research on CSE usually argues that the
cost, e�ciency and scalability are the benefits. Meanwhile, the
potential issues on intellectual property and the quality of the 440

crowd work may need to be considered.
Design (what): The design stage relates to the development

of alternative solutions. This phase may require research into
the potential options. When mapping to the CSE stage, the re-
quester should think about, what is being crowdsourced? What 445

is the granularity of the task? Is it a micro-task such as a re-
quirement classification or a macro task such as a software com-
ponent development? Does the task require expert knowledge
such as programming? What are the incentives for a certain
type of crowd? What is the expected size of the crowd? 450

Choice (which): In the choice stage, alternative solutions are
evaluated. The output of this stage is a decision that can be
implemented. To make such a decision usually requires addi-
tional information, which has not been collected in the previous
design stage. Other choices would also be considered, such as 455

the quality assurance strategy and the type of open call to be
adopted.

Implementation (how): The implementation stage is where
the decision is finally carried out. Both CSE researchers and
practitioners need to deal with a series of questions to imple- 460

ment the crowdsourcing activity. For example, what intermedi-
ary platform should be used in order to accomplish the work?
Subsequently, how to manage the tasks and workers?

Review (outcome): The final review stage evaluates the im-
plementation’s outcome. If the outcome is a success, the prod- 465

uct may be further validated to check whether it satisfies users’
requirements. If failed, lessons should be learned and a new
iteration of the problem-solving process is expected. For CSE,
the requester may need to think about how to aggregate and
validate the crowd solutions. If the use of crowdsourcing in 470

supporting software engineering failed, what is the barrier to a
successful CSE solution?

The above process model may provide guidance to CSE re-
searchers and practitioners for realising CSE. Several of the
questions underlying each stage remain open problems, point- 475

ing to important research questions. Very few previous studies
consider the overall process of CSE at a macro level (such as
the one presented in Fig. 9). Instead, where the process stud-
ies were conducted, they usually focused on the problems per-
tained to a specific stage. 480

In the why stage, many previous studies report on the bene-
fits of CSE in terms of low cost, fast delivery and high flexibil-
ity (Schneider and Cheung, 2011; Lakhani et al., 2010; Begel
et al., 2013; LaToza et al., 2013a; Nebeling et al., 2013b; Ra-
makrishnan and Srinivasaraghavan, 2014; Li et al., 2015), but 485

there is a lack of comparative studies on validating these ben-
efits by comparing crowdsourcing-based development with tra-
ditional in-house or outsourced development. A few other au-
thors, see for example (Stol and Fitzgerald, 2014c,b; LaToza

8

and van der Hoek, 2015), highlight the key concerns associated490

with CSE. In the what stage, research topics of ‘what to crowd-
source’, ‘who is the crowd’, and ‘what is the motivation’ have
been briefly touched upon. Stol and Fitzgerald (2014c) point
out that self-contained, less complex software tasks are more
suitable to be crowdsourced, according to an in-depth study on495

TopCoder. Schiller and Ernst (2012), and Pastore et al. (2013)
discuss using ad-hoc versus contract workers and professional
versus generic workers, respectively. A detailed discussion of
the motivation and composition of the crowd will be presented
in Sections 6.4 and 7.1. In the following which, how and out-500

come stages, it is surprising to see that not much research work
has been done so far. For ‘which CSE model’, a few process
models have been proposed, which will be introduced in Sec-
tion 6.1. For ‘which quality assurance strategy’, relevant studies
will be addressed in Section 6.5. Regarding the how stage, the505

challenges of task decomposition and crowd coordination will
be discussed in Sections 6.2 and 6.3.

In contrast to the lack of investigation of the CSE process,
most studies reviewed in this survey integrate crowdsourcing
into their approaches to support activities in the SDLC. In later510

sections, we first summarise these papers (Section 5) and then
turn back to the CSE process, discussing the issues and open
problems studied in previous work (Section 6), and opportuni-
ties for future research (Section 7).

4. Crowdsourcing Practice in Software Engineering515

In this section, we describe the most prevalent crowdsourc-
ing platforms together with typical crowdsourced development
processes for software engineering. Since most case studies we
collected were based on one (or several) of these commercial
platforms, in the second part of this section, we present rel-520

evant case studies on the practice of Crowdsourced Software
Engineering.

4.1. Commercial Platforms
A list of existing commercial crowdsourcing platforms that

support software engineering are presented in Table 5. These525

platforms employ various types of open call formats, such as the
widely used online competition, on-demand matching (where
the workers are selected from the registrants), and online bid-
ding (where the developers bid for tasks before starting their
work). The platforms also focus on a broad range of task do-530

mains within software engineering. Platforms such as Top-
Coder and GetACoder support multiple types of software de-
velopment tasks. Others are more specific. For example, uTest
and BugCrowd are designed for software testing and security
analysis, respectively. There are also general crowdsourcing535

marketplaces such as Amazon Mechanical Turk (AMT), oDesk
and Freelancer, which are not designed for software engineer-
ing specifically, but can, nevertheless, be used to support vari-
ous software development tasks.

Di↵erent platforms may also use various process models. In540

the remainder of this subsection we introduce typical commer-
cial platforms and their processes for Crowdsourced Software
Engineering:

1) TopCoder is a pioneer for practising Crowdsourced Soft-
ware Engineering. It has its unique process and development 545

model, which is known as the TopCoder Competition Method-
ology. The platform supports the independent graphic design,
development, data science challenges, and the development of
complex software (by decomposing into multiple sub-tasks).
Viewed from the top level, the systematic process may resem- 550

ble the waterfall model. However, each development phase is
realised through a series of online competitions in which the
crowd developers compete with each other. Only qualified win-
ning solutions are accepted. Qualified outputs are used as the
inputs for the subsequent development phases. In this context, 555

‘qualified’ means passing a minimum acceptance score which
is rated through a review process. The review board is also
made up of crowd developers from the TopCoder community.

2) AppStori is a more recent platform for crowdsourcing mo-
bile app development. It uses a crowdfunding model to fund de- 560

velopment and attracts app developers and consumers to work
closely together. The crowd developers can post their projects
to raise funds from the crowd or to recruit other developers for
app implementation. Consumers can propose ideas for new app
development, contribute money, act as beta testers and o↵er 565

feedback on existing projects. The whole development process,
from conception to release, is achieved through collaboration
among crowd developers and consumers.

3) uTest is one of the leading platforms for crowdsourced
software testing. It claims to support the world’s largest open 570

community for software testing22. The crowd testing commu-
nity enables a wide range of virtual on-demand testing services,
such as functional testing, usability testing, localisation testing
and load testing. The crowdsourced testing process starts with a
phase in which the clients can specify their testing needs. Flex- 575

ible choices concerning testing devices, operating systems, ge-
ographic locations and budgets are provided by the platform.
Appropriate testers are selected from the community, based on
several metrics such as their previous performance, skills, lan-
guages, testing devices and locations. The selected testers re- 580

port their testing work in real-time and submit their test report
for approval. It is usually the clients’ responsibility to review
the submission and decide which workers are qualified to be
paid for their work.

4) StackOverflow23 is a question and answer website which 585

provides crowdsourced programming knowledge for software
developers. Although such crowd knowledge is passively
‘pulled’ by developers with issues rather than being an active
part of the development process, it poses a positive impact
on open source software development (Vasilescu et al., 2013, 590

2014) as well as conventional software development process. It
has been used to improve integrated software development en-
vironments (Zagalsky et al., 2012; Bacchelli et al., 2012; Pon-
zanelli, 2012; Ponzanelli et al., 2013a,b; de Souza et al., 2014)
and software API documentation (Jiau and Yang, 2012; Parnin 595

et al., 2012).

22http://www.utest.com/about-us
23http://www.stackoverflow.com

9

Analysis Design

Imple-
mentation

Mainten
-ance

Planning
(Chen

and Kim,
2015)

Crowd
Crowd
coding

Crowd
testing

Crowdsourced
requirement
extraction SDLC phase

Crowdsourcing
supported
SE activity

Example
reference

Crowdsourced
UI design

Crowdsourced
documentation

Crowdsourceda
rchitecture

design

Crowdsourced
requirement
acquisition

Crowdsourced
requirement

categorisation

Crowdsourced
localisation

(LaToz et
al., 2015)

(Breaux
et al.,
2010)

(Wang
et al.,
2014)

(Nayebi
and

Ruhe,
2014)

(Chen
and

Zhang,
2014)

(Exton
et al.,
2009)

(Cochran
et al.,
2015)

(Dolstra
et al.,
2013)

Crowdsourced
release

planning

(Lasecki
et al.,
2015)

(Nascim
ento et

al.,
2012)

Crowd
debugging

Figure 8: Integration of crowdsourcing into the Software Development Life Cycle (SDLC).

Why What Which How Outcome

Simon’s Problem Solving Model

Intelligence Design Choice Implementation Review

Which CSE model &
framework?

Which quality assurance
strategy?
-Expert/peer review
-Multiplicity
-Qualification test
-Injected ‘gold set’ test

Which type of open call?
-Online competition
-Online bidding
-on-demand matching

What are the benefits?
-Cost
-Efficiency
-Flexibility
-Scalability
-Global workers

What are the concerns?
-Intellectual property
-Quality
-Uncertainty
-Little interaction/feedback
-Collaboration overhead

What is being crowdsourced?
-Micro/Macro task
-Data collection/labelling
-Question answering
-Design/Development/Testing

Who is in the crowd?
-General/Skilled
-Internal/External/Hybrid
-Size of the crowd

What will motivate the crowd?
-Cash -Reputation -Fun
-Experience -Altruism

CSE
Stage

What intermediary to use?
-Development: TopCoder/
AppStori/etc.
-Testing: uTest/Mob4Hire/etc.
-Security: BugCrowd/etc.
-QA: Stack Overflow

How to manage tasks and
workers?
-Task decomposition
-Worker coordination
-IP pretection
-Security and privacy

How to aggregate
results?

How to validate crowd
solutions?
-Spam detection
-Ground truth

What are the lessons
learned?

CSE Research Landscape

Decision Phase Implementation Phase

Figure 9: Problem-solving Model of Crowdsourced Software Engineering (adapted from the outsourcing stage model by Dibbern et al. (2004)).

5) Bountify is a platform similar to StackOverflow. However,
it has more ‘self-contained’, micro programming tasks. Each
yields a payment of a certain amount of money, ranging from
1 to 100 US dollars. A study on program synthesis (Cochran600

et al., 2015) used this platform to obtain initial seeds for their
genetic programming algorithm.

Other more general-purpose crowdsourcing platforms such
as Amazon Mechanical Turk and CrowdFlower also have been
widely used in software engineering research:605

1) Amazon Mechanical Turk (AMT) is a popular crowdsourc-
ing marketplace for micro-tasks. By employing crowd work-
ers on the platform to exploit human computation, small teams
may mitigate the challenges in developing complex software
systems (Begel et al., 2010). This platform has been employed610

to support program synthesis (Cochran et al., 2015), graphical
user interface (GUI) testing (Dolstra et al., 2013), oracle prob-
lem mitigation (Pastore et al., 2013), and program verification
(Schiller and Ernst, 2012) in software engineering.

2) CrowdFlower is a micro-task crowdsourcing platform that615

is similar to Amazon Mechanical Turk. It focuses more on
solving data problems such as data collection, cleaning and la-
belling. Afshan et al. (2013) employed this platform to eval-
uate the human readability of test string inputs, generated by a
search-based test data generation technique with a natural lan- 620

guage model.
Several studies provided further information on existing

commercial platforms for software engineering. An introduc-
tion to software crowdsourcing platforms (Peng et al., 2014)
briefly summarised several platforms for collaborative soft- 625

ware development and compared crowdsourced software de-
velopment with proprietary software development, outsourced
software development and open source software development.
Fried et al. (2010) summarised three types of crowdsourcing
platforms for the software industry: platforms such as Amazon 630

Mechanical Turk24 that support the use of human knowledge in
an inexpensive way; platforms such as TopCoder that support

24http://www.mturk.com

10

Table 5: A List of Commercial Platforms for Crowdsourced Software Engineering

Platform Since URL Task Domain Open Call Form

TopCoder 2001 www.topcoder.com Software Development Online Competition
GetACoder 2004 www.getacoder.com Software Development Online Bidding
AppStori 2013 www.appstori.com Mobile App Development Crowd Funding, Online Recruiting
Bountify 2013 www.bountify.co Small Coding Tasks Online Competition
uTest 2007 www.utest.com Software Testing On-demand Matching, Online Compe-

tition
Passbrains 2012 www.passbrains.com Software Testing On-demand Matching
99Tests 2010 www.99tests.com Software Testing On-demand Matching
TestBirds 2011 www.testbirds.com Software Testing On-demand Matching
Testbats 2013 www.testbats.com Software Testing On-demand Matching
Pay4Bugs 2009 www.pay4bugs.com Software Testing On-demand Matching
CrowdTesters 2014 www.crowdtesters.com.au Software Testing On-demand Matching
TestFlight 2010 www.testflightapp.com Mobile App Testing On-demand Matching
Mob4hire 2008 www.mob4hire.com Mobile App Testing Online Bidding
Testin 2011 www.itestin.com Mobile App Testing On-demand Matching
Ce.WooYun 2012 ce.wooyun.org Software Security Testing On-demand Matching
Bugcrowd 2012 www.bugcrowd.com Software Security Testing Online Competition

contest-based software development; and platforms like Math-
Works25 that support programming competitions with a unique
‘competitive collaboration’ feature. Wu et al. (2013a) proposed635

an evaluation framework for assessing software crowdsourcing
processes with respect to multiple objectives such as cost, qual-
ity, diversity of solutions and crowd competitions. The com-
petition relationship was evaluated by a ‘min-max’ (defence-
o↵ence) mechanism adapted from game theory. Based on640

the proposed evaluation framework, the contrast between Top-
Coder and AppStori software crowdsourcing processes was il-
lustrated.

4.2. Case Studies
Many Crowdsourced Software Engineering case studies have645

been reported in recent years. Most are based on one or several
commercial platforms described above. Among them, the Top-
Coder platform has the most case studies reported upon in the
literature (Archak, 2010; Lakhani et al., 2010; Nag et al., 2012;
Nag, 2012; Li et al., 2013; Wu et al., 2013b; Tajedin and Nevo,650

2014; Stol and Fitzgerald, 2014c).
Stol et al. (2014c) presented an in-depth case study with a

client company which has crowdsourced software development
experience using TopCoder. A series of issues pertaining to the
TopCoder development process were identified through inter-655

views with the client company. For instance, the platform gen-
erally followed a waterfall model, which brought coordination
issues to the client company as it adopted an agile development
model. Also, quality issues were pushed to later stages in the
TopCoder development process, which was not regarded as best660

practice. The research protocol (Stol and Fitzgerald, 2014a)
contains details of the design of this case study which can be
used for replicating the study. Based on the lessons learned
from this case study, the authors further enunciated their ad-
vice for crowdsourced software development. For instance, the665

25http://www.mathworks.com

requester should provide the crowd with clear documents and
avoid anonymously interaction with crowd developers (Fitzger-
ald and Stol, 2015).

Tajedin and Nevo (2014) also conducted an in-depth case
study in the form of interviews, but from the perspective of 670

TopCoder’s management team, rather than the client. The case
study revealed two types of value-adding actions that exist in
the crowdsourcing platform, i.e., the macro, market level and
the micro, transaction level actions.

Wu et al. (2013b) highlighted the lessons learned from their 675

collected software crowdsourcing data. Two crowdsourced
software development processes employed by TopCoder and
AppStori were examined. The paper argued that the ‘min-max’
competition behaviour contributes to the quality and creativity
of crowdsourced software development. 680

Nag et al. (2012) reported their collaboration with Top-
Coder to crowdsource spaceflight software development for the
SPHERES Zero Program, supported by NASA, DARPA and
Aurora Flight Sciences. A detailed version can be found in
Nag’s Master’s thesis (Nag, 2012). 685

Lakhani et al. (2010) described the development of Top-
Coder from the year of 2001 to 2009, including the evolution
of the platform and the community, the benefits and concerns
from the client’s perspective, and the management roles and
challenges of the TopCoder development process. 690

Archak (2010) conducted an empirical analysis of develop-
ers’ strategic behaviour on TopCoder. The cheap talk (Farrell
and Rabin, 1996) phenomenon during the registration phase
of the contest was identified, i.e., in order to soften competi-
tion, highly rated developers tend to register for the competition 695

early thereby seeking to deter their opponents from seeking to
participate in the marketplace. Archak argued that the cheap
talk phenomenon and the reputation mechanisms used by Top-
Coder contribute to the e�ciency of simultaneous online con-
tests. In addition, a regression analysis was performed to study 700

the factors that a↵ect the quality of the contest outputs. The

11

payment and the number of requirements factors were identi-
fied as significant predictors for final submission quality. Li et
al. (2013) also conducted a case study on TopCoder. A set of 23
quality factors were identified from the aspects of project and705

platform.
Regarding the case studies that were based on the platforms

other than TopCoder: Zogaj et al. (2013; 2014) conducted a
case study on a German start-up crowd testing platform called
testCloud. Three types of challenges were highlighted in the710

case study: managing the crowd, managing the process and
managing the techniques. Bergvall-Kareborn and Howcroft
(2013) reviewed Apple’s business model for crowdsourcing
mobile applications. By reporting fieldwork among Apple mo-
bile app developers in three countries, they showed how the715

company benefited from crowdsourcing, e.g., e↵ectively out-
sourced their development tasks to global online developers
while sidestepping some costs incurred by directly employing
high-tech workers.

Some case studies focused on region-specific practices in720

crowdsourced software development. For example, one case
study (Machado et al., 2014; Prikladnicki et al., 2014) pre-
sented the preliminary results of a multi-year study on crowd-
sourcing in the Brazilian IT industry. This study reported inter-
views that highlighted the generally low awareness of software725

crowdsourcing and concerns about the crowdsourced software
quality. Phair’s doctoral thesis (Phair, 2012) reported a quali-
tative case study on using crowdsourced software development
to implement a web application for a non-profit organisation.
Benefits such as measurable cost savings and an increased abil-730

ity to work on multiple projects were identified. A few other
case studies have reported the practice of software crowdsourc-
ing in specific domains, such as crowdsourced proteomics soft-
ware development (Martin et al., 2013) and crowdsourced e-
government software development (Shah et al., 2009; Warner,735

2011).

5. Crowdsourcing Applications to Software Engineering

Crowdsourcing applications to software engineering are pre-
sented as multiple subsections, according to the software devel-
opment life-cycle activities that pertain to them. The following740

major stages are addressed: software requirements, software
design, software coding, software testing and verification, soft-
ware evolution and maintenance. An overview of the research
on Crowdsourced Software Engineering is shown in Table 6.
The references that map to each of the software engineering745

tasks are given in Table 7. The commercial and experimental
crowdsourcing platforms in these studies follow the scheme in
Fig. 10.

A timeline of the introduction of various ideas and concepts
is illustrated in Fig. 11. For example, starting from 2009,750

crowdsourcing was employed to help evolve software and its
localisation. Most recently, the crowdsourcing model was used
for program synthesis. Other important events and theoreti-
cal/practical studies that can reflect the development of Crowd-
sourced Software Engineering are also illustrated in the time-755

line.

Figure 10: Scheme of crowdsourced software engineering platforms. (The
italic text indicates an experimental/non-commercial platform.)

For the Crowdsourced Software Engineering studies with
empirical evaluations, we summarised the conducted experi-
ments in Table 8, to reveal the detailed experimental settings
and results. With the summary, we calculated the distributions 760

of the crowd size, cost and the platforms used in Crowdsourced
Software Engineering experiments, as shown in Fig. 12 and
Fig. 13 respectively.

5.1. Crowdsourcing for Software Requirements Analysis

Requirements analysis is a widely accepted critical step that 765

impacts the success of software projects (Standish, 1994). A
series of studies (Lim et al., 2010b,a; Sey↵ et al., 2010; Lim
et al., 2011; Ali et al., 2011; Lim and Finkelstein, 2012; Ade-
petu et al., 2012; Nascimento et al., 2012; Muganda et al., 2012;
Greenwood et al., 2012; Hosseini et al., 2013; Lim and Ncube, 770

2013; Snijders and Dalpiaz, 2014; Wang et al., 2014; Nayebi
and Ruhe, 2014; Breaux and Schaub, 2014; Hosseini et al.,
2015) have investigated crowdsourcing to support this process.

12

Table 6: An Overview of the Research on Crowdsourced Software Engineering

SE Phase SE Task Why Bespoke Tool
Stakeholder

Requester Platform Worker

Requirements

Requirements
Acquisition

Cost, User needs,
Domain knowl-
edge, Automation,
Quality

StakeSource, Stake-
Source2.0, StakeNet,
StakeRare, iRequire

Requirements
engineers, De-
signers, Soft-
ware teams,
Researchers

Email, StakeSource,
StakeSource2.0, Stak-
eNet, StakeRare,
CrowdREquire, UDe-
signIt, Bespoke, AOI,
AMT

All stakehold-
ers, Users, Un-
defined crowd

Requirements
Categorisation

User needs None Requirements
engineers,
Designers

Unspecified Users

Design

User Interface Design User needs, Qual-
ity, Diversity

None Designers,
Non-technical
end users

Bespoke, AMT,
CrowdDesign,
Email

Users

Architecture Design Quality, Diversity None Researchers Email Designers
Design Revision Quality, Diversity None Researchers Email Designers

Coding

IDE Enhancement Debugging, API aid BlueFix, Calcite, Ex-
ample Over-flow, Sea-
hawk, Prompter, Snip-
Match

Developers HelpMeOut, Stack
Overflow, oDesk

Developers

Program Optimisation Human solutions None Developers,
Researchers

Bountify, AMT, Soft-
ware Feedback

Developers,
Undefined
crowd, Users

Crowd Programming
Support

Automation, Hu-
man solutions

CrowdLang, CIDRE,
Collabode

Developers,
Teachers

Bespoke, AMT, Code
Hunt

Users, Devel-
opers

Testing

Usability Testing Cost, Time CrowdStudy Testers CrowdStudy, Bespoke,
AMT, CrowdFlower

Users

Performance Testing Real-world mea-
sure

None Client compa-
nies

Lync Users

GUI Testing Cost, Scalability None Testers AMT Undefined
crowd

QoE Testing Cost, Diversity Quadrant of Euphoria Researchers Quadrant of Euphoria,
Bespoke, AMT, Mi-
croworkers

Undefined
crowd

Test Generation Human inputs PAT Testers,
Researchers

Twitter Undefined
crowd

Oracle Problem Human solutions,
Automation

None Testers,
Researchers

AMT Qualified / Un-
qualified crowd

Crowd Testing Support Human inputs CrowdBlaze Testers,
Researchers

Bespoke, AMT, Mo-
bileworks, Email

Undefined
crowd

General Evaluation User needs, Diver-
sity

None Researchers Bespoke, AMT Users

Verification Non-expert Verification Cost, Speed Verification Games,
VeriWeb

Developers,
Researchers

Bespoke, AMT,
vWorker

Undefined
crowd

Evolution

Software Adaptation User needs, Cost,
Diversity, Speed

MoWA, CrowdAdapt Developers,
Designers,
Users,
Researcher

Bespoke, Facebook,
Online community

Users

Maintenance

Software
Documentation

Domain knowledge COFAQ Developers,
Researchers

Q&A, Stack Overflow,
SciPy Community

Developers,
Researchers

Software Localisation Domain knowl-
edge, Cost, Speed

None Developers,
Researchers

AMT Undefined
crowd

Other

Security and Privacy
Augmentation

Diversity, Domain
knowledge, User
needs

Crowdroid, Modding-
Interface, Crowd-
Source, SmartNotes,
ProtectMyPrivacy

Developers,
Researchers

Android User Commu-
nity

Users

End User Support Domain knowledge LemonAid Developers,
Researchers

AMT Users

Software Ideation User needs, Open
innovation, Re-
cruitment

SAPiens, IdeaMax Client
Companies

Repurposed, Bespoke Users

13

Table 7: Reference Mapping of the Research on Crowdsourced Software Engineering

SE Phase SE Task Reference

Requirements

Requirements Acquisition (Lim et al., 2010b,a; Sey↵ et al., 2010; Lim et al., 2011; Ali et al., 2011; Lim and
Finkelstein, 2012; Adepetu et al., 2012; Nascimento et al., 2012; Muganda et al., 2012;
Greenwood et al., 2012; Hosseini et al., 2013; Lim and Ncube, 2013; Snijders and
Dalpiaz, 2014; Wang et al., 2014; Nayebi and Ruhe, 2014; Breaux and Schaub, 2014;
Hosseini et al., 2015)

Requirements Categorisation (Muganda et al., 2012; Nascimento et al., 2012)

Design

User Interface Design (Bernstein, 2010; Nebeling et al., 2012a; LaToza et al., 2015; Lasecki et al., 2015)
Architecture Design (LaToza et al., 2015)
Design Revision (LaToza et al., 2015)

Coding

IDE Enhancement (Hartmann et al., 2010; Mooty et al., 2010; Bruch et al., 2010; Kallenbach, 2011; Za-
galsky et al., 2012; Bruch, 2012; Watson et al., 2012; Bacchelli et al., 2012; Ponzanelli,
2012; Ponzanelli et al., 2013a,b; Wightman, 2013; Barzilay et al., 2013; Ponzanelli
et al., 2014a,b; de Souza et al., 2014; Fast et al., 2014; Chen and Kim, 2015)

Program Optimisation (Auler et al., 2014; Cochran et al., 2015)
Crowd Programming Support (Goldman et al., 2011; Goldman, 2011; Minder and Bernstein, 2011, 2012; Goldman,

2012; Ball et al., 2014; Xie et al., 2015)

Testing

Usability Testing (Schneider and Cheung, 2011; Liu et al., 2012; Nebeling et al., 2012b; Meier et al.,
2013; Nebeling et al., 2013b; Teinum, 2013; Gomide et al., 2014)

Performance Testing (Musson et al., 2013)
GUI Testing (Vliegendhart et al., 2012; Dolstra et al., 2013)
QoE Testing (Chen et al., 2010; Gardlo et al., 2014; Hossfeld et al., 2014a,b)
Test Generation (Chen and Kim, 2012; Pham et al., 2013b)
Oracle Problem Mitigation (Pastore et al., 2013)
Crowd Testing Support (Xue, 2013; Yan et al., 2014; Liang et al., 2014)
General Evaluation (Blanco et al., 2011; Sherief et al., 2014; Sherief, 2014)

Verification Non-expert Verification (Dietl et al., 2012; Li et al., 2012; Schiller and Ernst, 2012; Schiller, 2014)

Evolution
Software Adaptation (Bacon et al., 2009; Nebeling and Norrie, 2011a,b; Maalej and Pagano, 2011; Ali et al.,

2011, 2012; Akiki et al., 2013; Challiol et al., 2013; Nebeling et al., 2013a; He et al.,
2014; Almaliki et al., 2014; Hamidi et al., 2014)

Maintenance
Software Documentation (Jiau and Yang, 2012; Parnin et al., 2012; Barzilay et al., 2013; Chen and Zhang, 2014;

Pawlik et al., 2014)
Software Localisation (Exton et al., 2009; Manzoor, 2011; Gritti, 2012; Mijnhardt, 2013)

Other

Security and Privacy Augmen-
tation

(Arellano et al., 2010; Burguera et al., 2011; Sharifi et al., 2011; Lin et al., 2012; Lin,
2013; Agarwal and Hall, 2013; Papamartzivanos et al., 2014; Saxe et al., 2014; Ismail
et al., 2015)

End User Support (Chilana et al., 2012, 2013; Chilana, 2013)
Software Ideation (Ebner et al., 2008; Krcmar et al., 2009; Jayakanthan and Sundararajan, 2011a,b)

14

Figure 11: Timeline for the development of Crowdsourced Software Engineering (‘*’ indicates the establishment of a platform. ‘
~

’ shows the first practi-
cal/theoretical study and ‘-’ stands for the first application work).

Traditional stakeholder analysis tools require experts’ man-
ual e↵ort to extract stakeholders’ information. Lim et al.775

(2010b) proposed StakeSource to identify crowdsourced stake-
holders involved in a stakeholder analysis process. This tool
was designed to reduce the cost of reliance on experts to ap-
proach stakeholders. It was a complementary to their previ-
ously proposed StakeNet (Lim et al., 2010a), which recom-780

mends stakeholders via social networking. The authors further
improved this tool and proposed StakeSource2.0 (Lim et al.,
2011). The new version integrates support for identifying stake-
holders and prioritising their requirements. StakeSource2.0 was
used to automate the stakeholder identification and prioritisa-785

tion step of the StakeRare (Lim and Finkelstein, 2012) method,
an approach for large-scale requirements elicitation based on
social network analysis and collaborative filtering techniques.
Lim and Ncube (2013) subsequently showed the application of
the tool for system of systems projects. The tool is publicly790

available online26.
Hosseini et al. (2013) focused on employing crowdsourcing

for requirements elicitation. They summarised the main fea-
tures of the crowd and crowdsourcer in crowdsourced require-
ments engineering by reviewing existing literature. A prelim-795

inary result of a survey conducted on two focus groups was
reported to reveal the relationship between these features and
the quality of the elicited requirements. Wang et al. (2014) also

26http://www.cs.ucl.ac.uk/research/StakeSource

used crowdsourcing to acquire requirements, but with a focus
on overcoming the problem of recruiting stakeholders with spe- 800

cific domain knowledge. They proposed a participant recruit-
ment framework, based on spatio-temporal availability. Their
theoretical analysis and simulation experiments demonstrated
the feasibility of the proposed framework.

The crowd stakeholders are not only a source of require- 805

ments, but also can help with requirements prioritisation and
release planning. Nascimento et al. (2012) investigated the
use of crowdsourcing for requirements categorisation based on
Kano’s model. The model uses a questionnaire to help clas-
sify requirements into five categories. The value of each re- 810

quirement for a given user is identified in their approach. A
framework was proposed for finding stakeholders involved in
the process. Nayebi and Ruhe (2014) presented the Analytical
Open Innovation (AOI) approach to assist developers in mak-
ing release decisions. The crowdsourcing model enables the 815

AOI approach to systematically gather information from cus-
tomers and other stakeholders. An illustrative case study was
presented as a proof-of-concept to demonstrate the key ideas of
the AOI approach.

Non-professional crowd workers have been used to process 820

requirements documents. This is a laborious task when per-
formed manually, to extract requirements from large natural
language text source. However, such data are frequently needed
as the ground truth for evaluation. This limits the generalisation
of evaluations to automatic requirements extraction methods. 825

15

~

Crowd Size
0

20

40

60

80

100

120

140

Ra
ng

e

Cost Per Task

0.00

0.05

0.10

0.15

0.20

0.25

0.30

US
 D

oll
ar

Figure 12: Crowd size and cost per task in the surveyed studies.

Breaux and Schaub (2014) conducted three experiments con-
cerned with employing untrained crowd workers to manually
extract requirements from privacy policy documents. Experi-
mental results indicated a 16% increase in coverage and a 60%
decrease in cost of manual requirements extraction, with the830

help of their task decomposition workflow.
To support crowdsourced requirements engineering activi-

ties, Adepetu et al. (2012) proposed a conceptualised crowd-
sourcing platform named CrowdREquire. The platform em-
ploys a contest model to let the crowd compete with each other835

to submit requirements specification solutions to the client de-
fined tasks. The business model, market strategy and potential
challenges such as quality assurance and intellectual property
issues of the platform were also discussed.

5.2. Crowdsourcing for Software Design840

Among existing commercial crowdsourcing marketplaces,
there are many platforms supporting software interface design,
such as 99designs, DesignCrowd and crowdSPING. However,
few research studies have been reported on the performance of
using crowdsourcing for software design.845

In order to provide software designers inspiring examples
during the wireframing stage, Huang et al. (2013) leveraged
the crowd to map between mobile app wireframes and design
examples over the Internet. Lasecki et al. (2015) proposed a
crowdsourcing system named Apparition to help designers pro-850

totype interactive systems in real-time based on sketching and
function description. Experimental results showed that Appari-
tion was able to achieve an accuracy higher than 90% regarding
user’s intent, and to respond in only a few seconds.

Fewer crowdsourcing platforms support software architec-855

ture design. TopCoder is one of the widely used platforms.
However, industrial crowdsourcing platforms such as TopCoder
have limitations in evolving designs from multiple designers’
solutions (LaToza et al., 2015). LaToza et al. (2015) let design-
ers produce initial designs and evolve their solutions based on860

others’ solutions. Their study demonstrated the usefulness of
recombination in crowdsourced software designs. A few sug-
gestions on improving software design competitions were also
highlighted based on their findings.

Nebeling et al. (2012a) also proposed to evolve soft-865

ware designs based data and functionality contributed by the
crowd. However, the designs are specifically website compo-
nents within the web engineering domain. Two preliminary

StakeNet, 1
StakeRare, 1

Amazon Mechanical
Turk, 13

Email, 2

StackOverflow, 1

oDesk, 1

Bountify, 1

CrowdStudy, 1

Lync, 1

Mobileworks, 1

Quadrant of Euphoria, 1

CrowdFlower, 1

Twitter, 1

vWorker, 1
Microworkers, 1

Figure 13: Platforms used in the surveyed studies.

experiments were conducted to show the capability of the pro-
posed approach. Crowd motivation, quality assurance, security 870

and intellectual property issues were also briefly discussed.

5.3. Crowdsourcing for Software Coding
Using crowdsourcing for software coding has focused on

three sub-areas: crowd programming environments, program
optimisation and integrated development environment (IDE) 875

enhancement. Unlike work that crowdsources software engi-
neering tasks directly to the general public, studies on crowd
programming environments and IDE enhancement indirectly
use crowdsourcing to support software engineering activities:
The studies in the former category enable the use of crowd- 880

sourcing for coding tasks in building software. Those in the
latter category tend to leverage existing pre-collected crowd
knowledge to aid software coding and/or debugging. We also
include these papers in this survey, because they meet our inclu-
sion criteria on using crowdsourcing in software engineering. 885

1) Crowd programming environments: Crowdsourcing inter-
mediaries play a key role in managing and coordinating the
crowd workers to accomplish the requesters’ tasks. Many stud-
ies focused on providing systems to support crowd-based cod-
ing tasks (Goldman et al., 2011; Goldman, 2011; Minder and 890

Bernstein, 2011, 2012; Goldman, 2012; Ball et al., 2014; La-
Toza et al., 2014a; Xie et al., 2015).

Goldman (2011) proposed role-specific interfaces for coor-
dinating collaborative crowd coding work. By building Col-
labode, a real-time web-based IDE, the author aimed to en- 895

able emerging highly-collaborative programming models such
as crowd programming. Ball et al. (2014) demonstrated the de-
sign of the Cloud-based Integrated Development and Runtime
Environment (CIDRE), and its implementation TouchDevelop
(Tillmann et al., 2011). CIDRE consists of three components: 900

a crowd developer community, an online IDE and an app store.
These components link the IDE designers, application develop-
ers and users together and promote the mutual feedback among
them during the development process.

Xie et al. (2015) proposed to use Code Hunt (Bishop et al., 905

2015) from Microsoft Research as a platform for crowd pro-
gramming. The platform provides coding duel games with var-
ious di�culty levels to attract online developers’ participation.

16

Ta
bl

e
8:

A
n

O
ve

rv
ie

w
of

th
e

C
ro

w
ds

ou
rc

in
g

Ex
pe

rim
en

ts
C

on
du

ct
ed

in
th

e
A

pp
lic

at
io

n
Pa

pe
rs

Ph
as

e
SE

Ta
sk

Pl
at

fo
rm

C
ro

w
d

Si
ze

Su
bj

ec
t

E
↵

or
t

R
ew

ar
d

R
es

ul
t

R
ef

er
en

ce

R
eq

ui
re

-
m

en
ts

R
eq

ui
re

m
en

ts
El

ic
ita

tio
n

St
ak

eN
et

St
ak

eh
ol

de
rs

68
R

A
LI

C
a

-
-

St
ak

eN
et

ca
n

id
en

tif
y

st
ak

eh
ol

de
rs

an
d

th
ei

r
ro

le
s

w
ith

hi
gh

re
ca

ll,
an

d
ca

n
pr

io
rit

is
e

th
em

ac
cu

ra
te

ly
.

(L
im

et
al

.,
20

10
a)

R
eq

ui
re

m
en

ts
El

ic
ita

tio
n

St
ak

eR
ar

e
St

ak
eh

ol
de

rs
87

R
A

LI
C

-
-

St
ak

eR
ar

e
ca

n
pr

ed
ic

ta
nd

pr
io

rit
is

e
st

ak
eh

ol
de

rn
ee

ds
ac

cu
-

ra
te

ly
.

(L
im

an
d

Fi
nk

el
st

ei
n,

20
12

)

R
eq

ui
re

m
en

ts
Ex

tra
ct

io
n

A
M

T
U

ns
ki

lle
d

76
-

44
8

cl
as

si
fic

at
io

ns
$0

.1
5

pe
rt

as
k

Th
e

ap
pr

oa
ch

ca
n

re
du

ce
60

%
co

st
an

d
in

cr
ea

se
16

%
co

ve
ra

ge
in

m
an

ua
le

xt
ra

ct
io

n.
(B

re
au

x
an

d
Sc

ha
ub

,2
01

4)
38

-
13

5
cl

as
si

fic
at

io
ns

$0
.1

5
pe

rt
as

k
-

-
-

$0
.0

8-
$0

.1
0

pe
rt

as
k

D
es

ig
n

A
rc

hi
te

ct
ur

e
D

es
ig

n
Em

ai
l

St
ud

en
ts

20
a

tra
�

c
flo

w
si

m
ul

at
io

n
pr

o-
gr

am
12

.9
ho

ur
s

(a
ve

ra
ge

)
$1

00
ea

ch
pe

rs
on
+

4*
$1

00
0

pr
iz

es
A

ll
pa

rti
ci

pa
nt

s
bo

rr
ow

ed
ot

he
rs

’d
es

ig
n

id
ea

s
an

d
m

os
t

im
pr

ov
ed

th
e

de
si

gn
qu

al
ity

.
(L

aT
oz

a
et

al
.,

20
15

)
U

se
r

Ex
pe

ri-
en

ce
D

es
ig

n
20

21
.3

ho
ur

s
(a

ve
ra

ge
)

C
od

in
g

ID
E

En
ha

nc
e-

m
en

t
St

ac
kO

ve
rfl

ow
St

ac
kO

ve
rfl

ow
co

m
-

m
un

ity

-
12

Ja
va

,1
2

C
+
+

an
d

11
.N

ET
pr

og
ra

m
m

in
g

ta
sk

s
-

-
Fo

r7
7.

14
%

of
th

e
as

se
ss

ed
ta

sk
sa

tl
ea

st
on

e
us

ef
ul

Q
&

A
pa

ir
ca

n
be

re
co

m
m

en
de

d.
(d

e
So

uz
a

et
al

.,
20

14
)

ID
E

En
ha

nc
e-

m
en

t
-

C
od

e
A

nn
ot

at
io

n

oD
es

k
D

ev
el

op
er

s
-

50
0

R
ub

y
co

de
sn

ip
pe

ts
50

0
an

no
ta

tio
ns

-
A

m
on

g
th

e
an

no
ta

te
d

sn
ip

pe
ts

,8
6%

co
rr

es
po

nd
to

a
us

ef
ul

pr
og

ra
m

m
in

g
ta

sk
;9

6%
ca

n
be

em
be

dd
ed

in
to

a
st

an
da

lo
ne

fu
nc

tio
n,

an
d

91
%

do
no

th
av

e
an

ot
he

rm
or

e
co

m
m

on
fo

rm
.

(F
as

t
et

al
.,

20
14

)

Pr
og

ra
m

Sy
nt

he
si

s
B

ou
nt

ify
D

ev
el

op
er

s
5

4
re

gu
la

r
ex

pr
es

si
on

ta
sk

s

w
ro

te
14

re
gu

la
re

xp
re

ss
io

n
$1

0
C

on
si

st
en

tp
rg

or
am

bo
os

ts
in

ac
cu

ra
cy

ca
n

be
ac

hi
ev

ed
w

ith
m

od
es

tm
on

et
ar

y
co

st
(C

oc
hr

an
et

al
.,

20
15

)
A

M
T

U
ns

ki
lle

d
5

cl
as

si
fie

d
st

rin
gs

as
va

lid
or

in
va

lid
$0

.0
5-

$0
.2

5
pe

rt
as

k

Te
st

in
g

Sy
st

em
ev

al
ua

tio
n

A
M

T
U

ns
ki

lle
d

65
W

eb
qu

er
y

da
ta

fr
om

m
ul

tip
le

se
m

an
tic

se
ar

ch
en

gi
ne

s
57

9
H

IT
sb

$3
47

.1
6

($
0.

20
pe

rH
IT

)
C

ro
w

ds
ou

rc
ed

ev
al

ua
tio

n
ta

sk
s

ca
n

be
re

pe
at

ed
ov

er
tim

e
an

d
m

ai
nt

ai
n

re
lia

bl
e

re
su

lts
.

(B
la

nc
o

et
al

.,
20

11
)

69
42

1
H

IT
s

-

U
sa

bi
lit

y
Te

st
in

g
A

M
T

U
ns

ki
lle

d
11

a
gr

ad
ua

te
sc

ho
ol

’s
w

eb
si

te
11

H
IT

s
$2

.9
2

($
0.

15
pe

rH
IT

)
R

ed
uc

ed
co

st
an

d
tim

e.
H

ow
ev

er
qu

al
ity

w
as

w
or

se
co

m
pa

re
d

to
th

e
te

st
in

g
in

a
la

b
se

tti
ng

.
(L

iu
et

al
.,

20
12

)
A

M
T+

C
Fc

44
44

H
IT

s
$3

47
.1

6
($

0.
20

pe
rH

IT
)

U
sa

bi
lit

y
Te

st
-

in
g

A
M

T
U

ns
ki

lle
d

28
a

su
bp

ag
e

of
a

un
iv

er
si

ty
w

eb
-

si
te

4-
5m

(a
ve

ra
ge

)t
o

an
sw

er
al

l
8

qu
es

tio
ns

-
Th

e
cr

ow
ds

ou
rc

ed
us

ab
ili

ty
te

st
in

g
sh

ar
ed

si
m

ila
rr

es
ul

ts
w

ith
a

la
bo

ra
to

ry
se

tti
ng

.
(M

ei
er

et
al

.,
20

13
)

U
sa

bi
lit

y
Te

st
in

g
C

ro
w

dS
tu

dy
+

A
M

T
U

ns
ki

lle
d

93
A

ne
w

s
ar

tic
le

pa
ge

28
cu

st
om

la
yo

ut
s,

14
3

ra
t-

in
gs

an
d

32
an

sw
er

s
-

Th
e

us
ef

ul
ne

ss
an

d
th

e
ab

ili
ty

to
be

co
nfi

gu
re

d
fo

rd
i↵

er
en

t
sc

en
ar

io
s

w
er

e
de

m
on

st
ra

te
d.

(N
eb

el
in

g
et

al
.,

20
13

b)
84

W
ik

ip
ed

ia
w

eb
si

te
33

di
↵

er
en

tt
yp

e
ta

sk
s

-
Pe

rf
or

m
an

ce
Te

st
in

g
Ly

nc
En

d
us

er
s

48
,0

00
Ly

nc
(M

ic
ro

so
ft

in
st

an
t-

m
es

sa
gi

ng
cl

ie
nt

)
U

sa
ge

be
ha

vi
ou

rs
0

Th
e

ap
pr

oa
ch

ha
d

be
en

su
cc

es
sf

ul
ly

de
pl

oy
ed

an
d

ha
d

im
-

pr
ov

ed
de

ve
lo

pm
en

td
ec

is
io

ns
at

M
ic

ro
so

ft.
(M

us
so

n
et

al
.,

20
13

)

G
U

IT
es

tin
g

A
M

T
U

ns
ki

lle
d

10
0

Tr
ib

le
r

10
0

as
si

gn
m

en
ts

$2
5

Th
e

ap
pr

oa
ch

w
as

ab
le

to
ev

al
ua

te
an

ex
pe

rim
en

ta
lu

se
r

in
te

rf
ac

e
fe

at
ur

e
w

ith
in

a
fe

w
da

ys
at

lo
w

co
st

s.
(V

lie
ge

nd
ha

rt
et

al
.,

20
12

)
10

0
10

0
as

si
gn

m
en

ts
$2

5
G

U
IT

es
tin

g
A

M
T

U
ns

ki
lle

d
39

8
Tr

ib
le

r,
K

D
E,

X
fc

ed
70

0
as

si
gn

m
en

ts
$0

.1
0-

$0
.1

5
pe

rH
IT

Th
e

ap
pr

oa
ch

is
fe

as
ib

le
an

d
re

lia
bl

e,
al

th
ou

gh
th

er
e

w
as

a
qu

al
ity

is
su

e
in

co
nt

in
uo

us
te

st
in

g.
(D

ol
st

ra
et

al
.,

20
13

)
Q

oE
Te

st
in

g
Q

ua
dr

an
to

f
Eu

ph
or

ia
+

A
M

T

U
ns

ki
lle

d
-

a
th

re
e-

m
in

ut
e-

lo
ng

sp
ee

ch
au

di
o

fil
e

an
d

a
be

nc
hm

ar
k

vi
de

o
cl

ip

21
30

ru
ns

of
ex

pe
rim

en
ts

$2
1.

3
W

ith
co

ns
is

te
nc

y
as

su
ra

nc
e

cr
ow

ds
ou

rc
in

g
ca

n
yi

el
d

re
su

lts
as

w
el

la
s

la
bo

ra
to

ry
ex

pe
rim

en
ts

.
(C

he
n

et
al

.,
20

10
)

Q
oE

Te
st

in
g

M
ic

ro
w

or
ke

rs
U

ns
ki

lle
d

10
,7

37
3

vi
de

os
w

ith
di
↵

er
en

t
co

nt
en

tc
la

ss
es

10
,7

37
ra

tin
gs

$0
.2

62
5

pe
rr

at
in

g
Th

e
pr

op
os

ed
m

et
ho

ds
re

pr
es

en
te

d
a

st
ep

in
m

ak
in

g
cr

ow
d-

te
st

in
g

su
�

ci
en

tly
m

at
ur

e
fo

rw
id

e
ad

op
tio

n.
(G

ar
dl

o
et

al
.,

20
14

)
1,

59
3

15
93

ra
tin

gs
$0

.0
83

4
pe

rr
at

in
g

Te
st

G
en

er
at

io
n

Tw
itt

er
U

ns
ki

lle
d

12
0

th
e

A
pa

ch
e

C
om

m
on

s
M

at
h

an
d

C
ol

le
ct

io
ns

lib
ra

rie
s

1
m

in
ut

e
pe

rp
uz

zl
e

0
84

of
th

e
to

p
10

0
co

ns
tra

in
ts

ol
vi

ng
pu

zz
le

sa
nd

24
of

th
e

to
p

10
0

ob
je

ct
m

ut
at

io
n

pu
zz

le
s

w
er

e
su

cc
es

sf
ul

ly
so

lv
ed

.
(C

he
n

an
d

K
im

,2
01

2)
O

ra
cl

e
Pr

ob
le

m
M

iti
ga

tio
n

A
M

T
U

nq
ua

lifi
ed

-
th

e
Ja

va
St

ac
k

cl
as

s
20

0
as

si
gn

m
en

ts
$0

.1
5-

$0
.2

0
pe

r
as

si
gn

m
en

t
C

ro
w

dO
ra

cl
es

is
a

pr
om

is
in

g
so

lu
tio

n
to

m
iti

ga
te

th
e

or
ac

le
pr

ob
le

m
,h

ow
ev

er
ge

tin
g

us
ef

ul
re

su
lts

fr
om

an
un

tra
in

ed
cr

ow
d

is
di
�

cu
lt.

(P
as

to
re

et
al

.,
20

13
)

A
M

T
Q

ua
lifi

ed
-

th
e

Ja
va

St
ac

k
cl

as
s,

th
e

Ja
va

lib
ra

rie
s

Tr
ov

e4
J

an
d

j8
58

3,
50

0
as

si
gn

m
en

ts

C
ro

w
d

Te
st

in
g

Su
pp

or
t

M
ob

ile
w

or
ks

+
Em

ai
l

En
d

us
er

s
75

8
po

pu
la

rA
nd

ro
id

ap
ps

fr
om

G
oo

gl
e

Pl
ay

-
-

St
at

ic
al

ly
A

id
ed

In
te

ra
ct

iv
e

D
yn

am
ic

A
na

ly
si

s
co

ns
is

te
nt

ly
ob

ta
in

ed
gr

ea
te

rc
ov

er
ag

e
th

an
ot

he
rt

ec
hn

iq
ue

s.
(X

ue
,2

01
3)

Ve
rifi

ca
tio

n
N

on
-e

xp
er

t
vW

or
ke

r
D

ev
el

op
er

s
14

St
ac

kA
r(

an
im

pl
em

en
ta

tio
n

of
an

ar
ra

y-
ba

se
d

st
ac

k
in

Ja
va

)
3

ho
ur

s
(a

ve
ra

ge
)

$6
-$

22
pe

rh
ou

r
Ve

riW
eb

ca
n

sa
ve

tim
e

an
d

m
on

ey
w

ith
co

nt
ra

ct
ed

w
or

ke
rs

.
(S

ch
ill

er
an

d
Er

ns
t,

20
12

)
Ve

rifi
ca

tio
n

A
M

T
U

ns
ki

lle
d

<
10

-
>

$0
.2

5
pe

rH
IT

C
ur

re
nt

ad
-h

oc
la

bo
ur

s
ar

e
no

tw
el

l-s
ui

te
d

fo
rv

er
ifi

ca
tio

n.

a R
A

LI
C

is
th

e
ac

ro
ny

m
of

‘R
ep

la
ce

m
en

tA
cc

es
s,

Li
br

ar
y

an
d

ID
C

ar
d’

,w
hi

ch
is

an
ac

ce
ss

co
nt

ro
ls

ys
te

m
de

ve
lo

pe
d

by
U

ni
ve

rs
ity

C
ol

le
ge

Lo
nd

on
.

b A
H

um
an

In
te

lli
ge

nt
Ta

sk
(H

IT
)i

s
a

si
ng

le
,s

el
f-

co
nt

ai
ne

d
ta

sk
th

at
w

or
ke

rs
ca

n
pe

rf
or

m
.

c A
M

T
an

d
C

F
re

fe
rt

o
A

m
az

on
M

ec
ha

ni
ca

lT
ur

k
an

d
C

ro
w

dF
lo

w
er

,r
es

pe
ct

iv
el

y.
d Tr

ib
le

ri
s

a
pe

er
-to

-p
ee

rfi
le

-s
ha

rin
g

cl
ie

nt
.K

D
E

an
d

X
fc

e
ar

e
tw

o
de

sk
to

p
en

vi
ro

nm
en

ts
fo

rU
ni

x-
lik

e
pl

at
fo

rm
s.

17

By carefully designing the coding duels, the platform can serve
for software construction purpose by leveraging the best solu-910

tions from the crowd. Also, by recording the crowd developers’
duel solving process, the multiple attempts with evolving code
versions can serve for education purpose.

2) Program optimisation: More recently, crowdsourcing has
been used to support compilation optimisation (Auler et al.,915

2014) and program synthesis (Cochran et al., 2015).
Auler et al. (2014) presented a crowdsourced adaptive com-

piler for JavaScript code optimisation. A compiler flag recom-
mendation system was built in the cloud, based on the applica-
tion performance data gathered from web clients. The system920

was used to guide the compiler to perform optimisation for a
certain platform. Experiments were conducted on three optimi-
sation implementations by JavaScript code emission for eight
platforms. One of the best optimisation performance showed
an average of five-fold increase in execution speed.925

Cochran et al. (2015) proposed an approach called Program
Boosting, which uses crowd knowledge and genetic program-
ming to help tackle hard programming tasks such as writing
robust regular expressions for URLs. Program Boosting relies
on two di↵erent types of crowds for ‘boosting’ a program: one930

‘expert’ crowd for generating initial candidate programs and the
other ‘user’ crowd for evaluating the outputs (e.g., the validity
of URLs) generated from the programs being evolved. The so-
lutions obtained from the expert are used as the first popula-
tion, which is subsequently evolved (by genetic programming)935

to yield improved solutions. Evaluation from the user crowd
contributes to the evolution process. Experimental evaluation
was performed on four regular expression writing tasks (to rep-
resent URLs, emails, phone numbers and dates). Experimental
results showed that an average improvement of 16.25% in ac-940

curacy could be achieved on the initial human solutions.
3) IDE enhancement: Using crowd knowledge to support

coding activities in integrated development environments has
been extensively studied since 2010. Several tools and meth-
ods have been proposed to help the developers with coding and945

debugging (Hartmann et al., 2010; Mooty et al., 2010; Bruch
et al., 2010; Kallenbach, 2011; Zagalsky et al., 2012; Bruch,
2012; Watson et al., 2012; Bacchelli et al., 2012; Ponzanelli,
2012; Ponzanelli et al., 2013a,b; Wightman, 2013; Barzilay
et al., 2013; Ponzanelli et al., 2014a,b; de Souza et al., 2014;950

Fast et al., 2014; Chen and Kim, 2015), each of which we de-
scribe below:

HelpMeOut (Hartmann et al., 2010) is a social recommender
system that assists debugging with crowdsourced suggestions.
The system has a database that stores fixes for coding errors955

constructed by crowd developers. For collecting the fixes, the
system automatically tracks code changes over time and records
actions that make the error code become error-free. The evalu-
ation was performed with novice developers through two three-
hour workshops. The results showed the proposed approach960

was able to recommend useful fixes for 47% of the errors.
However, HelpMeOut only supports static, compiled program-
ming languages such as Java. To further support dynamic,
interpreted web programming languages, another tool named
Crowd::Debug (Mujumdar et al., 2011) was proposed. More965

recently, Chen and Kim (2015) presented the ‘crowd debug-
ging’ technique that reveals defective code blocks and further
suggests solutions for fixing the defects. To achieve the auto-
mated detection and recommendation, mass crowd knowledge
(question-answer pairs from Stack Overflow) were collected 970

and analysed. The proposed approach was able to identify 171
bugs in 8 high-quality open source Java projects.

The idea that a crowd of developers may be able to pro-
vide recommendations of patches for software systems finds a
strong resonance in recent work on genetic improvement (Lang- 975

don and Harman, 2015; Petke et al., 2014; Orlov and Sipper,
2011; White et al., 2011), and in particular work on automated
bug fixing (aka ‘patching’ or ‘automated program repair’) (Le
Goues et al., 2012). Genetic improvement seeks to automat-
ically improve software systems by suggesting modifications 980

that improve functional and non-functional properties. Genetic
improvement regards program code as genetic material to be
manipulated in the automated search for improvements. Recent
results have demonstrated the potential for this technique im-
prove real work program’s speed (Langdon and Harman, 2015; 985

Langdon et al., 2015; Petke et al., 2014; Orlov and Sipper,
2011; White et al., 2011), energy (Bruce et al., 2015; Manotas
et al., 2014; Li et al., 2014) and dynamic memory (Wu et al.,
2015) consumption and functionality, both by fixing bugs (Le
Goues et al., 2013) and by adding new features (Harman et al., 990

2014b). Work on automated repair has also harvested human
developed patches in order to improve the automated repara-
tion process (Nguyen et al., 2013). It therefore seems reason-
able to conclude that hybridised versions of automated repair
and social recommender systems (like HelpMeOut) could be 995

extremely successful, a topic to which we return in Section 7.3.
BlueFix (Watson et al., 2012) is an online tool concerned

with the problem of interpreting and understanding compiler
error messages for novice programmers. An evaluation was
performed based on an audience of 11 novice student program- 1000

mers. The results indicated that the tool was able to help the stu-
dents fix compile-time errors faster, and when compared with
HelpMeOut, BlueFix’s suggestions were 19.52% higher in pre-
cision.

Calcite (Mooty et al., 2010) is an Eclipse plugin that specif- 1005

ically focuses on constructor API comprehension and correct
usage. The plugin uses a database that contains common object
construction examples by collecting code from the web. Ac-
cording to a reported user study, this plugin can help developers
to increase their completion rate by 40%. 1010

Example Overflow (Zagalsky et al., 2012; Barzilay et al.,
2013) is a code search system which utilises crowd knowledge
from question and answer (Q&A) websites for suggesting em-
beddable code with high quality. The code snippets were col-
lected from Stack Overflow via its public API. The search func- 1015

tion is based on Apache Lucene. A preliminary evaluation on
a subset of coding tasks indicated that the results suggested by
the system were better than the ones from other existing tools
studied in the experiments.

Seahawk (Bacchelli et al., 2012; Ponzanelli, 2012; Pon- 1020

zanelli et al., 2013a,b) is an Eclipse plugin, the aim of which
has some resonance with Example Overflow. It seeks to utilise

18

crowd knowledge in Q&A websites such as StackOverflow for
documentation and programming support. Compared to Exam-
ple Overflow, Seahawk integrated Q&A services into IDEs and1025

provided more friendly user interface features. For example,
it was found to be better at formulating queries automatically,
based on code entities and providing interactive search results.
It also addresses the limitation of Q&A websites that they do
not o↵er support for exploiting their data in a team-working1030

context (Bacchelli et al., 2012). By enabling developers to
link imported code snippets to their documents via language-
independent annotations, Seahawk helps developers share doc-
uments with their teammates (Ponzanelli et al., 2013b). The
evaluation experiments were performed on 35 exercises from1035

Java training courses (Ponzanelli et al., 2013a). The results
were generally promising. Although the tool might not always
suggest useful documents, it sometimes aided developers with
surprising insights.

WordMatch and SnipMatch (Wightman, 2013) are two search1040

tools for helping developers integrate crowdsourced code snip-
pets. WordMatch provides an end-user programming environ-
ment that enables users (without programming experience) to
generate direct answers to search queries. SnipMatch is an
Eclipse plugin built on WordMatch that retrieves customised,1045

ranked source code snippets, based on current code context and
the developer’s search query.

Souza et al. (2014) also aimed to use crowd knowledge
from StackOverflow, but focused on proposing a ranking ap-
proach for potential solutions. The ranking strategy is based1050

on two factors, including the quality of question-answer pairs
and the textual similarity of the pairs regarding the developer’s
query. Experiments were performed on three programming
topics. The results demonstrated that at least one suggested
question-answer pair is helpful for 77.14% of the evaluated ac-1055

tivities.
Amann et al. (2014) investigated on using crowd knowl-

edge for method-call recommendations. Crowd knowledge
was collected from multiple developers’ implicit feedback on
their context-sensitive usage of the APIs. Collaborative filter-1060

ing techniques were employed for recommending method calls
based on such feedback knowledge.

Bruch (2012) proposed the idea of IDE 2.0 (based on the
concept of Web 2.0). Bruch showed how crowd knowledge can
help improve multiple functions such as API documentation,1065

code completion, bug detection and code search. Evaluations
were performed on each of the proposed tools, revealing that the
concept of Web 2.0 can be leveraged to improve the developer’s
IDE.

Fast et al. (2014) conducted a study that echoes the idea of1070

IDE 2.0. However, it focused on codifying emergent program-
ming behaviour. By building a knowledge-based named Codex,
which contained more than three million lines of popular Ruby
code, novel data driven interfaces were constructed. For ex-
ample, Codex was used for detecting unusual code that may1075

contain a bug, annotating popular programming idioms iden-
tified by the system and generating utility libraries that cap-
ture emerging programming practice. According to Fast et al.
(2014), limitations of the current version of the proposed tool

may include the adoption of GitHub, the only source of training 1080

data, which may introduce open sourced code with low quality.
Using the crowd knowledge to find common examples from

the web, shares similarities with work on automatic harvest-
ing of realistic test cases from the web-based systems (Afshan
et al., 2013; Bozkurt and Harman). As with the potential for the 1085

combination of genetic improvement and social recommenders,
this similarity also points to the possibility of hybridise versions
that harvest such information from a combination of crowd and
web for testing purposes.

5.4. Crowdsourcing for Software Testing and Verification 1090

Software testing and verification have received considerable
attention in the software engineering research community. It
is therefore unsurprising that we found the number of related
crowdsourcing studies dominate those of other categories.

5.4.1. Crowdsourcing for Software Testing 1095

Crowdsourcing for software testing is often termed ‘Crowd-
sourced Testing’ or ‘Crowd Testing’. Compared with tradi-
tional software testing, crowdsourced software testing has the
advantage of recruiting, not only professional testers, but also
end users to support the testing tasks. 1100

Crowdsourcing has been applied to various types of testing
activities, including usability testing (Schneider and Cheung,
2011; Liu et al., 2012; Nebeling et al., 2012b; Meier et al.,
2013; Nebeling et al., 2013b; Teinum, 2013; Gomide et al.,
2014), performance testing (Musson et al., 2013), GUI testing 1105

(Vliegendhart et al., 2012; Dolstra et al., 2013), test case gener-
ation (Chen and Kim, 2012; Pham et al., 2013b), and the oracle
problem (Pastore et al., 2013). We discuss each of these below:

1) Usability Testing: Traditional usability testing is labour-
intensive and can be expensive and time-consuming (Liu et al., 1110

2012). Recruiting online ad-hoc crowd labour may be a way
to ameliorate these issues, by exploiting a large potential user
pool and providing lower labour rates with extended incentives
to the end users. Crowdsourced usability testing has demon-
strated its capability for detecting usability problems as good 1115

as the testing done by ‘experts’ (Schneider and Cheung, 2011).
However, Liu et al. (2012) showed that the quality of crowd-
sourced usability testing was worse than that of the face-to-face
usability testing in a laboratory setting. Nebeling et al. (2013b)
further discussed this issue and suggested that the advantages 1120

outweigh disadvantages according to their results. Neverthe-
less, these existing studies agree on the benefits of cost saving,
fast delivery as well as easy access of crowdsourced usability
testing.

Schneider and Cheung (2011) first demonstrated the viabil- 1125

ity of employing on-demand crowd users for usability testing.
They also proposed methods to help observe the testers dur-
ing the process. Liu et al. (2012) conducted a comparative
study on crowdsourced and traditional laboratory usability test-
ing. Their experimental results highlighted quality issues and 1130

the challenge of detecting ‘cheating behaviour’. Nebeling et al.
(2012b; 2013b) proposed a framework with a toolkit implemen-
tation named CrowdStudy for crowdsourced website usability

19

testing. For identifying outliers in the crowdsourced usability
testing results, Gomide et al. (2014) proposed an approach that1135

employs deterministic automata for automatic hesitation detec-
tion. The idea is to capture users’ biofeedback from mouse
movements and a skin sensor, for revealing their hesitation be-
haviours. This can be useful in filtering non-confirming usabil-
ity testing results.1140

2) Performance Testing: Software performance in a real-
world setting can be hard to test due to the various user be-
haviours and execution environments. Musson et al. (2013)
proposed an approach, in which the crowd was used to measure
real-world performance of software products. The work was1145

presented with a case study of the Lync27 communication tool at
Microsoft. The study indicated the usefulness of the approach
for identifying performance issues and assisting development
team with decision making. In this case, the Lync software it-
self is repurposed as the crowdsourcing platform, and there is an1150

implicit open call (i.e., permission grant request) for providing
performance data from the crowd users. Other similar cases for
such crowdsourced performance testing include the Chrome’s28

and Firefox’s29 built-in telemetries (performance testing frame-
works) (Akhawe and Felt, 2013).1155

3) GUI Testing: Automated GUI test case generation is dif-
ficult, while manual GUI testing is too slow for many appli-
cations (Memon et al., 2003). It is a challenging task to test a
GUI continuously. Crowdsourcing is considered as a promising
approach for continuous GUI testing (Dolstra et al., 2013).1160

Vliegendhart et al. (2012) first proposed GUI testing for mul-
timedia applications. Crowd testers were recruited from Ama-
zon Mechanical Turk. They were asked to carry out A/B tests
of user interfaces via remote virtual machines. Their experi-
mental results indicated that it took less than three days and 501165

US dollars to complete two featured GUI testing tasks with 100
assignments each. Based on this crowd performance, it was
concluded that user connection speed was not an issue in their
study. However, the quality of the testing results was not re-
ported in this study.1170

Dolstra et al. (2013) also demonstrated the possibility of
crowdsourcing GUI tests by o↵ering remote virtual machines to
testers, recruited from Amazon Mechanical Turk. The experi-
mental results showed feasibility and reliability of the proposed
approach.1175

4) Test Case Generation: Test cases are essential to ensure
software quality. Although a number of automatic test case
generation methods have been proposed, their test coverage is
not ideal (Lakhotia et al., 2009), due to several non-trivial tasks
that are di�cult for programs but may not be so hard for hu-1180

mans (Chen and Kim, 2012). Chen and Kim (2012) investi-
gated object mutation and constraint solving issues, underlying
existing test generation tools such as jCUTE (Sen and Agha,
2006), Randoop (Pacheco et al., 2007) and Pex (Tillmann and
de Halleux, 2008). A Puzzle-based Automatic Testing (PAT)1185

environment was presented for decomposing and translating the

27http://o�ce.microsoft.com/lync
28http://www.chromium.org/developers/telemetry
29http://telemetry.mozilla.org

object mutation and constraint solving problems into human-
solvable games (gamification). Experimental results from two
open source projects showed 7.0% and 5.8% coverage improve-
ment, compared to the coverage of two state-of-art test case 1190

generation methods.
Pham et al. (2013a) conducted a study on the testing cul-

ture of the social coding site — GitHub, and found that capa-
ble developers sometimes solve issues in others’ repositories in
a fast and easy manner, which is called the drive-by commit 1195

phenomenon. This phenomenon has the potential to be lever-
aged for generating test cases in social coding sites (Pham et al.,
2013b). However, it is still a conceptual idea which remains to
be realised in future work.

5) Oracle Problem: An oracle is typically needed to de- 1200

termine the required output of a program for a given input
(Weyuker, 1982; Barr et al., 2015). Such oracles may need to
rely on human input (Peters and Parnas, 1998), which makes it
hard to fully automate software testing. Pastore et al. (2013) in-
vestigated crowdsourcing to mitigate the oracle problem. They 1205

crowdsourced automatically generated test assertions to a quali-
fied group of workers (with programming skills) and an unqual-
ified group of workers on Amazon Mechanical Turk. Workers
were asked to judge the correctness of the assertions and fur-
ther fix false assertions. The experimental results suggested that 1210

crowdsourcing can be a viable way to mitigate the oracle prob-
lem, although the approach requires skilled workers provided
with well-designed and documented tasks.

To support the application of crowdsourcing for software
testing, especially for mobile application testing, several frame- 1215

works have been proposed (Xue, 2013; Yan et al., 2014; Liang
et al., 2014):

CrowdBlaze (Xue, 2013) is a crowd mobile application test-
ing system which combines automatic testing and human-
directed interactive testing. This study aimed to use redundant 1220

resources to help improve software systems. CrowdBlaze ini-
tially explores the app with static analysis and automatic test-
ing, and then recruits crowd users to provide input for complex
cases which enable automatic testing to further explore the app.
Compared to employing automatic testing alone, the proposed 1225

system was demonstrated to cover 66.6% more user interfaces
according to the evaluation results.

iTest (Yan et al., 2014) is a framework for mobile applica-
tions with more automation features than existing industrial
mobile application testing service platforms such as uTest and 1230

Mob4Hire: the crowd testers are selected via a greedy algo-
rithm, and the generated test results and logs in the framework
are submitted automatically.

Caiipa (Liang et al., 2014) is a cloud service for scalable
mobile application testing. The service framework is equipped 1235

with a unique contextual fuzzing approach to extend the mobile
app running context space. It uses both crowdsourced human
inputs and crowdsourced measurements, such as various net-
work conditions, with multiple operator networks and di↵erent
geographic locations. Experimental results suggested that Cai- 1240

ipa has the capability to uncover more bugs compared to exist-
ing tools with none or partial mobile contexts.

Xie (2012) summarised three types of cooperative testing and

20

analysis: human-tool, tool-tool and human-human cooperation.
The crowd-supported software testing and analysis falls into the1245

human-human type of cooperation according to this study.
Besides, crowdsourcing has also been applied to general

software evaluation (Blanco et al., 2011; Sherief et al., 2014;
Sherief, 2014) and more specific evaluation of Quality of Expe-
rience (QoE) (Chen et al., 2010; Gardlo et al., 2014; Hossfeld1250

et al., 2014a,b).

5.4.2. Crowdsourcing for Software Verification
Current software verification techniques generally require

skilled workers, thereby raising cost issues. Crowdsourcing
may reduce the skill barriers and costs for software verifica-1255

tion (Dietl et al., 2012; Li et al., 2012; Schiller and Ernst, 2012;
Akiki et al., 2013; Schiller, 2014).

DARPA published a solicitation for game-based large scale
software verification in 2011, which is named the Crowd
Sourced Formal Verification (CSFV) program. A series of re-1260

search and practice (Ernst and Popović, 2012; Dietl et al., 2012;
Watro et al., 2014) were conducted under this program. Dietl
et al. (2012) proposed to use gamification to attract a general
crowd as a verification workforce. The ‘verification games’ ap-
proach transforms a verification task into a visual game that can1265

be solved by people without software engineering knowledge.
Li et al. (2012) presented a system called CrowdMine for re-

cruiting non-expert humans to assist with the verification pro-
cess. The system represents simulation or execution traces as
images and asks the crowd of humans to find patterns that fail1270

to match any pre-defined templates.
Schiller and Ernst (2012) developed a web-based IDE called

VeriWeb for reducing the barriers to verified specification writ-
ing. The IDE was designed to break down a verified specifi-
cation writing task into manageable sub-problems. The exper-1275

imental results suggested time and cost benefits. However, the
workforce needs to be contracted workers rather than ad-hoc
labours provided by crowdsourcing markets such as Amazon
Mechanical Turk. A more detailed version of this study can be
found in Schiller’s doctoral thesis (Schiller, 2014).1280

5.5. Crowdsourcing for Software Evolution and Maintenance

Software evolution and maintenance are among the earli-
est areas that have benefited from the application of crowd-
sourcing. A series of studies have investigated the potential
of crowdsourced software evolution and maintenance (Bacon1285

et al., 2009; Exton et al., 2009; Manzoor, 2011; Maalej and
Pagano, 2011; Parnin et al., 2012; Jiau and Yang, 2012; Gritti,
2012; Ali et al., 2012; Mijnhardt, 2013; Chen and Zhang, 2014;
Almaliki et al., 2014; Hamidi et al., 2014; Pawlik et al., 2014;
He et al., 2014).1290

5.5.1. Crowdsourced Software Evolution
Formal or automated verification methods may fail to scale to

large software systems (Bacon et al., 2009). To help scalability,
a market-based software evolution mechanism was proposed by
Bacon et al. (Bacon et al., 2009). The goal of the mechanism1295

is not to guarantee the absolute ‘correctness’ of software, but

rather to economically fix bugs that users care about most. The
proposed mechanism lets users bid for bug fixes (or new fea-
tures) and rewards the bug reporters, testers and developers who
respond. 1300

Software adaptation aims to satisfy users’ dynamic require-
ments. However, context is di�cult to capture during the soft-
ware design phase, and it is a challenging task to monitor con-
text changes at runtime. Ali et al. (2011) proposed Social Sens-
ing to leverage the wisdom of the end users and used them as 1305

monitors for software runtime adaptation. This technique may
help software designers (and their systems) to capture adap-
tation drivers and define new requirement and contextual at-
tributes through users’ feedback. A follow-up work of Social
Sensing is Social Adaptation (Ali et al., 2012), in which several 1310

techniques (such as the goal model) for realising social sensing
were further discussed. Also, evaluation of the proposed frame-
work was performed on a socially adaptive messenger system.
He et al. (2014) proposed a ‘suggestion model’ to encourage
crowd users to become more closely involved in commercial 1315

software runtime adaptation. A prototype and several adap-
tation strategies were introduced in this study. Challiol et al.
(2013) proposed a crowdsourcing approach for adapting mo-
bile web applications based on client-side adaptation.

Nebeling and Norrie (2011a; 2011b) presented an architec- 1320

ture and visual supporting tools for facilitating crowdsourced
web interface adaptation. Design and technical challenges
when applying the crowdsourcing model, especially for quality
control, were discussed. A tool named CrowdAdapt (Nebeling
et al., 2013a) was further implemented and evaluated. Experi- 1325

mental results showed the tool’s capability in leveraging crowd
users for generating flexible web interfaces.

In order to tackle the ‘bloat’ issue in enterprise applications,
Akiki et al. (2013) focused on utilising crowdsourcing for
user interface adaptations. Their proposed approach is based 1330

on model-driven user interface construction which enables the
crowd to adapt the interfaces via an online editing tool. A pre-
liminary online user study pointed to promising results on us-
ability, e�ciency and e↵ectiveness of the approach.

Users may become overwhelmed by the number of choices 1335

o↵ered by software systems. In order to provide customised
configuration dialogs to users, Hamidi et al. (2014) proposed
to extract configuration preferences from a crowd dataset. The
optimised configuration dialogs were formed using a Markov
Decision Process. When constructing customised dialogs, con- 1340

figuration decisions can be automatically inferred from knowl-
edge elicited in previous dialogs. The evaluation of the method
was performed on a Facebook dataset collected from 45 student
users. Experimental results indicated that the proposed method
could help users to reduce configuration steps by 27.7%, with a 1345

configuration prediction precision of 75%.

5.5.2. Crowdsourcing for Software Documentation
Software documentation plays a crucial role in program un-

derstanding. Previous studies have pointed out that inaccurate
or insu�cient documentation is a major cause of defects in soft- 1350

ware development and maintenance (Cook and Visconti, 1994;

21

Table 9: Crowdsourced Evaluation for Software Engineering Research

Reference SE Task Size Crowd Platform E↵ort

(Fry and Weimer, 2010) Fault localisation 65 Developers AMT 1,830 judgements
(Stolee and Elbaum, 2010) Code smell impact evaluation 50 End users programmers AMT 160 HIT responses
(Hartmann et al., 2010) IDE enhancement 13 Students Workshop 39 person-hours
(Fry et al., 2012) Patch maintainability 157 Developers Campus, AMT 2,100 judgements
(Afshan et al., 2013) Readability evaluation on test

input strings
250 Developers CrowdFlower 8 questions per task, 250 re-

sponses
(Stolee and Elbaum, 2013) Code smell impact evaluation 61 End user programmers AMT 366 task responses
(Stolee et al., 2014) Survey on code search habits 99 Developers Campus, AMT 10 questions per survey
(Fast et al., 2014) Code annotation - Developers oDesk 500 code snippets’ evaluation

Visconti and Cook, 2002; Kajko-Mattsson, 2005). Several re-
searchers have investigated crowdsourcing models to enhance
software documentation (Jiau and Yang, 2012; Parnin et al.,
2012; Barzilay et al., 2013; Chen and Zhang, 2014; Pawlik1355

et al., 2014).
Jiau and Yang (2012) conducted an empirical study based

on StackOverflow to reveal the severe uneven distribution of
crowdsourced API documentation. To deal with the inequal-
ity, a reuse method based on object inheritance was proposed.1360

An empirical evaluation was performed on three Java APIs:
GWT, SWT and Swing. The results confirmed the feasibility
of the documentation reuse methods with improved documen-
tation quality and coverage.

Parnin et al. (2012) conducted a similar empirical study, but1365

with a focus on investigating the coverage and dynamics of API
documentation supported by StackOverflow. Three APIs in-
cluding the Java programming language, GWT and Android,
were studied. The results showed that the crowd was able to
generate rich content with API usage examples and suggestions.1370

For example, for Android, 87% of its classes were covered by
35,000 developer contributed questions and answers. However,
since the study is based on a single Q&A platform, there may
exist issues in generalising the findings.

Chen and Zhang (2014) also studied crowd knowledge for1375

API documentation. Documentation reading and searching
behaviours were recorded for extracting question and answer
pairs. Frequently asked questions were maintained for generat-
ing expanded API documentation automatically.

Pawlik et al. (2014) conducted a case study on crowdsourced1380

software documentation for NumPy (a Python library for scien-
tific computing). The case study highlighted aspects that need
to be considered when applying crowdsourcing for software
documentation, e.g., technical infrastructure, stylistic instruc-
tion and incentive mechanism.1385

5.5.3. Crowdsourcing for Software Localisation
Software localisation is also relevant to ‘software interna-

tionalisation’ or ‘globalisation’ (Manzoor, 2011), such as tai-
loring the natural language output from systems for each coun-
try in which they are deployed. Localisation may be an impor-1390

tant factor for the adoption and success of international products
(Esselink, 2000). Research on utilising crowdsourcing for soft-
ware localisation (Exton et al., 2009; Manzoor, 2011; Gritti,
2012; Mijnhardt, 2013) aim to reduce the cost and time-to-
market periods of the traditional developer-based localisation1395

process.
Exton et al. (2009) first proposed the idea to use crowd-

sourcing for software localisation. Manzoor (2011) developed a
prototype for crowdsourced software localisation. An Action-
Verification Unit method, together with a quality-oriented re- 1400

warding system, was proposed for quality control. The pre-
liminary evaluation results showed that outcomes with accept-
able quality can be delivered by the crowd. Gritti (2012) also
worked on a similar project and established a prototype system
for crowdsourced translation and software localisation. 1405

5.6. Crowdsourcing for Other Software Engineering Activities

Crowdsourcing has also been applied to support other soft-
ware engineering activities, such as software security and pri-
vacy analysis (Arellano et al., 2010; Burguera et al., 2011; Shar-
ifi et al., 2011; Lin et al., 2012; Lin, 2013; Agarwal and Hall, 1410

2013; Papamartzivanos et al., 2014; Saxe et al., 2014; Ismail
et al., 2015), software end user support (Chilana et al., 2012,
2013; Chilana, 2013) and software ideation (Ebner et al., 2008;
Krcmar et al., 2009; Jayakanthan and Sundararajan, 2011a,b).

Many previous studies have demonstrated that crowdsourc- 1415

ing is an e↵ective way to augment software security (Arellano
et al., 2010; Burguera et al., 2011; Sharifi et al., 2011; Agar-
wal and Hall, 2013; Papamartzivanos et al., 2014; Saxe et al.,
2014): Arellano (2010) proposed crowdsourced web augmenta-
tion, based on the idea that end users are not only beneficiaries 1420

of web augmentation scripts, but can also contribute to them.
Sharifi et al. (2011) implemented a system called SmartNotes
for detecting security threats underlying web browsing.

The increasing number of malicious mobile apps makes mal-
ware analysis an urgent problem. Burguera et al. (2011) pre- 1425

sented a novel crowdsourced framework named Crowdroid for
detecting Android malware. App behaviour traces were col-
lected from real users (in the crowd), and were subsequently
used for di↵erentiating malicious or benign apps. The experi-
mental results showed a 100% detection rate in 3 self-written 1430

apps. In another real-world app experiment, the detection accu-
racies were 85% and 100% for two real malware specimens.

Users frequently struggle with reviewing permissions re-
quested by mobile apps. Inappropriately granted permission
may cause privacy leaks. Lin (2013) collected the permissions 1435

granted to mobile apps from a crowd consisting of over 700
mobile phone users. The collected privacy preferences were
analysed using clustering algorithms, and the privacy profiles

22

identified to be important were used to provide default permis-
sion settings for mitigating user burden. An evaluation, based1440

on three fake apps and the crowd recruited from Amazon Me-
chanical Turk, indicated the resulting preference models were
able to relieve users’ burden in choosing privacy settings. Agar-
wal and Hall (2013) introduced a crowdsourced recommenda-
tion engine called ProtectMyPrivacy, which detects and deals1445

with privacy leaks for iOS devices. Papamartzivanos et al.
(2014) introduced a cloud-based architecture which is driven
by the crowd for privacy analysis of mobile apps. Ismail et
al. (2015) proposed a crowd manage strategy for security con-
figuration exploration, aiming to find minimal permission sets1450

that preserve app usability. The experiment conducted via a
small crowd of 26 participants demonstrated the e�ciency of
the proposed strategy and the usefulness of the recommended
configurations.

Regarding crowdsourced end user support, Chilana et al.1455

(2012; 2013; 2013) proposed LemonAid, a tool for provid-
ing contextual help for web applications, enhanced by crowd
knowledge. The tool retrieves users’ previously asked ques-
tions and answers in response to their user interface selections
on the screen. The evaluation performed on Amazon Mechan-1460

ical Turk showed that LemonAid was able to retrieve at least
one user support answer for 90% of the selection behaviours
studied, and a relevant answer was likely to be in the top two
results. Results from a field study (by deploying LemonAid to
multiple sites) suggested that over 70% of the end users were1465

likely to find a helpful answer from LemonAid and might reuse
the support system.

Software engineering research can also benefit from crowd-
sourcing. It can be used to conduct human studies (Fry and
Weimer, 2010; Stolee and Elbaum, 2010; Afshan et al., 2013;1470

Fry et al., 2012; Hartmann et al., 2010). We summarised a few
studies on using crowdsourced evaluation for software engi-
neering research in Table 9. Note that we do not claim to have
surveyed such crowdsourced human studies in software engi-
neering research comprehensively, as this is not the focus of1475

this study but it can be a direction for future work. The model
can also be employed in organising broadly accessible software
engineering contests (Cleland-Huang et al., 2012) such as Pre-
dictive Models in Software Engineering (PROMISE), Mining
of Software Repositories (MSR) and Search Based Software1480

Engineering (Harman and Jones, 2001) (SBSE) challenges.
Several authors have anticipated that crowdsourcing will be

applied to address more challenges in software engineering re-
search (Chen and Kim, 2012; Hosseini et al., 2013; Tung and
Tseng, 2013).1485

6. Issues and Open Problems

Despite the extensive applications of crowdsourcing in soft-
ware engineering, the emerging model itself faces a series of is-
sues that raise open problems for future work. These issues and
open problems have been identified by previous studies. How-1490

ever, few research studies have focused on solutions to address
these issues.

According to an in-depth industrial case study on TopCoder
(Stol and Fitzgerald, 2014c), key concerns including task de-
composition, planning and scheduling, coordination and com- 1495

munication, intellectual property, motivation and quality chal-
lenges were highlighted as interesting and important chal-
lenges.

Several studies are concerned with suggesting potential re-
search topics. Stol and Fitzgerald (2014b) presented a research 1500

framework inspired by the issues identified in the TopCoder
case study (Stol and Fitzgerald, 2014c). It took the perspective
of three key stakeholders, i.e., the requester, the platform and
the worker. Research questions were proposed for issues iden-
tified from the view of each of the three stakeholders. LaToza 1505

et al. (2013a) briefly outlined a series of research questions
concerning the division of crowd labour, task assignment, qual-
ity assurance and the motivation of the crowd’s participation.
A follow-up research agenda can be found in the recent paper
(LaToza and van der Hoek, 2015). 1510

In the remainders of this section, we discuss Crowdsourced
Software Engineering issues together with relevant work in
more detail:

6.1. Theory and Model Foundations

The use of undefined external workforce di↵erentiates 1515

Crowdsourced Software Engineering from conventional soft-
ware engineering. Existing software development theories and
models may no longer apply to this emerging model (Kazman
and Chen, 2009, 2010; Mao et al., 2013).

In order to better facilitate Crowdsourced Software Engineer- 1520

ing, a series of theories and models have been proposed. The
first published theoretical model for Crowdsourced Software
Engineering is the Metropolis Model proposed by Kazman and
Chen (Kazman and Chen, 2009, 2010), who argued that classi-
cal software development models such as the waterfall model, 1525

the spiral model and the more recent agile models are not suit-
able for Crowdsourced Software Engineering.

The Metropolis Model distinguishes three types of roles, i.e.,
the platform (referred to as kernel), applications built on the
kernel (referred to as periphery), and the end users (referred to 1530

as masses). Seven principles of the model were introduced for
managing crowdsourced development.

Saxton et al. (2013) subsequently analysed 103 crowdsourc-
ing websites and provided a taxonomy of nine crowdsourcing
models. Among them, the Intermediary Model and the Collab- 1535

orative Software Development Model support Crowdsourced
Software Engineering.

Tsai et al. (2014) summarised the commonalities in dif-
ferent Crowdsourced Software Engineering processes and pro-
posed an architecture for cloud-based software crowdsourcing. 1540

The architecture specifies a management web interface for the
requesters, a series of development tools for online workers,
worker ranking and recommendation tools provided by the plat-
form, collaboration tools for multiple stakeholders, a repository
for software assets and a cloud-based payment system. 1545

A few studies have also considered game theoretic crowd for-
mulations to understand competition among crowd developers

23

(Wu et al., 2013b; Hu and Wu, 2014; Xu and Wang, 2014b).
Wu et al. identified the ‘min-max’ (defence-o↵ence) nature of
crowdsourced software development competitions and argued1550

that the nature contributes to the quality and creativity of the
produced software (Wu et al., 2013b). Hu and Wu (2014) pro-
posed a game theoretic model for analysing the competition
behaviours among TopCoder developers. The conclusions of
this paper were drawn based on theoretical analysis, e.g., Nash1555

equilibria computation, without empirical evaluation, so the ap-
plicability of the model remains to be analysed in future work.

6.2. Task Decomposition

Crowdsourced complex tasks lead to heavy workloads and
require dedicated resources. With inherently high skill barriers,1560

the number of potential workers will inevitably become lim-
ited. In order to increase parallelism and to expand the qual-
ified labour pool, it is essential to decompose software engi-
neering tasks into self-contained, smaller or even micro pieces.
However, software engineering tasks are often concerned with1565

specific contexts, for which decomposition may be non-trivial.
Several studies focused on this decomposition problem.

LaToza et al. (2014a) developed an approach for decompos-
ing programming work into micro-tasks. The method breaks
down a single higher level task into multiple lower level tasks1570

iteratively, and coordinates work by tracking changes linked to
artefacts. A platform called CrowdCode (LaToza et al., 2013b)
was implemented to support their proposed method. The evalu-
ation was performed on a crowd of 12 developers and the results
indicated that the approach had an ‘overhead issue’ which led1575

to a potentially lower productivity compared to the traditional
development methods. LaToza et al. (2014b) also proposed to
decontextualise software development work as part of decom-
position. Three types of development work including program-
ming, debugging and design were discussed regarding their de-1580

contextualisation.
As discussed in the crowdsourcing applications for software

testing and verification (Section 5), two previous studies also
o↵ered decomposition approaches: Chen and Kim (2012) de-
composed the test generators’ complex constraint solving and1585

object mutation problems into small puzzles, which can be
solved by crowd labours. Schiller and Ernst (2012) proposed
an online IDE for verification named VeriWeb, which can de-
compose the verifiable specifications task into manageable sub-
problems.1590

6.3. Planning and Scheduling

The highly heterogeneous nature of crowd labour necessi-
tates careful planning and scheduling.

Tran-Thanh et al. (2014) proposed a bounded multi-armed
bandit model for expert crowdsourcing. Specifically, the pro-1595

posed "-first algorithm works in two stages: First, it explores
the estimation of workers’ quality by using part of the total
budget; Second, it exploits the estimates of workers’ quality
to maximise the overall utility with the remaining budget. The
evaluation of the proposed algorithm was based on empirical1600

data collected from oDesk. The results indicated that the al-
gorithm was able to outperform related state-of-the-art crowd-
sourcing algorithms by up to 300%.

Tung and Tseng (2013) focused on using crowd resources
e↵ectively to support collaborative testing and treated the prob- 1605

lem as an (NP-Complete) job assignment problem. They pro-
posed a greedy approach with four heuristic strategies. To
evaluate the proposed model, a Collaborative Testing System
(COTS) was implemented. Experimental results showed the
system was able to generate the average objective solution 1610

within approximately 90% of the optimal solutions. When ap-
plied to a real-time crowd testing environment, the system was
able to save 53% of the test e↵ort.

In some open call formats such as online competition, the
tasks are given to unknown developers rather than assigned to 1615

specific crowd participants. In such cases, the developers can-
not be directly scheduled but may be optimised using recom-
mendation techniques to guide them to work on their most suit-
able tasks. Mao et al. (2015) employed a content-based tech-
nique to recommend developers for crowdsourced software de- 1620

velopment tasks. The approach learns from historical task reg-
istration and winner records to automatically match tasks and
developers. Experimental results on TopCoder datasets indi-
cated the recommendation performance was promising in both
accuracy (50%-71%) and diversity (40%-52%). 1625

Estimating the appropriate number of crowd developers and
delivery time for Crowdsourced Software Engineering tasks is
an important yet challenging problem. To date, very limited
work has been done in this research area. Mäntylä and Itko-
nen (2013) studied how the crowd size and allocated time can 1630

a↵ect the performance of software testing. Their results, con-
duced on 130 students, indicated that multiple crowd workers
under time pressure had 71% higher e↵ectiveness (measured by
the number of detected bugs) than the single workers without
time pressure. The authors suggested that the number of crowd 1635

workers for manual testing tasks should be adjusted according
to the e↵ectiveness of the mechanisms and tools for detecting
invalid and duplicate bug reports.

To guarantee su�cient high participation levels in Crowd-
sourced Software Engineering tasks, Wang et al. (2014) pro- 1640

posed a framework to support crowdsourcing systems in their
recruitment of participants with domain knowledge for require-
ments acquisition. The framework was established based on
the observation that crowd workers with similar domain knowl-
edge tend to cluster in particular spatio-temporal regions. The 1645

feasibility of this framework was demonstrated by a theoretical
study and a simulation experiment.

6.4. Motivation and Remuneration
Motivation is viewed as a critical factor for the success of

a software project (Sharp et al., 2009; Beecham et al., 2008; 1650

Boehm et al., 1981). For crowdsourced software projects, de-
velopers without proper motivation may not be able to make
consistent contributions, while inappropriate remuneration may
lead to low capital e�ciency or task starvation. Varshney
(2012) demonstrated that player motivation is essential for 1655

driving participation and ensuring a reliable delivery platform.

24

Based on a study from IBM’s internal crowdsourced soft-
ware development system — Liquid, several intrinsic, extrin-
sic, and social motivation factors were identified. Developer
participation was found to follow a power-law distribution. A1660

momentum-based generative model and a thermodynamic in-
terpretation were used to describe the observed participation
phenomena.

Mao et al. (2013) proposed 16 cost drivers for training empir-
ical pricing models to meet crowd developers’ monetary remu-1665

neration. Specifically, the development type (upgrade or new
development) of the task, the number of component specifica-
tions, the number of sequence diagrams of the design and the
estimated size of the task were considered as significant fac-
tors that impact the remuneration. Based on the identified cost1670

drivers, nine predictive pricing models were trained using pop-
ular machine learning algorithms. Evaluation on 490 TopCoder
projects indicated that high prediction quality was achievable.

Leimeister et al. (2009) investigated the motivation of par-
ticipants for IT-based idea competitions. Incentives such as or-1675

ganiser’s appreciation, prizes and expert knowledge were high-
lighted in this study. Olson and Rosacker (2012) discussed the
motivation for participating in crowdsourcing and open source
software (OSS) development. The element of altruism was con-
sidered to be important in motivating participation in both OSS1680

and crowdsourced software development. Ramakrishnan and
Srinivasaraghavan (2014) presented intrinsic motivational fac-
tors (e.g., skill variety and peer pressure) and extrinsic moti-
vational factors (e.g., monetary reward and recognition) among
students in a crowdsourced programming task context. A con-1685

trolled experiment was performed to show the viability of em-
ploying a captive university crowd for software development.

6.5. Quality Assurance

Crowd labour is transient and workers vary in expertise and
background. The use of such an undefined workforce inherently1690

raises quality questions for crowdsourcing in general (Ipeirotis
et al., 2010; Yuen et al., 2011; Allahbakhsh et al., 2013) as well
as Crowdsourced Software Engineering (Stol and Fitzgerald,
2014c; Li et al., 2013; LaToza et al., 2013a; Saengkhattiya et al.,
2012).1695

Li et al. (2013) identified 23 quality factors for crowdsourced
software development from the perspective of platform and
project, based on an empirical study of TopCoder. Four impor-
tant aspects were identified in order to improve crowdsourced
software quality, including the prosperity level of the platform,1700

the scale of the task, the participants’ skill levels and the design
quality of the task.

Saengkhattiya et al. (2012) investigated how crowdsourcing
companies deal with the quality assurance challenge by con-
ducting interviews with four companies: Microworkers, Click-1705

chores, Microtask and TopCoder. Ten diverse methods for man-
aging quality were identified, such as ranking/rating, reporting
spam, reporting unfair treatment, task pre-approval, and skill
filtering.

Tajedin and Nevo (2013) built a ‘success model’ of crowd-1710

sourced software development, which contains three high-level

determinants, namely the project characteristics, the crowd
composition and the stakeholder relationship. The model was
proposed based on the analysis of related studies on the success
of information systems, OSS development and general software 1715

development.
Much of the work on quality assurance remains to be fully

evaluated, leaving rigorous evaluations of Crowdsourced Soft-
ware Engineering quality assurance as a pressing topic for fu-
ture work. 1720

6.6. Unexplored Issues
Unexplored issues in Crowdsourced Software Engineering

include coordination and communication, intellectual property
and data security problems. These issues also exist in general
crowdsourcing and have relevant studies (Wolfson and Lease, 1725

2011; Cox, 2011; Saxton et al., 2013). However, according to
our analysis of the papers we were able to find for this study,
they have not been explored under the specific Crowdsourced
Software Engineering context.

Regarding the coordination and communication issue, both 1730

the resources and development process need to be coordinated.
For example, geographically distributed and transient crowd
workers need to reach a consistent understanding of the tasks
required of them. Without coordination, it may be quite prob-
lematic, for example, when the crowdsourced developers and 1735

the requester use di↵erent development methods.
Intellectual property and data security are also important is-

sues. Since crowdsourcing uses an open call format, the general
public can access task information. Task requesters may find it
di�cult to describe the task as they can only provide limited in- 1740

formation (for security reasons), while the crowdsourcing task
needs to be as clear as possible. Intellectual property issues
may arise when transferring the task deliverables. For example,
it is possible that the crowd developers include pre-existing or
third-party code intended for non-commercial use, but the client 1745

company actually requests the task for commercial purposes.

7. Opportunities

This section outlines five ways in which the authors believe
Crowdsourced Software Engineering may develop as it ma-
tures, widens and deepens its penetration into software engi- 1750

neering methods, concepts and practices.

7.1. Who is the Crowd?
Except for few studies (Varshney, 2012; Jayakanthan and

Sundararajan, 2011b; Vukovic et al., 2010; Akiki et al., 2013),
almost all previous work on Crowdsourced Software Engineer- 1755

ing has assumed that the crowd will be external to the re-
quester’s organisation, recruited by an open call. Indeed, this
external, open call format is part of the current definition of
crowdsourcing. However, requesters could also identify spe-
cific crowds from their own organisation’s employees, thereby 1760

extending the definition of what it means to be a crowd.
Crowdsourcing technology has provided platforms that sup-

port the allocation of ‘micro-tasks’. Hitherto, the micro-tasks

25

have been a necessary part of the decomposition for distribu-
tion to a large external crowd. These micro-task allocation and1765

collaboration platforms could be repurposed to support various
forms of crowd-like software engineering within organisations,
in which the crowd is formed, partly or wholly, of employees
(or other stakeholders).

For example, an organisation could use crowdsourcing plat-1770

forms to throw open acceptance testing of a newly procured
system to a wider group of internal stakeholders than tradi-
tionally possible. Organisations already undertake such ‘crowd
like’ acceptance testing activities, informally (and without in-
frastructural support), by inviting internal stakeholders to try1775

out new products and provide comments. Crowdsourcing plat-
forms could provide a technology and infrastructure to system-
atise, support and extend this existing informal activity.

Crowdsourcing technology could also be used to support in-
ternal training and dissemination of best practice. It could be1780

used to harvest workarounds (currently used by employees to
overcome software system limitations), or to elicit new require-
ments from the organisation. In this way, crowdsourcing in-
frastructure can be repurposed to help an organisation achieve
greater involvement of its workforce in software system pro-1785

curement and deployment.
More radically, perhaps all software systems that involve

multiple users should, in future, be regarded as crowd-based
software systems. This is not merely a philosophical perspec-
tive, but could have practical ramifications for enhanced adap-1790

tivity; by overlaying crowdsourcing technology a system could
harvest and respond to its users. As the technologies develop,
we may (hope to) witness a merging of crowdsourcing with
adaptive software engineering (Cheng et al., 2008; Harman
et al., 2014a; Oreizy et al., 1999).1795

7.2. Speculative Crowdsourced Software Engineering

Currently, Crowdsourced Software Engineering is envisaged
as a way to replace existing software engineering activities with
alternative versions implemented using the crowd. We antici-
pate that Crowdsourced Software Engineering will increasingly1800

also open up new possibilities for software engineering activi-
ties that are not currently possible.

Specifically, the low-cost, flexibility and rapid response
available through Crowdsourced Software Engineering may
create possibilities for speculative software engineering, in1805

which the software development process can become much
more experimental. Crowdsourcing technology may provide a
mechanism through which organisations can achieve even more
rapid prototyping, with the crowd being used to simulate the
functionality of a putative software system.1810

7.3. Hybrid Crowdsourced Software Engineering

The Crowdsourced Software Engineering solutions surveyed
in this paper typically concern the substitution of a crowd-
sourced activity for an existing (non-crowdsourced) activity. In
this regard, the solution is either crowdsourced or not crowd-1815

sourced, with a sharp ‘binary divide’ between the two kinds of
activity. We envisage this binary divide becoming blurred as

Crowdsourced Software Engineering achieves greater penetra-
tion into the research and practitioner communities.

This blurring of the distinction between traditional and 1820

crowdsourced activities will lead to the further development
of Hybrid Crowdsourced Software Engineering. Tools such
as CrowdBlaze (Section 5.4) already o↵er a form of hybridi-
sation between crowdsourcing and automated software testing,
while bug fix recommendation tools such as HelpMeOut could 1825

be augmented with genetic improvement (as mentioned in Sec-
tion 5.3) .

Hybrid Crowdsourced Software Engineering will require
new processes and methodologies that feedback crowdsourced
knowledge into software development process (as it proceeds) 1830

and that feed software development information back to the
crowd. The growth in the use of app stores as a platform for
software deployment and review (Harman et al., 2012; Pagano
and Maalej, 2013; Guzman and Maalej, 2014; Chen et al.,
2014), is already providing a kind of Hybrid Crowdsourced 1835

Software Engineering. The review mechanisms implemented
by app stores already resemble a channel of communication be-
tween the users (a crowd) and an app’s developers. We envisage
greater deployment, extension and development of such crowd-
sourced software deployment, review and feedback infrastruc- 1840

tures.

7.4. Multi-Crowdsourced Software Engineering

Current work on crowdsourcing typically involves a single
crowd, which is given a well-defined, single task. We propose
that this model can be generalised to Multi-Crowdsourced Soft- 1845

ware Engineering, in which multiple distinct (but communicat-
ing) crowds work on distinct (but related) problems. In Multi-
Crowdsourced Software Engineering, the crowds communicate
with each other, such that the behaviour of each is dependent
upon the behaviour of the others. This interaction between dis- 1850

tinct crowds distinguishes Multi-Crowdsourced Software En-
gineering from existing (single) Crowdsourced Software Engi-
neering.

For example, in a previous study on using crowdsourcing for
program synthesis (Cochran et al., 2015), one (professional) 1855

crowd was employed for generating regular expression can-
didates and another (non-professional) crowd was recruited
for evaluating the instances generated from these expressions.
Also, the problem of testing and debugging could be formu-
lated as a Multi-Crowdsourced problem, in which one crowd 1860

works on generating test cases to find bugs, while the other
crowd works on finding patches to fix the bugs. This would
lead to a crowd-based implementations of co-evolutionary mu-
tation testing (Adamopoulos et al., 2004) and co-evolutionary
patching (Arcuri et al., 2008). 1865

Many other software engineering problems o↵er natural for-
mulations for Multi-Crowdsourced Software Engineering. For
example, requirements elicitation and rapid prototyping could
proceed in tandem, with one crowd gathering requirements
while the other develops prototypes for these requirements. Ar- 1870

chitectural evolution and software testing could also proceed in
tandem using two crowds, one targeting performance test case

26

generation and the other targeting architectural improvements
to avoid performance bottlenecks.

Multi-Crowdsourced Software Engineering is not limited to1875

two crowds. We could envisage a three-crowd software engi-
neering problem involving requirements elicitation, rapid pro-
totyping and software test case generation, each with their own
dedicated crowd. Each of the three crowds will depend on the
activities of the other, and use the outputs of the tasks under-1880

taken by the other. The prototyping crowd implements some
of the requirements emerging from the requirements elicitation
crowd. The test case generation crowd generates tests, some of
which will uncover issues in the prototypes. These issues, in
turn, may suggest new features to the requirements elicitation1885

crowd.

7.5. Iterative Crowdsourced Software Engineering

Most existing approaches to Crowdsourced Software Engi-
neering consist of a single, batch mode, application of crowd-
sourcing to solve a well-defined single task. It is perhaps strik-1890

ing to see the waterfall-like model used by existing platforms
such as TopCoder, making such a strong resurgence as a prac-
tical methodology underpinning much crowdsourced develop-
ment work (see Section 4.1). This phenomenon may be transi-
tory; as it matures, Crowdsourced Software Engineering will1895

likely become adaptive and iterative to better model the un-
derlying software engineering processes it supports (e.g., a re-
cent study shows the iterative recombination can help improve
crowdsourced software design (LaToza et al., 2015)). Indeed,
our proposed Multi-Crowdsourced Software Engineering is a1900

naturally iterative process, in which each crowd responds to and
a↵ects the results of tasks performed by other crowds.

8. Threats to Validity of this Survey

The most relevant threats to validity for this survey study are
the potential bias in the literature selection and misclassifica-1905

tion.
Literature search and selection. Our online library search

was driven by the keywords related to crowdsourcing and soft-
ware engineering. It is possible that our search missed some
studies that implicitly use crowdsourcing without mentioning1910

the term ‘crowdsourcing’, or those studies that explicitly use
crowdsourcing in the software engineering activities which can-
not be covered by our search terms. To mitigate this issue,
we performed an issue-by-issue manual search of the major
software engineering conferences and journals published from1915

2006 to 2015, in order to identify those ‘implicit’ crowdsourc-
ing papers and those leverage crowdsourcing for ‘minority’ ac-
tivities in software engineering. The term ‘crowdsourcing’ was
proposed in 2006, yet there may be related work published be-
fore 2006. A subset of this work has been identified via a further1920

‘snowballing’ process of reference search. We also tried to ad-
dress this issue by reaching out to authors, asking whether we
missed any relevant work.

Another factor that may cause literature selection bias is
the definition of crowdsourcing itself. Numerous definitions1925

have been proposed (Estellés-Arolas and González-Ladrón-De-
Guevara, 2012; Hetmank, 2013) since 2006. These defini-
tions are still debated in literature and are perhaps, somewhat
vague in the context of software engineering (Estellés-Arolas
and González-Ladrón-De-Guevara, 2012; Stol and Fitzgerald, 1930

2014c). Our survey may not be exhaustive: it may not cover all
the possible (and reasonable) definitions of crowdsourcing. To
mitigate the issue, we gave our own definition of Crowdsourced
Software Engineering based on the most widely cited definition
(Howe, 2006b). We also included those papers in which their 1935

authors claim to use crowdsourcing, in order to be comprehen-
sive on the use of crowdsourcing in software engineering.

Literature classification. We manually classified all 210 pa-
pers into four top-level categories based on their study types and
further classified them into fine-grained sub-categories (see Fig- 1940

ure 6) based on their targeted domains/tasks. There is no ground
truth labelling for such classification. Even though we re-
ferred to the ACM Computing Classification System, the IEEE
Taxonomy of Software Engineering Standards and the 2014
IEEE Keywords Taxonomy, there is no well-defined standard 1945

methodology of classification regarding the used schemes. To
minimise any potential classification error, we carefully anal-
ysed the full text of the collected papers and performed the
classification by three authors, reaching an average inter-rater
agreement of 91.2%. The disagreed/controversial papers were 1950

resolved by a further discussion.

9. Conclusions

In this survey, we have analysed existing literature on the
use of crowdsourcing in software engineering activities and re-
search into these activities. The study has revealed a steadily 1955

increasing rate of publication and has presented a snapshot of
the research progress of this area from the perspectives of theo-
ries, practices and applications. Specifically, theories on crowd-
sourced software development models, major commercial plat-
forms for software engineering and corresponding case stud- 1960

ies, and crowdsourcing applications to software engineering re-
search have been summarised. The study also highlights po-
tential issues in Crowdsourced Software Engineering, together
with related analysis and solutions conducted in previous stud-
ies. Finally, the survey is used to identify gaps in the literature 1965

and open problems for future work.

Acknowledgments

The authors would like to thank the many authors who con-
tributed their valuable feedback in the ‘pseudo-crowdsourced’
checking process of this survey, and the anonymous referees for 1970

their comments.
Ke Mao is funded by the UCL Graduate Research Schol-

arship (GRS), and the UCL Overseas Research Scholarship
(ORS). This work is also supported by the Dynamic Adaptive
Automated Software Engineering (DAASE) programme grant 1975

(EP/J017515), which fully supports Yue Jia, partly supports
Mark Harman.

27

References

Abran, A., Moore, J.W., et al., 2004. Guide to the software engineering body
of knowledge (SWEBOK R�), 2004 Version, IEEE CS Professional Practices1980

Committee.
Adamopoulos, K., Harman, M., Hierons, R.M., 2004. Mutation testing using

genetic algorithms: A co-evolution approach, in: Proc. 6th Annual Genetic
and Evolutionary Computation Conference, pp. 1338–1349.

Adepetu, A., Ahmed, K., Abd, Y.A., 2012. CrowdREquire: A Requirements1985

Engineering Crowdsourcing Platform. Technical Report SS-12-06. AAAI.
Afshan, S., McMinn, P., Stevenson, M., 2013. Evolving readable string test

inputs using a natural language model to reduce human oracle cost. Proc.
6th IEEE International Conference on Software Testing, Verification and
Validation , 352–361.1990

Agarwal, Y., Hall, M., 2013. ProtectMyPrivacy: Detecting and mitigating pri-
vacy leaks on iOS devices using crowdsourcing, in: Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and Ser-
vices, pp. 97–110.

Akhawe, D., Felt, A.P., 2013. Alice in warningland: A large-scale field study1995

of browser security warning e↵ectiveness, in: Proc. 22Nd USENIX Confer-
ence on Security, pp. 257–272.

Akiki, P., Bandara, A., Yu, Y., 2013. Crowdsourcing user interface adap-
tations for minimizing the bloat in enterprise applications, in: Proc. 5th
ACM SIGCHI symposium on Engineering interactive computing systems,2000

pp. 121–126.
Ali, R., Solis, C., Omoronyia, I., Salehie, M., Nuseibeh, B., 2012. Social adap-

tation: When software gives users a voice, in: Proc. 7th International Con-
ference Evaluation of Novel Approaches to Software Engineering.

Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh, B., Maalej, W., 2011.2005

Social sensing: When users become monitors, in: Proc. 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, pp. 476–479.

Allahbakhsh, M., Benatallah, B., Ignjatovic, A., Motahari-Nezhad, H., Bertino,
E., Dustdar, S., 2013. Quality control in crowdsourcing systems: Issues and2010

directions. IEEE Internet Computing 17, 76–81.
Almaliki, M., Ncube, C., Ali, R., 2014. The design of adaptive acquisition of

users feedback: An empirical study, in: Proc. 9th International Conference
on Research Challenges in Information Science.

Alonso, O., Rose, D.E., Stewart, B., 2008. Crowdsourcing for relevance evalu-2015

ation, in: ACM SigIR Forum, ACM. pp. 9–15.
Amann, S., Proksch, S., Mezini, M., 2014. Method-call recommendations from

implicit developer feedback, in: Proc. 1st International Workshop on Crowd-
Sourcing in Software Engineering, pp. 5–6.

Aparicio, M., Costa, C.J., Braga, A.S., 2012. Proposing a system to support2020

crowdsourcing, in: Proc. 2012 Workshop on Open Source and Design of
Communication, pp. 13–17.

Archak, N., 2010. Money, glory and cheap talk: Analyzing strategic behavior
of contestants in simultaneous crowdsourcing contests on TopCoder.com,
in: Proc. 19th international conference on World wide web, pp. 21–30.2025

Arcuri, A., White, D.R., Clark, J.A., Yao, X., 2008. Multi-objective improve-
ment of software using co-evolution and smart seeding, in: Proc. 7th Inter-
national Conference on Simulated Evolution and Learning, pp. 61–70.

Arellano, C., Dı́az, O., Iturrioz, J., 2010. Crowdsourced web augmentation : A
security model, in: Proc. 11 International Conference on Web Information2030

Systems Engineering, pp. 294–307.
Auler, R., Borin, E., Halleux, P.D., 2014. Addressing JavaScript JIT engines

performance quirks : A crowdsourced adaptive compiler, in: Proc. 23rd
International Conference on Compiler Construction, pp. 218–237.

Bacchelli, A., Ponzanelli, L., Lanza, M., 2012. Harnessing Stack Overflow for2035

the IDE, in: Proc. 3rd International Workshop on Recommendation Systems
for Software Engineering, pp. 26–30.

Bacon, D.F., Chen, Y., Parkes, D., Rao, M., 2009. A market-based approach
to software evolution, in: Proceeding of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming systems languages and2040

applications, pp. 973–980.
Ball, T., Burckhardt, S., de Halleux, J., Moskal, M., Tillmann, N., 2014. Be-

yond Open Source: The TouchDevelop Cloud-based Integrated Develop-
ment and Runtime Environment. Technical Report MSR-TR-2014-63.

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S., 2015. The ora-2045

cle problem in software testing: A survey. IEEE Transactions on Software
Engineering 41, 507–525.

Barzilay, O., Treude, C., Zagalsky, A., 2013. Facilitating crowd sourced soft-
ware engineering via stack overflow, in: Finding Source Code on the Web
for Remix and Reuse. Springer New York, pp. 289–308. 2050

Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H., 2008. Motivation
in software engineering: A systematic literature review. Information and
Software Technology 50, 860–878.

Begel, A., Bosch, J., Storey, M.A., 2013. Social networking meets software
development: Perspectives from GitHub, MSDN, Stack Exchange, and Top- 2055

Coder. IEEE Software 30, 52–66.
Begel, A., DeLine, R., Zimmermann, T., 2010. Social media for software en-

gineering, in: Proc. FSE/SDP Workshop on Future of Software Engineering
Research, pp. 33–38.

Bergvall-Kå reborn, B., Howcroft, D., 2013. The Apple business model: 2060

Crowdsourcing mobile applications. Accounting Forum 37, 280–289.
Bernstein, M.S., 2010. Crowd-powered interfaces, in: Proc. 23nd annual ACM

symposium on User interface software and technology, pp. 347–350.
Bishop, J., Horspool, R.N., Xie, T., Tillmann, N., de Halleux, J., 2015. Code

Hunt: Experience with coding contests at scale. Proc. 37th International 2065

Conference on Software Engineering - JSEET .
Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S.,

Tran Duc, T., 2011. Repeatable and reliable search system evaluation us-
ing crowdsourcing, in: Proc. 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 923–932. 2070

Boehm, B.W., et al., 1981. Software engineering economics. volume 197.
Prentice-hall Englewood Cli↵s (NJ).

Bozkurt, M., Harman, M., . Automatically generating realistic test input from
web services, in: Proc. 6th IEEE International Symposium on Service Ori-
ented System Engineering. 2075

Brabham, D.C., 2008. Crowdsourcing as a model for problem solving an intro-
duction and cases. Convergence: the international journal of research into
new media technologies 14, 75–90.

Brabham, D.C., Sanchez, T.W., Bartholomew, K., 2009. Crowdsourcing pub-
lic participation in transit planning: preliminary results from the next stop 2080

design case. Transportation Research Board .
Breaux, T.D., Schaub, F., 2014. Scaling requirements extraction to the crowd:

Experiments with privacy policies, in: Proc. 22nd IEEE International Re-
quirements Engineering Conference, pp. 163–172.

Bruce, B., Petke, J., Harman, M., 2015. Reducing energy consumption us- 2085

ing genetic improvement, in: Proc. 17th Annual Genetic and Evolutionary
Computation Conference.

Bruch, M., 2012. IDE 2.0: Leveraging the Wisdom of the Software Engineering
Crowds. Ph.D. thesis. Technische Universität Darmstadt.

Bruch, M., Bodden, E., Monperrus, M., Mezini, M., 2010. IDE 2.0: Collec- 2090

tive intelligence in software development, in: Proc. FSE/SDP Workshop on
Future of Software Engineering Research, pp. 53–58.

Burguera, I., Zurutuza, U., Nadjm-Tehrani, S., 2011. Crowdroid: Behavior-
based malware detection system for Android, in: Proc. 1st ACM workshop
on Security and privacy in smartphones and mobile devices, pp. 15–26. 2095

Challiol, C., Firmenich, S., Bosetti, G.A., Gordillo, S.E., Rossi, G., 2013.
Crowdsourcing mobile web applications, in: Proc. ICWE 2013 Workshops,
pp. 223–237.

Chatfield, A.T., Brajawidagda, U., 2014. Crowdsourcing hazardous weather
reports from citizens via twittersphere under the short warning lead times of 2100

EF5 intensity tornado conditions, in: Proc. 47th Hawaii International Con-
ference on System Sciences, IEEE. pp. 2231–2241.

Chen, C., Zhang, K., 2014. Who asked what: Integrating crowdsourced FAQs
into API documentation, in: Proc. 36th International Conference on Soft-
ware Engineering (ICSE Companion), pp. 456–459. 2105

Chen, F., Kim, S., 2015. Crowd debugging, in: Proc. 10th Joint Meeting on
Foundations of Software Engineering, pp. 320–332.

Chen, K.t., Chang, C.j., Sinica, A., Wu, C.c., Chang, Y.c., Lei, C.l., 2010. Quad-
rant of Euphoria: A crowdsourcing platform for QoE assessment. IEEE
Network , 28–35. 2110

Chen, N., Kim, S., 2012. Puzzle-based automatic testing: Bringing humans
into the loop by solving puzzles, in: Proc. 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 140–149.

Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B., 2014. AR-Miner: Mining
informative reviews for developers from mobile app marketplace, in: Proc. 2115

36th International Conference on Software Engineering, pp. 767–778.
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (Eds.), 2008.

Software Engineering for Self-Adaptive Systems (Dagstuhl Seminar). vol-

28

ume 08031 of Dagstuhl Seminar Proceedings.
Chilana, P.K., 2013. Supporting Users After Software Deployment through2120

Selection-Based Crowdsourced Contextual Help. Ph.D. thesis. University
of Washington.

Chilana, P.K., Ko, A.J., Wobbrock, J.O., 2012. LemonAid: Selection-based
crowdsourced contextual help for web applications, in: Proc. SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 1549–1558.2125

Chilana, P.K., Ko, A.J., Wobbrock, J.O., Grossman, T., 2013. A multi-site
field study of crowdsourced contextual help : Usage and perspectives of end
users and software teams, in: Proc. 31st Annual CHI Conference on Human
Factors in Computing Systems.

Cleland-Huang, J., Shin, Y., Keenan, E., Czauderna, A., Leach, G., Moritz, E.,2130

Gethers, M., Poshyvanyk, D., Hayes, J.H., Li, W., 2012. Toward actionable,
broadly accessible contests in software engineering, in: Proc. 34th Interna-
tional Conference on Software Engineering, pp. 1329–1332.

Cochran, R.A., D’Antoni, L., Livshits, B., Molnar, D., Veanes, M., 2015. Pro-
gram boosting: Program synthesis via crowd-sourcing, in: Proc. 42nd An-2135

nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 677–688.

Cook, C., Visconti, M., 1994. Documentation is important. CrossTalk 7, 26–30.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-

Fay, A., Baker, D., Popović, Z., et al., 2010. Predicting protein structures2140

with a multiplayer online game. Nature 466, 756–760.
Cox, L.P., 2011. Truth in crowdsourcing. IEEE Journal on Security and Privacy

9, 74–76.
Dibbern, J., Goles, T., Hirschheim, R., Jayatilaka, B., 2004. Information sys-

tems outsourcing: a survey and analysis of the literature. The Data Base for2145

Advances in Information Systems 35, 6–102.
Dietl, W., Dietzel, S., Ernst, M.D., Mote, N., Walker, B., Cooper, S., Pavlik, T.,

Popović, Z., 2012. Verification games: Making verification fun, in: Proc.
14th Workshop on Formal Techniques for Java-like Programs, pp. 42–49.

Dolstra, E., Vliegendhart, R., Pouwelse, J., 2013. Crowdsourcing GUI tests, in:2150

Proc. 6th IEEE International Conference on Software Testing, Verification
and Validation, pp. 332–341.

Ebner, W., Leimeister, M., Bretschneider, U., Krcmar, H., 2008. Leveraging the
wisdom of crowds: Designing an IT-supported ideas competition for an ERP
software company, in: Proc. 41st Annual Hawaii International Conference2155

on System Sciences, pp. 417–417.
Ernst, M.D., Popović, Z., 2012. Crowd-sourced program verification. Technical

Report. University OF Washington.
Esselink, B., 2000. A practical guide to localization. volume 4. John Benjamins

Publishing.2160

Estellés-Arolas, E., González-Ladrón-De-Guevara, F., 2012. Towards an inte-
grated crowdsourcing definition. Journal of Information Science 38, 189–
200.

Exton, C., Wasala, A., Buckley, J., Schäler, R., 2009. Micro crowdsourcing: A
new model for software localisation. Localisation Focus 8, 81–89.2165

Farrell, J., Rabin, M., 1996. Cheap talk. The Journal of Economic Perspectives
10, 103–118.

Fast, E., Ste↵ee, D., Wang, L., Brandt, J.R., Bernstein, M.S., 2014. Emergent,
crowd-scale programming practice in the IDE, in: Proc. 32nd annual ACM
conference on Human factors in Computing Systems, pp. 2491–2500.2170

Fitzgerald, B., Stol, K.J., 2015. The dos and don’ts of crowdsourcing software
development, in: SOFSEM 2015: Theory and Practice of Computer Science.
volume 8939 of Lecture Notes in Computer Science, pp. 58–64.

Fried, D., 2010. Crowdsourcing in the software development industry. Nexus
of Entrepreneurship and Technology Initiative .2175

Fry, Z.P., Landau, B., Weimer, W., 2012. A human study of patch maintain-
ability, in: Proc. 2012 International Symposium on Software Testing and
Analysis, pp. 177–187.

Fry, Z.P., Weimer, W., 2010. A human study of fault localization accuracy, in:
Proc. 26th IEEE International Conference on Software Maintenance.2180

Gardlo, B., Egger, S., Seufert, M., Schatz, R., 2014. Crowdsourcing 2.0: En-
hancing execution speed and reliability of web-based QoE testing, in: Proc.
2014 IEEE International Conference on Communications, pp. 1070–1075.

Goldman, M., 2011. Role-based interfaces for collaborative software develop-
ment, in: Proc. 24th Annual ACM Symposium Adjunct on User Interface2185

Software and Technology, pp. 23–26.
Goldman, M., 2012. Software development with real-time collaborative edit-

ing. Ph.D. thesis. Massachusetts Institute of Technology.
Goldman, M., Little, G., Miller, R.C., 2011. Real-time collaborative coding in a

web IDE, in: Proc. 24th annual ACM symposium on User interface software 2190

and technology, pp. 155–164.
Gomide, V.H.M., Valle, P.A., Ferreira, J.O., Barbosa, J.R.G., da Rocha, A.F.,

Barbosa, T.M.G.d.A., 2014. A↵ective crowdsourcing applied to usability
testing. International Journal of Computer Science and Information Tech-
nologies 5, 575–579. 2195

Greenwood, P., Rashid, A., Walkerdine, J., 2012. UDesignIt: Towards social
media for community-driven design. Proc. 34th International Conference on
Software Engineering , 1321–1324.

Gritti, A., 2012. Crowd outsourcing for software localization. Master’s thesis.
Universitat Politécnica de Catalunya. 2200

Guzman, E., Maalej, W., 2014. How do users like this feature? A fine grained
sentiment analysis of app reviews, in: Proc. 22nd International Conference
on Requirements Engineering, pp. 153–162.

Hamidi, S., Andritsos, P., Liaskos, S., 2014. Constructing adaptive config-
uration dialogs using crowd data, in: Proc. 29th ACM/IEEE International 2205

Conference on Automated Software Engineering, pp. 485–490.
Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S.,

Wu, F., 2014a. Genetic improvement for adaptive software engineering
(keynote), in: Proc. 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pp. 1–4. 2210

Harman, M., Jia, Y., Zhang, Y., 2012. App store mining and analysis: MSR for
App Stores, in: Proc. 9th Working Conference on Mining Software Reposi-
tories, pp. 108–111.

Harman, M., Jones, B.F., 2001. Search-based software engineering. Informa-
tion and Software Technology 43, 833–839. 2215

Harman, M., Langdon, W.B., Jia, Y., 2014b. Babel pidgin: SBSE can grow
and graft entirely new functionality into a real world system, in: Proc. 6th

Symposium on Search Based Software Engineering, pp. 247–252.
Hartmann, B., Macdougall, D., Brandt, J., Klemmer, S.R., 2010. What would

other programmers do? Suggesting solutions to error messages, in: Proc. 2220

28th ACM Conference on Human Factors in Computing Systems, pp. 1019–
1028.

He, H., Ma, Z., Chen, H., Shao, W., 2014. How the crowd impacts commercial
applications: A user-oriented approach, in: Proc. 1st International Workshop
on Crowd-based Software Development Methods and Technologies, pp. 1– 2225

6.
Hetmank, L., 2013. Components and functions of crowdsourcing systems-a

systematic literature review. Wirtschaftsinformatik 4.
Hosseini, M., Phalp, K., Taylor, J., Ali, R., 2013. Towards crowdsourcing for

requirements engineering, in: Proc. 20th International working conference 2230

on Requirements engineering: foundation for software quality (Empirical
Track).

Hosseini, M., Shahri, A., Phalp, K., Taylor, J., Ali, R., Dalpiaz, F., 2015. Con-
figuring crowdsourcing for requirements elicitation, in: Proc. 9th Interna-
tional Conference on Research Challenges in Information Science. 2235

Hossfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., 2014a.
Best practices for QoE crowdtesting : QoE assessment with crowdsourcing.
IEEE Transactions on Multimedia 16, 541–558.

Hossfeld, T., Keimel, C., Timmerer, C., 2014b. Crowdsourcing quality-of-
experience assessments. Computer , 98–102. 2240

Howe, J., 2006a. Crowdsourcing: A definition. http://

crowdsourcing.typepad.com/cs/2006/06/crowdsourcing a.html.
Howe, J., 2006b. The rise of crowdsourcing. Wired magazine 14, 1–4.
Hu, Z., Wu, W., 2014. A game theoretic model of software crowdsourcing,

in: Proc. 8th IEEE International Symposium on Service Oriented System 2245

Engineering, pp. 446–453.
Huang, Y.C., Wang, C.I., Hsu, J., 2013. Leveraging the crowd for creat-

ing wireframe-based exploration of mobile design pattern gallery, in: Proc.
Companion Publication of the 2013 International Conference on Intelligent
User Interfaces Companion, pp. 17–20. 2250

Hughes, J.M., 2010. Systems and methods for software development. US
Patent 7778866 B2.

Huhns, M.N., Li, W., Tsai, W.T., 2013. Cloud-based software crowdsourcing
(Dagstuhl seminar 13362). Dagstuhl Reports 3, 34–58.

Ipeirotis, P.G., Provost, F., Wang, J., 2010. Quality management on amazon 2255

mechanical turk, in: Proc. 2010 ACM SIGKDD Workshop on Human Com-
putation, pp. 64–67.

Ismail, Q., Ahmed, T., Kapadia, A., Reiter, M.K., 2015. Crowdsourced explo-
ration of security configurations, in: Proc. 33rd Annual ACM Conference
on Human Factors in Computing Systems, ACM. pp. 467–476. 2260

29

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

James, S., 2004. The wisdom of the crowds. New York: Randome House .
Jayakanthan, R., Sundararajan, D., 2011a. Enterprise crowdsourcing solution

for software development in an outsourcing organization, in: Proc. 11th In-
ternational Conference on Web Engineering, pp. 177–180.

Jayakanthan, R., Sundararajan, D., 2011b. Enterprise crowdsourcing solutions2265

for software development and ideation, in: Proc. 2nd international workshop
on Ubiquitous crowdsouring, pp. 25–28.

Jiau, H.C., Yang, F.P., 2012. Facing up to the inequality of crowdsourced API
documentation. ACM SIGSOFT Software Engineering Notes 37, 1–9.

Johnson, R., 2014. Natural products: Crowdsourcing drug discovery. Nature2270

chemistry 6, 87–87.
Kajko-Mattsson, M., 2005. A survey of documentation practice within correc-

tive maintenance. Empirical Software Engineering 10, 31–55.
Kallenbach, M., 2011. HelpMeOut-Crowdsourcing suggestions to program-

ming problems for dynamic, interpreted languages. Master’s thesis. RWTH2275

Aachen University.
Kazman, R., Chen, H.M., 2009. The metropolis model a new logic for devel-

opment of crowdsourced systems. Communications of the ACM 52, 76–84.
Kazman, R., Chen, H.M., 2010. The metropolis model and its implications for

the engineering of software ecosystems, in: Proc. 2010 FSE/SDP workshop2280

on Future of software engineering research, pp. 187–190.
Khatib, F., DiMaio, F., Cooper, S., Kazmierczyk, M., Gilski, M., Krzywda, S.,

Zabranska, H., Pichova, I., Thompson, J., Popović, Z., et al., 2011. Crystal
structure of a monomeric retroviral protease solved by protein folding game
players. Nature Structural and Molecular Biology 18, 1175–1177.2285

Kittur, A., Smus, B., Khamkar, S., Kraut, R.E., 2011. CrowdForge: Crowd-
sourcing complex work, in: Proc. 24th Annual ACM Symposium on User
Interface Software and Technology, pp. 43–52.

Kogut, B., Metiu, A., 2001. Open-source software development and distributed
innovation. Oxford Review of Economic Policy 17, 248–264.2290

Krcmar, H., Bretschneider, U., Huber, M., Leimeister, J.M., 2009. Leverag-
ing crowdsourcing: Activation-supporting components for IT-based ideas
competition. Journal of Management Information Systems 26, 197–224.

Lakhani, K.R., Boudreau, K.J., Loh, P.R., Backstrom, L., Baldwin, C., Lon-
stein, E., Lydon, M., MacCormack, A., Arnaout, R.A., Guinan, E.C., 2013.2295

Prize-based contests can provide solutions to computational biology prob-
lems. Nature Biotechnology 31, 108–111.

Lakhani, K.R., Garvin, D.A., Lonstein, E., 2010. TopCoder(A): Developing
software through crowdsourcing. Harvard Business School Case .

Lakhotia, K., McMinn, P., Harman, M., 2009. Automated test data generation2300

for coverage: Haven’t we solved this problem yet?, in: Proc. 4th Testing
Academia and Industry Conference — Practice And Research Techniques,
pp. 95–104.

Langdon, W.B., Harman, M., 2015. Optimising existing software with genetic
programming. IEEE Transactions on Evolutionary Computation 19, 118–2305

135.
Langdon, W.B., Lam, B., Petke, J., Harman, M., 2015. Improving CUDA DNA

analysis software with genetic programming, in: Proc. 17th Annual Genetic
and Evolutionary Computation Conference.

Lasecki, W.S., Kim, J., Rafter, N., Sen, O., Bigham, J.P., Bernstein, M.S., 2015.2310

Apparition: Crowdsourced user interfaces that come to life as you sketch
them, in: Proc. 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, pp. 1925–1934.

LaToza, T.D., Ben Towne, W., van der Hoek, A., Herbsleb, J.D., 2013a. Crowd
development, in: Proc. 6th International Workshop on Cooperative and Hu-2315

man Aspects of Software Engineering, pp. 85–88.
LaToza, T.D., Chen, M., Jiang, L., Zhao, M., Hoek, A.V.D., 2015. Borrowing

from the crowd : A study of recombination in software design competitions,
in: Proc. 37nd ACM/IEEE International Conference on Software Engineer-
ing.2320

LaToza, T.D., Chiquillo, E., Ben Towne, W., Adriano, C., van der Hoek, A.,
2013b. CrowdCode - crowd development, in: CrowdConf 2013.

LaToza, T.D., van der Hoek, A., 2015. A vision of crowd development, in:
Proc. 37th International Conference on Software Engineering, NIER Track.

LaToza, T.D., Towne, W.B., Adriano, C.M., van der Hoek, A., 2014a. Micro-2325

task programming: Building software with a crowd, in: Proc. 27th annual
ACM symposium on User interface software and technology, pp. 43–54.

LaToza, T.D., Towne, W.B., Hoek, A.V.D., 2014b. Harnessing the crowd :
Decontextualizing software work, in: Proc. 1st International Workshop on
Context in Software Development Workshop, pp. 2–3.2330

Le Goues, C., Forrest, S., Weimer, W., 2013. Current challenges in automatic

software repair. Software Quality Journal 21, 421–443.
Le Goues, C., Nguyen, T., Forrest, S., Weimer, W., 2012. GenProg: A generic

method for automatic software repair. IEEE Transactions on Software En-
gineering 38, 54–72. 2335

Lease, M., Yilmaz, E., 2012. Crowdsourcing for information retrieval, in: ACM
SIGIR Forum, ACM. pp. 66–75.

Leone, S., 2011. Information Components as a Basis for Crowdsourced In-
formation System Development. Ph.D. thesis. Swiss Federal Institute of
Technology in Zurich. 2340

Li, D., Tran, A.H., Halfond, W.G.J., 2014. Making web applications more
energy e�cient for OLED smartphones, in: Proc. 36th International Confer-
ence on Software Engineering, pp. 527–538.

Li, K., Xiao, J., Wang, Y., Wang, Q., 2013. Analysis of the key factors for soft-
ware quality in crowdsourcing development: An empirical study on Top- 2345

Coder.com, in: Proc. IEEE 37th Annual Computer Software and Applica-
tions Conference Analysis, pp. 812–817.

Li, W., Huhns, M.N., Tsai, W.T., Wu, W., 2015. Crowdsourcing: Cloud-Based
Software Development. Springer.

Li, W., Seshia, S., Jha, S., 2012. CrowdMine: Towards crowdsourced human- 2350

assisted verification, in: Proc. 49th Annual Design Automation Conference,
pp. 2–3.

Liang, C.J.M., Lane, N.D., Brouwers, N., Zhang, L., Karlsson, B.F., Liu, H.,
Liu, Y., Tang, J., Shan, X., Chandra, R., Zhao, F., 2014. Caiipa : Automated
large-scale mobile app testing through contextual fuzzing, in: Proc. 20th 2355

Annual International Conference on Mobile Computing and Networking.
Lim, S., Quercia, D., Finkelstein, A., 2010a. StakeNet: Using social net-

works to analyse the stakeholders of large-scale software projects. Proc.
32nd ACM/IEEE International Conference on Software Engineering 2010.

Lim, S.L., 2010. Social Networks and Collaborative Filtering for Large-Scale 2360

Requirements Elicitation. Ph.D. thesis. University of New South Wales.
Lim, S.L., Damian, D., Finkelstein, A., 2011. StakeSource2.0: Using social

networks of stakeholders to identify and prioritise requirements, in: Pro-
ceeding of the 33rd international conference on Software engineering, pp.
1022–1024. 2365

Lim, S.L., Finkelstein, A., 2012. StakeRare: Using social networks and collab-
orative filtering for large-scale requirements elicitation. IEEE Transactions
on Software Engineering 38, 707–735.

Lim, S.L., Ncube, C., 2013. Social networks and crowdsourcing for stake-
holder analysis in system of systems projects, in: Proceeding of the 8th 2370

International Conference on System of Systems Engineering, pp. 13–18.
Lim, S.L., Quercia, D., Finkelstein, A., 2010b. StakeSource: Harnessing the

power of crowdsourcing and social networks in stakeholder analysis, in:
Proc. 32nd ACM/IEEE International Conference on Software Engineering,
pp. 239–242. 2375

Lin, J., 2013. Understanding and Capturing People’s Mobile App Privacy Pref-
erences. Ph.D. thesis. Carnegie Mellon University.

Lin, J., Amini, S., Hong, J.I., Sadeh, N., Lindqvist, J., Zhang, J., 2012. Ex-
pectation and purpose: understanding users’ mental models of mobile app
privacy through crowdsourcing, in: Proc. 2012 ACM Conference on Ubiq- 2380

uitous Computing, pp. 501–510.
Liu, D., Bias, R.G., Lease, M., Kuipers, R., 2012. Crowdsourcing for usability

testing, in: Proc. American Society for Information Science and Technology,
pp. 1–10.

Lydon, M., 2012. Topcoder overview. http://www.nasa.gov/pdf/ 2385

651447main TopCoder Mike D1 830am.pdf. Accessed: 2015-11-23.
Maalej, W., Pagano, D., 2011. On the socialness of software, in: Proc. 9th In-

ternational Conference on Dependable, Autonomic and Secure Computing,
pp. 864–871.

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E., de Souza, C.R.B., 2014. 2390

Crowdsourcing in the Brazilian it industry: What we know and what we
don’t know, in: Proc. 1st International Workshop on Crowd-based Software
Development Methods and Technologies, pp. 7–12.

Manotas, I., Pollock, L., Clause, J., 2014. SEEDS: A software engineer’s
energy-optimization decision support framework, in: Proc. 36th Interna- 2395

tional Conference on Software Engineering, pp. 503–514.
Mäntylä, M.V., Itkonen, J., 2013. More testers - the e↵ect of crowd size and

time restriction in software testing. Information and Software Technology
55, 986–1003.

Manzoor, J., 2011. A crowdsourcing framework for software localization. Mas- 2400

ter’s thesis. KTH Royal Institute of Technology.
Mao, K., Yang, Y., Li, M., Harman, M., 2013. Pricing Crowdsourcing Based

30

http://www.nasa.gov/pdf/651447main_TopCoder_Mike_D1_830am.pdf
http://www.nasa.gov/pdf/651447main_TopCoder_Mike_D1_830am.pdf
http://www.nasa.gov/pdf/651447main_TopCoder_Mike_D1_830am.pdf

Software Development Tasks, in: Proc. 2013 International Conference on
Software Engineering (NIER Track), pp. 1205–1208.

Mao, K., Yang, Y., Wang, Q., Jia, Y., Harman, M., 2015. Developer recommen-2405

dation for crowdsourced software development tasks, in: Proc. 9th IEEE In-
ternational Symposium on Service-Oriented System Engineering, pp. 347–
356.

Martin, S.F., Falkenberg, H., Dyrlund, T.F., Khoudoli, G.A., Mageean, C.J.,
Linding, R., 2013. PROTEINCHALLENGE: crowd sourcing in proteomics2410

analysis and software development. Journal of Proteomics 88, 41–6.
Massolution, 2012. Crowdsourcing industry report. http://

www.crowdsourcing.org/editorial/enterprise-crowdsourcing-
trends-infographic/18725. Accessed: 2015-03-01.

Meier, F., Bazo, A., Burghardt, M., Wol↵, C., 2013. Evaluating a web-based2415

tool for crowdsourced navigation stress tests, in: Proc. 2nd International
Conference on Design, User Experience, and Usability: Web, Mobile, and
Product Design, pp. 248–256.

Memon, A., Banerjee, I., Nagarajan, A., 2003. GUI ripping: Reverse engineer-
ing of graphical user interfaces for testing, in: Proc. 10th Working Confer-2420

ence on Reverse Engineering, pp. 260–269.
Mijnhardt, A., 2013. Crowdsourcing for enterprise software localization. Mas-

ter thesis. Utrecht University.
Minder, P., Bernstein, A., 2011. CrowdLang - First steps towards pro-

grammable human computers for general computation, in: Proc. 3rd Human2425

Computation Workshop, pp. 103–108.
Minder, P., Bernstein, A., 2012. CrowdLang: A programming language for the

systematic exploration of human computation systems, in: Proc. 4th Inter-
national Conference on Social Informatics, Springer, Lausanne.

Misra, A., Gooze, A., Watkins, K., Asad, M., Le Dantec, C.A., 2014. Crowd-2430

sourcing and its application to transportation data collection and manage-
ment. Transportation Research Record: Journal of the Transportation Re-
search Board 2414, 1–8.

Mooty, M., Faulring, A., Stylos, J., Myers, B.a., 2010. Calcite: Completing
code completion for constructors using crowds, in: Proc. 2010 IEEE Sym-2435

posium on Visual Languages and Human-Centric Computing, pp. 15–22.
Muganda, N., Asmelash, D., Mlay, S., 2012. Groupthink decision making de-

ficiency in the requirements engineering process: Towards a crowdsourcing
model. SSRN Electronic Journal .

Mujumdar, D., Kallenbach, M., Liu, B., Hartmann, B., 2011. Crowdsourc-2440

ing suggestions to programming problems for dynamic web development
languages, in: Proc. 2011 annual conference extended abstracts on Human
factors in computing systems, pp. 1525–1530.

Muller, C., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G.,
Overeem, A., Leigh, R., 2015. Crowdsourcing for climate and atmospheric2445

sciences: current status and future potential. International Journal of Clima-
tology .

Musson, R., Richards, J., Fisher, D., Bird, C., Bussone, B., Ganguly, S., 2013.
Leveraging the Crowd: How 48,000 Users Helped Improve Lync Perfor-
mance. IEEE Software 30, 38–45.2450

Nag, S., 2012. Collaborative competition for crowdsourcing spaceflight soft-
ware and STEM education using SPHERES Zero Robotics. Master’s thesis.
Massachusetts Institute of Technology.

Nag, S., He↵an, I., Saenz-Otero, A., Lydon, M., 2012. SPHERES Zero
Robotics software development: Lessons on crowdsourcing and collabora-2455

tive competition, in: Proc. 2012 IEEE Aerospace Conference, pp. 1–17.
Nascimento, P., Aguas, R., Schneider, D., de Souza, J., 2012. An approach to

requirements categorization using Kano’s model and crowds, in: Proc. 16th
IEEE International Conference on Computer Supported Cooperative Work
in Design, pp. 387–392.2460

Nayebi, M., Ruhe, G., 2014. An open innovation approach in support of product
release decisions, in: Proc. 7th International Workshop on Cooperative and
Human Aspects of Software Engineering, pp. 64–71.

Nebeling, M., Leone, S., Norrie, M., 2012a. Crowdsourced web engineering
and design, in: Proc. 12th International Conference on Web Engineering,2465

pp. 1–15.
Nebeling, M., Norrie, M.C., 2011a. Context-aware and adaptive web interfaces

: A crowdsourcing approach, in: Proc. 11th International Conference on
Web Engineering, pp. 167–170.

Nebeling, M., Norrie, M.C., 2011b. Tools and architectural support for crowd-2470

sourced adaptation of web interfaces, in: Proc. 11th International Confer-
ence on Web Engineering, pp. 243–257.

Nebeling, M., Speicher, M., Grossniklaus, M., Norrie, M.C., 2012b. Crowd-

sourced web site evaluation with crowdstudy, in: Proc. 12th International
Conference on Web Engineering, pp. 494–497. 2475

Nebeling, M., Speicher, M., Norrie, M.C., 2013a. CrowdAdapt: Enabling
crowdsourced web page adaptation for individual viewing conditions and
preferences, in: Proc. 5th ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems, pp. 23–32.

Nebeling, M., Speicher, M., Norrie, M.C., 2013b. CrowdStudy: General toolkit 2480

for crowdsourced evaluation of web interfaces, in: Proc. 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems.

Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S., 2013. SemFix: pro-
gram repair via semantic analysis, in: Cheng, B.H.C., Pohl, K. (Eds.), Proc.
35th International Conference on Software Engineering, pp. 772–781. 2485

Norman, T.C., Bountra, C., Edwards, A.M., Yamamoto, K.R., Friend, S.H.,
2011. Leveraging crowdsourcing to facilitate the discovery of new
medicines. Science Translational Medicine 3.

Olson, D.L., Rosacker, K., 2012. Crowdsourcing and open source software
participation. Service Business 7, 499–511. 2490

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvi-
dovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L., 1999. An architecture-
based approach to self-adaptive software. IEEE Intelligent Systems 14, 54–
62.

Orlov, M., Sipper, M., 2011. Flight of the FINCH through the java wilderness. 2495

IEEE Transactions on Evolutionary Computation 15, 166–182.
Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T., 2007. Feedback-Directed Ran-

dom Test Generation. Proc. 29th International Conference on Software En-
gineering , 75–84.

Pagano, D., Maalej, W., 2013. User feedback in the appstore: An empirical 2500

study, in: Proc. 21st IEEE International Conference on Requirements Engi-
neering, pp. 125–134.

Papamartzivanos, D., Damopoulos, D., Kambourakis, G., 2014. A cloud-based
architecture to crowdsource mobile app privacy leaks, in: Proc. 18th Pan-
hellenic Conference on Informatics, pp. 59:1–59:6. 2505

Parnin, C., Treude, C., Grammel, L., Storey, M., 2012. Crowd documenta-
tion: Exploring the coverage and the dynamics of API discussions on Stack
Overflow. Technical Report. Georgia Institute of Technology.

Pastore, F., Mariani, L., Fraser, G., 2013. CrowdOracles: Can the crowd solve
the oracle problem?, in: Proc. 6th IEEE International Conference on Soft- 2510

ware Testing, Verification and Validation, pp. 342–351.
Pawlik, A., Segal, J., Petre, M., Sharp, H., 2014. Crowdsourcing scientific

software documentation: a case study of the NumPy documentation project.
Computing in Science and Engineering .

Peng, X., Ali Babar, M., Ebert, C., 2014. Collaborative Software Development 2515

Platforms for Crowdsourcing. IEEE Software 31, 30–36.
Peters, D., Parnas, D., 1998. Using test oracles generated from program docu-

mentation. IEEE Transactions on Software Engineering 24, 161–173.
Petke, J., Harman, M., Langdon, W.B., Weimer, W., 2014. Using genetic im-

provement & code transplants to specialise a C++ program to a problem 2520

class, in: Proc. 17th European Conference on Genetic Programming, pp.
132–143.

Phair, D., 2012. Open Crowdsourcing: Leveraging Community Software De-
velopers for IT Projects. Phd. in computer sci.. Colorado Technical Univer-
sity. 2525

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., Schneider, K., 2013a. Creat-
ing a shared understanding of testing culture on a social coding site, in: Proc.
2013 International Conference on Software Engineering, pp. 112–121.

Pham, R., Singer, L., Schneider, K., 2013b. Building test suites in social coding
sites by leveraging drive-by commits, in: Proc. 35th International Confer- 2530

ence on Software Engineering, pp. 1209–1212.
Ponzanelli, L., 2012. Exploiting crowd knowledge in the IDE. Master’s thesis.

University of Lugano.
Ponzanelli, L., Bacchelli, A., Lanza, M., 2013a. Leveraging crowd knowledge

for software comprehension and development, in: Proc. 17th European Con- 2535

ference on Software Maintenance and Reengineering, pp. 57–66.
Ponzanelli, L., Bacchelli, A., Lanza, M., 2013b. Seahawk: Stack Overflow in

the IDE, in: Proc. 35th International Conference on Software Engineering,
pp. 1295–1298.

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M., 2014a. Mining 2540

stackoverflow to turn the ide into a self-confident programming prompter,
in: Proc. 11th Working Conference on Mining Software Repositories, pp.
102–111.

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M., 2014b.

31

http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725

Prompter: A self-confident recommender system, in: Proc. 30th IEEE Inter-2545

national Conference on Software Maintenance and Evolution, pp. 577–580.
Prikladnicki, R., Machado, L., Carmel, E., de Souza, C.R.B., 2014. Brazil

software crowdsourcing: A first step in a multi-year study, in: Proc. 1st
International Workshop on CrowdSourcing in Software Engineering, pp. 1–
4.2550

Ramakrishnan, S., Srinivasaraghavan, V., 2014. Delivering software projects
using captive university crowd, in: Proc. 7th International Workshop on Co-
operative and Human Aspects of Software Engineering, pp. 115–118.

Saengkhattiya, M., Sevandersson, M., Vallejo, U., 2012. Quality in crowd-
sourcing - How software quality is ensured in software crowdsourcing. Mas-2555

ter’s thesis. Lund University.
Saxe, J., Turner, R., Blokhin, K., 2014. CrowdSource: Automated inference

of high level malware functionality from low-level symbols using a crowd
trained machine learning model, in: 2014 9th International Conference on
Malicious and Unwanted Software, pp. 68–75.2560

Saxton, G.D., Oh, O., Kishore, R., 2013. Rules of Crowdsourcing: Models,
Issues, and Systems of Control. Information Systems Management 30, 2–
20.

Schiller, T.W., 2014. Reducing the Usability Barrier to Specification and Veri-
fication. Ph.D. thesis. University of Washington.2565

Schiller, T.W., Ernst, M.D., 2012. Reducing the barriers to writing verified
specifications, in: Proc. 27th ACM International Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 95–112.

Schneider, C., Cheung, T., 2011. The power of the crowd: Performing us-
ability testing using an on-demand workforce, in: Proc. 20th International2570

Conference on Information Systems Development Cutting edge research on
Information Systems.

Sen, K., Agha, G., 2006. CUTE and jCUTE: Concolic unit testing and explicit
path model-checking tools, in: Ball, T., Jones, R. (Eds.), Computer Aided
Verification. volume 4144 of Lecture Notes in Computer Science, pp. 419–2575

423.
Sey↵, N., Graf, F., Maiden, N., 2010. Using mobile RE tools to give end-users

their own voice, in: Proc. 18th IEEE International Conference on Require-
ments Engineering, pp. 37–46.

Shah, N., Dhanesha, A., Seetharam, D., 2009. Crowdsourcing for e-2580

Governance: Case study, in: Proc. 3rd International Conference on Theory
and Practice of Electronic Governance, pp. 253–258.

Sharifi, M., Fink, E., Carbonell, J.G., 2011. SmartNotes: Application of crowd-
sourcing to the detection of web threats, in: 2011 IEEE International Con-
ference on Systems, Man, and Cybernetics, pp. 1346–1350.2585

Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H., 2009. Models of
motivation in software engineering. Information and Software Technology
51, 219–233.

Sherief, N., 2014. Software evaluation via users’ feedback at runtime, in: Proc.
18th International Conference on Evaluation and Assessment in Software2590

Engineering, pp. 1–4.
Sherief, N., Jiang, N., Hosseini, M., Phalp, K., Ali, R., 2014. Crowdsourcing

software evaluation, in: Proc. 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 1–4.

Simon, H.A., 1960. The New Science of Management Decision. Harper &2595

Brothers.
Snijders, R., 2015. Crowd-Centric Requirements Engineering: A Method based

on Crowdsourcing and Gamification. Master’s thesis. Utrecht University.
Snijders, R., Dalpiaz, F., 2014. Crowd-centric requirements engineering, in:

Proc. 2nd International Workshop on Crowdsourcing and Gamification in2600

the Cloud.
Sobel, D., 1995. Longitude: The true story of a lone genius who solved the

greatest scientific problem of his time. New York: Walker.
de Souza, L.B.L., Campos, E.C., Maia, M.D.A., 2014. Ranking crowd knowl-

edge to assist software development, in: Proc. 22nd International Confer-2605

ence on Program Comprehension, pp. 72–82.
Standish, G., 1994. The chaos report. http://www.standishgroup.com/

sample research files/chaos report 1994.pdf. Accessed: 2015-
01-27.

Starov, O., 2013. Cloud platform for research crowdsourcing in mobile testing.2610

Master’s thesis. East Carolina University.
Stol, K.j., Fitzgerald, B., 2014a. Research protocol for a case

study of crowdsourcing software development. Available from:
http://sta↵.lero.ie/stol/publications, University of Limerick.

Stol, K.J., Fitzgerald, B., 2014b. Researching crowdsourcing software devel-2615

opment: Perspectives and concerns, in: Proc. 1st International Workshop on
CrowdSourcing in Software Engineering, pp. 7–10.

Stol, K.J., Fitzgerald, B., 2014c. Two’s company, three’s a crowd: A case
study of crowdsourcing software development, in: Proc. 36th International
Conference on Software Engineering, pp. 187–198. 2620

Stolee, K., Elbaum, S., 2013. Identification, impact, and refactoring of smells
in pipe-like web mashups. IEEE Transactions on Software Engineering 39,
1654–1679.

Stolee, K.T., Elbaum, S., 2010. Exploring the use of crowdsourcing to support
empirical studies in software engineering, in: Proc. 4th ACM-IEEE Inter- 2625

national Symposium on Empirical Software Engineering and Measurement,
pp. 1–4.

Stolee, K.T., Elbaum, S., Dobos, D., 2014. Solving the search for source code.
ACM Trans. Softw. Eng. Methodol. 23, 26:1–26:45.

Storey, M.A., Treude, C., van Deursen, A., Cheng, L.T., 2010. The impact of 2630

social media on software engineering practices and tools, in: Proc. FSE/SDP
Workshop on Future of Software Engineering Research, pp. 359–364.

Tajedin, H., Nevo, D., 2013. Determinants of success in crowdsourcing soft-
ware development, in: Proc. 2013 annual conference on Computers and peo-
ple research, pp. 173–178. 2635

Tajedin, H., Nevo, D., 2014. Value-adding intermediaries in software crowd-
sourcing, in: Proc. 47th Hawaii International Conference on System Sci-
ences, pp. 1396–1405.

Teinum, A., 2013. User Testing Tool Towards a tool for crowdsource-enabled
accessibility evaluation of websites. Master’s thesis. University of Agder. 2640

Tillmann, N., de Halleux, J., 2008. Pex-White Box Test Generation for .NET,
in: Beckert, B., Hhnle, R. (Eds.), Proc. 2nd International Conference on
Tests and Proofs. volume 4966 of Lecture Notes in Computer Science, pp.
134–153.

Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., 2011. TouchDevelop: 2645

Programming cloud-connected mobile devices via touchscreen, in: Proc.
10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, pp. 49–60.

Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R., 2014. E�cient crowd-
sourcing of unknown experts using bounded multi-armed bandits. Artificial 2650

Intelligence 214, 89–111.
Tsai, W.T., Wu, W., Huhns, M.N., 2014. Cloud-based software crowdsourcing.

IEEE Internet Computing 18, 78–83.
Tung, Y.H., Tseng, S.S., 2013. A novel approach to collaborative testing in a

crowdsourcing environment. Journal of Systems and Software 86, 2143– 2655

2153.
Usui, Y., Morisaki, S., 2011. An Approach for Crowdsourcing Software De-

velopment. Proc. Joint Conference of the 21st International Workshop on
Software Measurement and the 6th International Conference on Software
Process and Product Measurement , 32–33. 2660

Varshney, L.R., 2012. Participation in crowd systems, in: Proc. 50th Annual
Allerton Conference on Communication, Control, and Computing, pp. 996–
1001.

Vasilescu, B., Filkov, V., Serebrenik, A., 2013. StackOverflow and GitHub:
Associations between software development and crowdsourced knowledge, 2665

in: Proc. 2013 International Conference on Social Computing, pp. 188–195.
Vasilescu, B., Serebrenik, A., Devanbu, P., Filkov, V., 2014. How social Q&A

sites are changing knowledge sharing in open source software communities.
Proc. 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing , 342–354. 2670

Visconti, M., Cook, C., 2002. An overview of industrial software documenta-
tion practice, in: Proc. 22nd International Conference of the Chilean Com-
puter Science Society, pp. 179–186.

Vliegendhart, R., Dolstra, E., Pouwelse, J., 2012. Crowdsourced user inter-
face testing for multimedia applications, in: Proc. ACM multimedia 2012 2675

workshop on Crowdsourcing for multimedia, pp. 21–22.
Vukovic, M., Laredo, J., Rajagopal, S., 2010. Challenges and experiences in

deploying enterprise, in: Proc. 10th International Conference on Web Engi-
neering.

Wang, H., Wang, Y., Wang, J., 2014. A participant recruitment framework for 2680

crowdsourcing based software requirement acquisition, in: Proc. 9th IEEE
International Conference on Global Software Engineering, pp. 65–73.

Warner, J., 2011. Next steps in e-government crowdsourcing, in: Proc. 12th
Annual International Digital Government Research Conference on Digital
Government Innovation in Challenging Times, pp. 177–181. 2685

Watro, R., Mo�tt, K., Hussain, T., Wyschogrod, D., Ostwald, J., Kong, D.,

32

http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf

Bowers, C., Church, E., Guttman, J., Wang, Q., 2014. Ghost Map: Proving
software correctness using games, in: The 8th International Conference on
Emerging Security Information, Systems and Technologies.

Watson, C., Li, F.W.B., Godwin, J.L., 2012. BlueFix: Using crowd-sourced2690

feedback to support programming students in error diagnosis and repair, in:
Proc. 11th International Conference on Web-Based Learning, pp. 228–239.

Weyuker, E.J., 1982. On testing non-testable programs. The Computer Journal
25, 465–470.

White, D.R., Arcuri, A., Clark, J.A., 2011. Evolutionary improvement of pro-2695

grams. IEEE Transactions on Evolutionary Computation 15, 515–538.
Wightman, D., 2013. Search Interfaces for Integrating Crowdsourced Code

Snippets within Development Environments. Ph.D. thesis. Queen’s Univer-
sity.

Wolfson, S.M., Lease, M., 2011. Look before you leap: legal pitfalls of crowd-2700

sourcing. Proc. American Society for Information Science and Technology
48, 1–10.

Wu, F., Harman, M., Jia, Y., Krinke, J., Weimer, W., 2015. Deep parameter
optimisation, in: Proc. 17th Annual Genetic and Evolutionary Computation
Conference.2705

Wu, W., Tsai, W.T., Li, W., 2013a. An evaluation framework for software
crowdsourcing. Frontiers of Computer Science 7, 694–709.

Wu, W., Tsai, W.T., Li, W., 2013b. Creative software crowdsourcing: from
components and algorithm development to project concept formations. In-
ternational Journal of Creative Computing 1, 57–91.2710

Xiao, L., Paik, H.Y., 2014. Supporting complex work in crowdsourcing plat-
forms: A view from service-oriented computing, in: Proc. 23rd Australian
Software Engineering Conference, pp. 11–14.

Xie, T., 2012. Cooperative testing and analysis: Human-tool, tool-tool, and
human-human cooperations to get work done, in: Proc. 12th IEEE Inter-2715

national Working Conference on Source Code Analysis and Manipulation
(Keynote).

Xie, T., Bishop, J., Horspool, R.N., Tillmann, N., de Halleux, J., 2015. Crowd-
sourcing code and process via Code Hunt, in: Proc. 2nd International Work-
shop on CrowdSourcing in Software Engineering.2720

Xu, X.L., Wang, Y., 2014a. Crowdsourcing Software Development Process
Study on Ultra-Large-Scale System. Advanced Materials Research 989-994,
4441–4446.

Xu, X.L., Wang, Y., 2014b. On the Process Modeling of Software Crowdsourc-
ing Based on Competitive Relation. Advanced Materials Research 989-994,2725

4708–4712.
Xue, H., 2013. Using Redundancy to Improve Security and Testing. Ph.D.

thesis. University of Illinois at Urbana-Champaign.
Yan, M., Sun, H., Liu, X., 2014. iTest: Testing software with mobile crowd-

sourcing, in: Proc. 1st International Workshop on Crowd-based Software2730

Development Methods and Technologies, pp. 19–24.
Yuen, M.C., King, I., Leung, K.S., 2011. A survey of crowdsourcing systems,

in: Proc. 3rd Inernational Conference on Social Computing, pp. 766–773.
Zagalsky, A., Barzilay, O., Yehudai, A., 2012. Example Overflow: Using social

media for code recommendation, in: Proc. 3rd International Workshop on2735

Recommendation Systems for Software Engineering, pp. 38–42.
Zogaj, S., Bretschneider, U., 2013. Crowdtesting with testcloud - managing the

challenges of an intermediary in a crowdsourcing business model, in: Proc.
21st European Conference on Information Systems.

Zogaj, S., Bretschneider, U., Leimeister, J.M., 2014. Managing crowdsourced2740

software testing: A case study based insight on the challenges of a crowd-
sourcing intermediary. Journal of Business Economics 84, 375–405.

33

	1 Introduction
	2 Literature Search and Selection
	3 Definitions, Trends and Landscape
	3.1 Crowdsourcing
	3.2 Crowdsourced Software Engineering
	3.2.1 Claimed Advantages and Growth Trends
	3.2.2 Research Topics
	3.2.3 CSE Research Landscape

	4 Crowdsourcing Practice in Software Engineering
	4.1 Commercial Platforms
	4.2 Case Studies

	5 Crowdsourcing Applications to Software Engineering
	5.1 Crowdsourcing for Software Requirements Analysis
	5.2 Crowdsourcing for Software Design
	5.3 Crowdsourcing for Software Coding
	5.4 Crowdsourcing for Software Testing and Verification
	5.4.1 Crowdsourcing for Software Testing
	5.4.2 Crowdsourcing for Software Verification

	5.5 Crowdsourcing for Software Evolution and Maintenance
	5.5.1 Crowdsourced Software Evolution
	5.5.2 Crowdsourcing for Software Documentation
	5.5.3 Crowdsourcing for Software Localisation

	5.6 Crowdsourcing for Other Software Engineering Activities

	6 Issues and Open Problems
	6.1 Theory and Model Foundations
	6.2 Task Decomposition
	6.3 Planning and Scheduling
	6.4 Motivation and Remuneration
	6.5 Quality Assurance
	6.6 Unexplored Issues

	7 Opportunities
	7.1 Who is the Crowd?
	7.2 Speculative Crowdsourced Software Engineering
	7.3 Hybrid Crowdsourced Software Engineering
	7.4 Multi-Crowdsourced Software Engineering
	7.5 Iterative Crowdsourced Software Engineering

	8 Threats to Validity of this Survey
	9 Conclusions

