
Mobile App and App Store Analysis, Testing and
Optimisation

M. Harman, A. Al-Subaihin, Y. Jia, W. Martin, F. Sarro and Y. Zhang
University College London, CREST Centre UCLappA Group, London, WC1E 6BT, UK.

ABSTRACT
This talk presents results on analysis and testing of mo-
bile apps and app stores, reviewing the work of the UCL
App Analysis Group (UCLappA) on App Store Mining and
Analysis. The talk also covers the work of the UCL CREST
centre on Genetic Improvement, applicable to app improve-
ment and optimisation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]

Keywords
Mining Software Repositories, App Store Mining, App Store
Analysis, Software Testing, Energy Consumption

1. APP STORE ANALYSIS
This two page summary paper provides an outline of the

material presented in the keynote talk at MobileSoft 2016
by Mark Harman, with pointers to the literature for de-
tails of the results covered. The focus of the keynote is app
store mining and analysis. We start from the position that
app stores provide a wealth of information making them
well-suited to software repository mining. However, unlike
traditional software repository mining [15], app store min-
ing benefits from a combination of technical, business and
customer facing information [10].

App stores began to appear in 2008 and have quickly be-
come populated with millions of apps, instantly providing
feedback between users and developers. Early studies found
a correlation between rating and popularity [10]. This pro-
vided the initial evidence that developers would clearly need
to take an interest in such data, mined from app stores.
These findings have made the analysis of app reviews an in-
teresting research problem aimed at helping developers to
manage the wealth of information newly available to them
[7, 16, 17]. Nevertheless, care is required, because such re-
search must account for the app sampling problem [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobileSoft’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884791

App Stores can also be mined for relationships between
different apps (as well as the data available for a particular
app of interest). Such cross-app analysis can allow devel-
opers to understand the market place into which they seek
to deploy their products. The keynote covers recent results
on migration of features through app stores, obtained by
mining app descriptions [24]. It also briefly reviews recent
results [21, 19] on the impact of releases (relative to previous
performance). We argue that causal impact analysis has a
significant role to play in App Store Mining and Analysis.

There are many other exciting directions for App Store
Analysis, and time sadly only permits a few of these direc-
tions to be explored in the keynote. For example, Gorla et al.
[6] used API calls to understand how anomalous API calls
can highlight aberrant or otherwise suspicious behaviour,
while Syer et al. [25] used API calls to understand the
relationship between defects and platform dependence. A
comprehensive survey of App Store Analysis for Software
Engineering can be found in the authors’ recent survey [22].

2. APP TESTING AND OPTIMISATION
Recent advances in automated test input generation [11]

make it possible to automatically generate inputs that cover,
for example, white box structure or subtle faults that may be
present [9, 23]. Such advances in testing have helped make
possible a new approach to software improvement that has
come to be known as ‘Genetic Improvement’ [13, 18, 26].

Genetic Improvement treats the source code of an exist-
ing system as genetic material, using computational search
to find new versions of the system that improve some prop-
erty of interest, while remaining otherwise faithful to the
behaviour of the original. The original program is used as
test oracle [3], while automated test data generation is used
to assess faithfulness. Recent empirical results concerning
code uniqueness [5] and the graftability of code modifica-
tions from existing code bases [1] have provided evidence
that large existing systems contain a surprising amount of
useful ‘genetic material’ for such improvement.

From the point of view of mobile apps, there are many
attractive targets for genetic improvement, including energy,
bandwidth and execution time reduction. The keynote will
conclude with some recent results from our work on genetic
improvement for energy optimisation [4], deep parameter
exposition [27], dreaming smart phones [8] and automated
software transplantation [2, 12, 14], explaining how these
techniques can be used for mobile app optimisation.

Acknowledgement: Work funded by EPSRC programme grant

DAASE: Dynamic Adaptive Automated Software Engineering.

http://dx.doi.org/10.1145/2884781.2884791

3. REFERENCES
[1] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and

F. Sarro. The plastic surgery hypothesis. In 22nd

ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2014),
pages 306–317, Hong Kong, China, November 2014.

[2] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and
J. Petke. Automated software transplantation. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, July 12-17, 2015, pages
257–269, 2015.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Transactions on Software Engineering,
41(5):507–525, May 2015.

[4] B. Bruce, J. Petke, and M. Harman. Reducing energy
consumption using genetic improvement. In Genetic
and evolutionary computation conference (GECCO
2015), pages 1327–1334, Madrid, Spain, July 2015.

[5] M. Gabel and Z. Su. A study of the uniqueness of
source code. In 18th ACM SIGSOFT international
symposium on foundations of software engineering
(FSE 2010), pages 147–156, Santa Fe, New Mexico,
USA, 7-11 Nov. 2010. ACM.

[6] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
36th International Conference on Software
Engineering (ICSE 2014), pages 1025–1035, 2014.

[7] E. Guzman and W. Maalej. How do users like this
feature? a fine grained sentiment analysis of app
reviews. In Requirements Engineering (RE 2014),
pages 153–162, Aug 2014.

[8] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H.
Moghadam, S. Yoo, and F. Wu. Genetic improvement
for adaptive software engineering. In 9th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2014), pages 1–4,
New York, NY, USA, 2014. ACM.

[9] M. Harman, Y. Jia, P. R. Mateo, and M. Polo. Angels
and monsters: an empirical investigation of potential
test effectiveness and efficiency improvement from
strongly subsuming higher order mutation. In
ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14), pages 397–408, 2014.

[10] M. Harman, Y. Jia, and Y. Zhang. App store mining
and analysis: MSR for App Stores. In 9th Working
Conference on Mining Software Repositories (MSR
2012), Zurich, Switzerland, 2-3 June 2012.

[11] M. Harman, Y. Jia, and Y. Zhang. Achievements,
open problems and challenges for search based
software testing (keynote). In 8th IEEE International
Conference on Software Testing, Verification and
Validation (ICST 2014), Graz, Austria, April 2015.

[12] M. Harman, W. B. Langdon, and Y. Jia. Babel pidgin:
SBSE can grow and graft entirely new functionality
into a real world system. In SSBSE, 2014.

[13] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the pareto program surface using genetic
programming to find better programs (keynote paper).
In 27th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2012), pages
1–14, Essen, Germany, September 2012.

[14] M. Harman, W. B. Langdon, and W. Weimer. Genetic
programming for reverse engineering (keynote paper).
In R. Oliveto and R. Robbes, editors, 20th Working
Conference on Reverse Engineering (WCRE 2013),
Koblenz, Germany, 14-17 October 2013. IEEE.

[15] A. E. Hassan. The Road Ahead for Mining Software
Repositories. In Proceedings of the Interlational
Conference on Frontiers of Software Maintenance
(FoSM ’08), pages 48–57, Beijing, China, 28 Sept.-4
Oct. 2008. IEEE.

[16] C. Iacob and R. Harrison. Retrieving and Analyzing
Mobile App Feature Requests from Online Reviews.
In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), San
Francisco, California, USA, 18-19 May 2013.

[17] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan.
What do mobile app users complain about? A study
on free iOS apps. IEEE Software, 32(3):70–77, 2014.

[18] W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE
Transactions on Evolutionary Computation (TEVC),
19(1):118–135, Feb 2015.

[19] W. Martin. Causal impact for app store analysis. In
ICSE Student Research Competition, 2016.

[20] W. Martin, M. Harman, Y. Jia, F. Sarro, and
Y. Zhang. The app sampling problem for app store
mining. In 12th IEEE/ACM Working Conference on
Mining Software Repositories, MSR 2015, Florence,
Italy, May 16-17, 2015, pages 123–133, 2015.

[21] W. Martin, F. Sarro, and M. Harman. Causal impact
analysis applied to app releases in google play and
windows phone store. Technical Report RN/15/07,
UCL Computer Science Department, December 2015.

[22] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and
M. Harman. A survey of app store analysis for
software engineering. Technical Report RN/16/02,
UCL Computer Science Department, January 2016.

[23] E. Omar, S. Ghosh, and D. Whitley. Comparing search
techniques for finding subtle higher order mutants. In
Conference on Genetic and Evolutionary Computation
(GECCO 2014), pages 1271–1278. ACM, 2014.

[24] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang. Feature lifecycles as they
spread, migrate, remain, and die in app stores. In 23rd
IEEE International Requirements Engineering
Conference, RE 2015, Ottawa, ON, Canada, August
24-28, 2015, pages 76–85, 2015.

[25] M. D. Syer, M. Nagappan, B. Adams, and A. E.
Hassan. Studying the relationship between source code
quality and mobile platform dependence. Software
Quality Journal, 2014. To appear; available online.

[26] D. R. White, J. Clark, J. Jacob, and S. Poulding.
Searching for resource-efficient programs: Low-power
pseudorandom number generators. In 2008 Genetic
and Evolutionary Computation Conference (GECCO
2008), pages 1775–1782, Atlanta, USA, July 2008.

[27] F. Wu, M. Harman, Y. Jia, J. Krinke, and
W. Weimer. Deep parameter optimisation. In Genetic
and evolutionary computation conference (GECCO
2015), pages 1375–1382, Madrid, Spain, July 2015.

