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Abstract 

 

This thesis examines the electrochemical reduction of metal oxides in molten salts 

for nuclear reprocessing applications. This is of particular importance for the 

development of Gen IV nuclear power plants, where if pyroprocessing was to be 

implemented, electro-reduction and refining of spent nuclear fuel are two main 

steps in reprocessing. The objective of this research is to characterise and 

understand the direct electrochemical reduction of UO2 to U metal in a LiCl-KCl 

molten salt eutectic, as part of the nuclear pyroprocessing scheme, following a 

similar approach to the FFC Cambridge Process for the reduction of TiO2 to Ti 

metal. The voltammetric behaviour of reduction processes of metal oxides were 

evaluated using electroanalytical techniques such as cyclic voltammetry and 

chronoamperometry on different precursor types, such as thermally grown thin 

oxide films, metallic cavity electrodes, and ‘a fluidised cathode’, a novel system 

that was developed within this work. Material was characterised before and after 

the electroanalytical experiments using scanning electron microscopy, X-ray 

energy dispersive spectroscopy and X-ray diffraction. 

Predominance phase diagrams, using recent thermodynamic data, for metal-molten 

salt systems, relating the potential to the negative logarithm of the activity of O
2-

 

ions (E-pO
2-

), were produced for the range of spent nuclear materials (U, Pu, Np, 

Am, Cm, Cs, Nd, Sm, Eu, Gd, Mo, Tc, Ru, Rh, Ag and Cd species), in both LiCl-

KCl at 500 °C and NaCl-KCl at 750 °C. The two salt eutectics were chosen as they 

are the two main systems for pyroprocessing in the UK and US; temperatures were 

selected within each salt’s normal operating range. All of the diagrams show 

regions of stability for the different metal species, their oxides and chlorides at unit 

activity; however, this activity can be altered in accordance with the equations 

derived. Examples of selective electrochemical reduction are also demonstrated for 

potential spent fuel reprocessing in both salt systems. In addition, the effects of 
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altering the operating temperature on the regions of stability within the diagrams 

are also investigated. 

The bulk of this research was on investigating the electrochemical reduction of 

WO3 to W metal. Tungsten was selected as a chemical surrogate for uranium, due 

to their similar physical and chemical properties, to investigate specific 

electrochemical reduction and process parameters. Nonetheless, tungsten is an 

important and desirable refractory metal because of its physical and chemical 

properties, and the electrochemical route for producing it of high purity might 

prove viable. The electrochemical reduction of WO3 to W metal has been assessed, 

alongside a predominance diagram that was developed for the Li-K-W-O-Cl 

system, and it likely to occur as following the reaction mechanisms: WO3 → WO2 

→ W. A full reduction using the fluidised cathode process, with complete 

conversion of the product to W was achieved, via applying a constant potential of -

2.14 V, with a high Faradaic efficiency. The reduction process is split into two 

sections; the first where rapid reduction of WO3 occurs, the second where a slower 

reduction of the remaining oxides in the product takes place. The deposited 

material on the current collector is in the form of homogeneously distributed 

particles. 

Parameters, such as the metal oxide-salt ratio and the fluidisation rate, were 

investigated, and depending on the desired means of recovery of the product, i.e. a 

continuous flow retrieval or batch via removal of electrodes, these conditions can 

be altered to suit. Particle coulometric analysis was also carried out, and an 

electrochemical deposition model was also developed to estimate the porosity of 

the deposit and the rate of its growth over time. 

Finally, the electrochemical reduction of UO2 to U metal using the fluidised 

cathode process was investigated. Voltammetry studies were conducted, and 

alongside a predominance diagram that was constructed, the reaction path-way was 

studied, and it is likely to take place following two different reaction mechanisms; 

UO2 → U, via a 4-electron transfer step reaction; and UO2 → UO → U, via two 2-

electron step reactions. The route the reduction process follows depends on pO
2-
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and potential, which is highly influenced by the type of metal oxide precursor used, 

metallic cavity packed electrode or a fluidised cathode. 

The main reduction potential using the fluidised cathode appeared to be -2.2 V. A 

Faradaic current efficiency for the process was established, and found to be ~ 92%. 

However this is a very rough estimate. The reduction process is split into three 

sections; the first where a seeding process takes place at a low potential to allow 

for the reduced uranium particles to be deposited onto the tungsten current 

collector; the second where rapid reduction of UO2 particles takes place with a 

growth in electrode size accompanied by an increase in current being passed; the 

third where a slower reduction of the remaining oxides in the product occurs. As is 

the case with the electrochemical reduction of tungsten oxide, the reduced product 

can be collected from two areas; the deposit on the current collector’s surface and 

the bottom of the reactor crucible.  

The fluidised cathode is a robust, three-phase, high efficiency process. It was 

studied here for the electrochemical reduction of WO3 and UO2, however, it is 

likely applicable for other spent fuel oxides (such as UO3 and PuO2), and in the 

production of refractory metals, such as titanium. Another proposed advantage of 

using the fluidised cathode process is that it would eliminate certain steps in the 

preparation of the precursor and recovery of the reduced metal in the FFC 

Cambridge process with associated cost reductions. 
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1. Introduction 

The world’s energy consumption increases with the growth of economies, and 

demand is expected to increase by a factor of 1.5-3 by 2050. Furthermore, 

standards of living are directly related to the availability of electricity, for which 

the demand is expected to be twice as large by 2050 as well [1]. The majority of 

global electricity is derived from the burning of fossil fuels, which produces 

greenhouse gases (GHG) that are large contributors to global climate change. 

Though the use of renewable energy resources continues to develop, it is still not 

satisfactory for fulfilling energy demands [2]. Figure 1.1 shows the breakdown of 

the world electricity generation by source of energy, in 1971 and 2010. Nuclear 

energy for electricity generation offers large-scale low-carbon energy production, 

but suffers with challenges such as the handling of radioactive waste materials.  

For low and intermediate level waste (LILW) disposal facilities already exist in 

twenty three countries around the world. As for high level waste (HLW) no such 

facilities exist. However, there are storage facilities in operation. The disposal of 

HLW is the only step in the civilian nuclear fission cycle with no large scale 

facilities in operation yet [3]. 

The reprocessing of spent nuclear fuel is important as it can reduce the amount of 

waste to be disposed of, and lessens the indirect environmental footprint. Most of 

the GHG emissions associated with nuclear power come from construction (40%), 

mining activities (32%) and enrichment (12%); whereas, conversion, disposal and 

reprocessing are only responsible for 5, 2 and 7% respectively [4]. Therefore, by 

reducing or forfeiting the mining and the enrichment steps, via reprocessing, the 

GHG emissions would be significantly reduced.  

While the reprocessing of some of the spent fuel materials increases the efficiency 

of the fuel-cycle, the reprocessing of other materials, such as the minor actinides, is 

only important for the public acceptance of civilian nuclear power. Also, the more 
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materials are reprocessed, the less space will be needed for underground storage in 

the future. 

 

Figure 1.1 - World electricity generation by source of energy [5]. 

 

High temperature molten salt reprocessing technology (pyroprocessing) offers a 

range of advantages when compared to aqueous reprocessing techniques. This is 

due to the fact that the technology is inherently ‘safe’ as it is resistant to 

proliferation and does not provide an environment for criticality accidents to occur; 

it also utilises compact easily accessible facilities.  

The aim of this research is to develop the understanding of spent nuclear materials 

behaviour in molten salts, via thermodynamic and electrochemical techniques, and 

to investigate electrochemical reduction processes from oxides to metals, which 

can prove to be significant in future generation IV nuclear power plants. New 

reactor designs are investigated as well, to improve the efficiency of such 

processes. 

This thesis consists of a literature review where a concise background of nuclear 

pyroprocessing, molten salts, electrochemical reduction, and spent nuclear 

materials in molten salts is given. This is followed by an experimental Chapter 

where a background of the electrochemical techniques and characterisation 

techniques is included, in addition to specific experimental designs used later in 

this work. A theoretical Chapter where predominance diagrams, summarising the 

thermodynamic and electrochemical behaviour of spent nuclear materials in molten 

salts, were produced is also included. Then, two experimental Chapters were the 

electrochemical reduction of WO3 and UO2 were investigated. Finally, this is all 

summarised in the conclusion, where also suggestions for future work were 

provided. 
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2. Background Review 

This Chapter aims to present a critical review of the relevant literature and has been 

split into sections that cover: a background review on nuclear energy and 

reprocessing technologies, molten salts and their applications, electrochemical 

reduction processes for metals production in molten salts, fluidised bed electrode 

technologies, and the electrochemistry of spent nuclear materials in molten salts 

found in the literature.  

2.1 Nuclear fuel cycle 

The closed nuclear fuel cycle is outlined in Figure 2.1 and comprises of the 

following main steps: 

1. Mining and milling of the ore (the creation of the ‘yellow cake’). 

2. Purifying the ore and enriching of the fissile U
235

 content, if needed, 

then manufacturing the fuel. 

3. Utilising the fuel in various reactor types, normally as fuel pellets in 

fuel rods. This is different for different reactors. 

4. Reprocessing of the spent fuel at the end of its life time, where 

separating and recycling of uranium and plutonium occurs. 

5. Safe and secure disposal of the remaining radioactive waste. 

To close the back-end of the nuclear fuel cycle, uranium and plutonium are 

reprocessed, then recycled back into fuel for reactors. These reprocessing steps are 

highlighted in red in Figure 2.1. This is called the ‘twice through cycle’. Ignoring 

reprocessing and the direct disposal of HLW into repositories is called the ‘once 

through cycle’. Nonetheless, most legacy waste produced from nuclear power 

plants is in long term storage. This is not a permanent solution, but serves the quest 

of buying time to deal with nuclear waste materials some decades in the future [6]. 

Thus, for a sustainable nuclear power future, reprocessing of spent fuel material is 

vital. 
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Figure 2.1 - The nuclear fuel cycle. 

 

 

2.2 Nuclear reactors 

Nuclear reactors are either thermal or fast reactors. They are classified by their 

purpose, by the type of moderator used to slow down neutrons, by the type of fuel 

or type of coolant used in them. The main purpose for using nuclear reactors is 

power generation; however, they are also used for research, testing and for the 

production of materials such as radioisotopes [7]. The principle types of nuclear 

reactors and their total net electrical capacities are summarised in Table 2.1. 
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Table 2.1 - World operational nuclear reactors in 2015 [8]. 

Reactor 

type 

 

Description 

Number 

of 

reactors 

Total net 

electrical 

capacity (MW) 

BWR Boiling light-water-cooled and moderated reactor 78 74686 

FBR Fast breeder reactor 2 580 

GCR Gas-cooled, graphite-moderated reactor 15 8175 

LWGR Light-water-cooled, graphite-moderated reactor 15 10219 

PHWR Pressurised heavy-water-cooled and moderated reactor 49 24549 

PWR Pressurised light-water-cooled and moderated reactor 278 259777 

Total  437 377986 

 

The first generation of reactors that was used in the United Kingdom was the gas-

cooled Magnox reactor. The following generation was the GCRs. The first PWR 

came much later, at Sizewell B. The majority of nuclear reactors in operation 

worldwide are light water reactors, especially PWRs. 

Due to the phenomenon of nuclear decay, spent reactor fuel continues to give off 

heat even after the reactor has been shut down and the fission reactions have 

stopped. The graph in Figure 2.2, below, shows the heat given off by spent fuel 

from different reactors after shut down. Naturally, the heat release is highest when 

the spent fuel is first removed from the reactor and as time passes, it reduces 

significantly. 

 

Figure 2.2 - Heat release from spent nuclear fuel [9]. 
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In order to reduce the decay heat, spent nuclear fuel is stored in cooling water 

ponds for a relatively short time when first removed from the reactor. Carbon 

dioxide ponds have also been employed; however, they are not always suitable; for 

example, they cannot be used for spent fuel from Magnox reactors, as the 

magnesium moderator would form magnesium hydroxide [6]. PWRs’ spent fuel 

can be stored for a very long time in cooling water ponds, which adds to the 

advantages of using them in power plants. Cooling ponds are maintained cool by 

using commercial heat exchangers and are easy to operate. However, there is a risk 

of reaching ‘criticality’; this is when the pond itself starts acting as a nuclear 

reactor, when PWR, BWR and GCR spent fuel is being stored. For reactors that 

use natural uranium fuel, such as Magnox and PHWR, there is no criticality 

problem [9]. 

After the cooling off period is over, the fuel is transported from the ponds in safety 

flasks to reprocessing and discharge facilities. 

2.3 Nuclear reprocessing 

Reprocessing of irradiated nuclear fuel first started in the USA, in the 1940s; 

precipitation followed solvent extraction was used then. This was to separate 

weapons-grade plutonium from spent fuel materials. For the Manhattan Project, the 

plutonium-uranium extraction (PUREX) process was employed. In the PUREX 

process, uranium and plutonium are extracted, leaving fission products in the HLW 

disposal stream [10]. Two decades later, the UK and France adopted and modified 

the PUREX process, developing second generation reprocessing plants. Similarly, 

at different scales, improvements to the PUREX process took place in Belgium, 

Germany, Japan, Russia, China and India. In the 1980s, the UK and France 

developed the process further and established third generation civil reprocessing 

plants, where discharge of radioactive waste into the environment was reduced 

significantly. These facilities produced a mixture of non-weapons-grade uranium 

and plutonium called mixed oxide (MOX) fuel [11]. In the UK, however, these 

facilities have been closed recently. Table 2.2 shows the nuclear civil reprocessing 

plants around the world, and their capacities in 2014. 
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Table 2.2 - World commercial reprocessing capacity in 2014 [12]. 

Location (and design) Reactor, fuel type Capacity (t/year) 

UK, Sellafield (THORP) Thermal, oxide 600 

UK, Sellafield (Magnox) Thermal, metal 1500 

France, La Hague (UP2-800, UP3) Thermal, oxide 1700 

Japan, Rokhashamura Thermal, oxide 800 

Japan, Tokai Mura Thermal, oxide 40 

Russia, Ozersk (Mayak) Thermal, oxide 400 

India (PHWR, 4 plants) Thermal, metal 330 

 

In the following sections, the two main nuclear reprocessing techniques, aqueous 

reprocessing and pyroprocessing are described. 

2.3.1 Aqueous reprocessing 

In aqueous reprocessing solvent extraction technologies are used. In most spent 

fuel reprocessing plants, the fuel is dissolved in nitric acid to aid the process. 

Equations 2.1-4 are the main dissolution reactions that take place between spent 

uranium species and nitric acid [11]. In the PUREX process, a solvent consisting of 

tri-butyl phosphate (TBP) dissolved in hydrocarbon diluent is contacted with a 

solution of dissolved nuclear fuel in nitric acid to extract uranium and plutonium, 

leaving fission products for disposal [10]. The separation process consists of four 

main steps; extraction, scrubbing, stripping and washing. This is demonstrated in 

Figure 2.3. 

 

3𝑈𝑂2 + 8𝐻𝑁𝑂3 → 3𝑈𝑂2(𝑁𝑂3)2 +𝑁𝑂 + 4𝐻2𝑂                  2.1 

𝑈𝑂2 + 4𝐻𝑁𝑂3 → 𝑈𝑂2(𝑁𝑂3)2 + 2𝑁𝑂2 + 2𝐻2𝑂                 2.2 

𝑈3𝑂8 + 7.5𝐻𝑁𝑂3 → 3𝑈𝑂2(𝑁𝑂3)2 +𝑁𝑂2 + 0.35𝑁𝑂 + 3.65𝐻2𝑂             2.3 

𝑈𝑂3 + 2𝐻𝑁𝑂3 → 𝑈𝑂2(𝑁𝑂3)2 +𝐻2𝑂                  2.4 

 

Mixer-settlers are used for the extraction. They consist of two compartments and 

use equilibrium contactors, where the step concentration profile is the aqueous 

phase and the solvent is passed from one stage to another. This technology is 

implemented in Sellafield, La Hague and Rukhshamura [11]. 
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Figure 2.3 - Solvent extraction for used nuclear fuel (UNF). 

 

The species in spent fuel that contribute the most to long-term radiotoxicity are the 

minor actinides, mainly Am, Cm, Np and Pu. Plutonium is recovered in the 

PUREX process, and neptunium can also be recovered in advanced PUREX 

processes. Other solvent extraction processes have been developed to extract the 

other minor actinides from the lanthanides, such as the transuranic extraction 

(TRUEX) for the removal of americium and curium, and the selective actinide 

extraction (SANEX) processes [13]. 

Solvent extraction for nuclear aqueous reprocessing suffers from a few drawbacks, 

primarily in terms of nuclear proliferation, as it provides a route for the separation 

of weapons-grade plutonium as a single species. Another concern, is that it 

employs solvents that contain hydrogen and carbon, which are neutron moderators, 

creating a criticality accident risk. 
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2.3.2 Pyroprocessing 

Pyrochemical processing or pyroprocessing is a non-aqueous high temperature 

electrochemical method for the refinement and separation of irradiated spent 

nuclear fuel. It employs molten salts as solvents [14]. It is generally a desired 

scheme as it exploits more compact facilities than in solvent extraction, which is 

economically favourable for decontamination, it also requires a shorter cooling 

period for irradiated fuel, and it is a criticality accident risk-free process. Different 

process systems and salts have been studied in pyroprocessing, most of which are 

summarised in a Nuclear Energy Agency (NEA) report [15].  

There are currently two main molten salt technology processes in existence, both 

using chloride salts as electrolytes; one in the USA at the Argonne National 

Laboratory (ANL) using LiCl-KCl eutectic, for metallic fuel for the Integral Fast 

Reactor (IFR), and one in Russia at the Research Institute for Atomic Reactors 

(RIAR) using NaCl-KCl eutectic, for oxide fuel for the Fast Breeder Reactor 

(FBR) [16]. Both processes are outlined in Figure 2.4. Another major difference 

between the ANL and the RIAR pyroprocessing systems is the removal of 

cladding. At RIAR cladding is removed before the pyrochemical refining stage, as 

is the practice in solvent extraction. This creates a radioactive waste stream. At 

ANL, it has been proposed that the zirconia fuel cladding is removed in-situ in the 

reprocessing stage via chlorination [17]. Equation 2.5 shows this dissolution 

reaction [18]. On a smaller scale, advances have been made in molten salt nuclear 

pyroprocesses in Europe and Japan as well [19-24]. 

 

𝑍𝑟𝑂2 + 2𝐶𝑙2 → 𝑍𝑟𝐶𝑙4 + 𝑂2                           2.5 

 

Pyroprocessing is a desirable technology due to its inherent safety features, its 

ability to recover most fission products, and also because it is proliferation 

resistant, as it does not conventionally allow for the separation of weapons-grade 

plutonium as a single species, dissimilarly to the aqueous solvent extraction 

reprocessing schemes. Pyroprocessing remains in the R&D and pilot plant scales. 

Its facilities also require to be sealed from the atmosphere, and thus maintenance is 

very important. It also employs much higher temperatures than solvent extraction. 
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However, there is a clear motivation for implementing Generation IV nuclear 

reactors, which require metal as start-up fuel and follow a fully integrated and safe 

reactor and reprocessing design arrangements, hence, advances in the technology 

are made. 

 

 

Figure 2.4 - Closed fuel cycles based on pyroprocessing developed at ANL (right 

branch) and RIAR (left branch) (Note: dismounting should read disassembling in the 

top box of the diagram) [25]. 
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2.4 Molten salts 

Molten salts are used extensively in the chemical industry. Their established 

applications are in the production of pure metals, such as aluminium, magnesium 

and sodium. They also have other important applications that are not fully 

exploited, which include molten salts fuel cells and batteries, catalysis, in the glass 

industry, and in solar power and energy storage [26]. 

In this section, a review of the characteristics and applications of molten salts as 

electrolytes is given. 

2.4.1 Molten salt electrolysis 

Molten salt electrolysis can be used for the electro-winning, refining and plating of 

refractory metals (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W). The conversion of metals 

from their ores to their finished refractory stage is both energy and capital 

intensive. The electrochemical process scheme is a natural solution for these 

demands, as it significantly reduces operating costs through increasing the 

efficiency of the recovery of metals [27]. 

For most refractory metals electro-hydrometal-lurgical routes are not feasible for 

production, due to one or more of the following reasons [28]: 

1. Most of these metals can only be electrodeposited at potentials more 

negative than those required for hydrogen evolution, as thermodynamic 

data shows. 

2. The metals rapidly become protected by oxide films in oxidising 

environments. This can be a problem in fused salt systems too. 

3. Metallic ions often get transformed to stable oxy-cations in aqueous 

solutions. Metallic ions with low oxidation states reduce water (e.g. Ti
2+

), 

and those with high oxidation states oxidise water (e.g. Ti
5+

). 

As a result of these factors, the use of molten salts as solvents for electrolytic 

processes in metals production has emerged. The industrial applications of molten 

salts have been well acknowledged for more than a century. The commercial 

production of Al, Mg, Na, K, Li and Be make use of molten salt electrolysis 

processes [29]. However, the major processing routes for most refractory metals 
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are thermal, although most of them have also been extracted, refined or formed via 

molten salt electrolysis in laboratory or pilot plant scale [28]. 

2.4.2 Advantages of using molten salts as electrolytes 

Molten salts are non-aqueous electrolytes. One of their best features is their large 

electrochemical window, which allows for a large variety of electrochemical 

processes to be carried out, as alkaline earth halides in salts have very negative 

Gibbs energies of formation, hence molten salts have a high decomposition 

potential, nonetheless this potential can be reduced by lowering the activity of the 

metal [28]. There is also a large number of different salts, salt mixtures and salt 

eutectics to choose from, with a wide temperature range (e.g. LiCl-KCl molten at 

352 ˚C and operational at much higher temperatures). This allows for the various 

electrochemical reactions and their rates to be controlled via temperature. Hence, 

molten salts are defined into two categories; high temperature salts (above 700 ˚C) 

and low temperature salts (below 700 ˚C) [30]. In addition, molten salts have a 

good ionic conductivity range (2-9 (Ω cm)
-1

) [31]. 

When comparing molten salts to aqueous solutions, molten salts have the capacity 

to dissolve materials to a very high concentration. This high solubility results in a 

high limiting current density, and hence high productivity [32]. Chemical reactions 

between the metal ions and the solvent are generally absent in molten salt 

processes. However, due to the variety of metal oxidation states, interactions 

between the metal ions and the solvent must be carefully monitored. 

In a reaction vessel, when a cold metal electrode is immersed into the molten salt 

solvent, a thin film of solid salt forms on the metal surface, acting as a temporary 

insulator, this reduces any thermal shock from taking place. This thin film and the 

high heat and wetting properties of salts cause the so called ‘preheating effect’, 

where rapid heat transfer through conduction takes place. Similarly, when the 

metal electrodes are removed from the vessel a thin liquid film forms on the 

surface. This helps in the protection and the cooling down of the final product. 

Also, when the reaction vessel is sealed from the environment, oxide formation and 

scaling effects of the materials are eliminated. This lessens maintenance problems 

[33].  
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Molten salt processes are also relatively low in initial costs. The reactor vessels 

normally have easy accessibility, regardless of  how complex the system may be, 

and the final retrieved product is typically of high purity [29]. 

The intensive research on the subject over the past century has determined the 

various physical, chemical and thermodynamic properties of molten salt systems to 

a high standard. Nevertheless, until recently, not many innovative processes of 

using molten salt electrolysis for metal production have been developed [34]. 

2.4.3 Disadvantages of using molten salts as electrolytes 

Despite the many advantages of using molten salts as electrolytes, there are a 

number of disadvantages. One of which is that the metal deposits produced by 

molten salt electrolysis are usually dendritic and/or powdery mixed with salt, 

which leads to a recovery process that is usually energy intensive and requires a 

consolidation process, which involves leaching, grinding and floatation procedures. 

Large scale molten salt processes can also prove to be difficult, as peripheral 

handling facilities are normally employed. Also, the insolubility of the high 

valence metal halides (mainly chlorides) can form cluster-type compounds within 

the electrolytic melt, which can complicate the process [28]. Another issue is the 

formation of CO2/CO at the ‘inert’ anode, which is ordinarily a form of carbon. 

This could back-react with the metal deposited. 

Due to the corrosive nature of molten salts when exposed to the environment 

(oxygen), reactor vessels and electrode materials can become damaged if not 

handled appropriately [29]. Serious health hazards can also arise from molten salt 

processes. This is due to their high operating temperatures and chemical reactions, 

which can yield toxic fumes. However, these hazards can be eliminated by proper 

design and planning, taking risk precautions, and the periodic cleaning and 

replenishment of salts and equipment [33]. 

2.4.4 Operating temperatures of molten salts 

Frequently, mixtures of molten salts are used instead of a single salt. These 

mixtures are binary, ternary and sometimes even quaternary. They usually have 

much lower melting temperatures than pure salt constituents. This allows for 
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manipulations of the system’s chemistry and temperature, to achieve desired 

operating designs. Table 2.3 shows the melting points of a few selected salts and 

salt mixtures.  

 

Table 2.3 - Melting temperatures of salt mixtures and pure salt constituents [31, 35]. 

 

Constituents 

 

Amounts (mol%) 

Melting 

point (˚C) 

Usual 

temperature 

used at (˚C) 

Pure 

constituents 

Melting 

point (˚C) 

LiCl-KCl 59-41 (eutectic) 352 450-500 CaCl 772 

NaCl-KCl 50-50 658 725-750 LiCl 610 

MgCl2-NaCl-KCl 50-30-20 396 475 NaCl 801 

AlCl3-NaF 50-50 154 175 MgCl2 714 

BF3-NaF 50-50 408  KCl 770 

AlF3-NaF 25-75 1009 1080 AlCl3 192* 

    NaF 995 

    AlF3 1272* 

*Under pressure 

 

Some molten salt mixtures form eutectics, which have a unique minimum melting 

point, at a distinctive molar composition of the salt components. LiCl-KCl is such a 

eutectic; its phase diagram is depicted in Figure 2.5. Eutectics are common in 

chemistry, when two or more species, with their own bulk lattice arrangements, 

strike a unique composition forming a superlattice, that can release all its 

components at once into a liquid mixture at a much lower distinct temperature [36].  

 

 

Figure 2.5 - Liquid state domains (non-shaded zones) of salt mixtures [35]. 
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2.4.5 Conductance of molten salts 

Molten salts have high ionic conductance, especially chlorides, which makes them 

ideal mediums for electrolytic processes. Figure 2.6 shows the specific ionic 

conductance of some pure molten salts at different temperatures. The high 

conductance of lithium chloride is particularly notable. When using salt mixtures, 

their specific conductance can be calculated using Equation 2.6, where a, b and c 

are parameters tabulated by Van Artsdaled and Yaffe [37] for different molar 

compositions of various salt mixtures and temperature ranges. 

 

𝑘 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2     2.6 

 

Where, k is the specific conductance in mho cm
-1

; 

 T is the temperature in ˚C. 

 

 

Figure 2.6 - Specific conductance of pure molten salts vs. temperature [37]. 

 

2.4.6 Density of molten salts 

Molten salts possess relatively low densities, which contribute to them having good 

diffusion and dissolution properties. The densities of some molten salt eutectic 
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mixtures at different temperatures are presented in Figure 2.7. The relatively low 

density of LiCl-KCl eutectic is noteworthy, as it inhances transport phenomena in 

the fused salt. The density of pure salts and various salt mixtures can be calculated 

using Equation 2.7, where a and b are constants also published by Van Artsdaled 

and Yaffe [37] for different molar compositions of various salt mixtures and 

temperature ranges. 

 

𝜌 = 𝑎 − 𝑏𝑇                        2.7 

 

Where,   is the density in g cm
-3

; 

 T is the temperature in ˚C.  

 

 

Figure 2.7 - Density of molten salt eutectic mixtures vs. temperature [38]. 

 

2.5 Electrochemical reduction of metal oxides in molten salts 

2.5.1 The Fray Farthing Chen (FFC) Cambridge process 

The FFC Cambridge process [39] is a novel approach for producing titanium metal 

from titanium oxide using molten salt electrolysis. Titanium has many advantages 

over other metals, in terms of weight, density, corrosion, maintenance and lifetime 

costs. However, its usage remains restricted due to its high production costs, and 

hence raw material cost [40]. The conventional method for producing metal 
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titanium is via the Kroll process [41]. In this process, TiCl4 is reduced with pure 

magnesium in a molybdenum-lined crucible, in the presence of pure argon, at a 

temperature of 1000 ˚C. It is then separated from magnesium salts by leaching and 

acid treatment. The titanium metal in powder form is then compressed into bars 

and melted in special vacuum apparatus. The Kroll method for producing titanium 

metal is an expensive and complex procedure; Kroll himself predicted that his 

process would be replaced by an electrochemical process.  

Since the 1950s and for forty years, research was underway in search of a new and 

cheaper method for titanium metal production, until the FFC Cambridge process 

was discovered in the late 1990s. The FFC Cambridge process is a novel 

electrolytic method for reducing metal oxide to metal in a molten salt medium. It 

was patented globally in 1998 [42, 43].  

For the direct reduction of titanium oxide to metallic titanium, a qualified reducing 

agent, R, needs to be selected to remove the oxygen according to Equation 2.8. 

 

𝑇𝑖𝑂𝑥 + 𝑥𝑅 ↔ 𝑇𝑖 + 𝑥𝑅𝑂      2.8 

 

The thermodynamic affinity of oxygen to R should be higher than to titanium. 

Reducing agents such as aluminium and carbon pollute and decrease the quality of 

the titanium metal produced. Only calcium and rare earth metals can reduce the 

remaining oxygen in the metal to less than 1000 mass ppm [44]. The reduction of 

titanium oxide chemically using calcium was proposed long before the FFC 

Cambridge process, however it was not considered due to the fact that calcium 

forms a CaO film on the titanium surface, which physically hinders the successive 

reduction by calcium. This is illustrated in Figure 2.8(a). The use of molten CaCl2 

salt as the electrolytic medium in the FFC process eliminates this problem, as 

CaCl2 can dissolve amounts as large as 20 mol% of CaO and a few mol% of 

calcium. Hence, the CaO film would be removed as illustrated in Figure 2.8(b) 

[45]. This is the basis of the Ono-Suzuki (OS) process [46]. 
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Figure 2.8 - Calcium reduction of TiO2. (a) Calcium reduction. (b) Calcium reduction 

in molten CaCl2. 

 

There are two proposed mechanisms for the electrochemical reduction of titanium 

oxide in molten CaCl2. These are as follows: 

1. Deposition of calcium at a more cathodic potential followed by a chemical 

reaction: 

 

𝐶𝑎2+ + 2𝑒− ↔ 𝐶𝑎       2.9 

𝑇𝑖𝑂𝑥 + 𝑥𝐶𝑎 ↔ 𝑇𝑖 + 𝑥𝐶𝑎𝑂     2.10 

 

2. Electrochemical reduction of Ti to release its oxide: 

 

𝑇𝑖𝑂𝑥 + 2𝑥𝑒
− ↔ 𝑇𝑖 + 𝑥𝑂2−    2.11 

 

In the first mechanism, the OS process, as presented in Equations 2.9 and 2.10, 

calcium is deposited on the titanium oxide cathode; it reacts with the titanium 

oxide on the surface forming CaO, which is soluble in CaCl2. In the second 

mechanism, the FFC Cambridge process, as presented in Equation 2.11, direct 

reduction of titanium oxide is achieved electrochemically. Hence, the chemical 

reaction with calcium does not take place [39]. 

In the original FFC experiment, an electrochemical cell was constructed using 

titanium foil as the cathode and graphite as the anode, both were immersed in 

molten calcium chloride at 800 ˚C. Cyclic voltammograms were conducted, as 

illustrated in Figure 2.9. As can be seen, in the ‘as received’ titanium foil, Figure 
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2.9(b), cathodic peaks 1 and 2 and their anodic counterpart 7 are absent. These 

peaks are predominant in the cyclic voltammogram of the oxidised titanium foil, 

Figure 2.9(a). Peaks 1 and 2 appear at a less negative potential than that of calcium 

deposition, peaks 4 and 4’ in (a) and (b) respectively. Thus, they are indicative of a 

direct electrochemical reduction of TiO2. Peak 7 appears at a less positive potential 

than that of Cl2 evolution, peaks 8 and 8’, indicative of a reoxidation process. The 

electrochemical cell set-up, Figure 2.10, was later improved using TiO2 pellets as 

the cathode and the temperature was raised to 950 ˚C to enhance kinetics. 

 

 

Figure 2.9 - Cyclic voltammograms of titanium foils in molten CaCl2, scan rate: 10 

mV s
-1

, at 800 ˚C. (a) Oxide-scale-coated titanium foil. (b) As received titanium foil 

[39]. 

 

 

Figure 2.10 - Electrolytic cells for the reduction of TiO2 pellets via the FFC 

Cambridge Process [39]. 
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Schwandt and Fray [47] conducted an investigation to determine the kinetics of the 

electrochemical reduction of TiO2 to Ti metal in molten CaCl2. Partially reduced 

pellet samples were extracted by terminating the reduction process after specified 

reaction times. These samples were analysed using X-ray diffraction (XRD), 

scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy 

(EDS). The experiment was split into three phases where chronoamperommety was 

performed. In the first phase, a potential of -2.5 V was applied for 8 h; in the 

second phase, the voltage was increased to -2.7 V and applied for 24 h; and in the 

third phase it was further increased to -2.9 V and left unchanged for 24 h. It was 

deduced that the reactions presented in Equations 2.12-14 took place in the first 

phase, which are attributed to a chemical reduction through calcium deposition. In 

the second phase, the chemical reaction illustrated in Equation 2.15 took place 

concurrently with the electrochemical reaction in Equation 2.16 at a lesser 

potential. The third phase involved the decomposition of CaTi2O4 and the 

formation of TiO, Equation 2.17. The TiO then further reduced electrochemically 

to produce titanium metal with solid solutions of oxygen in titanium, Ti[O]δ, where 

δ → 0. Thus, concluding that the reduction of TiO2 to Ti in CaCl2 is a combination 

of both, chemical and electrochemical processes. 

 

4𝑇𝑖𝑂2 + 𝐶𝑎
2+ + 2𝑒− ↔ 𝑇𝑖3𝑂5 + 𝐶𝑎𝑇𝑖𝑂3    2.12 

3𝑇𝑖𝑂2 + 𝐶𝑎
2+ + 2𝑒− ↔ 𝑇𝑖2𝑂3 + 𝐶𝑎𝑇𝑖𝑂3   2.13 

2𝑇𝑖𝑂2 + 𝐶𝑎
2+ + 2𝑒− ↔ 𝑇𝑖𝑂 + 𝐶𝑎𝑇𝑖𝑂3    2.14 

 

𝐶𝑎𝑇𝑖𝑂3 + 𝑇𝑖𝑂 ↔ 𝐶𝑎𝑇𝑖2𝑂4      2.15 

2𝐶𝑎𝑇𝑖𝑂3 + 2𝑒
− ↔ 𝐶𝑎𝑇𝑖2𝑂4 + 𝐶𝑎

2+ + 2𝑂2−    2.16 

 

𝐶𝑎𝑇𝑖2𝑂4 + 2𝑒
− ↔ 2𝑇𝑖𝑂 + 𝐶𝑎2+ + 2𝑂2−    2.17 

𝑇𝑖𝑂 + 2(1 − 𝛿)𝑒− ↔ 𝑇𝑖[𝑂]𝛿 + (1 − 𝛿)𝑂
2−    2.18 

 

Studies by Dring et al. [48, 49] on thermally grown titanium oxide thin films, 

showed that four cathodic peaks associated with the electrochemical reduction of 

TiO2 were observed. The cyclic voltammogram is shown in Figure 2.11. C0 is 
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associated with the decomposition potential of the salt and the deposition of Ca. C4 

to C1 are attributed to the corresponding reactions in Equation 2.19. These were 

also characterised using XRD, SEM and EDS. 

 

𝑇𝑖𝑂2
𝐶4
→ 𝑇𝑖3𝑂5

𝐶3
→ 𝑇𝑖2𝑂3

𝐶2
→ 𝑇𝑖𝑂

𝐶1
→ 𝑇𝑖[𝑂]𝛿  2.19 

 

In the initial stages, the formation of CaTiO3 through the chemical reaction of TiO2 

with Ca
2+

 and O
2-

 was observed. However, the titanate phase was not observed in 

the later stages with TiO. It was established that the diffusion of oxide ions in the 

product titanium-oxygen was the rate determining step. The formation of CaTiO3 

was due to the high concentration of oxide ions on the surface, and displaced the 

reduction reaction of Ti2O3 to TiO with reactions that possess significantly more 

negative potentials than predicted by the bulk oxide content of the salt. Under such 

high local oxide activity, the calciothermic reduction of titanium oxide, due to the 

formation of elemental calcium, was substantial. Thus, the reduction process was 

also determined to be a mixture of both, chemical and direct electrochemical. 

 

 

 

 

Figure 2.11 - Cyclic voltammograms of TiO2 and inert electrode in CaCl2, scan rate: 

50 mV s
-1

, at 900 ˚C [49]. 
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An in-situ synchrotron diffraction study was conducted by Bhagat et al. [50], 

which shed more light onto the reduction pathway of TiO2 to Ti in CaCl2. The 

precursors in the study were in the form of pellets. The most important finding 

from this study was that it confirmed the presence of the CaTiO3 titanate species, 

from the early stages of the process until almost the very end, before the final 

reduction of TiO, which was different from findings in previous works. 

Stoichiometric analyses of the results also showed that the formation of CaTi2O4 

was due to the reaction of CaTiO3 with TiO, rather than to a direct electrochemical 

reduction of the titanate species. 

Many studies on the FFC Cambridge process were undertaken to develop the 

understanding of it and its different uses. Studies on the extraction of titanium from 

different pellet and sponge-like precursors [51-53] were carried out. Also, 

investigations using cheap precursors, such as titania dust and titanium-rich slug 

[54]. It was noted that some metallic impurities, such as aluminium and 

manganese, were partly or completely removed during the electrolysis. In addition, 

the FFC Cambridge process was successfully employed, using mixed oxide 

precursors, to produce NiTi [55-57], Ti-Mo alloys [58] and Ti-W alloys [59]. 

 

 

Figure 2.12 - Stages of the FFC Cambridge process [60]. 
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The patent [43] on the FFC Cambridge process claims that a number of metals and 

semi-metals, such as Ti, Si, Ge, Zr, Hf, Sm, U, Al, Nd, Mo, Cr and Nd, can be 

produced with the starting material being the metal oxide, nitride, sulphide or 

carbide in a fused salt system. However, the majority of the research that has been 

reported so far has been on metal oxides, especially titanium dioxide. The FFC 

process for the production of titanium metal has been successfully scaled up, and is 

being industrialised by multiple developers. Figure 2.12 illustrates the simple 

stages that occur in the FFC Cambridge process for titanium metal production. 

2.5.2 The three-phase interline (3PI) 

The initial three-phase interline (3PI) model was proposed by Chen et al. [61]. It 

was developed by Deng et al. [62], and a comprehensive model by Kar and Evans 

[63] then followed. Any two phases are connected by a two-dimensional plane, and 

any three phases can only be connected by a one-dimensional point or line, the 3PI. 

The 3PI connects a conducting solid metal phase (SMP), an insulating solid 

compound phase (SCP) and a liquid electrolyte phase (LEP). In the case of a 

molten salt system, these are the metal phase (current collector), the metal oxide 

phase and the fused salt phase. This is illustrated in Figure 2.13.  

 

 

Figure 2.13 - Schematic representation of a three-phase interline (3PI) connecting a 

solid metal phase, a solid compound phase (metal oxide), and a liquid electrolyte 

phase (molten salt). The grey planes are the interlines between two neighbouring 

phases. At the 3PI, electron transfer occurs between the metal and the metal oxide and 

oxygen anion transfer between the metal oxide and the molten salt. 
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Along the 3PI, electron transfer occurs between the metal and the metal oxide, and 

oxide anion transfer occurs between the metal oxide and the molten salt. The 3PI is 

vital for the electrochemical reduction reaction. The longer the 3PI, the larger the 

current flow. As a reaction proceeds, the length and shape of the 3PI changes. The 

3PI model, however, does not account for any inherent electrical conductivity of 

the oxide species. It also overlooks any changes in electrode morphology that takes 

place. Nonetheless, the model agrees with experimental findings to a reasonable 

level. 

2.5.3 Challenges for electrochemical reduction in molten salts 

There are a number of issues that arise when using a standard reactor setup, 

whether using electrode rods, porous pellets or sponge-type precursors as 

electrodes. In the case of reducing titanium oxide via the FFC Cambridge process, 

the current efficiency is quite low, 10-40%, to achieve sufficiently low oxygen 

content, 0.3%, in the final titanium product [51]. The current efficiency and the 

speed of the process must be increased in order to allow the electrochemical 

reduction of refractory metals in molten salts to be applied industrially [64]. This 

low efficiency and low speed of the process could be due to a number of reasons, 

such as diffusion, oxygen ionisation, electrolysis of molten salts, metal-to-oxide 

molar volume ratio, and transport characteristics of such systems. However, the 

most convincing explanations, from experimental results obtained from works on 

this matter are: the limited diffusion of the electrolyte within the precursor porous 

matrix, thus leaving the inner parts unreduced [65, 66]; and the anomalous electro-

migration of oxygen vacancies in reduced metal oxides [67-69]. 

As a reduction reaction proceeds, the 3PI propagates, this is demonstrated in Figure 

2.14, outward from the current collector to the inner parts of the precursor, and 

then inward from the reduced metallic surface towards the precursor’s centre. The 

current increases initially, plateaus, then reduces until it stops [61]. This is due to 

the electrolyte not diffusing to the inner parts of the electrode, hence, the absence 

of the 3PI. This is due to the nature of the morphology of the oxide precursor, and 

to the change in density and structure of the materials reduced on the surface. For 

example, some metals, tend to have much higher densities than their oxides, 
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causing the metallic surface to collapse onto itself, creating a much denser 

morphology, hindering the diffusion of electrolyte [56]. 

   

 

Figure 2.14 - Schematic of the 3PI propagation mechanism of a cylindrical metal oxide 

pellet. (a) Propagating from the current collector along the surface. (b) Propagating 

within the pellet [61]. 

 

Precursors in the form of oxide films, pellets or sponge-types are all porous. The 

size and interconnectivity of these pores affects the reduction process [51, 52]. 

When the metal oxide is reduced, some of the oxide ions transfer into the melt and 

migrate to the anode; however, some of them are trapped in the cathode’s pores, as 

was observed by Dring et al. [49], where it was noted that the concentration of 

oxide ions at the surface of the electrode was higher than in the bulk molten salt. 

This can change the potential needed for the reduction significantly (refer to 

predominance diagrams, Chapter 4). It can also cause the formation of other metal 

phases (e.g. calcium titanate) due to the salt cation reacting with the oxygen ions on 

the surface. Ultimately, the oxide ions on the surface could block the current 

transfer, bringing the reduction process to a halt and leaving the inner parts of the 

metal oxide precursor unreduced. 

Thus, creative new process designs must be developed to improve the efficiency 

and performance of the electrochemical reduction of metal oxides. One solution 

could be the use of a ‘fluidised cathode’ process [70], which was developed within 

the scope of this thesis. 
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2.6 ‘Fluidised bed’ electrochemical processes 

Numerous experimental, theoretical and review studies have been published on 

fluidised bed electrochemical processes [71-79]. The main advantages of 

employing fluidised bed electrodes are their large specific area (high specific 

productivity), and the free flowing character of their fluidised bed structure [80]. 

Applications include fuel cells, hydrogen peroxide synthesis [81, 82], water 

purification and organic electrosynthesis [83, 84]. In fuel cells, the fluidised 

particles are sometimes coated with catalyst to enhance the process [74]; their main 

uses are as fluidised bed anodes for carbonate fuel cells [85-88] and cathodes for 

alkaline fuel cells [73, 74, 89, 90]. In water purification a large tank containing a 

fluidised bed of particles is commonly used. These particles are charged 

cathodically by a feeder electrode, as the waste water flows through the tank, metal 

ions are absorbed on the surface of the charged particles. When these particles then 

come into contact with the working electrode, the potential drives a charge transfer 

reaction and the unwanted metals are deposited as discharge. The particles need 

replacing with fresh ones very often in such continuous processes [91]. 

Fluidised bed electrochemistry has been extensively studied and used in the 

recovery of copper and other metals from dilute solutions for environmental 

applications [92]. The metals to be eliminated are usually at low concentrations 

(less than 1 g l
-1

) [80]. A schematic of the process is demonstrated in Figure 2.15. 

The metal recovery process operates in a similar way to fluidised bed electrodes in 

water purification technology, where the metal ions are attracted to the charged 

fluidised bed particles and form a layer on the outside of the particle. There is a 

continuous feed and recovery of the metal in dilute solutions by the introduction of 

small particles at the top of the bed and the removal of grown particles at the 

bottom of it [93, 94]. In this thesis, the particles themselves are reacted and reduced 

from the metal oxide to the metal phase. 

Some disadvantages in using fluidised beds in pyroprocessing could be the 

difficulty of separating the materials from the salts, and the risk of creating small 

free flowing particulates of fission products that could escape, or get carried by 

gases. 
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Figure 2.15 - Fluidised bed electrolysis reactor according to Fleischmann and 

Goodridge [95]. 

 

Fluidised bed electrodes have been studied and used industrially in various 

applications, though their definition is not precise; for example, sometimes they are 

reducing agents and other times they act as catalysts, yet they are still loosely 

called ‘fluidised bed electrodes’. They have not been applied in molten salt 

electrochemical reduction processes, yet they may be a viable route to increasing 

the performance of such processes. 

In the proposed arrangement, metal oxide particles are suspended in the molten salt 

via the use of an agitator (e.g. inert gas bubbling, stirring). An inert current 

collector, held at a suitable potential, is used, and an anode separated in its own 

compartment, to stop the reoxidation of the reduced metal particles. A schematic of 

the fluidised cathode process, and the different paths that a metal oxide particle 

could follow to be reduced, is illustrated in Figure 2.16. When a metal oxide 

particle is suspended and agitated in the fused salt, it comes into contact with the 

current collector, where a 3PI is instantly initiated, it is then either reduced fully or 
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partially, and it could get deposited on the electrode’s surface or reflected from it 

back into the bulk salt. This process can be repeated multiples times for all 

particles until the reduction reaction reaches completion. The final product can then 

be retrieved from two areas: the deposit on the current collector’s surface and the 

bottom of the reactor crucible, as particles sink and settle due to the high density of 

refractory metals. 

 

 

Figure 2.16 - Schematic of a fluidised cathode process in a molten salt showing various 

reaction mechanisms between particles in the melt and the electrode. 

 

Studies on the electrochemical reduction of metal oxide particles on surfaces have 

recently been published [96-98]. However, these particles were small in size, not 

fluidised, and were used for thin film preparation. The fluidised cathode process is 

a larger-scale three-phase metal oxide to metal reduction process. A 3PI is 

continuously being created, every time an impending metal oxide particle comes 

into contact with the current collector. The matrix of the fluidised cathode also 

elevates the diffusion of electrolyte within the metal oxide particles, and of the 

oxygen ions within the electrolyte. Another proposed advantage of using a 

fluidised cathode process is that it would eliminate certain steps, in the preparation 

of the precursor and recovery of the reduced metal in the FFC Cambridge process, 

such as steps 3, 4 and 5 in Figure 2.12, with associated cost reductions. 
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2.7 Spent nuclear materials in molten salts 

A significant amount of research on fission products in fused salts has been carried 

out over the past century. Molten salts provide a stable, proliferation resistant 

electrolytic medium for the dissolution, electro-plating, electro-reduction and 

refining of spent nuclear materials. 

In an early study by Inman et al. [99], known quantities of UCl3 were dissolved in 

an alkaline earth metal chloride eutectic, and a pure uranium working electrode 

was used. Following Equation 2.20, uranium was deposited on the working 

electrode. At current densities less than 100 mA cm
-2

, the process had 100% 

Faradaic efficiency, based on the total deposit (adherent and non-adherent on the 

electrode surface) and the Nernst equation for the 3-electron-transfer determining 

step in Equation 2.20. 

 

𝑈 ↔ 𝑈3+ + 3𝑒−   2.20 

 

The cell potential at 452 °C was determined to be -1.398 V (vs. 1 wt% Ag/Ag
+
 

reference electrode). It was also observed that some of the product was formed 

from a reaction with lithium in the salt, which resulted in a powdery deposit, and 

some of the product formed at lower potentials directly at the electrode resulted in 

a dendritic deposit. A similar, more recent study by Kuznetov et al. [100], using a 

tungsten working electrode, determined that the reduction potential for Equation 

2.20, in a LiCl-KCl eutectic at 500 °C was ~ -1.5 V. 

Most research on spent nuclear materials in molten salts was developed by the 

ANL [101-103]. Their molten salt electrorefiner, the schematic of which is 

presented in Figure 2.17, was a great innovation in nuclear molten salt technology. 

The electrorefiner comprises two cathodes: a solid steel/iron cathode, and a liquid 

cadmium cathode. Spent nuclear fuel is chopped and placed in a basket at the 

anode. This is then anodically oxidised. The actinides are reduced at the bottom of 

the electrorefiner at the liquid cadmium pool. Uranium is then electro-transported 

to the steel cathode, and a mixture of U, Pu and other actinides are transported to 

the liquid cadmium basket, and the Cd pool acts as the anode. Less noble fission 

products (e.g. alkali metals and alkaline earth metals) remain oxidised in the salt; 
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while the metals in the fuel cladding alloy and the noble fission products (e.g. 

ruthenium and palladium) are not oxidised and remain in the anode basket, or sink 

to the bottom of the electrorefiner as sludge in the cadmium pool. The deposit of 

uranium on the steel cathode was dendritic and sufficient for retrieval; however, 

once the process was applied to mixed fission products, especially plutonium, the 

morphology of the deposit was not adherent; therefore, the liquid cadmium cathode 

was introduced.  

 

 

Figure 2.17 – Schematic of the electrorefining process developed by the ANL, 

operated at 500 °C, where AM = alkali metals, AEM = alkaline earth metals, MA = 

Np, Am and Cm, NM = noble metals, RE = rare earth metals, FP = fission product 

[104]. 

 

The electrorefiner was studied and developed further by Koyama et al. [19, 20, 

104], they replaced the steel electrode with a pure iron cathode; and by other 

researchers [105, 106], who established the potentials at which the actinides and 

the cladding materials (e.g. Zr) are reduced from their chlorides, after they are 

anodically oxidised. These redox potentials are summarised in Table 2.4. One 

important thing to take notice of is that the potentials for the same redox reactions 

differ slightly from one study to another (e.g. for the U (III) / U(0) couple, from 
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Inman et al., Kuznetov et al. and Koyama et al.). This is due to the fact that cell 

potentials in molten salt systems are strongly dependant on the O
2-

 ion activities in 

the fused salts, which are difficult to control and are sometimes not accounted for 

after salt treatments have been applied. This phenomenon is discussed thoroughly 

in thermodynamically produced predominance diagrams, in Chapter 4. 

 

Table 2.4 – Redox potentials of relevant elements in LiCl-KCl eutectic salt at indicated 

operating temperatures (V vs. Ag/Ag
+
 reference electrode) [104-107]. 

 400 °C 450 °C 500 °C 

U (III) / U (0) -1.274 -1.233 -1.190 

Pu (III) / Pu (0) -1.591 -1.543 -1.497 

Np (III) / Np (0) -1.472 -1.434 -1.390 

Am (II) / Am (0)  -1.592  

Zr (II) / Zr (0)  -0.693  

 

There are six types of Generation IV nuclear reactors and power plant under 

development, these are: the very-high-temperature reactor (VHTR), the sodium-

cooled fast reactor (SFR), the supercritical-water-cooled reactor (SCWR), the gas-

cooled fast reactor (GFR), the lead-cooled fast reactor (LFR), and the molten salt 

reactor (MSR). These designs and their operating conditions are summarised in 

Table 2.5. The fuel type used in the majority of these reactors is metal. Considering 

the fact that most reactors currently in use utilise metal oxide (MOX) fuel and most 

of the nuclear legacy waste is from MOX fuel, the conversion of metal oxides to 

metals is an important parameter for the development of safer and more efficient 

nuclear power generation. As discussed in Section 2.3, pyroprocessing of spent 

nuclear fuel provides an inherently safe technology that is also resistant to nuclear 

proliferation. Thus, the reduction of spent fuel metal oxides to metals is of 

importance to the development of civilian nuclear technology. 
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Table 2.5 – Generation IV reactor designs under development [108]. 

Reactor Neutron 

spectrum 

Coolant Temperature 

°C 

Fuel cycle Fuel type Size  

(MWe) 

VHTR Thermal Helium 900 – 1000 Open Oxide 100 – 300 

SFR Fast Sodium 550 Closed Metal/oxide 50 - 1500 

SCWR Thermal/fast Water 510 – 625 Open/closed Oxide 1000 – 1600 

GFR Fast Helium 850 Closed Metal 1000 

LFR Fast Lead 480 – 800 Closed Metal 20 – 1200 

MSR Fast/thermal Fluoride 

salts 

700 – 800 Closed Metal* 1000 

*The metal is dissolved in the fluoride salt (e.g. UF4 and ThF4). 

 

Numerous studies on the electrochemical reduction of spent fuel oxides in molten 

salts have been published. In a study by Hermann et al. [109], crushed spent fuel 

was loaded into a stainless steel basket and submerged in molten LiCl-1 wt% Li2O 

at 650 °C. A platinum anode and a Ni/NiO reference electrode were used. They 

determined that Equation 2.21, for the direct electrochemical reduction of UO2 to U 

metal, took place at a potential of -2.40 V, and that the potential required for Li 

deposition from the salt, Equation 2.22, was -2.47 V. Thus, there was only a 

potential difference of 70 mV between the two reactions, which proved that the 

direct electro-reduction was difficult to achieve. However, the chemical reduction 

via Equation 2.23 provided supplementary help to the entire process. The only 

disadvantage being that the lithium evolution resulted in attacking the platinum 

anode and dissolving it. Choi et al. [110] managed to reduce 17 kg of UO2 to U 

metal in LiCl-Li2O. They concluded that a small pellet size, with a high anode 

surface area resulted in higher current efficiencies. 

 

𝑈𝑂2 ↔ 𝑈 + 𝑂2     2.21 

 

𝐿𝑖2𝑂 ↔ 2𝐿𝑖 +
1

2
𝑂2    2.22 

 

4𝐿𝑖 + 𝑈𝑂2 ↔ 𝑈 + 2𝐿𝑖2𝑂    2.23 

 

 

Studies on the reduction of U3O8 were also published. Seo et al. [111] conceived 

the main reduction potential for reducing U3O8 to U to be -2.27 V. In a further 

study by Jeong et al. [112], 20 kg of U3O8 were reduced successfully to U, with 
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more than 99% conversion. The reducing potentials seemed to vary from -2.47 V - 

-3.46 V. They concluded that an increase in the size of the pellets used in the 

cathode inhibits the diffusion of electrolyte to the inside of them, leaving them 

unreduced. This can be explained by the 3PI theory, described in Section 2.5. 

In a study published by Sakamura et al. [113], UO2 was reduced to U in both CaCl2 

and LiCl. The reduction in CaCl2 appeared at < 0.6 V vs. Ca/Ca
2+

 at 800 °C. 

However, the conversion was not successful enough, as the diffusion of oxygen 

and electrolyte in the precursors appeared to be problematic. In LiCl, the reduction 

potential was < 0.15 V vs. Li/Li
+
 at 650 °C. The deposition of lithium was 

observed, and the process in LiCl had a higher current efficiency and better 

electrolyte diffusion in the precursor. Nonetheless, the reduction potentials in both 

systems were established to be very close to the salts’ decomposition potentials. 

Hur et al. [114] carried out the reduction of UO2 to U metal in molten LiCl-KCl-

Li2O at 520 °C. The reduction potential was at -1.27 V vs. a Li-Pd reference 

electrode. They established that the reduction process was entirely caused by the 

chemical reduction reaction of UO2 with Li. The contradictions in reducing 

potentials in the different studies is again due to the fact that the activity of O
2-

 ions 

in the molten salts is not accounted for, which can change the required potentials 

for certain reactions. This is explained in Chapter 4. When the reduction potentials 

and the salt’s decomposition potential are close to one another, as is the case for the 

reduction of UO2 in fused salt systems, the activity of O
2-

 ions also affects the 

kinetic pathways and rate determining steps of the process. However, the most 

important conclusion to draw from this, is the fact that the reduction of UO2 to U 

metal, appears to take place in one overall direct 4-electron-transfer step, without 

any intermediate uranium oxides being formed (e.g. UO). 

 

2.8 Summary 

To set the theme for this research, a background review on nuclear energy and 

reprocessing technologies has been provided, molten salts and their applications 

have been covered, electrochemical reduction processes for metal productions in 

molten salts have also been covered, some fluidised bed electrode technologies 
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have been included, and finally the electrochemistry of spent nuclear materials in 

the literature was also included.  

The electrochemical reduction of spent nuclear materials is an important 

development for civilian nuclear applications, especially for next generation power 

plants. Molten salts provide an excellent electrochemical route for the conversion 

of spent fuel to reusable metal fuel, as they are safer, smaller, and produce less 

waste streams than aqueous reprocessing routes.  

The aim of this thesis is to develop the understanding of spent nuclear materials 

behaviour in molten salts, via thermodynamic and electrochemical techniques, and 

to investigate electrochemical reduction processes from metal oxides to metals, 

which can prove to be significant in future Generation IV nuclear power plants. 

New reactor designs are investigated as well, to improve the efficiency of such 

processes. 
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3. Experimental 

 

This chapter is divided into three sections. The main electrochemical techniques 

used in experiments are described, the material characterisation techniques used are 

also described, and the experimental set-ups and designs are also covered. 

3.1 Electrochemical techniques 

The majority of the electrochemical studies in this work are conducted using 

controlled potential techniques. The chosen potential is set into the potentiostat’s 

control, and in turn it supplies the required charge to reach this potential. The 

systems studied comprise an oxidised species O and a reduced species R, with 

redox reaction O + ne
-
 ↔ R, and associated reduction potential EO/R. 

3.1.1 Linear sweep and cyclic voltammetry 

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) are two commonly 

used techniques, and are usually the first electrochemical characterisation processes 

used to study a system. Both have linear potential versus time functions. In CV, the 

potential is reversed and cycled between two set potentials at a constant rate (V s
-1

). 

The current response occurs at an array of potentials at which the over-potential is 

increasing, and in the absence of other charge transfer reactions, this current 

reaches a maximum, then starts to decline until it flattens out. Figure 3.1 (a-b) 

shows the potential versus time waveforms for LSV and CV for a reversible 

(Nernstian) charge transfer reaction. 
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Figure 3.1 - (a) Potential vs. time waveform for linear sweep voltammetry (LSV). (b) 

Potential vs. time waveform for cyclic voltammetry (CV). (c) Current vs. time 

response corresponding to LSV. (d) Current vs. potential response corresponding to 

CV. 

 

In Nernstian processes, electron transfer is rapid, thus the diffusion of the electro-

active species into the electrolyte is rate determining. In irreversible processes, 

electron transfer is very slow, and quasi-reversible processes are both diffusion and 

charge transfer limited. In LSV and CV, the diffusion layer at the electrode surface 

is not allowed to reach equilibrium, due to the sweep rate of such scans. 

For the reversible reaction O + ne
-
 ↔ R, the concentration gradient profile 

presented in Figure 3.2 depicts the depletion of O.  

The flux of O into the electrolyte is directly proportional to the concentration 

gradient of O at any time; this is described by Fick’s first law of diffusion, 

Equation 3.1, where the diffusion coefficient of O, DO, is constant. 
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𝑞(𝑥, 𝑡) = 𝐷𝑂
𝜕𝐶𝑂(𝑥,𝑡)

𝜕𝑥
    3.1 

 

The flux is measured as current in the external circuit. Under fixed conditions of 

potential, the flux would diminish as the concentration gradient decreases due to 

diffusive mass transfer of O. In LSV and CV, the potential varies with time, thus 

giving O a concentration profile over time at the electrode surface. When the 

concentration profile reaches curve 4 in Figure 3.2, the concentration gradient is at 

its maximum, which gives rise to the current peaks in Figure 3.1 (c-d). 

The main advantage of CV over LSV is that for Nernstian reaction O + ne
-
 → R, it 

shows the coupled peak for the reoxidation reaction R → O + ne
-
, for the redox 

couple. It also gives better insight into whether a reaction is in fact 

electrochemically reversible, irreversible or quasi-reversible (i.e. only part of the 

reverse reactions steps can take place). 

As the electron transfer process becomes slower, the cathodic and anodic peaks 

broaden and the separation between them becomes larger, due to higher over-

potentials. 

 

 

Figure 3.2 - Oxidised species (O) concentration vs. distance at different times, 1-5, 

during a linear sweep voltammetry. 
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3.1.2 Chronoamperometry 

In chronoamperometry, a set constant potential is applied for a specified time 

period, and the current response is measured. For the redox reaction O + ne
-
 ↔ R, 

with reduction potential EO/R, at potentials less than the reduction potential, no 

reaction would occur; however, at a range of potentials higher than EO/R, the 

reduction reaction of O would occur rapidly, with associated charge transfer. The 

current versus time response for chronoamperometry is illustrated in Figure 3.3. 

The rate at which O moves to the electrode surface is limited by diffusive mass 

transfer, which the amount of current flux is proportional to.   

The concentration profile of O over time, and the diffusion limited current iD, can 

be described  by Fick’s second law of diffusion, Equation 3.2, where the boundary 

conditions are defined as: lim x → ∞, CO(x,t) = Cbulk and CO(0,t) = 0. 

 

𝜕𝐶𝑂(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑂

𝜕2𝐶𝑂(𝑥,𝑡)

𝜕𝑥2
    3.2 

 

The advantage of using chronoamperommetry over linear sweep techniques is that 

it allows for the electrode to reach polarisation, and it is a more adequate 

methodology for analytical characterisation. 

 

Figure 3.3 - Current vs. time response for chronoamperommetry. 
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3.2 Material characterisation techniques 

Following the electroanalytical techniques, material characterisation techniques 

were used to identify materials and phases before and after experiments were 

conducted. The three techniques used here are: X-ray diffraction for phase 

identification; scanning electron microscopy, coupled with energy dispersive x-ray 

spectroscopy, for microstructural measurements and phase identification; particle 

size analysis for size distributions of powder particles. 

3.2.1 X-ray diffraction 

Powder X-ray diffraction (XRD) is a very important tool for chemical analyses to 

provide evidence for electrochemical processes. The basic principles behind it can 

be described using Bragg’s law, Equation 3.3, where n is the order of diffraction 

(normally this is unity), λ is the wavelength of the radiation, d is the inter-planar 

spacing of the crystal being analysed, and θ is the angle between the diffracted and 

incident ray and the crystal plane. This is illustrated in Figure 3.4. 

 

𝑛𝜆 = 2𝑑 sin𝜃                 3.3 

 

When n is 1, the scattered beams from successive planes will each travel a distance 

differing by one wavelength. The beams will constructively interact registering an 

intense diffraction beam at the X-ray detector. 

The apparatus used for XRD analysis is a Stoe StadiP capillary geometry system 

with a molybdenum source. Eva (Bruker) software, coupled with Mercury 

software, and database from the Royal Society of Chemistry (ICSD data base) were 

used to analyse and match the diffraction data for phase identification with patterns 

from the literature. The sample to be analysed was ground into fine powder and 

placed inside a 0.3 or 0.5 mm in diameter capillary, which was then sealed to 

protect sensitive samples from air and moisture. The capillary was mounted in a 

sample holder and was continuously rotating when measurements were taken. 

Typical parameters used were: a measurement angle of 2 – 50 ° with 0.5 ° step, and 

20 s step
-1

. 
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Figure 3.4 - X-ray diffraction schematic of a crystal. 

 

3.2.2 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

Samples were analysed with scanning electron microscopy (SEM) using a Carl 

Zeiss XB1540 apparatus, which is also equipped with a “cross-beam” focused ion 

beam (FIB) microscope for microscopic milling of surfaces. Samples in the form of 

fine powders were mounted simply by placing them on carbon adhesive discs that 

are mounted on the SEM stubs. Working electrodes and current collectors were 

mounted in epoxy resin. They were placed in a desiccator that is fitted with a 

vacuum pump and left for about 10 minutes to allow the resin to penetrate through 

the pores in the samples and to remove air bubbles in the epoxy. After drying, the 

sample was ground using silicon carbide grinding paper, starting with a 220 grit, 

the sample was ground until smooth, then ground again in a direction perpendicular 

to the previous one using a 500 grit. This was repeated using 800, 1200, 2400 and 

4000 grits. The samples were inspected under an optical microscope throughout the 

grinding procedure. Before placing a sample in the SEM chamber, its surface was 

gold coated, using a gold coating machine. 

Quantitative analyses were performed using X-ray energy dispersive spectroscopy 

(EDS), which was calibrated against a cobalt standard before every use. It was 

typically operated at ~20.00 keV and ~15 mm working distance.  

3.2.3 Particle size analysis 

Samples were analysed using a Beckman Coulter LS13320 laser diffraction particle 

size analyser. Laser diffraction correlates the patterns of scattered light and its 
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intensity at different angles to the particle size distribution of a sample. The 

apparatus is fitted with a PC for data collection, which provides particle size 

distribution data using the Mie theory (this is explained in the Beckman Coulter 

LS13320 manual which can be found online). Small powder samples were 

dispersed in deionised water in a special sample holder through which laser is 

scattered and detected. 

3.3 Experimental design  

The experimental set-up was designed to exploit the physical properties of the salt 

eutectic, mainly the low melting point of the LiCl-KCl eutectic (352 °C). This 

allowed the use of borosilicate glass as the cell wall material, which was beneficial 

as it provided visual access to the process.  

The rig consisted of three compartments. The crucible: a disposable container 

placed inside the cell envelope which contains the molten salt; the envelope: the 

outer container of the electrochemical cell, which seals the process from the outer 

environment and was used as a safety precaution to contain the molten salt in case 

of crucible breakage; the heating element: two different heating methods were 

used, one employing a thermostatic salt bath, and one using a vertical tube furnace. 

Although the reaction cell was sealed with a constant stream of argon passing 

through the top part of it, the experiments utilising the thermostatic salt bath were 

carried out inside a dry glove-box, Figure 3.5. This limited water, or any other 

types of contaminants, from entering the reaction vessel. The glove-box was made 

of Perspex, providing extra shielding when handling uranium, and also protected 

against heat given off from the rig.  

Figure 3.6 illustrates the general full schematic of the experimental rig. There were 

two loops; a closed one where the air inside the glove-box was pumped through 

two desiccant tubes in series, to absorb water vapour and reduce humidity, then 

was recycled back into the glove-box; and an ‘open loop’ where dry argon was 

passed to the inside of the reaction cell, via a flowmeter creating an argon blanket 

at the top of the cell, and then out of the reaction cell and the glove-box into a fume 

cupboard, whilst passing over two Dreschel bottles to prevent any back flow. There 

were two cooling fans at opposite corners of the glove-box to aid the distribution of 
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temperature, and prevent the Perspex walls from reaching critical heat. 

Thermocouples were placed in all sections of the rig to monitor the temperature. 

There was also a camera mounted and pointed toward the reaction cell, ready to 

record any visual activity. 

 

 

 

Figure 3.5 - Perspex dry glove-box containing molten salt electrochemical cell. 

 

3.3.1 Heating and temperature control 

Two methods were used for heating the electrochemical cell components to the 

desired temperatures. One method uses a thermostatic salt bath, similar to the 

arrangement used by Inman and Bockris [115], which benefits from visual 

accessibility throughout experiments. The other uses a typical vertical tube furnace, 

which is more practical in terms of time and reliability; however, one cannot 

inspect the process visually whilst experiments are running. 
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Figure 3.6 - Schematic of the rig set-up, showing components inside and outside the 

dry glove-box. 

 

 

3.3.1.1   Thermostatic salt bath 

The thermostatic salt used was a NaNO3-KNO3 eutectic. It was kept and melted in 

a 5 L borosilicate glass heavy-duty beaker, to maintain visibility. Corrosion and 

attack effects from the salt on the glass were negligible [116], hence the container 

beaker could be used for a large number of experiments. The salt eutectic, once 

molten, is homogeneous in temperature and has the ability to store energy for a 

long period of time [117]. The eutectic is equimolar and has a melting temperature 

of 220 ˚C, as illustrated in the phase diagram in Figure 3.7. It has a latent heat 

value of 97 J g
-1

. Information on its viscosity and specific heat values at different 

temperatures can be found in the works by Coscia et al. [118] and Nissen [119]. 
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Figure 3.7 - Phase diagram for NaNO3-KNO3 eutectic [120]. 

 

To heat up the thermostatic salt bath an immersion heater was used. The tubing 

material for the immersion heater was silica glass, which withstands higher 

temperatures and has higher mechanical integrity when compared to borosilicate 

glass. The dimensions of the immersion heater are shown in Figure 3.8. The reactor 

cell, when placed in the thermostatic salt bath, is encircled by the bottom round 

side of the immersion heater, Figure 3.10. 

 

 

Figure 3.8 - Dimensions of silica tubing for immersion heater. 
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Figure 3.9 - Schematic for heating apparatus. 

 

Nichrome wire, 0.46 mm thickness and 4 m long, was coiled up and put through 

the silica tubing. This was then connected to a power source and voltage was 

passed through it via a variac, as illustrated in Figure 3.9. A small light bulb was 

also connected to the top of the immersion heater, to indicate when the power was 

on, for safety. Calculations were carried out, Appendix A, to estimate the voltage 

needed to be passed through the nichrome wire to reach specific temperatures of 

the thermostatic salt bath. This was set at the variac and presented in Table 3.1. 

Nonetheless, these are estimates as the heat loss to the environment was not 

accounted for. Thus, these calculated values provide an indication of the voltage 

needed, and during experimentation the heating is monitored, via the use of 

thermocouples, to be able to control the temperatures precisely. 

 

Table 3.1 – Guideline for voltage required to achieve temperatures of 3 kg of NaNO3-

KNO3 thermostatic salt bath after 1.5 h. 

T (˚C) 100 200 300 400 500 600 

V (V) 44 65 90 102 113 123 

 

Thermocouples were placed in different positions in the rig, as illustrated in Figure 

3.6. There were two inside the main rig testing area: one inside the crucible of the 

cell, to monitor the operating temperature, and one inside the thermostatic salt bath 

beaker. The operating temperature could then be adjusted accurately via the variac. 

In practice, the voltages required were much higher than the calculated ones, due to 

losses of heat to the environment. There were more thermocouples placed around 

the rig, to monitor the process and prevent reaching critical temperatures. These 
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were placed at the front, back, sides, roof, bottom and corners of the Perspex glove-

box. 

 

Figure 3.10 - Immersion heater rig. 

 

3.3.1.2   Vertical tube furnace 

A vertical split-tube furnace was used to provide heat to the electrochemical cell 

(CSC 12/90/300 V furnace, Lenton). This was custom built to fit the reaction cell. 

It provided a faster heating rate and a stable environment for electrochemical 

processes. Measuring the temperature inside the crucible via a thermocouple 

showed that the difference between the salt temperature and the set temperature of 

the furnace is ~10 °C. This furnace does not afford optical access to the inside of 

the cell. 

3.3.2 Electrochemical cell 

The electrochemical cell was mainly constructed from borosilicate glass. It consists 

of the envelope, the crucible, a cell head and electrodes. The crucible was a 250 ml 

high-form borosilicate glass beaker (Schott Duran). It was treated as dispensable, 

due to breakage caused by salt shrinkage as it solidifies. The crucible is placed 

inside the envelope. The envelope was a tall borosilicate glass beaker with a flange 

(GPE Scientific Ltd), and was designed to the specifications presented in Figure 

3.11. 
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Machinable ceramic was used for making the cell head (Unfired Pyrophylite, 

Ceramic Substrates and Components Ltd). It was supplied in the form of a tube 

with 12 cm diameter. Discs of 0.5 cm thickness were sliced off the tube, then holes 

were drilled through them with the desired dimensions and arrangement. The cell 

head was then baked in a furnace (Vecstar VF1), at a ramp rate of 50 °C h
-1

 until 

400 °C, followed by 100 °C h
-1

 until 1000 °C, then left at 1000 °C for an hour. 

Schematics of the two different cell head arrangements used are illustrated in 

Figure 3.14. Silicone rubber suba-seals (Sigma-Aldrich) were used to seal the holes 

in the ceramic head, and the required electrodes and thermocouple were pushed 

through them. They can withstand temperatures of up to 200 °C continuously or 

400 °C intermittently, and it is easy to move the electrodes up and down through 

them. A PTFE gasket (Sci-Labware) was placed between the envelope flange and 

the cell head, which provided sealing from the environment. They were held 

together using a metallic clamp (Sci-Labware). A schematic of the electrochemical 

cell is illustrated in Figure 3.12. 

 

 

Figure 3.11 - Dimensions of cell envelope. 
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Figure 3.12 - Electrochemical cell schematic. 

 

 

Two different electrolytic cells were used, the schematic for each is presented in 

Figure 3.13 and the cell head arrangements in Figure 3.14. A K-type thermocouple 

(Omega), placed inside a one end closed glass tube was always immersed in the 

salt to monitor the temperature.  

For the fluidised cathode set-up, the cathode comprises particles of metal oxide that 

are agitated/suspended in the salt eutectic melt, and a pure metal rod current 

collector, that has a glass sheath around part of it so that 4 cm of it were always 

immersed in the salt, taking into account the movement of the surface of the melt 

as the salt was being agitated. The anode was separated in its own compartment to 

avoid reoxidation of the reduced particles. A glass frit (porosity 2, 15 mm in 

diameter, VWR International) was used to allow for the flow of salt ions. This frit 

was fitted with a glass tube that contained the anode. The anode compartment has 

an opening at the top to allow for gases to escape. The particles in the crucible 

were agitated via the flow of argon (99.998% purity, BOC) through the melt. It was 

bubbled via a ceramic tube (5 mm internal diameter, Alsint). 
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Figure 3.13 - Electrolytic cells. (a) For a typical cell set-up for the electrochemical 

reduction of thin films or metal cavity electrodes (MCEs), (b) for the electrochemical 

reduction of metal oxide powder using the fluidised cathode method. 
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Figure 3.14 - Ceramic cell heads hole arrangements. (a) For a typical cell set-up. (b) 

For a fluidised cathode set-up. 1 is the argon inlet, 2 is the argon outlet, 3 is for the 

reference electrode, 4 is for the working electrode or current collector (also used for 

the sacrificial electrode in pre-electrolysis), 5 is for the thermocouple, 6a for the 

anode, and 6b for the anode compartment containing the anode. 

 

3.3.3 Electrodes 

The electrode materials needed to possess mechanical integrity, not contaminate 

the salt and withstand the relevant temperatures. They were immersed in the salt 

eutectic melt and held in position via the silicone suba-seals. The suba-seals are 

electrically insulating, and seal the cell from the outside environment. A three 

electrode system was employed as required, as it provides the same frame of 

reference for all the electrochemical experiments involving potential 

measurements. All electrodes were 32-35 cm in length. 

 

3.3.3.1   Reference electrode 

The reference electrode used was a Ag/Ag+ electrode [121]. Borosilicate glass 

tubes were used as the membrane sheath for the electrode; they have one closed 

end and one open end with 3 mm internal diameter and a 1 mm wall thickness (to 

aid transport). Silver wire with a 0.203 mm diameter (99.95% metal basis, Alfa 

Aesar) was used. A silicone suba-seal was used to seal off the open end of the glass 

tube, Figure 3.15. 

The preparation of the reference electrode was conducted inside an argon glove 

box. Initially, the glass tube was baked for a few hours, at 200 ˚C, to get rid of any 
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residual moisture. Using treated dry salt, prepared as detailed in Section 3.3.4, 10 g 

of LiCl-KCl eutectic was mixed with 0.1 g AgCl (>99% purity, Sigma Aldrich). 

The mixture was then heated until molten to ensure homogeneity. After cooling 

down, the 1wt% AgCl in LiCl-KCl was ground to fine powder. The silver wire was 

then placed inside the glass tube and pushed all the way to the bottom. Using a 

small funnel, 1 g of the 1 wt% AgCl in LiCl-KCl was put inside the glass tube. The 

tube was then sealed using a silicone suba-seal and the top of the silver wire was 

pushed through it, exposing it for electrical conduction. A cross-section of the 

reference electrode showing its configuration is illustrated in Figure 3.15. When 

running an experiment, the reference electrode was immersed in the molten LiCl-

KCl eutectic, the salt inside the tube also melts and the reference electrode is 

operational. Whenever Ag/Ag
+
 electrode is mentioned in this thesis, it contains 1 

wt% AgCl. 

 

 

Figure 3.15 - Cross section of the Ag/Ag
+
 reference electrode. 

 

When electrochemical measurements are taken, the silver wire reacts with the 

chloride salt in the melt inside the glass membrane, according to the reversible 

redox reaction in Equation 3.4, creating a standard potential reference. 

 

𝐴𝑔𝐶𝑙 + 𝑒− ⇌ 𝐴𝑔 + 𝐶𝑙−   3.4  

 

 

3.3.3.2   Counter electrode  

A high density graphite rod was used as a counter electrode, 3.05 mm in diameter 

(99.9995% metal basis, Alfa Aesar). The graphite rods were reusable if good 

mechanical integrity were maintained. They were cleaned thoroughly with acetone 
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before each use, and were heated via torch flame until glowing red, to remove any 

residual water from them. 

 

3.3.3.3   Working electrode 

All metal oxide powders used, WO3 and UO2, are described in Chapters 5 and 6 

respectively. Their characterisation is included as well. Three types of working 

electrodes were used; thin film electrodes, metallic cavity electrodes, and fluidised 

cathodes. They are summarised as follows. 

 

a) Thin film electrode 

A thin layer of oxide was thermally grown on a tungsten rod, 1.5 mm in diameter 

(99.95% metal basis, Alfa Aesar). This was done by thermally oxidising the 

electrode in air at a temperature ramp rate of 250 °C h
-1

, then holding the 

temperature at 700 °C for 2 h. The rod’s surface became yellow/green in colour, 

indicative of the formation of WO3. 

 

b) Metallic cavity electrode (MCE) 

Metallic cavity electrodes [122-126] were made using a 0.5 mm thick molybdenum 

sheet (Sigma-Aldrich, 99.9% purity). The sheet was cut into 5 mm wide and 6 cm 

long strips. Holes, or cavities, of 0.4 mm diameter were drilled at one end of the 

strips, as shown in Figure 3.16 (b). These strips were then attached to a tungsten 

rod using a molybdenum wire. When experiments were run, it was ensured that 

only half of a strip was immersed in the molten salt, with all the cavities exposed to 

the electrolyte, but keeping the wire and the tungsten rod above it. Before 

conducting electrochemical tests, the cavities were filled with fine powder of the 

desired metal oxide to be reduced, using two glass slides and a ‘finger pressing’ 

technique (here, a glass slide was placed on the desk, some powder was place on 

top of it, the MCE was places on top of the powder allowing it to fill the cavaties, 

some more powder was placed on top of the MCE, then a glass slide on top. 

Carefully using fingers, the two glass slides were pressed together to fill the 

cavities with dense powder).  
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Figure 3.16 – (a) Working electrode for fluidised cathode set-up. (b) Metallic cavity 

working electrode (MCE). 

 

 

c) Fluidised cathode 

For the fluidised cathode set-up, the cathode compartment comprises metal oxide 

particles that were suspended in the fused melt via bubbling argon, and a current 

collector. The current collector was a tungsten rod, 1.5 mm in diameter (99.95% 

metal basis, Alfa Aeser) that has a Pyrex sheath around it, Figure 3.16 (a), to make 

sure that 4 cm of the electrode is always, and only, immersed in the salt during 

experiments. This is to guarantee that all current response effects are due to 

particle-electrode interactions, and not to the electrolyte’s surface vibrating through 

agitation. 

 

3.3.4 Electrolyte and cell atmosphere handling 

All preparation steps were carried out under a sealed argon atmosphere, in an argon 

glovebox (MBRAUN), where O2 levels were always kept at less than 0.5 ppm, and 

water levels were also kept at less than 0.5 ppm. Anhydrous lithium chloride (ACS 

reagent, ≥99.0% purity, Sigma-Aldrich) and potassium chloride (≥99.5% purity, 

Sigma-Aldrich) were used for the electrolyte. The salt was dried in a vacuum oven 

at 200 ˚C for 24 h to get rid of any residual moisture, then 59-41 mol% LiCl-KCl 
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were mixed together. The salt was placed in the crucible, which was placed inside 

the envelope, then, with the electrodes in place, the cell was sealed. This was then 

transferred to the rig, to be heated, and the argon inlet and outlet were connected. 

During experiments, a constant stream of argon was applied, creating a blanket at 

the top of the reaction vessel.  

Cyclic voltammetry measurements were carried out on a LiCl-KCl salt eutectic at 

450 °C using a pure tungsten electrode as the working electrode, a graphite rod as 

the counter electrode, and a Ag/Ag
+
 reference electrode. The scan rate applied was 

50 mV s
-1

, scanned from 0 V to -3 V to 3 V and back to 0 V. The cyclic 

voltammogram produced is shown in Figure 3.17. It illustrates the potential 

window of the LiCl-KCl salt eutectic. As can be seen, there are no significant 

current peaks between the potentials 1.1 V and -2.6 V. Thus, between these two 

potential values lies the salt’s potential window. At 1.1 V chlorine gas evolution 

starts and it reaches its maximum level at about 2.6 V. At -2.6 V lithium metal 

formation starts. From predominance diagrams of LiCl-KCl eutectics, Chapter 4, 

one can deduce that lithium metal formation starts before potassium metal 

formation. There is a peak on the left hand side of the diagram, in the positive 

direction, this is due to the fact that when the potential is swept in the positive 

direction lithium is oxidised back into its ionic form. This does not appear on the 

right hand side of the graph, where chlorine gas evolution takes place, as the Cl2 

molecules evolved leave the melt. Again, if the potential window of LiCl-KCl from 

this cyclicvoltammogram is compared to that established in the predominance 

diagram, noting that here the potential is shifted to the right, as it is against a 

Ag/Ag+ reference electrode and the predominance diagram is against the standard 

chlorine electrode, one can see that the width of the window is about the same, 3.7 

V. This supports the validity of the predominance diagram for predicting the 

stability of the electrolyte. As for most molten salts, the potential window of the 

LiCl-KCl eutectic is very wide, which allows for flexibility in conducting 

electrochemical reactions. 
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Figure 3.17 - Cyclic voltammogram showing the potential window of LiCl-KCl 

eutectic at 450 °C, scan rate 50 mV s
-1

, and reference electrode: Ag/Ag
+
. 

 

 

 

Figure 3.18 - Chronoamperogram showing a typical pre-electrolysis of LiCl-KCl 

eutectic at 450 °C, set voltage: -2.300 V, and reference electrode: Ag/Ag
+
. 

 

 



3. Experimental                                                                                                        56 

 

 

 

 

Figure 3.19 - X-ray diffraction spectrum (Mo Kα) of treated LiCl-KCl salt, showing 

KCl (165593-ICSD [127]), and LiCl (26909-ICSD [128]). 

 

Prior to conducting electrochemical experiments, the electrolyte is treated further, 

via applying a constant potential of -2.3 V, close to the salt’s decomposition 

potential, using a sacrificial tungsten electrode, a pre-electrolysis step, to remove 

any residual contaminant and moisture. This is usually applied for a few hours. 

Figure 3.18 illustrates a typical pre-electrolysis chronoamperogram. The salt 

eutectic was analysed via X-ray powder diffraction, Figure 3.19, which shows the 

spectra of pure LiCl and KCl, indicating that the salt is contaminant-free (free of 

metal ions). 

 

3.3.5 Electrochemical set-up 

A PC computer controlled potentiostat (IviumStat, Ivium Technologies, NL) was 

used to perform electrochemical tests. Most experiments were run using a four lead 

option, working electrode, counter electrode, reference electrode and ‘sense’. The 

sense lead is attached to the electrode just below the working electrode’s lead to 

reduce the voltage drop effects from the connecting cable, which might affect the 
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potential difference between the working and the reference electrode. The 

potentiostat was used to run electro-analytical tests such as cyclic voltammetry 

(CV), linear sweep voltammetry (LSV), chronoamperommetry and 

chronopotentiommetry. 

3.4 Summary 

In this chapter, the electrochemical and material characterisation techniques used in 

this research have been outlined. The experimental designs and materials used have 

also been covered, including the electrolytic cells, the electrodes and the salt 

eutectic used in experiments. The procedures to prepare experiments and to treat 

the LiCl-KCl eutectic have been outlined. Characterisation of the treated salt has 

also been included. 
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4. Predominance Diagrams 

Predominance phase diagrams for metal-molten salt systems are diagrams of 

potential vs. the negative logarithm of the activity of O
2-

 ions (E-pO
2-

); they are a 

valuable tool for predicting and understanding electrochemical systems and for 

optimising process conditions. Here, predominance diagrams are produced for U, 

Pu, Np, Am, Cm, Cs, Nd, Sm, Eu, Gd, Mo, Tc, Ru, Rh, Ag and Cd species, in both 

LiCl-KCl at 500 ˚C and NaCl-KCl at 750 ˚C. The two salt eutectics were chosen as 

they are the two main systems for pyroprocessing; temperatures were selected 

within each salt’s normal operating range. All of the diagrams presented show 

regions of stability for the different metal species, their oxides and chlorides at unit 

activity; however, this activity can be altered in accordance with the equations 

derived. Examples of selective electrochemical reduction are also demonstrated for 

potential spent fuel reprocessing in both salt systems. 

4.1 Introduction 

Different process schemes and salts have been studied in pyroprocessing, most of 

which have been summarised by the NEA [15]. There are currently two main 

molten salt technology processes in existence, both using chloride salts as 

electrolytes; one in the US at the Argonne National Laboratory (ANL) using LiCl-

KCl eutectic for metallic fuel in integral fast reactors (IFR), and one in Russia at 

the Research Institute for Atomic Reactors (RIAR) using NaCl-KCl eutectic for 

oxide fuel for the Fast Breeder Reactor (FBR) [16]. There have also been other 

advances made in molten salt nuclear pyroprocesses in Europe and Japan [19-24]. 

Predominance diagrams (also known as Littlewood diagrams) were originally 

developed by Littlewood in 1962 [129] to summarise thermodynamic 

characteristics of metal-molten salt systems and are akin to Pourbaix diagrams, 

which describe the behaviour of species in aqueous solutions. In Pourbaix 

diagrams, the equilibrium potential is plotted against pH to show regions of 
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stability for a specific system [130]. Predominance diagrams show potential vs. the 

negative logarithm of the activity of oxygen anions: the pO
2-

. 

The fundamental notion of predominance diagrams is to represent thermodynamic 

data in a diagrammatic form. Data is converted to linear equations relating free 

energies to logarithmic functions of material composition. The free energies of the 

system are represented by potentials that are relative to the electrochemical 

equilibrium between the salt’s anion and its elemental form, in chloride salts this is 

the standard chlorine electrode. The composition variable is the negative logarithm 

of the activity of the oxygen ions in the melt, pO
2-

 (analogous to pH). These 

diagrams are very useful when studying complex metal-molten salt systems, such 

as Li-K-U-O-Cl, as they describe the regions of stability and the pathways of the 

system’s evolution at different equilibrium potentials. 

The procedure for producing predominance diagrams is best described in the works 

of Littlewood, Dring et al. and Brown et al. [129, 131, 132]. Predominance 

diagrams have been developed for various systems [133-140], providing valuable 

insight into the electrochemical processes of metals and their oxides in molten 

salts. However, they are not flawlessly accurate. Fundamentally predominance 

diagrams are only as accurate as the thermodynamic data used to create them, and 

therefore they need to be validated experimentally, as reaction kinetics and surface 

processes will have a dominant effect in defining reaction rate. Extensive work has 

been performed to characterise the reduction of TiOx in CaCl2; this has been 

compared with the predominance diagram produced by Dring et al. [131]. X-ray 

diffraction analysis of the reduction process of TiOx at different stages has been 

carried out by Schwandt and Fray, Wang and Li, and Bhagat et al. [47, 50, 141], 

providing validation of processes predicted by the predominance diagram. 
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Table 4.1 - List of nuclides commonly considered in burn-up credit criticality analyses 

(from NEA 2011) [142] and used as the basis for the systems examined here. 

 

Nuclide 

 

Half-life (years) 

Content in spent UOX 

PWR fuela (g/MTHM) 

52 GWd/t at discharge 

Relative importance rank 

for 40 GWd/MTHM PWR 

fuel – 5 years coolingb 
234U 2.45105 143 24 
235U 7.04108 6050 1 
236U 2.34107 5650 11 
238U 4.47109 927000 3 
238Pu 87.74 372 22 
239Pu 2.41104 5810 2 
240Pu 6550 2840 4 
241Pu 14.40 1820 5 
242Pu 3.76105 1020 19 
237Np 2.14106 811 14 
241Am 432.60 228 10 
243Am 7370 1.74 11 
243Cmc 28.50 0.624  
244Cmc 18.11 141  
245Cmc 8532 11  
133Cs Stable 1630 12 
143Nd Stable 1070 7 
145Nd Stable 989 17 
147Sm 1.061011 196 20 
149Sm 2.001015 3.36 6 
150Sm Stable 446 23 
151Sm 93 14.7 9 
152Sm Stable 134 15 
153Eu Stable 184 18 
155Gd Stable 3.93 13 
95Mo Stable 1180 21 
99Tc 2.10105 1120 16 
101Ru Stable 1210 26 
103Rh Stable 540 8 
109Ag Stable 119 25 
113Cdc 9.101015   
a  

Measured content from ARIANE experimental programme data. 
b 

Based on relative sensitivity coefficients from the Nuclear Regulatory 

Commission (2008) [143]. 
c 
Important for MOX fuel only. 

 

Another limitation is that there is no adequate experimental technique for keeping 

the O
2-

 levels within a specified limit. Studies have looked at monitoring and 

controlling the pO
2-

 in molten salts [144]; but this is difficult to implement in 

practice, particularly on a larger scale. Rigorous salt preparation can reduce the O
2-

 

ion concentration; however, once the reduction of a metal oxide proceeds, the 

increase of O
2-

 concentration in the melt shifts the equilibrium potential. Also, the 
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degradation and the formation of pores on the working electrode can act to ‘trap’ 

O
2-

 ions, thus increasing the levels at the interface, changing the local equilibrium. 

New reactor cell designs could prove useful here, such as the fluidised cathode 

process, as it would help disperse the O
2-

 ions, and give the system more 

homogeneity. 

The nuclides commonly considered in burn-up credit analysis by the NEA [142] 

are shown in Table 4.1. This also lists their half-lives, their content (in g per metric 

tonne of heavy metal, g/MTHM) in uranium oxide (UOX) pressurised water 

reactor (PWR) spent-fuel and their relative importance according to the NEA. The 

different nuclides of uranium and plutonium are of highest importance, as their 

content in spent-fuel is significant. All of these nuclides are classed as high-level 

waste.  

In this chapter, predominance diagrams are produced for spent nuclear materials in 

LiCl-KCl eutectic at 500 ˚C, as is in use at the ANL, and NaCl-KCl eutectic at 750 

˚C, as is in use at the RIAR. Each temperature was chosen to be within the salts’ 

common operating temperature ranges [16, 35]. 

4.2 Theory 

To construct a predominance diagram, one needs to employ the following 

equations and follow the subsequent steps. The Gibbs energy of formation of a 

given reaction, ΔG, may be related to the electrochemical potential of the specific 

cell, E, by Equations 4.1 (away from standard state) and 4.2 (standard state), and 

by the Nernst Equation 4.3. In these equations, n is the moles of electrons 

transferred in a reaction, F is Faraday’s constant (96485.4 C mol
-1

), R is the 

universal gas constant (8.314 J mol
-1

 K
-1

), T is the operating temperature of the 

molten salt in Kelvin, and Q is the reaction quotient, a function relating the 

activities of the different chemical species involved in a chemical reaction. 

 

∆𝐺𝑜 = −𝑛𝐹𝐸𝑜      4.1  

∆𝐺 = −𝑛𝐹𝐸     4.2 

𝐸 = 𝐸𝑜 −
𝑅𝑇

𝑛𝐹
𝑙𝑛𝑄    4.3 
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The potential window of the salt defines the bounds of the predominance diagram. 

For example, in LiCl-KCl, Cl2 gas evolution defines the oxidative limit, and 

formation of metallic Li or K defines the reductive limit. The oxidative limit (in 

this example, the formation of Cl2) is assigned a Gibbs energy of formation of zero, 

at all temperatures, to maintain a zero potential reference point. This is when the 

Cl2 formed is at unit activity with the Cl
-
 ions in the melt at one atmospheric partial 

pressure. From this zero reference point, the regions of stability for the system 

chosen extend to the reductive limit, the decomposition potential of the salt. 

There are three types of equilibrium that define the thermodynamic regions of 

stability for a specific species: one that does not involve transfer of electrons; one 

that does not involve transfer of oxide anions; and one that depends on both 

electron and oxide anions being transferred. Equations 4.4, 4.5 and 4.6 represent 

the three kinds of equilibrium reactions, where M is metal. Using Equations 4.1, 

4.2 and 4.3, the equations in terms of electrode potential, E, and pO
2-

, for each 

reaction can be derived, as seen in Equations 4.7, 4.8 and 4.9. 

 

𝑀𝑂𝑦 + 2𝑦𝐶𝑙
− ↔ 𝑀𝐶𝑙2𝑦 + 𝑦𝑂

2−   4.4 

𝑀(𝑧+𝑛)+ + 𝑛𝑒− ↔ 𝑀𝑧+     4.5 

𝑀𝑂𝑥 + 𝑛𝑒
− ↔ 𝑀𝑂𝑥−𝑦 + 𝑦𝑂

2−    4.6 

𝑝𝑂2− =
∆𝐺4.4

𝑜 +𝑅𝑇𝑙𝑛(
𝑎𝑀𝐶𝑙2𝑦

𝑎𝑀𝑂𝑦
)

𝑦𝑅𝑇𝑙𝑛10
    4.7 

𝐸4.5 =
−∆𝐺4.5

𝑜

𝑛𝐹
−
𝑅𝑇

𝑛𝐹
𝑙𝑛 (

𝑎𝑀𝑧

𝑎𝑀𝑧+𝑛
)    4.8 

𝐸4.6 =
−∆𝐺4.6

𝑜

𝑛𝐹
−
𝑅𝑇

𝑛𝐹
𝑙𝑛 (

𝑎𝑀𝑂𝑥−𝑦

𝑎𝑀𝑂𝑥
) +

𝑦𝑅𝑇𝑙𝑛10

𝑛𝐹
𝑝𝑂2−  4.9 

All thermodynamic data used is presented in Table 4.2. 

Predominance diagrams for metal-molten salt systems are generally divided into 

three main regions of stability, where different species exist: one where the pure 
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metal exists, either in the salt solution or precipitated as a solid; one where the 

metal is covered by an oxide layer or is fully oxidised, also as a solute in the liquid 

salt or as a solid species; and one where the metal is in the form of a chloride, 

liquid or gas [129]. This is illustrated in Figure 4.1. 

 

Figure 4.1 - Example of the three main regions of stability in a predominance diagram 

(based on a LiCl-KCl salt eutectic) and showing the nature of reactions leading to 

horizontal, vertical and diagonal lines. 

 

The limiting potentials for the salt, at any given partial pressure of chlorine gas, 

and activity of liquid lithium metal and liquid potassium metal, may be calculated 

according to their corresponding Nernst Equations 4.13, 4.14 and 4.15, for the half-

cell reactions presented in Equations 4.10, 4.11 and 4.12. 

 

𝐶𝑙2 + 2𝑒
− ↔ 2𝐶𝑙−    4.10 

𝐿𝑖+ + 𝑒− ↔ 𝐿𝑖     4.11 

𝐾+ + 𝑒− ↔ 𝐾     4.12 
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𝐸𝐶𝑙2 = 𝐸𝐶𝑙2
𝑂 +

𝑅𝑇𝑙𝑛10

2𝐹
log⁡(

𝑃
𝐶𝑙2−

𝑃𝐶𝑙2
)   4.13 

𝐸𝐿𝑖 = 𝐸𝐿𝑖
𝑂 +

𝑅𝑇𝑙𝑛10

𝐹
log⁡(

𝑎𝐿𝑖+

𝑎𝐿𝑖
)   4.14 

𝐸𝐾 = 𝐸𝐾
𝑂 +

𝑅𝑇𝑙𝑛10

𝐹
log⁡(

𝑎𝐾+

𝑎𝐾
)   4.15 

 

For the LiCl-KCl electrolyte at 500 ˚C, the potentials are solid horizontal lines at 0 

V, -3.57 V and -3.76 V for the evolution of Cl2, Li and K respectively. The same 

procedure was applied to the NaCl-KCl eutectic at 750 ˚C, and the potentials for 

the evolution of Na and K were found to be -3.28 V and -3.52 V respectively.  

The next step is to calculate the Gibbs energy of formation of an oxide ion in the 

melt. There are two standard states for the oxide ion in the salt eutectic, these are 

Li2O and K2O. Using ΔG˚ of Equations 4.11 and 4.12, and ΔG˚ of the following 

half-cell reactions 4.16, 4.17 and 4.18, one can calculate the Gibbs energy of 

formation for the O
2-

 ion. 

 

2𝐿𝑖 +
1

2
𝑂2 ↔ 2𝐿𝑖+ + 𝑂2−   4.16 

2𝐾 +
1

2
𝑂2 ↔ 2𝐾+ +𝑂2−   4.17 

1

2
𝑂2 + 2𝑒

− ↔ 𝑂2−    4.18 

 

At 500 ˚C, the Gibbs energy of formation for O
2-

 from Li2O is +191.71 kJ mol
-1

, 

and that from K2O is +469.32 kJ mol
-1

. The salt in this system is a LiCl-KCl 

eutectic with a molar composition of 59-41 respectively. Therefore, the assumed 

Gibbs energy of formation for the oxide ion at 500 ˚C in this system was calculated 

as +305.56 kJ mol
-1

. The same method was applied to the NaCl-KCl equimolar 

system at 750 ˚C, and the Gibbs energy of formation for the oxide ion in the molten 

salt was established to be +408.91 kJ mol
-1

. 

Moreover, oxygen anions are in equilibrium with the atmosphere. Using the Gibbs 

energy of formation for O
2-

 and the Nernst equation, Equation 4.19 can be derived. 
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𝐸𝑂2− = 𝐸𝑂2−
𝑜 +

𝑅𝑇𝑙𝑛10

4𝐹
𝑙𝑜𝑔𝑃𝑂2 +

𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2−  4.19 

 

This shows the relationship between the electrode potential as a function of 

standard state potential, the oxygen gas partial pressure and the negative logarithm 

of the oxide ion activity, pO
2-

. It is depicted in the predominance diagram in Figure 

4.2 as a series of diagonal dashed lines, showing several states of equilibrium 

between oxygen gas and oxide ions at various O2 partial pressures. The information 

from this diagram is useful for molten salt systems, where partial pressures of 

oxygen are normally very low, as it shows the potentials at which O2 would be in 

equilibrium with the melt. These lines can be derived for the NaCl-KCl eutectic 

system following the same procedure. They can be superimposed onto the metal 

phase diagrams; however, to aid visual interpretation this is not performed here. 

Nonetheless, it is shown for uranium species, in Figure 4.9 and Figure 4.10. 

 

 

Figure 4.2 - Predominance diagram for the Li-K-O-Cl system at 500 °C, illustrating 

the relationship between oxygen pressure, oxide activity and potential, E, relative to 

the standard chlorine electrode. 
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Table 4.2 - Gibbs energy of formation for nuclear materials at 500 °C and 750 °C. 

Species 

 

ΔGf
0  

(kJ mol-1) 

at 500 ˚C 

ΔGf
0  

(kJ mol-1)  

at 750 ˚C 
Comments 

 

References 

 

LiCl (NaCl) -344.887 (-316.766) 

 

[145-147] 

Li2O (Na2O) -498.105 (-274.608) 

 

[145, 148-152] 

KCl -362.418 -339.473 

 

[153, 154] 

K2O -255.559 -220.057 

 

[148, 149] 

Li2UO4 (Na2UO4) -1662.680 (-1486.881) Extrapolated above 27 ˚C [151, 152, 155] 

UO -477.980 -455.771 Extrapolated above 227 ˚C [156] 

UO2 -950.563 -907.756 

 

[149, 157] 

U4O9 -3921.203 -3736.848 

 

[149] 

U3O8 -3055.659 -2896.089 

 

[149] 

UO3 -1023.699 -962.404 

 

[145, 148, 149] 

UCl2O -888.723 -837.432 Extrapolated above 527 ˚C [150, 155] 

U2Cl5O2 -1796.568 -1677.069 Extrapolated above 427 ˚C [151] 

UCl3 -692.619 -642.160 

 

[151, 155] 

UCl4 -794.542 -735.413 

 

[145, 158] 

Pu2O3 -1475.278 -1410.029 

 

[148, 149] 

PuO2 -908.526 -861.327 

 

[148-150] 

PuClO -806.625 -765.969 

 

[155, 157] 

PuCl3 -787.684 -733.376 

 

[154, 155, 158] 

Li2NpO6 (Na2NpO4) -1355.089 (-1346.466) Extrapolated above 27 ˚C [152] 

NpO2 -938.781 -894.564 

 

[149, 155] 

Np2O5 -1822.103 -1709.164 Extrapolated above 527 ˚C [155] 

NpCl3 -725.188 -670.084 

 

[155, 157] 

NpCl4 -758.434 -705.146 Extrapolated above 727 ˚C [155] 

Am2O3 -1473.270 -1406.104 

 

[155] 

AmO2 -795.968 -756.153 

 

[147, 155] 

AmClO -817.211 -777.668 

 

[155] 

AmCl3 -795.282 -739.928 Extrapolated above 27 ˚C [155] 

Cm2O3 -1430.229 -1328.186 Extrapolated above 27 ˚C [159] 

CmO2 -748.492 -684.109 Extrapolated above 27 ˚C [159, 160] 

CmClO -807.035 -744.292 Extrapolated above 27 ˚C [159] 

CmCl3 -767.028 -683.871 Extrapolated above 27 ˚C [159] 

Cs2O -242.961 -205.878 

 

[148, 158] 

Cs2O2 -283.880 -228.116 

 

[148, 156, 158] 

Cs2O3 -327.724 -259.383 Extrapolated above 427 ˚C [150] 

CsO2 -173.900 -136.486 Extrapolated above 200 ˚C [151] 

Nd2O3 -1587.405 -1519.064 

 

[148, 149, 151] 
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NdO2 -696.669 -447.885 Extrapolated above 200 ˚C [161] 

NdClO -855.745 -811.395 

 

[145] 

NdCl3 -852.695 -796.445 

 

[151] 

Sm2O3 -1597.552 -1524.838 

 

[145, 149] 

SmClO -861.226 -817.884 Extrapolated above 727 ˚C [151] 

SmCl3 -838.055 -783.450 

 

[145, 158] 

EuO -513.126 -489.177 

 

[148, 151, 158] 

Eu2O3 -1409.857 -1335.566 

 

[151] 

EuClO -750.346 -703.088 

 

[156] 

EuCl3 -737.401 -683.034 

 

[151, 158] 

Gd2O3 -1615.765 -1545.666 

 

[148, 157, 158] 

GdClO -841.390 -797.533 Extrapolated above 727 ˚C [145, 147, 148] 

GdCl3 -815.177 -765.475 Extrapolated above 727 ˚C [150, 158] 

Li2MoO4 (Na2MoO4) -1232.046 (-1086.773) 

 

[149, 151, 154, 

162] 

MoO2 -445.688 -402.174 

 

[149, 152, 163] 

MoO3 -547.974 -487.662 

 

[145, 148, 149] 

MoCl2O -357.355 -305.131 

 

[147, 148] 

MoCl2 -172.364 -136.825 

 

[147, 148, 151] 

MoCl5 -284.750 -223.078 

 

[146, 158] 

TcO2 -314.411 -270.073 

 

[150, 156] 

TcO3 -349.485 -300.478 Extrapolated above 127 ˚C [145] 

Tc2O7 -738.443 -644.378 Extrapolated above 427 ˚C  [149, 154] 

TcCl3 -133.223 -88.864 

 

[156] 

RuO2 -172.921 -133.825 

 

[150] 

RuO4 -47.246 0.188 Extrapolated above 172 ˚C [151] 

RuCl3 -54.551 -4.138 Extrapolated above 450 ˚C [150] 

Rh2O -57.798 -47.534 Extrapolated above 727 ˚C [157] 

RhO -31.229 -13.954 

 

[157] 

RhCl -40.413 -28.786 

 

[156] 

RhCl2 -65.752 -41.129 

 

[156] 

RhCl3 -92.650 -39.953 

 

[150-152] 

Ag2O 19.033 33.200 

 

[147, 151, 159] 

AgO 55.057 76.216 Extrapolated above 125 ˚C [160] 

Ag2O3 286.073 386.987 Extrapolated above 125 ˚C [159] 

AgCl -86.475 -80.450 

 

[147, 151, 152] 

CdO -181.481 -155.461 

 

[151, 152, 157] 

CdCl2 -270.663 -240.187 

 

[147, 150] 
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The functions of the interface lines between the different regions of stability, for 

each system, were derived using Reactions and Equations 4.4-4.9 and the 

thermodynamic data presented in Table 2. These are all presented in Appendix B. 

Pure liquid phases were assigned an activity of unity and pure gases were assigned 

unit atmosphere partial pressure. The diagrams depict regions of stability for 

species in solution and solid phases that would precipitate out, as well as liquid and 

gas phases. These diagrams can also be altered, by changing the activity used and 

conditions, which would shift the equilibria lines accordingly. For simplicity, unit 

activities are shown here. The predominance diagrams for the spent nuclear fuel 

materials in LiCl-KCl eutectic at 500 ˚C and NaCl-KCl eutectic at 750 ˚C are 

presented in Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6. 

 

4.3 Results 

Some of the general features of the predominance diagrams can be illustrated by 

reference to the uranium system in Figure 4.3(a). Compounds with uranium at their 

highest oxidation states are found in the upper regions of the diagram, at less 

negative potentials. At very low oxide ion activities, on the right hand side of the 

diagram, uranium chlorides (UCl3, UCl4) are formed. Uranium metal can be 

extracted from these at less negative potentials compared to the reduction of UO2. 

Since there is no transfer of O
2-

 ions in these reactions, from U
4+

 to U
3+

 and to U, 

the resultant interline functions between these species’ regions of stability are 

independent of pO
2-

. Thus, the interfaces are represented as horizontal lines in the 

predominance diagram. 

Due to the stability of other compounds that could exist in the melt, there is an 

intermediate region of stability between the oxides and the chlorides. This 

intermediate region is the metal oxychloride form. In the case of uranium it is 

UCl2O and U2Cl5O2. The interface between these two phases is a horizontal line, as 

there is no transfer of O
2-

 occurring. The interfaces between the regions of stability 

of the reactions from UO2 to UCl2O and to UCl4 are all vertical lines; hence, the 

derived interface equations are independent of potential, as the ratio of U 
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molecules does not change. All the other equations for interface lines related to 

UCl2O and U2Cl5O2 are dependent on both pO
2-

 and E, resulting in diagonal lines. 

At high oxide ion activities, on the left hand side of the predominance diagram, 

other types of uranium oxides are predicted to form. This is due to the oxide ions 

reacting with lithium or potassium ions in the fused salt. In the case of uranium, the 

first stable metal uranium oxide to form is Li2UO4, as presented in Figure 4.3(a). 

For the electrochemical reduction of UOx to U metal, the reductive potential is very 

negative and close to the salt’s decomposition potential. The diagram gives an 

indication of the number of phases expected to appear, and the order they would 

appear in, if UO3 were to be reduced. It can also be deduced that some compounds, 

such as U3O7, UO and U4O9, have a very narrow band of stability, when reducing 

the uranium oxide; thus, it is not very likely that traces of them will remain in the 

final product, as is the case with TiOx [50]. 

The predominance diagrams for U in NaCl-KCl, and for Pu, Np, Am, Cm, Cs, Nd, 

Sm, Eu, Gd, Mo, Tc, Ru, Rh, Ag and Cd, in both LiCl-KCl and NaCl-KCl, can be 

interpreted in the same way as for U in LiCl-KCl. They are all presented in Figure 

4.3(a-h), Figure 4.4(a-h) Figure 4.5(a-h) and Figure 4.6(a-h). 
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Figure 4.3 - Predominance diagrams of (a) U, (c) Pu, (e) Np, and (g) Am in LiCl-KCl 

at 500 °C. (b) U, (d) Pu, (f) Np, and Am are in NaCl-KCl at 750 °C. 



4. Predominance Diagrams                                                                                      71 

 

 

 
 
Figure 4.4 - Predominance diagrams of (a) Cm, (c) Cs, (e) Nd, and (g) Sm in LiCl-KCl 

at 500 °C. (b) Cm, (d) Cs, (f) Nd, and Sm are in NaCl-KCl at 750 °C. 
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Figure 4.5 - Predominance diagrams of (a) Eu, (c) Gd, (e) Mo, and (g) Tc in LiCl-KCl 

at 500 °C. (b) Eu, (d) Gd, (f) Mo, and Tc are in NaCl-KCl at 750 °C. 
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Figure 4.6 - Predominance diagrams of (a) Ru, (c) Rh, (e) Ag, and (g) Cd in LiCl-KCl 

at 500 °C. (b) Ru, (d) Rh, (f) Ag, and Cd are in NaCl-KCl at 750 °C. 
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4.4 Discussion 

The interface lines between the lowest oxidation state and the pure metal state are 

of particular importance for electrochemical reduction and pyroprocessing, for 

metal fuelled reactors; and the interface line between oxide states for oxide fuelled 

reactors. From Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6, it is evident that 

the reduction of the transition metals, Rh, Ag, Ru, Tc, Cd and Mo, showed first, at 

less negative potentials. Then, the reduction of U, Pu and the minor actinides, in 

the order of U, Cs, Pu, Am, Np and Cm, at increasingly negative potentials. 

Finally, the reduction of the lanthanides in order of increasingly negative potential: 

Nd, Sm, Gd and Eu. These findings are encouraging, as the three different groups 

are clearly divided, thus indicating that they can be selectively reduced and 

separated from the spent-fuel. Separating Pu as a single species appears to be 

challenging, this is an important non-proliferation feature. 

From the predominance diagrams, it is also evident that some species have very 

narrow bands of stability, and thus might not be observed experimentally, if the 

metal oxides were to be reduced. This could be the case for U3O7, UO, U4O9, 

Np2O5, Cs2O2, MoCl2O, TcO3 and RhCl2. 

4.4.1 Comparison of eutectics 

It is noticeable from the predominance diagrams that for all spent fuel materials, 

the region of stability for the pure metal phase is larger in the LiCl-KCl eutectic, 

than in the NaCl-KCl eutectic, even though the temperature is lower, 500 ˚C and 

750 ˚C respectively. The final reduction stage from oxide to metal also appears to 

be possible at higher O
2-

 ion activities in LiCl-KCl compared to NaCl-KCl. Thus, it 

seems that the use of LiCl-KCl for molten salt pyroprocessing is more favourable 

than NaCl-KCl. However, this is purely based on thermodynamics and higher 

temperatures are likely to benefit from faster kinetics. 

4.4.2 Selective electro-reduction 

Selective direct reduction is when there is a mixture of different metal oxides and 

only one, or a subset of them, are selectively reduced and separated via 

electroplating. This can be very beneficial in the nuclear industry, to enable the 
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reprocessing and recycling of the useful spent fuel products selectively and 

separately, and also prevents nuclear proliferation. Thus, it is important to 

understand how control of electrode potential affects spent fuel products in a 

molten salt reprocessing reactor; comprehensive predominance diagrams are a 

starting point for such analyses. 

One instance where the possibility of selective electro-reduction is not desired is 

for U and Pu. This is for anti-proliferation reasons. The predominance diagrams for 

Pu are superimposed onto those for U, in LiCl-KCl and NaCl-KCl, Figure 4.7. The 

main region of interest is the interface lines where the reduction from the lowest 

oxide state to the pure metal phase occurs (e.g. from -3 V and 10 pO
2-

 to -3.5 V and 

11 pO
2-

 in Figure 4.7(a)). As seen in Figure 4.7, these boundary lines for the U and 

the Pu systems are very close to each other. Thus, it would be challenging to 

selectively reduce one of them exclusively. From Figure 4.7 it is evident that the 

uranium oxide reduction to uranium metal would occur first. 

In principle, the use of predominance diagrams to aid the understanding of the 

feasibility of selective electro-reduction can be applied to all spent-fuel products, in 

order to understand the reduction procedure that they would undergo if they were 

all placed in a molten salt reprocessing reactor. Within each group, transition 

metals, actinides and lanthanides, difficulties are apparent in the partial reduction 

of a single species. In the transition metals group, partial reduction is the most 

likely to be achieved, with the exception of Cd and Mo, as their reduction interlines 

are too close to each other. In the actinides group, it is more difficult to perform 

partial reduction, Np being the exception. It is the most difficult to carry out partial 

direct reductions in the lanthanides group.  
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Figure 4.7 - Predominance diagrams of U and Pu species. (a) in LiCl-KCl at 500 °C, 

(b) in NaCl-KCl at 750 °C. 

 

An example of where selective direct reduction would be useful is for Am and Cm: 

this is to mimic the EXAm [164] process in solvent extraction nuclear 

reprocessing. Am and Cm are both high heat emitters; however, Cm has a short 

half-life, ~ 18 years, and thus, it is not economically viable to reprocess it, as 

storage options would be cheaper. By contrast, it is desirable to reprocess and 

recycle Am. The predominance diagrams for Cm are superimposed onto those for 

Am, in LiCl-KCl and NaCl-KCl, Figure 4.8. From the predominance diagrams, it is 

evident that selective electro-reduction would be difficult for these two species due 

to the similarity in reduction potential. However, in this instance, the use of NaCl-

KCl eutectic melt as the electrolyte is more favourable as the potentials for 

reduction of the two species form a larger window.  

 

 

Figure 4.8 - Predominance diagrams of Am and Cm species. (a) in LiCl-KCl at 500 °C, 

(b) in NaCl-KCl at 750 °C. 
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4.4.3 Effect of temperature 

Temperature is an important parameter that affects the stability zones. At higher 

temperatures the regions of stability are shifted to the ‘left’, at higher O
2-

 activity, 

where oxide reduction reactions occur; however, at higher temperatures, the 

potential window is smaller. Figure 4.9 and Figure 4.10 present predominance 

diagrams for uranium species in LiCl-KCl eutectic at 500 °C and 800 °C 

respectively. When comparing the two diagrams, one can clearly see the effects of 

temperature on the regions of stability. An interesting feature is also the 

disappearance of the stability band for UO entirely at the higher temperature, 

indicating that what could be a very fast 2 step 4-electron transfer process from 

UO2 to U becomes a one step process. 

From a design point of view, processes at lower temperatures are favourable, as 

heat requirements would be lower, also, the materials designated for reactor 

vessels, sealing, handling and maintenance are more practical at lower 

temperatures. Thus, provided that the fused salt is treated and O
2-

 levels are kept 

minimal, it is constructive to keep the operating temperatures low. These processes 

are also possible at lower temperatures as shown in Figure 4.9. 

4.5 Conclusions 

Predominance diagrams are useful tools for understanding the electrochemistry and 

phase stability of metal-oxide systems in molten salts. They help in predicting 

experimental results and give a good indication of whether an electrochemical 

process is thermodynamically feasible. Predominance diagrams have been 

generated for the range of spent nuclear fuel materials, based on established 

thermodynamic properties of the materials published in the literature. 

By superimposing the diagrams for U and Pu, and Am and Cm onto each other, the 

potential for selective electro-reduction can be determined and the most suitable 

molten salt and temperature selected.  It was found that molten salt pyroprocessing 

provides a promising route for reprocessing nuclear materials, which is also 

proliferation resistant. However, the approach is not seen to be a replacement for 

the EXAm process, as the selective reduction and separation of Am species from 

Cm would be challenging due to similarity in reduction potential. 
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Figure 4.9 - Predominance diagram for the Li-K-U-O-Cl system at 500 °C. 

 

 

Figure 4.10 - Predominance diagram for the Li-K-U-O-Cl system at 800 °C.
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5. The Electrochemical Reduction of Tungsten Oxide 

The electrochemical reduction of WO3 to W metal using a fluidised cathode 

process was investigated. Voltammetry studies were conducted, and alongside a 

predominance diagram that was constructed, the reaction path-way was studied. 

The main reduction potential appeared to be -2.14 V. A complete reduction, 

through applying constant voltage, was achieved with a Faradaic current efficiency 

of ~ 82%. The metal product is in the form of particles, either deposited on the 

electrode surface or settled at the bottom of the crucible. The effects of metal oxide 

– salt ratio and of fluidisation rate on the process were also investigated. Higher 

loading of metal oxide particles resulted in an increase in the rate of deposit 

growth, and in a decrease in particle-current collector collision-reaction spikes. An 

increase in fluidisation rate resulted in an increase in both rate of growth of deposit, 

as well as collision-reaction noise. 

5.1 Introduction 

Tungsten has many applications because of its physical and chemical properties 

[165]; this has sparked renewed interest in its production in the U.K. recently. 

Tungsten ore is usually extracted then converted to WO3, which is in turn reduced 

to W metal by hydrogen and heating. This process is time and energy intensive 

[166]. The electrochemical reduction route might prove to be viable for the 

production of pure tungsten. Studies on the electrochemical reduction of tungsten 

oxide in molten salts have been published [167-169], mainly for the production of 

metal alloys [59, 170]. The precursors were porous solids in the form of pellets.  

This Chapter reports on the current efficiency and the investigation of different 

characteristics that affect the fluidised cathode process, using a model system of 

tungsten oxide and LiCl-KCl molten salt eutectic. 
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5.2 Experimental 

5.2.1 Apparatus 

A schematic of the electrolytic cell used is illustrated in Figure 3.13(b). The 

cathode consists of WO3 particles that are suspended in the molten salt (LiCl-KCl) 

eutectic, and a pure tungsten rod current collector. The anode is a graphite rod 

separated in its own compartment to avoid reoxidation of the reduced tungsten 

particles; the anode compartment has an opening at the top to allow for gases to 

escape. The melt is agitated via a flow of argon. A reference electrode (Ag/Ag
+
) 

was used, and the temperature was monitored via a thermocouple that is immersed 

in the melt. All electrochemical tests were performed using a potentiostat 

(IviumStat, Ivium Technologies, NL). 

The same set-up was used to carry out the thin film experiments. However, no 

WO3 particles were employed, the counter electrode was not separated inside a 

compartment, no argon was bubbled through the melt, and the current collector was 

replaced with a thin film cathode, Figure 3.13(a). 

5.2.2 Chemicals 

All preparation steps were carried out under a sealed argon atmosphere. Anhydrous 

lithium chloride (ACS reagent, ≥99.0% purity, Sigma-Aldrich) and potassium 

chloride (≥99.5% purity, Sigma-Aldrich) were used for the electrolyte. The salt 

was dried in a vacuum oven at 200 ˚C for 24 h, then 150 g of 59-41 mol% LiCl-

KCl were mixed with WO3 (99.9% purity, Alfa Aesar). Particle size distribution 

measurements, Figure 5.1, were conducted using a Beckman Coulter LS13320 

laser diffraction particle size analyser. Figure 5.2 shows the x-ray diffraction 

pattern of the as-received WO3 powder. 15 g of LiCl-KCl was placed inside the 

anode compartment. The counter electrode was a high density graphite rod, 3.05 

mm in diameter (99.9995% metal basis, Alfa Aesar). The working electrode 

(current collector) was a tungsten rod, 1.5 mm in diameter (99.95% metal basis, 

Alfa Aesar). A glass sheath around the shaft of the tungsten rod ensured that a 

constant surface area of electrode is exposed to the electrolyte, even when being 
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agitated by the Ar stream. Argon (99.998% purity, BOC) was bubbled through the 

melt via a ceramic tube (5 mm internal diameter, Alsint). 

For the thin film experiments, the electrolyte was composed of 150 g of LiCl-KCl, 

prepared in the same way as for the fluidised cathode setup, but no WO3 particles 

were used. The working electrode was thermally oxidised in air at a temperature 

ramp rate of 250 ˚C h
-1

, then held at 700 ˚C for 2 h. 

 

 

Figure 5.1 - Average particle size distribution of WO3 powder in terms of volume 

percentage, also showing the maximum size distribution and the minimum, with a 

standard deviation of 2. Mean particle diameter: 30.9 μm, median particle diameter: 

29.5 μm. 
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Figure 5.2 - X-ray diffraction spectrum (Mo Kα) of as-received WO3 powder sample, 

showing WO3 (1620-ICSD [171]). 

 

5.2.3 Procedure 

Experiments were carried out under a dry argon atmosphere at a melt temperature 

of 450 ˚C (unless indicated otherwise). Argon was bubbled into the melt, which 

resulted in a homogeneous distribution of particles as assessed by visual inspection. 

The current collector, 4 cm length (area of 3.84 cm
2
), was immersed in the melt 

during the fluidised cathode measurements, and 2 cm length (area of 1.96 cm
2
) 

during the thin film measurements. However, absolute currents are reported due to 

the fact that the electrode surface area changes during experiments. 

 

5.3 Results and discussion 

A predominance diagram, Chapter 4, was constructed for the Li-K-W-O-Cl system, 

relating the potential E vs. standard chlorine electrode (S.Cl.E) to the negative 

logarithm of O
2-

 ions activity, pO
2-

. All the thermodynamic data used for the 



5. The Electrochemical Reduction of Tungsten Oxide                                          83 

 

 

production of the diagram is presented in Table 5.1, and the derived interface 

equations are presented in Appendix C. A predominance diagram for tungsten 

species in CaCl has been published [59]; however, this is the first in LiCl-KCl 

eutectic. 

 

Table 5.1 - Gibbs energy of formation at 500 °C for species in the Li-K-W-O-Cl 

system. 

Species ΔG0
f at 500 ˚C 

(kJ mol-1) 

References 

WO2 -447.23 [149, 150, 163] 

WO3 -641.66 [150] 

WCl2O2 -586.35 [146, 147] 

WCl2 -165.85 [146, 147, 150] 

WCl4 -237.11 [146, 150] 

LiCl -344.89 [145, 147, 163] 

Li2O -498.11 [145, 148, 149] 

KCl -362.42 [153, 154] 

K2O -255.56 [148, 149] 

 

 

The predominance diagram in Figure 5.3 shows the different regions of stability for 

different compounds and oxidation states of tungsten. Thermodynamically, one can 

deduce that the concentration of O
2-

 ions in the eutectic melt does not hinder the 

reduction process of WO3 to W. However, it affects the reaction pathway. Starting 

with WO3, two reduction reactions take place to produce W metal. These are 

presented in Equations 5.1 and 5.2. Equations 5.3 and 5.4 are used to calculate the 

potential, E, needed for each reaction to take place, at different values of O
2-

 ion 

activity.  

𝑊𝑂3 + 2𝑒
− ↔𝑊𝑂2 + 𝑂

2−   5.1 

𝑊𝑂2 + 4𝑒
− ↔𝑊 + 2𝑂2−   5.2 

𝐸5.1 =
−∆𝐺5.1

0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2−   5.3 

𝐸5.2 =
−∆𝐺5.2

0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2−   5.4 
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Figure 5.3 - Predominance diagram for the Li-K-W-O-Cl system at 500 °C. 

 

 

The bands of potentials and pO
2-

 values are presented in Table 5.2. When 

comparing features in the predominance diagram, such as the evolution of Li or 

Cl2, with when they appear in the cyclic voltammogram in Figure 3.17, the 

difference in potential between the Ag/Ag
+
 reference electrode and the S.Cl.E is 

1.136 V. The potentials needed for the proceeding of Equations 5.1 and 5.2, with 

respect to Ag/Ag
+
, are also presented in Table 5.2. 

 

 

Table 5.2 - Thermodynamically calculated values of pO
2-

 and potentials required for 

Equations 5.1, 5.2, 5.6 and 5.7 to take place. 

Reaction pO2- E (V vs. S.Cl.E) E (V vs. Ag/Ag+) 

5.1 0.000 – 24.411 -2.591 – -0.721 -1.455 – +0.415 

5.2 0.000 – 24.575 -2.740  ̶  -0.860 -1.604 – +0.276 
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Voltammetry measurements were performed on a thermally grown thin film of 

WO3 electrode set-up and a fluidised cathode set-up, Figure 5.4 (a) and (b) 

respectively. Both were scanned from 0 V to -2.7 V, and back to 0 V (vs. Ag/Ag
+
 

reference electrode). The peaks at 2 represent the reduction of Li
+
, and at 3 

represent its reoxidation. The smaller peaks appearing after 3 in the positive 

direction represent the reoxidation of W to WOx. The peaks at 1 represent the main 

reduction step in Equation 5.5. 

 

𝑊𝑂3 + 6𝑒
− ↔𝑊 + 3𝑂2−   5.5 

 

When comparing these two peaks in Figure 5.4 (a) and (b), one can see that the 

peak in (b) is shifted slightly to the right, and appears at -2.14 V, before peak 1 in 

(a) which appears at -2.21 V, as indicated by the dashed vertical lines in the 

diagrams. This is due to the nature of the fluidised cathode process, which provides 

less resistance. For an electrochemical reaction, a 3PI needs to be present for it to 

occur. In a molten salt system, this is the current collector (conductor), the fused 

salt (electrolyte) and the metal oxide (insulator). A 3PI is instantly initiated at the 

collision point of a particle with the current collector in the fluidised cathode 

process, thus the reaction extends from this point. In the case of a thin film, there is 

an insulating sheath of oxide covering the electrode surface, and therefore it is 

harder for the reaction to take place, resulting in more driving force being required, 

a higher overpotential. The same is true for peak 2. 
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Figure 5.4 - (a) Cyclic voltammogram of WO3 thin film cathode in LiCl-KCl eutectic 

at 450 °C, scan rate: 50 mV s
-1

, reference electrode: Ag/Ag
+
. (b) Cyclic voltammogram 

of WO3 fluidised cathode in LiCl-KCl eutectic at 450 °C, scan rate 50 mV s
-1

, 

reference electrode: Ag/Ag
+
. 
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Figure 5.5 - Cyclic voltammogram of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, scan rate: 50 mV s
-1

, and reference electrode: Ag/Ag
+
. 

 

Looking closer at the voltammetry of the fluidised cathode system, scanned from 0 

V to -2.5 V and back to 0 V, Figure 5.5, provides a better understanding of the 

process. The main reduction peak appears at -2.14 V again. The apparent ‘noise’ or 

peaks in the voltammetry are due to particle-current collector collisions and 

reactions. One can see that the collision-reaction features are only evident at 

voltages where WO3 can be reduced; indicating that the reoxidation to WOx is 

primarily a surface process involving W on the surface and not as a result of 

reduced W particles colliding and reacting with the electrode. Looking closely at 

the cyclic voltammogram, one can see that the electrochemical reaction proceeds 

from actually -1.13 V, the noise in the diagram is also indicative of this. When 

comparing the voltages involved with the thermodynamically calculated ones and 

the predominance diagram, it suggests that the process starts with an 

electrochemical reaction, Equation 5.1, which produces WO2. This then proceeds 

to reduce electrochemically to W metal in a 4-electron-transfer step, Equation 5.2.  
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Usually, an electrochemical reduction process progresses vertically down the 

predominance diagram; however, in reality it is much more complicated than that, 

and it normally propagates to the left and down as the reactions resume. Previous 

studies [55, 58, 59] where solid precursors have been removed from the melt mid-

reduction and analysed have shown that; in the case of tungsten reduction seems to 

occur directly from WO3 to WO2 to W metal; and in the case of titanium reduction, 

the perovskite CaTiO3 is formed in much smaller quantities than predicted by 

predominance diagrams, at the beginning of the reduction process. This is due to 

the fact that predominance diagrams fail to take into account the kinetics of 

processes and the overpotentials involved in refractory metal production.  

 

 

Figure 5.6 - Chronoamperogram of WO3 fluidised cathode in LiCl-KCl eutectic at 450 

°C, 40 g WO3, argon flow rate: 800 cm
3
 min

-1
, set voltage: -2.14 V, reference electrode 

Ag/Ag
+
. 1 - 4: diagrammatic representation showing the evolution of the cathode's 

surface area over time. 
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Figure 5.7 - (a) Photographs of current collector before the reduction process, 1, and 

after, 2, (b) photograph of the solidified melt showing separate layers of WO3 and W. 

 

Constant potential of -2.14 V, as identified as the reducing potential, (vs. Ag/Ag
+
 

reference electrode) was applied to the fluidised cathode system, Figure 5.6, this 

time 40 g of WO3 powder was fluidised. In previous studies [47, 50, 52, 170] 

potentials in the range of 2 – 3 V were normally applied for such metal oxide 

reduction processes. As time passed, the current increased due to an increase in the 

electrode surface area and the deposit growth of W on the current collector surface, 

as illustrated in Figure 5.6 (1-2). This growth is visible through the glass 

electrolytic cell set-up. At (2) in Figure 5.6, there is a rapid reduction in current 

associated with spalling off of the deposit from the electrode. New growth is then 

associated with the increase in the current (3-4). 

Due to the difference in densities, when the electrolyte is left to solidify, different 

layers of materials form, Figure 5.7 (b). Dark metallic tungsten metal sinks to the 

bottom, followed by a layer of green, still to be reduced, tungsten oxide, and finally 

a layer of LiCl-KCl eutectic. This represents a potentially simple means of 

separating the product in a technological system. Figure 5.7 (a) shows an image of 

the current collector before, 1, and after the reduction, 2. 

There are two areas from where the final product could be collected, the bottom of 

the cell crucible, Figure 5.7 (b), and on the surface of the working electrode, Figure 

5.7 (a). Samples from both were analysed using SEM and EDS (Carl Zeiss 
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XB1540, accelerating voltage = 20.00 kV, dwell time = 1.6 min). In the EDS 

spectrum of the deposit’s surface on the working electrode, Figure 5.8, no oxygen 

was detected. However, there is some salt present. Figure 5.9 (a) shows an SEM 

image of the as-received WO3 particles and (b) that of the W product from the 

solidified melt. No oxygen was detected in the EDS spectrum of the surface of the 

W product. 

A cross-section of the retrieved current collector, where the deposit did not spall 

off, Figure 5.10, shows that the growth is cylindrical in shape, i.e. it forms at the 

same rate perpendicular to the current collector surface in all directions. When 

zoomed in, Figure 5.11, the particles of W metal produced appear homogeneous in 

size and porosity.  

 

 

 

Figure 5.8 - (a) EDS spectrum of the deposit on the current collector's surface. (b) 

Photograph of the working electrode after the chronoamperometry showing the 

deposited W. (c) SEM image of the cross-section of the solid W working electrode, 2, 

and the deposit grown, 1. 
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Figure 5.9 – SEM image of the as-received WO3 particles, and (b) product W obtained 

from the solidified melt as a separate layer to the LiCl-KCl. EDS spectra (penetration 

depth ~6 μm) showed the stoichiometric composition of WO3 in (a), and the absence of 

oxygen in (b).  
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Figure 5.10 - SEM image of the cross-section of the current collector showing the 

deposited tungsten. 

 

 

Figure 5.11 - SEM images of the current collector and deposit, at different 

magnitudes, showing the homogeneity of reduced deposit. 
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5.3.1 Current efficiency 

A constant potential of -2.14 V (vs. Ag/Ag
+
) was applied to the fluidised 

cathode set-up to reduce 4 g of WO3 to W metal, Figure 5.12. The 

chronoamperogram shows a similar trend to previously published work on 

electrochemical reduction of metal oxides [58], where the diagram can be 

segregated into two main sections; the first, where rapid reduction reactions 

occur and the current increases significantly until it reduces; the second, 

where the current increases slightly again, then plateaus and slower 

reactions take place to reduce the final oxides, until the current decreases 

indicative of the end of the process and the production of pure metal. 

Assuming 100% current efficiency, it would require a charge of 9977.5 C to 

be applied to fully reduce all 4 g of WO3. The XRD spectrum of the final 

product, retrieved from the deposit on the current collector, is presented in 

Figure 5.13. It shows the spectra of W and KCl. Most importantly, the 

analyses show that there is no WO3, WO2 or any other quasi-reduced 

species. Thus, it confirms that the reduction reaction can reach completion 

with pure W being the product. The Faradaic efficiency of the process was 

calculated by dividing the theoretical charge required by the charge passed. 

The charge passed was calculated by adding the actual charge passed to an 

assumed charge that would be passed given that the chronoamperometry 

was allowed to reach zero potential. Experiments concluded that the current 

efficiency for reducing WO3 to W in LiCl-KCl using the fluidised cathode 

process is ~ 82%. The current efficiency was also calculated by subtracting 

the background current as estimated from the pre-electrolysis, this was 4.3 

mA, as presented in Figure 5.12(b). This reduces the errors from the 

estimated extended current, and gives a new current efficiency of 100%. 

Thus the current efficiency is 82-100% 

When the final product was retrieved, a sample was placed in ethanol to 

dissolve the salt, under an argon atmosphere. Dissolving the salt in water 
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was not appropriate in this case, as W, unlike Ti, reacts more readily with 

water (and air) forming thin films of oxides, which was not desired for 

analysis. After leaving the sample in ethanol for 24 hr, the ethanol 

containing salt was filtered out using a small vacuum filtration unit. The 

sample (powder) was then placed in ethanol again, and the procedure was 

repeated twice. Finally, the product was dried in a vacuum oven at room 

temperature. Despite this rigorous cleaning process, the XRD spectrum in 

Fig. 12 confirms that KCl is still present in the sample. A solution to this 

could be to employ a vacuum distillation [172, 173] unit at a high 

temperature to remove the salt whilst still molten. The nature of the 

fluidised cathode would complement such a filtration technique. 

 

 

Figure 5.12 - Chronoamperogram of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, 4 g WO3, argon flow rate: 800 cm
3
 min

-1
, reference electrode: Ag/Ag

+
, set 

voltage: -2.135 V. 
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Figure 5.13 – X-ray diffraction spectrum (Mo Kα) of sample of product after complete 

reduction, showing W (52344-ICSD [174]), and KCl (165593-ICSD [127]). 

 

5.3.2 Effects of metal oxide – salt ratio 

Constant potential experiments were carried out on different loadings of WO3 

powder in LiCl-KCl salt eutectic. The voltage was again set to -2.14 V, Figure 

5.14. Three chronoamperometry measurements were taken. Masses of WO3 (0.5, 

40 and 60 g) were initially mixed with 150 g of LiCl-KCl in the main cell crucible, 

with 10 g in the anode compartment, giving weight percentages of 0.312, 20.00 and 

27.27 wt%, for the three different experiments. 0.5 g was chosen, as this was the 

lowest limit at which some product could still be retrieved from the current 

collector. 60 g was chosen, as this was the highest limit, given the ratio to 150 g of 

salt, where the fluidisation process was still easily initiated. Although masses of up 

to 100 g of WO3 could still be fluidised, they proved difficult for fluidisation 

initiation and maintaining via gas bubbling. 

The chronoamperograms show the same characteristic of an initial increase in 

current. However, they all stabilise towards different currents, with the lowest 

weight percentage achieving a lower current, than the higher weight percentage 
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experiments. Spalling-off is also witnessed, with associated sudden drops in 

currents passed. The effect of metal oxide concentration in the melt on the 

electrochemistry is attributed to the fact that statistically there are more frequent 

interactions of particles with the electrode for a system with higher loading, thus 

giving a higher total current. The difference in change in current with time is more 

intriguing. The high oxide concentration leads to a monotonic increase in current 

with time, while the lower concentrations show more signs of product spalling, 

evident through the abrupt decrease in current. This would suggest that the product 

is more stable in the high concentration case, allowing growth to continue and the 

electrode to grow. At higher loadings the bulk density of the materials in the 

reaction crucible is higher, which would hinder the current collector from vibrating 

heavily, due to mechanical agitation via bubbling and collisions, which also 

contributes to the spalling effect. 

 

 

Figure 5.14 - Chronoamperograms of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, argon flow rate: 800 cm
3
 min

-1
, reference electrode: Ag/Ag

+
, set voltage: -2.14 

V, for different weight percentages of WO3 in the melt, as indicated. 
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Figure 5.15 - Count of charge per spike relative to a normalised line of best fit, at 

different WO3 – LiCl-KCl eutectic ratios. Where, (a) is at 0.312 wt% WO3, (b) 20.00 

wt%, and (c) 27.27 wt%. 

 

 

Figure 5.15 shows the count of charge per spike relative to a normalised line of 

best fit for the chronoamperograms in Figure 5.14. 2500 points for each WO3 

concentration were used to produce the data. It is very clear that with higher 

concentrations the spike amplitude is much smaller. The increasing noise with the 

decreasing oxide particle fraction is also attributed to the greater particle 

homogeneity in the melt leading to a steadier current response. Thus, the noise 

feature in the fluidised cathode process is attributed to the velocity (how long a 

particle stays on the surface) with which the particles collide with the current 

collector, rather than the number of particles impinging at any given point, 

although each spike corresponds to more than one particle colliding. 

5.3.3 Effects of fluidisation rate 

Different argon flow rates were applied to the fluidised cathode process whilst 

conducting a constant voltage experiment. Figure 5.16 shows the 

chronoamperogram of the fluidised cathode under different agitation conditions. 

The reducing potential was set to -2.14 V and the fluidisation rate was altered by 

changing the argon flow rates from 200 cm
3
 min

-1
 to a maximum of 1800 cm

3
 min

-

1
, and back to 200 cm

3
 min

-1
. It was increased by 200 cm

3
 min

-1
 every 5 minutes. 

As time passed, the current increased, at each argon flow rate; again this is due to 

an increase in the surface area of the current collector. It is evident that increasing 
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the agitation rate causes the current to increase more rapidly, and makes the 

collision-reaction spikes (noise) greater. This indicates that a higher fluidisation 

rate increases the likelihood of an encounter of an oxide particle with the electrode, 

and will also increase the kinetic energy of particle collision with the electrode. 

These effects are particularly acute above a threshold agitation level induced by an 

argon flow rate of 1600 cm
3 

min
-1

. In fluidised bed chemical engineering, there are 

two main types of fluidisation regimes, depending on many parameters, but mainly 

the superficial velocity of the fluid, the fluidisation regime can change from a 

‘particulate’ to an ‘aggregative’ regime. This could be the explanation for such an 

obvious change in the chronoamperommetry measurements. Further studies should 

be conducted on the fluidisation regimes and their parameters, identification and 

outcomes, to help understand the complexity of this system with three phases of 

flow (including changes in density and other parameters, when electrochemical 

alterations are applied). 

Figure 5.17 shows the count of charge per spike relative to a line of best fit for the 

chronoamperogram in Figure 5.16. Three hundred points for each argon flow rate 

were used to plot the data. Here, one can clearly see that in the case of lower flow 

rates the spikes are much smaller and lie toward the lower end of the charge per 

spike spectrum. The opposite is true for higher agitation rates. This complements 

the theory that the noise feature in the fluidised cathode process is a result of higher 

impact velocity/kinetic energy. Thus, the effects of altering the fluidisation rates 

are in agreement with metal oxide loading effects. Higher frequencies of collision-

reactions are responsible for electrode growth and current increase; and higher 

impact velocities are responsible for higher noise, and ultimately spalling effects. 
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Figure 5.16 - Chronoamperogram of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, 40 g WO3, reference electrode: Ag/Ag
+
, set voltage: -2.14 V, showing the effect 

of different argon flow rates bubbled through the melt. 

 

 

Figure 5.17 - Count of charge per spike relative to line of best fit, at different argon 

flow rates. Where, (a) is at 200 cm
3
 min

-1
, (b) 400 cm

3
 min

-1
, (c) 600 cm

3
 min

-1
, (d) 800 

cm
3
 min

-1
, (e) 1000 cm

3
 min

-1
, (f) 1200 cm

3
 min

-1
, (g) 1400 cm

3
 min

-1
, (h) 1600 cm

3
 min

-

1
, and (i) 1800 cm

3
 min

-1
. 
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5.3.4 Particle coulometric analysis 

Particle coulometric analysis [175-178] was carried out on a section of 200 spikes 

from the chronoamperometry in Figure 5.18 to characterise the particle-electrode 

interaction dynamics.  This section is presented in Figure 5.18 (b). Figure 5.19 (a) 

shows the relative frequency of spike durations. The modal spike duration time is 

0.4 s with a standard deviation of 0.2. Using Equation 5.10, the charge per spike 

was calculated. This is presented in Figure 5.19 (b). The modal charge per spike is 

-0.2 C with a standard deviation of 0.1. 

 

𝑄 = ∫ 𝐼𝑑𝑡 = 𝑒𝑧𝑁    5.10 

 

Where I is the current, t the spike duration, e the electronic charge = 1.602  10
-19 

C, z = 6 (the number of transferred electrons per reduced formula unit of WO3), 

and N is the number of reduced WO3 units. 

Assuming each spike on the chronoamperogram is only associated with one 

particle impacting on the current collector, and that the particles are spherical in 

shape, and fully reduced, Equation 5.11 can be used to estimate the size of the WO3 

particles colliding with the working electrode, via cathodic coulometry. 

 

𝑟 = √
3𝑀𝑄

4𝜋𝑒𝑁𝐴𝑧𝜌

3
     5.11 

 

Where r is the radius of the WO3 particles, M = 231.84 g mol
-1

 (the molar mass of 

WO3), NA = 6.022  10
23

 mol
-1

 (the Avogadro constant),  = 7.16 g cm
-3

 (the 

density of WO3). 
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Figure 5.18 - (a) Chronoamperogram of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, 40 g WO3, reference electrode: Ag/Ag
+
, set voltage: -2.14 V, (b) zoom-in of a 

section containing 200 spikes used for coulometric analysis. 

 

 

 

Figure 5.19 - (a) Relative frequency of spike durations in Figure 5.18 (b) from 

coulometric analysis. (b) Count of charge per spike from coulometric analysis. 
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Figure 5.20 - (a) Count of radii sizes of WO3 reactant particles from particle 

coulommetry analysis. (b) SEM image of a large WO3 particle. 

 

Figure 5.20 (a) shows the count of radii sizes as estimated from particle 

coulometry. The mean radius size of WO3 is 154.5 μm with a standard deviation of 

17. An SEM image of a large WO3 particle is shown in Figure 5.20 (b).  

Particle size distribution analysis, Figure 5.1, showed that the actual mean particle 

radius size is 15.41 μm. This discrepancy in results is expected because in the 

literature, particle coulometry was used to predict the size of nano particles 

impending on electrodes, whereas in the fluidised cathode system, where diffusion 

of particles (in the micro scale) is enhanced via agitation of the melt, more than one 

particle would be expected to collide with the current collector at any given stretch 

of 0.2 s. Nonetheless, particle coulometry still provides a valuable understanding of 

the system, as it concludes that on average, given the conditions applied in the 

chronoampergram in Figure 5.18, a number of particles that amount to the size of 

one spherical particle of 154.5 μm would impenge on the current collector at any 

time band of 0.2 s and be fully reduced. 
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5.3.5 Electrochemical deposition model 

An electrochemical deposition model for the fluidised cathode process was 

developed in order to estimate the rate of growth of the deposit on the working 

electrode, and the porosity characteristic of the deposit. 

Assuming that the current density is constant across the entirety of the electrode at 

different extents of reaction, the current, i, is related to the molar accumulation 

over a given time, N(t), by Equation 5.12. 

 

𝑖 = 𝑛𝐹
𝑑

𝑑𝑡
𝑁(𝑡)    5.12 

  

Where, n is the number of moles and F is the Faraday constant. 

 

 

 

Figure 5.21 – Schematic showing parameters of the current collector and the deposit 

used in the electrochemical deposition model. 

 

The volume deposited, V(t), is represented in Equation 5.13, and in terms of radii in 

Equation 5.14, assuming the deposit is cylindrical in shape, perpendicular to the 
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current collector surface, Figure 5.21, which is in fact the case, as shown in Figure 

5.10. 

𝑉(𝑡) = ⁡
𝑁(𝑡)𝑀

𝜌
    5.13 

𝑉(𝑡) = 𝜋[𝑟(𝑡)2 − 𝑟0
2]𝐿   5.14 

 

Where, M is the molar mass,  is the density, 𝑟0 is the initial radius of the 

electrode, r(t) is the radius after time, t, and L is the active length of the electrode. 

Combining Equations 5.12, 5.13 and 5.14, Equations 5.15 and 5.16 can be derived. 

 

𝑑

𝑑𝑡
𝑟(𝑡)2 =

𝑖𝑀

𝜋𝐿𝑛𝐹𝜌
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁡𝑘   5.15 

𝑟(𝑡) = √𝑘𝑡 + 𝑟0
2    5.16 

 

Figure 5.23 is a plot of the electrochemical deposition model, with data (current) 

acquired from the chronoamperommetry in Figure 5.22. It shows the evolution of 

the working electrode’s radius size as time passes. With a starting radius of 0.75 

mm, the model depicts that the final radius size after the electrolysis process is 1.90 

mm. the size of this particular electrode was measured after experimentation with 

no observed spalling off of the product, however, and was ~ 5.00 mm. This can be 

attributed to a few reasons, such as the deposition morphology. Thus, the model as 

it stands is not conclusive. Hence a more comprehensive deposition model should 

be developed. 
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Figure 5.22 - Chronoamperogram of WO3 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, 40 g WO3, argon flow rate: 800 cm
3
 min

-1
, reference electrode: Ag/Ag

+
, set 

voltage: -2.14 V. 

 

 

Figure 5.23 – Deposit growth on current collector over time, predicted via 

electrochemical deposition model. 
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5.4 Conclusions 

The electrochemical reduction of WO3 to W metal has been assessed, and it likely 

to occur following the reactions WO3 → WO2 → W, Equations 5.1 and 5.2. A full 

reduction using the fluidised cathode process, with complete conversion of the 

product to W has been achieved, via applying a constant potential of -2.14 V. The 

Faradaic current efficiency of the process has been established, and found to be ~ 

82%. The reduction process is split into two sections; the first where rapid 

reduction of WO3 occurs, the second where a slower reduction of the remaining 

oxides in the product are removed. The deposited material on the current collector 

is in the form of homogeneously distributed particles. 

Increasing the metal oxide – salt ratio results in increasing current (faster deposit 

growth on the current collector), and decreasing collision-reaction noise, and in 

less likelihood for product to spall off. Increasing the fluidisation rate of the 

process results in an increase in the rate of deposit growth, as well as a greater 

collision-reaction noise. The two main observations to take from this are: 

a. The deposit growth, and ultimately the current increase, is dependent on 

the frequency of particle – current collector collisions and reactions. 

b. The collision-reaction noise (spikes) is dependent on the velocity at which 

the particles collide with the current collector. Spalling of the product is 

also highly affected by this. 

Thus, depending on the desired means of recovery of the product, i.e. a continuous 

flow retrieving or batch via removal of electrodes, these conditions can be altered 

to suit. 

Particle coulometric analysis shed some insight onto the process in terms of total 

volume of particles impending on the current collector at any given time. An 

electrochemical deposition model was also developed to estimate the porosity of 

the deposit and the rate of its growth over time. 
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The fluidised cathode is a robust, three-phase, high efficiency process. It has been 

studied here for the electrochemical reduction of tungsten oxide, however, it is 

likely applicable for other refractory metals (such as titanium), and in the nuclear 

industry for pyroprocessing purposes of spent nuclear materials. 

In the following Chapter, the electrochemical reduction of UO2 to U metal is 

investigated, the reaction pathways determined, and the fluidised cathode process is 

used for the reduction process.  
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6. The Electrochemical Reduction of Uranium Oxide 

 

The electrochemical reduction of UO2 to U metal using a fluidised cathode process 

was investigated. Voltammetry studies were conducted, and alongside a 

predominance diagram that was constructed, the reaction path-way was studied, 

using both, a fluidised cathode process and a packed metallic cavity electrode 

precursor set-up. The route that the reduction process follows depends on pO
2-

 and 

potential, which is highly influenced by the type of metal oxide precursor used. 

The main reduction potential using the fluidised cathode appeared to be -2.2 V (vs. 

Ag/Ag
+
 reference electrode). A Faradaic current efficiency for the process was 

established, and found to be ~ 92%. It is proposed that the reduction process is split 

into three stages; the first where a seeding process takes place at a low potential to 

allow for the reduced uranium particles to be deposited onto the tungsten current 

collector; the second where rapid reduction of UO2 particles occurs with a growth 

in electrode size, accompanied by an increase in current total being passed; the 

third where a slower reduction of the remaining oxides in the product takes place. 

6.1 Introduction 

High temperature molten salt reprocessing technology (pyroprocessing) offers a 

range of advantages when compared to aqueous reprocessing techniques. This is 

due to the fact that the technology is inherently ‘safe’ as it is resistant to 

proliferation and does not provide an environment for criticality accidents to occur; 

it also utilises compact easily accessible facilities. Molten salts pyroprocessing is 

described in more detail in Chapter 2. 

There is a clear motivation for implementing Generation IV nuclear reactors, which 

require metal as start-up fuel and follow a fully integrated and safe reactor and 

reprocessing design arrangements; hence, advances in the technology are made. A 

conceptual flowsheet for the pyrochemical treatment of used LWR fuel, as 

described by ANL [179], is presented in Figure 6.1. The spent nuclear fuel, in the 
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form of oxide pellets, is chopped and then passed on to an electrolytic reduction 

step. The uranium is in the form of UO2; hence, the reduction of UO2 to U metal is 

studied in this Chapter. The reduced species are then processed in an electrorefiner, 

also described in Chapter 2, where U product and other transuranic species are 

recovered for enriching and recycling into new fuel. The flowsheet comprises some 

recycling streams and a salt distillation step as well. 

Previous studies on the electrochemical reduction of spent nuclear fuel oxides and 

uranium oxides are reported in detail in Chapter 2. In this Chapter, the 

electrochemical reduction of UO2 to U metal in LiCl-KCl molten salt eutectic is 

investigated, using both metallic cavity electrodes (MCE’s) and the fluidised 

cathode process. The reduction pathways and the current efficiency are also 

reported. 

 

 

 

Figure 6.1 – Conceptual flowsheet for the treatment of used LWR fuel [179]. 
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6.2 Experimental 

6.2.1 Apparatus 

A schematic of the electrolytic cell used is illustrated in Figure 3.13 (b). The 

cathode consists of UO2 particles that are suspended in the molten salt (LiCl-KCl) 

eutectic, and a pure tungsten rod current collector. The anode is a graphite rod 

separated in its own compartment to avoid reoxidation of the reduced uranium 

particles. The melt is agitated via a flow of argon. A reference electrode (Ag/Ag
+
) 

was used, and the temperature was monitored via a thermocouple that is immersed 

in the melt. All electrochemical tests were performed using a potentiostat 

(IviumStat, Ivium Technologies, NL). 

The same set-up was used to carry out the metallic cavity electrode (MCE) 

experiments, Chapter 3. However, no UO2 particles were employed, the counter 

electrode was not separated inside a compartment, no argon was bubbled through 

the melt, and the current collector was replaced with an MCE, Figure 3.13 (a). The 

cavities in the MCE were filled with UO2 powder. The same powder was used for 

the fluidised cathode experiments. 

6.2.2 Chemicals 

All preparation steps were carried out under a sealed argon atmosphere. Anhydrous 

lithium chloride (ACS reagent, ≥99.0% purity, Sigma-Aldrich) and potassium 

chloride (≥99.5% purity, Sigma-Aldrich) were used for the electrolyte. The salt 

was dried in a vacuum oven at 200 ˚C for 24 h, then 150 g of 59-41 mol% LiCl-

KCl were mixed with UO2 (as received from the Centre for Radiochemistry 

Research, School of Chemistry, University of Manchester). Figure 6.2 shows the 

X-ray diffraction pattern of the as-received UO2 powder. 15 g of LiCl-KCl was 

placed inside the anode compartment. The counter electrode was a high density 

graphite rod, 3.05 mm in diameter (99.9995% metal basis, Alfa Aesar). The 

working electrode (current collector) was a tungsten rod, 1.5 mm in diameter 

(99.95% metal basis, Alfa Aesar). A glass sheath around the shaft of the tungsten 

rod insured that a constant surface area of electrode is exposed to the electrolyte, 
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even when being agitated by the Ar stream. Argon (99.998% purity, BOC) was 

bubbled through the melt via a ceramic tube (5 mm internal diameter, Alsint). 

For the MCE experiments, the electrolyte was composed of 150 g of LiCl-KCl, 

prepared in the same way as for the fluidised cathode setup, but no UO2 particles 

were agitated in the melt. The cavities in the working electrode were filled with 

UO2 powder by ‘finger pressing’ using two glass slides. 

 

 

Figure 6.2 - X-ray diffraction spectrum (Mo Kα) of as-received UO2 powder sample, 

showing UO2 (35204-ICSD [180]). 

 

6.2.3 Procedure 

Experiments were carried out under a dry argon atmosphere at a melt temperature 

of 450 ˚C (unless indicated otherwise). Argon was bubbled into the melt, which 

resulted in a homogeneous distribution of particles as assessed by visual inspection. 

4 cm (3.84 cm
2
) of the current collector was immersed in the melt during the 

fluidised cathode measurements, and all the holes in the MCE, making sure that the 
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Mo wire and W rod stayed outside the melt. Absolute currents are reported due to 

the fact that the electrode surface area changes during experiments. 

6.3 Results and discussion 

A predominance diagram, Chapter 4, was constructed for the Li-K-U-O-Cl system, 

relating the potential E vs. standard chlorine electrode (S.Cl.E) to the negative 

logarithm of O
2-

 ion activity, pO
2-

. All the thermodynamic data used for the 

production of the diagram is presented in Table 4.2, and the derived interface 

equations are presented in Appendix B. A predominance diagram for uranium 

species in LiCl-KCl has been published [181]; however, it did not consider all the 

stable species that can form, and the thermodynamic data has been revised and 

updated since. 

The predominance diagram in Figure 4.9 shows the different regions of stability for 

different compounds and oxidation states of uranium. Thermodynamically, one can 

deduce that the concentration of O
2-

 ions in the eutectic melt greatly affects the 

reduction process of UO2 to U metal. Starting with UO2, two reduction reactions 

take place to produce U metal, according to the predominance diagram at 500 °C. 

These are presented in Equations 6.1 and 6.2. Equations 6.3 and 6.4 are used to 

calculate the potential, E, needed for each reaction to take place, at different values 

of O
2-

 ion activity. 

 

𝑈𝑂2 + 2𝑒
− ↔ 𝑈𝑂 + 𝑂2−   6.1 

𝑈𝑂 + 2𝑒− ↔ 𝑈 + 𝑂2−    6.2 

 𝐸6.1 =
−∆𝐺6.1

0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2−   6.3 

𝐸6.2 =
−∆𝐺6.2

0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2−   6.4 

 

The pO
2-

 ranges and potential bands (vs. S.Cl.E and Ag/Ag
+
 references electrode) 

are presented in  

 

 

Table 6.1, for the reactions described in Equations 6.1 and 6.2.  
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Table 6.1 - Thermodynamically calculated values of pO
2-

 and potentials required for 

Equations 6.1 and 6.2 to take place. 

Reaction pO2- E (V vs. S.Cl.E) E (V vs. Ag/Ag+) 

6.1 6.200 – 21.650 -3.558  ̶  -2.374 -2.422 – -1.238 

6.2 6.500 – 21.750 -3.562  ̶  -2.394 -2.426 – -1.258 

 

Cyclic voltammetry measurements were performed on an MCE molybdenum 

electrode packed with UO2 powder; this is presented in Figure 6.3. It was scanned 

from 0 V to -2.5 V, and back to 0 V (vs. Ag/Ag
+
 reference electrode). The coupled 

redox potentials at 1, 2, 1’ and 2’ represent the reduction of a thin film of oxide on 

the MCE molybdenum strip and its reoxidation. The redox pair A and A’ are 

attributed to the reduction of UO2 to U metal, and its reoxidation to UOx (as it was 

not confirmed what the oxidised species was via analysis), as shown in the overall 

reaction described in Equation 6.5. This is in line with previous results [182]. 

 

𝑈𝑂2 + 4𝑒
− ↔ 𝑈 + 2𝑂2−   6.5 

 

Figure 6.4 shows cyclic voltammograms conducted on an MCE molybdenum 

electrode packed with UO2 powder. These were scanned from 0 V to -2.5 V and 

back to 0 V, at a variety of scan rates, as indicated in the diagram. Again, the redox 

couple A and A’ are attributed to the reduction of UO2 to U metal, and its 

reoxidation to UOx, as described in Equation 6.5. The reduction potential appears 

to be very close to the salt’s decomposition potential; hence, indicating a high O
2-

 

ion activity. As expected, at higher scan rates the reaction peaks are more 

predominant. 
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Figure 6.3 - Cyclic voltammogram of UO2 in molybdenum metallic cavity electrode in 

LiCl-KCl eutectic at 450 ˚C, scan rate: 20 mV s
-1

, reference electrode: Ag/Ag
+
. 

 

 

Figure 6.4 - Cyclic voltammograms of UO2 in molybdenum metallic cavity electrode, 

at different scan rates, in LiCl-KCl eutectic at 450 ˚C, reference electrode: Ag/Ag
+
 (A 

newly packed MCE was used for each scan). 
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Figure 6.5 – Cyclic voltammetry of UO2 fluidised cathode in LiCl-KCl eutectic at 450 

°C, 5 g UO2, argon flow rate: 600 cm
3
 min

-1
, reference electrode: Ag/Ag

+
. 

 

Voltammetry measurements were performed on a fluidised cathode set-up, Figure 

6.5. It was scanned from 0 V to -2.4 V, and back to 0 V (vs. Ag/Ag
+
 reference 

electrode). The combination of the peaks at A and A’ represent the overall 

reduction of UO2 to U metal as described by Equation 6.5. The peak at A’’ 

represents the reoxidation of U to UOx. 

When comparing the voltammograms in Figure 6.5 (fluidised cathode) and Figure 

6.3 (MCE), one can see that both peaks A and A’ appear earlier in the negative 

direction, at ~ -1.7 V and ~ -2.2 V, in Figure 6.5, when compared to peak A in 

Figure 6.3, which appears at ~ -2.4 V. This is due to the dynamic nature of the 

fluidised cathode set-up. In the fluidise cathode process, a 3PI is immediately 

initiated at the collision point of an oxide particle with the current collector, and a 

reaction extends from this point. When using an MCE, the 3PI is defined at the 

circumference of the packed metal oxide, where it meets the metal strip current 

collector and the salt. This 3PI decreases as the reaction proceeds. Thus, in an 

MCE set-up more driving force is required than when using a fluidised cathode 

process, a higher overpotential. It is also likely that when using MCE’s that the 

local O
2-

 ion concentration is higher. 
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Looking at the voltammogram in Figure 6.5 one can deduce that the reduction 

starts quite early on at ~ -1.7 V and then concludes at ~ -2.2 V. This suggests that 

using the fluidised cathode process both reactions, Equation 6.1 and 6.2, take place. 

Thus, the reduction follows two reactions with 2-electron transfer step processes, 

rather than the usual one 4-electron transfer step reaction (which could also be two 

reactions with 2-electron transfer step processes that take place rapidly after one 

another and thus appearing as one). Previous studies [183, 184] suggest that UO 

can exist in equilibrium in the presence of other uranium oxide states. Using the 

voltammetry information from Figure 6.3 and Figure 6.5, the reaction pathway for 

the reduction of UO2 to U has been plotted on the predominance diagram in Figure 

6.6, showing both the potential (vs. S.Cl.E) and the O
2-

 ion activity, as the reaction 

evolves. One can see that the activity of O
2-

 using the fluidised cathode process is 

generally lower. Also, it varies as the reaction proceeds, due to the fact that the 

reaction lasts for a longer time. 

 

Figure 6.6 - Predominance diagram for the Li-K-U-O-Cl system at 500 °C, showing 

the reaction pathway for the reduction of UO2 to U in LiCl-KCl using a fluidised 

cathode process and a metallic cavity electrode (MCE). 
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A constant potential of -2.2 V (vs. Ag/Ag
+
 reference electrode), as identified as the 

reducing potential, was applied to the fluidised cathode system, Figure 6.7, 5 g of 

UO2 powder was fluidised. As time passed, the current increased due to an increase 

in the electrode surface area and the deposit growth of U on the current collector 

surface. This growth is visible through the glass electrolytic cell set-up. At about 

90,000 s, there is a rapid reduction in current associated with spalling off of the 

deposit from the electrode. New growth is then associated with the increase in the 

current, a similar characteristic of the process as seen for the reduction of WO3 

[70]. 

When comparing the chronoamperogram to that for the reduction of tungsten 

oxide, Figure 5.6, one can see that it takes a longer time for the electrode to start 

growing, observed as an increase in the current. It is possible that a ‘seeding’ effect 

whereby uranium metal takes some time to be deposited on the current collector. 

This is possibly due to the fact that the current collector is made from a different 

metal from that in the melt, compared with the all-tungsten system which did not 

have this induction period. 

Due to the difference in densities, when the electrolyte is left to solidify, different 

layers of materials form, Figure 6.8 (c). Dark metallic uranium metal sinks to the 

bottom, followed by a layer of black, still to be reduced, uranium oxide, and finally 

a layer of LiCl-KCl eutectic (due to the similarity in appearance of U and UO2, it 

was difficult to capture a clear edge between them). This could possibly provide a 

simple means of separation in a technological system, as is the case with tungsten. 

Figure 6.8 (a) shows an image of the current collector after the reduction has taken 

place, and Figure 6.8 (b) shows an image of the cross-section of the reduced U 

metal at the bottom of the reactor crucible. 
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Figure 6.7 - Chronoamperogram of UO2 fluidised cathode in LiCl-KCl eutectic at 450 

°C, 5 g UO2, argon flow rate: 600 cm
3
 min

-1
, set voltage: -2.2 V, reference electrode 

Ag/Ag
+
. 

 

 

Figure 6.8 – (a) Photograph of reduced uranium deposited on tungsten working 

electrode, (b) photograph of the cross-section of the uranium product at the bottom of 

the crucible, (c) photograph of the solidified product, showing two separate layers of 

salt and uranium metal. 
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Figure 6.9 – SEM images of (a) the as-received UO2 particles, and (b) product U 

obtained from the solidified melt as a separate layer to the LiCl-KCl.  

 

There are two areas from where the final product could be collected, the bottom of 

the cell crucible and on the surface of the working electrode. Figure 6.9 (a) shows 

an SEM image of the as-received UO2 particles and (b) an SEM image of the U 

metal product from the solidified melt. From the SEM images one can see that the 

UO2 powder is very fine with particle sizes of ~1 μm, whereas the U product is in 

the form of agglomerated particles forming a larger particle size fused with some 

salt. Here, the use of vacuum distillation to separate the final product from the salt 

would be beneficial. 

 

6.3.1 Current efficiency 

To establish the current efficiency of the process, a constant potential of -2.2 V (vs. 

Ag/Ag
+
 reference electrode) was applied to the fluidised cathode set-up to reduce 4 

g of UO2 to U metal, Figure 6.10. The chronoamperogram shows a similar trend to 

previously published work on electrochemical reduction of metal oxides [58], 

where the diagram can be segregated into two main stages; the first, where rapid 

reduction reactions occur and the current increases significantly. In the second 

stage, the current increases slightly again, then plateaus and slower reactions take 

place to reduce the final oxides, until the current decreases indicative of the batch 

reaction tending towards completion. Again, in Figure 6.10, one notices the 
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seeding time for the U particles to be deposited on the tungsten rod, as it takes time 

for the electrode to start growing and the current to increase subsequently. 

Assuming 100% current efficiency, it would require a charge of 5717.59 C to be 

applied to fully reduce all 4 g of UO2. The final product retrieved from the 

electrode’s surface was analysed via XRD, Figure 6.11. The spectrum shows the 

spectra of KCl, and peaks associated with α-U. Most importantly, it shows that 

there is no sign of any uranium oxide species, namely UO2 or UO. Thus, it 

confirms that complete conversion is possible via the fluidised cathode 

electrochemical process (in this case, unreacted oxide particles were presumably in 

the solidified melt). Calculating an accurate Faradaic efficiency is challenging due 

to various issues. To estimate the current efficiency, the curve toward the end of 

the chronoamperometry, Figure 6.10, was extended to reach zero current, 

estimating a constant gradient calculated from two points in the graph (7.52 × 10
5
, -

6.10 × 10
-3

 and 8.64 × 10
5
, -5.60 × 10

-3
). The x-intercept was found to be 2.375 × 

10
6
 s. The extended line was integrated to calculate the area, the hypothetical 

charge passed, which was found to be 4566.24 C. This was added to the actual 

charge passed, 1290 C, giving a total of 6230.10 C. The Faradaic efficiency of the 

process was calculated by dividing the theoretical charge by the charge passed 

(actual and hypothetical). Experiment concluded that the estimated current 

efficiency for reducing UO2 to U in LiCl-KCl using the fluidised cathode process is 

~ 92%. However, this is a very rough value, that would probably vary a lot. 

When the final product was retrieved, a sample was placed in ethanol to dissolve 

the salt, under an argon atmosphere, to avoid any reoxidation via reaction with air 

or water, which was not desired for analysis. After leaving the sample in ethanol 

for 24 hr, the ethanol containing salt was filtered out using a small vacuum 

filtration unit. The sample (powder) was then placed in ethanol again, and the 

procedure was repeated twice. Finally, the product was dried in a vacuum oven at 

room temperature until dry. Despite this rigorous cleaning process, the XRD 

spectrum in Figure 6.11 confirms that some KCl is still present in the sample. A 

solution to this could be to employ vacuum distillation [172, 173] at  high 

temperature to remove the salt whilst still molten. The nature of the fluidised 

cathode would complement such a filtration technique. 
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Figure 6.10 - Chronoamperogram of UO2 fluidised cathode in LiCl-KCl eutectic at 

450 ˚C, 4 g UO2, argon flow rate: 600 cm
3
 min

-1
, reference electrode: Ag/Ag

+
, set 

voltage: -2.2 V. 

 

 

Figure 6.11 - X-ray diffraction spectrum (Mo Kα) of sample of product after complete 

reduction, showing peaks for α-U (43419-ICSD [185]), and KCl (165593-ICSD [127]). 
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6.4 Conclusions 

The electrochemical reduction of UO2 to U metal has been assessed, and it is likely 

to take place following two different reaction mechanisms; Equation 6.5, via a 4-

electron transfer step reaction; and Equations 6.1 and 6.2, via two 2-electron step 

reactions. The route the reduction process follows depends on pO
2-

 and potential, 

which is highly influenced by the type of metal oxide precursor used, MCE packed 

electrode or a fluidised cathode. 

The Faradaic current efficiency of the process has been estimated, via applying a 

constant potential of -2.2 V, as identified by voltammetry measurements, and found 

to be ~92%. The reduction process is split into three sections; the first where a 

seeding process takes place at a low potential to allow for the reduced uranium 

particles to be deposited onto the tungsten current collector; the second where rapid 

reduction of UO2 particles occurs with a growth in electrode size accompanied by 

an increase in current being passed; the third where a slower reduction of the 

remaining oxides in the product occurs. The reduced product can be collected from 

two areas; the deposit of the current collector and the bottom of the reactor 

crucible.  

The fluidised cathode is a robust, three-phase, high efficiency process. It has been 

studied here for the electrochemical reduction of UO2; however, it might be 

applicable for other spent fuel oxides (such as UO3 and PuO2), and in the 

production of refractory metals, such as titanium. Further studies need to be 

undertaken to validate this. 
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7. Conclusions and Future Work 

The aim of this research was to develop the understanding of spent nuclear 

materials behaviour in molten salts, via thermodynamic and electrochemical 

techniques, and to investigate electrochemical reduction processes from oxides to 

metals, which can prove to be significant in future generation IV nuclear power 

plants. New reactor designs are investigated as well, to improve the efficiency of 

such processes. The main findings and suggested future work are summarised in 

the Chapter. 

7.1 Conclusions 

7.1.1 Predominance Diagrams 

Predominance phase diagrams for metal-molten salt systems are diagrams relating 

the potential to the negative logarithm of the O
2-

 ion activity (E-pO
2-

). They are a 

useful tool for understanding the phase stability and electrochemistry of metal-

oxide systems in molten salts. They assist in predicting reaction pathways and 

experimental results. They also give a good indication of whether a reaction is 

feasible in a molten salt system. 

Diagrams were produced for the range of spent nuclear materials (based on the 

content of PWR MOX spent fuel). Thus, for U, Pu, Np, Am, Cm, Cs, Nd, Sm, Eu, 

Gd, Mo, Tc, Ru, Rh, Ag and Cd species. The diagrams were constructed for two 

salt systems; LiCl-KCl at 500 °C and NaCl-KCl at 750 °C. The two salt systems 

were chosen as they are the two main systems used for pyroprocessing research by 

ANL and RIAR, respectively. The temperatures were chosen within each salt’s 

operating range. 

All of the diagrams show regions of stability for the different metal species, their 

oxides and chlorides at unit activity; nonetheless, the activity can be changed in 

accordance to the equations that were derived.  
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The potential for selective direct reduction was also studied by superimposing the 

diagrams of U and Pu, and Am and Cm onto each other, for both salt systems at the 

two different temperatures. From the diagrams it was found that molten salt 

pyroprocessing provides a valuable route for the reprocessing of nuclear materials 

that is also resistant to proliferation, as it shows that it would be very challenging to 

separate Pu from U. However, the approach is not seen to be a replacement for the 

EXAm process, as the selective reduction and separation of Am from Cm would 

also be challenging due to the similarity in reduction potential. The effect of 

changing the operating temperature of the same salt system on the stability regions 

was also examined. At higher temperatures, the stability zones are shifted to the 

‘left’, at higher O
2-

 ion activities; however, at higher temperatures, the potential 

window of the salt is smaller. 

7.1.2 The electrochemical reduction of tungsten oxide 

The electrochemical reduction of WO3 to W metal has been assessed, and is likely 

to occur following the reaction mechanism WO3 → WO2 → W. A full reduction 

using the fluidised cathode process was achieved, with complete conversion of the 

product to W, as established via XRD analysis, by applying a constant potential of 

-2.14 V. The Faradaic efficiency of the process was found to be ~ 82%. The 

reduction process is split into two sections; the first where rapid reduction occurs, 

and the second where a slower reduction of the remaining tungsten oxide particles 

takes place. The product can be collected from the deposit on the current collector 

and the bottom of the reaction crucible, and is in the form of homogenously 

distributed particles. 

Parameters, such as the fluidisation rate and the metal oxide – salt ratio, that affect 

the fluidised cathode process were investigated. Experiments concluded that 

increasing the fluidisation rate of the process results in an increase in the rate of 

deposit growth, as well as a greater collision-reaction noise. Whilst increasing the 

metal oxide – salt ratio results in increasing the rate at which the deposit growth 

(and hence, the current), but in decreasing the collision-reaction noise, and thus, 

decreasing the likelihood of product spall off. Therefore, the two main observations 

from investigating these two parameters are: a) the deposit growth, and the current 
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increase, are dependent on the frequency of particle – current collector collisions 

and reactions; b) the collision-reaction noise is dependent on the kinetic energy at 

which the particles collide with the current collector (spalling off of the product is 

highly related to this). Thus depending on the desired means of product recovery, 

e.g. a contentious flow retrieving or batch via the removal of electrodes, these 

conditions can be altered to suit. 

Particle coulometric analyses has been carried out, which shed insight into the 

process in terms of total volume of particles impending on the current collector and 

being reduced at any given time. An electrochemical deposition model was also 

developed to estimate the porosity of the deposited product on the current collector, 

and the rate of its growth over time. 

7.1.3 The electrochemical reduction of uranium oxide 

The electrochemical reduction of UO2 to U metal was studied, and it is likely to 

occur following two different reaction mechanisms; two 2-electron transfer 

reactions from UO2 → UO → U, or one 4-electron reaction from UO2 → U. The 

pathway for the reactions depends highly on the pO
2-

 and the potential, which is 

greatly influenced by the type of uranium oxide precursor used; a fluidised cathode 

or a packed MCE. Using the fluidised cathode provides a much larger potential 

range at which the reduction reactions can occur. 

The Faradaic efficiency of the reduction process using the fluidised cathode 

method was estimated, via applying a constant potential of -2.2 V and extrapolating 

the final decay to zero current, this was found to be ~ 92%. This process is inexact 

and requires refinement of our ability to measure the converted product with 

accuracy. An oxygen content analyser (LECO, St Joseph, MI, USA) would be very 

beneficial to get accurate readings. 

The reduction process is split into three stages; the first, contrary to reducing WO3 

particles, involves an induction period, where low current is passed; this proposed 

to be due to a ‘seeding’ step where a U layer is formed on the tungsten current 

collector, onto which further reduction is more favourable. The second stage 

involves rapid reduction of UO2 particles, as observed by the increase of current 

(and growth of deposit on the current collector). The third stage shows a slower 
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reduction of the remaining uranium oxide particles as the reactant oxide is 

exhausted. The reduced U product can, as is the case with tungsten, be collected 

from the deposit on the current collector and the bottom of reactor crucible. 

 

The fluidised cathode process is a robust three-dimensional, high efficiency 

process. It also has other advantages, such as shortening the FFC process scheme, 

with associated cost reductions, and the flexibility of deciding whether to apply it 

for a contentious or a batch system. It has been studied for the electrochemical 

reduction of WO3 and UO2 to their pure metal forms; however, it is likely 

applicable for other spent oxide fuel materials (such as UO3 and PuO2), and in the 

production of other refractory metals, such as titanium and tantalum. 

 

7.2 Future work 

7.2.1 Three dimensional microstructural analyses 

Three dimensional microstructural analyses [186-191] of the deposit on the current 

collector, using techniques such as X-ray computed tomography (X-ray CT) or 

FIB/SEM, would be very beneficial, as it would provide parameters, such as the 

porosity, for the electrochemical deposition model. This would be very useful for 

defining different parameters for experiments, especially if a batch process was to 

be employed, as this would help in defining the final electrode size with the 

product deposit to be retrieved. 

7.2.2 Single particle reduction analyses 

Studying how a single particle of metal oxide would reduce and attach to the 

current collector would be very interesting. Factors such as particle size and 

geometry could be changed and investigated. Using techniques such as non-

destructive X-ray tomography and high speed filming, effects such as the change in 

particle morphology via the reduction reaction and the ‘necking’ of the particle to 

the current collector surface can be analysed. 

 



7. Conclusions and Future Work                                                                           127 

 

 

 

Figure 0.1 – Experimental set-up for single particle reduction studies. 

 

An experimental set-up for single particles studies has been designed, and is 

presented in Figure 0.1. Here, a tungsten rod is covered in a Pyrex sheath, which 

then widens, only exposing the top of the electrode, into a narrow well, where the 

electrolyte and the particles to be reduced can be placed. The top of the well is 

sealed with a suba-seal through which a graphite anode is pushed and immersed 

into the fused salt. The exposed tungsten rod from the bottom and the graphite rod 

at the top are connected to potentiostat leads, so that electrochemical experiments 

can be carried out. The salt would be melted using an infrared laser, which based 

on lab trial experiments is sufficient to reach desired temperatures. 

7.2.3 ABBIS process 

The ABBIS (Abdulaziz, Brett, Brown, Inman, Shearing) process is described in the 

schematic shown in Figure 0.2. This is a concept that is an advancement of the 

fluidised cathode process that aims to simplify it and make it more robust. Here, 

the anode is a metal paste (potentially carbon or platinum) that is painted on the 

outside of a crucible made of a suitable ion conductor. The idea is that the oxide 

particles inside this crucible are reduced, whilst being agitated, and the O
2-

 ions 

created via the reduction process would migrate through the salt melt and the ion 

conductor and react with the anode on the outside, creating O2. 
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This process would benefit from simpler reactor design, easier retrieval of final 

product, and possibly the reusability of the anode without degrading it. Foreseen 

challenges include the use of an appropriate oxide ion conductor (that operates at a 

relatively low temperature), molten salt electrolyte, temperature of process, pO
2-

 of 

the melt, and metal oxide to be reduced. Nonetheless, there is a large amount of 

literature to help in the design process, especially in choosing the right ion 

conductor and metal-oxide system for the desired parameters [192, 193]. 

 

 

Figure 0.2 – Schematic for ABBIS process (with LiCl-KCl eutectic as an example). 
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7.2.4 Micro-electrode studies 

It would be very beneficial to carry out studies on the fluidised cathode system 

using micro-electrodes for molten salts [194, 195]. Using different salts and metal 

oxides, these electrodes would be very beneficial in determining the types of 

reactions that occur; reversible, quasi or non-reversible, when reducing a metal 

oxide, as the reaction propagate downwards on a predominance diagram. This 

would also help indicating whether activities of certain species change, thus 

shifting equilibria, and ultimately result in making amendments to thermodynamic 

predictions. 

7.2.5 TRISO fuel pyroprocessing 

Tristructural-isotropic (TRISO) fuel, the schematic of which is presented in Figure 

0.3, is a micro particle fuel designed to be used in Generation VI very-high-

temperature reactors (VHTRs). It consists of an outer layer of pyrolytic carbon, 

followed by a layer of silicon carbide, followed by an inner layer of pyrolytic 

carbon, then a layer of porous carbon buffer that contains the fuel kernel, which is 

typically composed of UOx, UC or UCO [196]. The TRISO particle is designed to 

withstand the most catastrophic accidents without releasing the fuel. 

 

 

Figure 0.3 – Illustrative cutaway drawing of a TRISO fuel particle [196]. 

 

Numerous studies on the manufacturing and integrity of TRISO particles have been 

carried out; however, research in the processing of spent particles is deficient. 
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Previous studies of processing of TRISO particles were based on crushing the 

graphite fuel blocks and manually separating the fuel particles from the graphite. 

The outer carbon layer was then burned, followed by crushing of the silicon 

carbide layer. The inner carbon layers were then oxidised as well. The remaining 

ashes were then removed via leaching with nitric acid. The fuel was then removed 

from the solution via conventional solvent extraction techniques [197-199]. This 

technology involves many processing steps, and hence, it is costly. Some 

laboratory scale pyroprocessing methods have been developed employing 

electrorefining techniques [199]. The fluidised cathode process could prove very 

efficient in the pyroprocessing of spent TRISO particles, where the different layers 

could be stripped away at different potentials, ending with the fuel kernel particles, 

which could then be reduced to their pure metal form and extracted to be reused for 

metal fuelled Generation VI reactors. 

7.2.6 Electrochemical reduction of UO3, PuO2 and mixed oxide fuels 

Further studies on the reduction of spent nuclear materials can be carried out 

integrating the fluidised cathode in the reprocessing scheme. Studying the 

electrochemical reduction of UO3 and PuO2 is of particular interest, especially if an 

integrated reprocessing scheme is to be adopted (pyroprocessing with solvent 

extraction). With the help of predominance diagrams, the reaction pathways can be 

determined, and the process optimised. Employing the fluidised cathode for 

selective or full reduction of mixed actinides would be very interesting. Studying 

the separation process to follow would also be interesting; whether by mixing and 

settling in the reactor to see if different metals with different densities precipitate in 

separate layers, or are split after if a contentious process is employed. This could 

prove sufficient in the reprocessing cycle, eliminating steps such as centrifusion 

with associated cost reductions.  

7.2.7 Electrochemical reduction of ThO2 

The use of thorium as a nuclear power fuel in new reactors has been suggested and 

studied for some time [200, 201]. Thorium is a promising alternative to 

conventional fuel types, as it contains a large amount of energy, is proliferation 
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resistant, and is more equally distributed worldwide. Bench scale experiments have 

been carried out for the recovery of thorium fuel using solvent extraction 

technology [202, 203]. One of the suggested Generation IV reactor designs is the 

thorium molten salt reactor [204-206]. Thus, a natural choice for the recovery of 

fuel from such a reactor would be by pyroprocessing. Here, the use of a fluidised 

cathode might prove useful, and hence, investigating the technique would be 

beneficial. 

7.2.8 Electrochemical reduction of TiO2 

Employing the fluidised cathode process for the reduction of refractory metal 

oxides could prove beneficial, given its high Faradaic efficiency for the reduction 

of WO3 and UO2. One such refractory metal to apply the process to is titanium. The 

current efficiency for producing it via the FFC Cambridge process is quite low (10-

40% [51]). Hence, it would be very interesting to produce titanium using the 

fluidised cathode process and comparing the efficiencies. Most of the studies on 

the electrochemical reduction of TiO2 have been in CaCl2. It would be also worth 

investigating the reduction in other molten salts such as LiCl-KCl eutectic, which 

benefits from a lower operating temperature. 

Preliminary studies on the electrochemical reduction of TiO2 to Ti metal in LiCl-

KCl have been carried out. A predominance diagram, Chapter 4, was constructed 

for the Li-K-Ti-O-Cl system, Figure 0.4, relating the potential E vs. standard 

chlorine electrode (S.Cl.E) to the negative logarithm of O
2- 

ions activity, pO
2-

. The 

derived interface equations are presented in Appendix D. A predominance diagram 

for titanium species in CaCl2 has been published [131]; however, this is the first in 

LiCl-KCl eutectic. Cyclic voltammetry measurements on thermally grown thin 

TiO2 films were conducted as well, Figure 0.5. These show clear reduction and 

reoxidation peaks (1, 2, 2’ and 1’, 3 and 3’ represent the reductive limit of the salt), 

thus suggesting that the direct electrochemical reduction of titanium oxide in LiCl-

KCl is feasible. Further studies should be carried out to conclude the reduction 

pathway, and finally, to utilise the fluidised cathode process and asses its 

efficiency. 



7. Conclusions and Future Work                                                                           132 

 

 

 

Figure 0.4 - Predominance diagram for the Li-K-Ti-O-Cl system at 500 °C. 

 

 

 

Figure 0.5 - Cyclic voltammogram of TiO2 thin film cathode in LiCl-KCl eutectic at 

450 °C, scan rate: 50 mV s
-1

, reference electrode: Ag/Ag
+
. 
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Appendices  

 

Appendix A – calculations for immersion heater 

 

To calculate the heat input needed to increase the temperature of the thermostatic 

salt bath Equations A.1 and A.2 are used. 

 

𝑄 = 𝑚𝑐∆𝑇 +𝑚𝐿    A.1 

𝑄 = 𝑚𝑐∆𝑇     A.2 

Where,  Q is heat input in J; 

  m is mass of thermostatic salt used = 3000 g; 

  c is specific heat capacity of the salt = 1.592 J g
-1

 ˚C
-1

; 

ΔT is change in temperature of the salt = Tf – Ts = desired 

temperature in ˚C - 20˚C (temperature of the salt at the start); 

L is latent heat of the salt = 97 J g
-1

.  

 

Equation A.1 is used when the required final temperature of the molten salt mixture 

is higher than 220 °C, and Equation A.2 is used when the desired temperature is 

lower than 220 °C. Thus, Q is the heat output needed to be transferred from the 

nichrome wire of the immersion heater to the salt eutectic. The nichrome wire is 4 

m long and 0.46 mm in diameter. Hence, its resistance is 26.63 Ω. To allow 

sufficient time for the wire and the salt bath to heat up, 1.5 hrs heating time is 

assigned. Hence: 
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𝑃 =
𝑄

60×90𝑠𝑒𝑐𝑜𝑛𝑑𝑠
    A.3 

 

Where,  P is power in J s
-1

. 

 

Equation A.4, rearranged as A.5, is then used to calculate the voltage needed. 

 

𝑃 = 𝐼2𝑅 = (
𝑉

𝑅
)
2
𝑅    A.4 

𝑉 = 𝑅√
𝑃

𝑅
     A.5 

Where,  I is current in A; 

  R is resistance in Ω. 

Table 0.1, shows the calculated heat, power and voltage for a given final 

temperature of the thermostatic salt bath. Heat loss to the environment is not 

accounted for; however these values give a good indication for the range of voltage 

needed to be supplied through the variac. 

 

Table 0.1 - Voltage, power and heat needed to reach specified temperatures of the 

thermostatic salt bath. 

T (˚C) Q (J) P (J s-1)                               V (V) 

600 3061000 567 123 

500 2583000 478 113 

400 2106000 390 102 

300 1628000 302 90 

200 860000 159 65 

100 382000 71 44 
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Appendix B – Electrode potential and pO
2-

 equations for predominance diagrams 

of spent nuclear materials 

 

Uranium (U) species 

 

𝑈𝑂 + 2𝑒− ↔ 𝑈 + 𝑂2−      𝐸 =
−∆𝐺𝑜

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑈𝑂2 + 2𝑒
− ↔ 𝑈𝑂 + 𝑂2−    𝐸 =

−∆𝐺𝑜

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑈4𝑂9 + 2𝑒
− ↔ 4𝑈𝑂2 + 𝑂

2−    𝐸 =
−∆𝐺𝑜

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

4𝑈3𝑂8 + 10𝑒
− ↔ 3𝑈4𝑂9 + 5𝑂

2−   𝐸 =
−∆𝐺𝑜

10𝐹
+
5𝑅𝑇𝑙𝑛10

10𝐹
𝑝𝑂2− 

3𝑈𝑂3 + 2𝑒
− ↔ 𝑈3𝑂8 + 𝑂

2−    𝐸 =
−∆𝐺𝑜

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑈2𝐶𝑙5𝑂2 + 𝑒
− ↔ 2𝑈𝐶𝑙2𝑂 + 𝐶𝑙

−   𝐸 =
−∆𝐺𝑜

𝐹
 

2𝑈𝑂3 + 5𝐶𝑙
− + 3𝑒− ↔ 𝑈2𝐶𝑙5𝑂2 + 4𝑂

2−  𝐸 =
−∆𝐺𝑜

3𝐹
+
4𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝑈3𝑂8 + 15𝐶𝑙
− + 5𝑒− ↔ 3𝑈2𝐶𝑙5𝑂2 + 10𝑂

2−            𝐸 =
−∆𝐺𝑜

5𝐹
+
10𝑅𝑇𝑙𝑛10

5𝐹
𝑝𝑂2− 

𝑈𝑂2 + 2𝐶𝑙
− ↔ 𝑈𝐶𝑙2𝑂 + 𝑂

2−    𝑝𝑂2− =
∆𝐺𝑜

𝑅𝑇𝑙𝑛10
 

𝑈𝑂 + 2𝐶𝑙− − 2𝑒− ↔ 𝑈𝐶𝑙2𝑂    𝐸 =
∆𝐺𝑜

2𝐹
 

𝑈𝐶𝑙2𝑂 + 4𝑒
− ↔ 𝑈 +𝑂2− + 2𝐶𝑙−   𝐸 =

−∆𝐺𝑜

4𝐹
+
𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑈3+ + 3𝑒− ↔ 𝑈     𝐸 =
−∆𝐺𝑜

3𝐹
 

𝑈4+ + 𝑒− ↔ 𝑈3+     𝐸 =
−∆𝐺𝑜

𝐹
 

𝑈𝑂 + 3𝐶𝑙− − 𝑒− ↔ 𝑈𝐶𝑙3 + 𝑂
2−   𝐸 =

∆𝐺𝑜

𝐹
−
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑈𝑂2 + 3𝐶𝑙
− + 𝑒− ↔ 𝑈𝐶𝑙3 + 2𝑂

2−   𝐸 =
−∆𝐺𝑜

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑈𝐶𝑙2𝑂 + 𝐶𝑙
− + 𝑒− ↔ 𝑈𝐶𝑙3 + 𝑂

2−   𝐸 =
−∆𝐺𝑜

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑈𝐶𝑙2𝑂 + 2𝐶𝑙
− ↔ 𝑈𝐶𝑙4 + 𝑂

2−    𝑝𝑂2− =
∆𝐺𝑜

𝑅𝑇𝑙𝑛10
 

𝑈2𝐶𝑙5𝑂2 + 3𝐶𝑙
− + 𝑒− ↔ 2𝑈𝐶𝑙4 + 2𝑂

2−  𝐸 =
−∆𝐺𝑜

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑈4𝑂9 + 8𝐶𝑙
− + 2𝑒− ↔ 4𝑈𝐶𝑙2𝑂 + 5𝑂

2−  𝐸 =
−∆𝐺𝑜

2𝐹
+
5𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑈4𝑂9 + 10𝐶𝑙
− ↔ 2𝑈2𝐶𝑙5𝑂2 + 5𝑂

2−   𝑝𝑂2− =
∆𝐺𝑜

5𝑅𝑇𝑙𝑛10
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𝐿𝑖2𝑈𝑂4 + 2𝑒
− ↔ 𝑈𝑂2 + 𝐿𝑖2𝑂 + 𝑂

2−   𝐸 =
−∆𝐺𝑜

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

4𝐿𝑖2𝑈𝑂4 + 6𝑒
− ↔ 𝑈4𝑂9 + 4𝐿𝑖2𝑂 + 3𝑂

2−  𝐸 =
−∆𝐺𝑜

6𝐹
+
7𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

3𝐿𝑖2𝑈𝑂4 + 2𝑒
− ↔ 𝑈3𝑂8 + 3𝐿𝑖2𝑂 + 𝑂

2−  𝐸 =
−∆𝐺𝑜

2𝐹
+
4𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐿𝑖2𝑈𝑂4 ↔ 𝑈𝑂3 + 𝐿𝑖2𝑂     𝑝𝑂2− =
∆𝐺𝑜

𝑅𝑇𝑙𝑛10
 

 

Plutonium (Pu) species 

 

𝑃𝑢2𝑂3 + 6𝑒
− ↔ 2𝑃𝑢 + 3𝑂2−    𝐸 =

−∆𝐺𝑜

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

2𝑃𝑢𝑂2 + 2𝑒
− ↔ 𝑃𝑢2𝑂3 + 𝑂

2−    𝐸 =
−∆𝐺𝑜

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑃𝑢3+ + 3𝑒− ↔ 𝑃𝑢     𝐸 =
−∆𝐺𝑜

3𝐹
 

𝑃𝑢2𝑂3 + 2𝐶𝑙
− ↔ 2𝑃𝑢𝐶𝑙𝑂 + 𝑂2−   𝑝𝑂2− =

∆𝐺𝑜

𝑅𝑇𝑙𝑛10
 

𝑃𝑢𝑂2 + 𝐶𝑙
− + 𝑒− ↔ 𝑃𝑢𝐶𝑙𝑂 + 𝑂2−   𝐸 =

−∆𝐺𝑜

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑃𝑢𝐶𝑙𝑂 + 2𝐶𝑙− ↔ 𝑃𝑢𝐶𝑙3 + 𝑂
2−    𝑝𝑂2− =

∆𝐺𝑜

𝑅𝑇𝑙𝑛10
 

𝑃𝑢𝐶𝑙𝑂 + 3𝑒− ↔ 𝑃𝑢 + 𝐶𝑙− +𝑂2−    𝐸 =
−∆𝐺𝑜

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

𝑃𝑢𝑂2 + 3𝐶𝑙
− + 𝑒− ↔ 𝑃𝑢𝐶𝑙3 + 2𝑂

2−   𝐸 =
−∆𝐺𝑜

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Neptunium (Np) species 

 

𝑁𝑝 + 2𝑂2− ↔ 𝑁𝑝𝑂2 + 4𝑒
−    𝐸 =

−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

2𝑁𝑝𝑂2 + 𝑂
2− ↔ 𝑁𝑝2𝑂5 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑁𝑝𝑂2 + 𝐿𝑖2𝑂 + 3𝑂
2− ↔ 𝐿𝑖2𝑁𝑝𝑂6 + 6𝑒

−  𝐸 =
−∆𝐺0

6𝐹
+
4𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝑁𝑝2𝑂5 + 2𝐿𝑖2𝑂 + 5𝑂
2− ↔ 2𝐿𝑖2𝑁𝑝𝑂6 + 10𝑒

−  𝐸 =
−∆𝐺0

10𝐹
+
7𝑅𝑇𝑙𝑛10

10𝐹
𝑝𝑂2− 

𝑁𝑝 ↔ 𝑁𝑝3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝑁𝑝3+ ↔ 𝑁𝑝4+ + 𝑒−     𝐸 =
−∆𝐺0

𝐹
 

𝑁𝑝𝐶𝑙3 + 2𝑂
2− ↔ 𝑁𝑝𝑂2 + 3𝐶𝑙

− + 𝑒−   𝐸 =
−∆𝐺0

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 
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𝑁𝑝𝐶𝑙4 + 2𝑂
2− ↔ 𝑁𝑝𝑂2 + 4𝐶𝑙

−   𝑝𝑂2− =
∆𝐺0

2𝑅𝑇𝑙𝑛10
 

 

Americium (Am) species 

 

2𝐴𝑚 + 3𝑂2− ↔ 𝐴𝑚2𝑂3 + 6𝑒
−    𝐸 =

−∆𝐺0

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝐴𝑚2𝑂3 + 𝑂
2− ↔ 2𝐴𝑚𝑂2 + 2𝑒

−   𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐴𝑚 ↔ 𝐴𝑚3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝐴𝑚 + 𝑂2− + 𝐶𝑙− ↔ 𝐴𝑚𝐶𝑙𝑂 + 3𝑒−   𝐸 =
−∆𝐺0

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝐴𝑚𝐶𝑙𝑂 + 𝑂2− ↔ 𝐴𝑚2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝐴𝑚𝐶𝑙𝑂 + 𝑂2− ↔ 𝐴𝑚𝑂2 + 𝐶𝑙
− + 𝑒−   𝐸 =

−∆𝐺0

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝐴𝑚𝐶𝑙3 + 𝑂
2− ↔ 𝐴𝑚𝐶𝑙𝑂 + 2𝐶𝑙−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

 

Curium (Cm) species 

 

2𝐶𝑚 + 3𝑂2− ↔ 𝐶𝑚2𝑂3 + 6𝑒
−    𝐸 =

−∆𝐺0

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝐶𝑚2𝑂3 +𝑂
2− ↔ 2𝐶𝑚𝑂2 + 2𝑒

−   𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐶𝑚 ↔ 𝐶𝑚3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝐶𝑚 + 𝑂2− + 𝐶𝑙− ↔ 𝐶𝑚𝐶𝑙𝑂 + 3𝑒−   𝐸 =
−∆𝐺0

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝐶𝑚𝐶𝑙𝑂 + 𝑂2− ↔ 𝐶𝑚2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝐶𝑚𝐶𝑙𝑂 + 𝑂2− ↔ 𝐶𝑚𝑂2 + 𝐶𝑙
− + 𝑒−   𝐸 =

−∆𝐺0

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝐶𝑚𝐶𝑙3 +𝑂
2− ↔ 𝐶𝑚𝐶𝑙𝑂 + 2𝐶𝑙−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

 

Caesium (Cs) species 

 

2𝐶𝑠 + 𝑂2− ↔ 𝐶𝑠2𝑂 + 2𝑒
−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐶𝑠2𝑂 + 𝑂
2− ↔ 𝐶𝑠2𝑂2 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 
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𝐶𝑠2𝑂2 + 𝑂
2− ↔ 𝐶𝑠2𝑂3 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐶𝑠2𝑂3 + 𝑂
2− ↔ 𝐶𝑠𝑂2 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

 

Neodymium (Nd) species 

 

2𝑁𝑑 + 3𝑂2− ↔ 𝑁𝑑2𝑂3 + 6𝑒
−    𝐸 =

−∆𝐺0

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝑁𝑑2𝑂3 + 𝑂
2− ↔ 2𝑁𝑑𝑂2 + 2𝑒

−   𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑁𝑑 + 𝑂2− + 𝐶𝑙− ↔ 𝑁𝑑𝐶𝑙𝑂 + 3𝑒−   𝐸 =
−∆𝐺0

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝑁𝑑𝐶𝑙𝑂 + 𝑂2− ↔⁡𝑁𝑑2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑁𝑑𝐶𝑙3 +𝑂
2− ↔ 𝑁𝑑𝐶𝑙𝑂 + 2𝐶𝑙−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑁𝑑 ↔ 𝑁𝑑3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

 

Samarium (Sm) species 

 

2𝑆𝑚 + 3𝑂2− ↔ 𝑆𝑚2𝑂3 + 6𝑒
−    𝐸 =

−∆𝐺0

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝑆𝑚 + 𝑂2− + 𝐶𝑙− ↔ 𝑆𝑚𝐶𝑙𝑂 + 3𝑒−   𝐸 =
−∆𝐺0

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝑆𝑚𝐶𝑙𝑂 + 𝑂2− ↔ 𝑆𝑚2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑆𝑚𝐶𝑙3 + 𝑂
2− ↔ 𝑆𝑚𝐶𝑙𝑂 + 2𝐶𝑙−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑆𝑚 ↔ 𝑆𝑚3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

 

Europium (Eu) species 

 

𝐸𝑢 + 𝑂2− ↔ 𝐸𝑢𝑂 + 2𝑒−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

2𝐸𝑢𝑂 + 𝑂2− ↔ 𝐸𝑢2𝑂3 + 2𝑒
−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐸𝑢 ↔ 𝐸𝑢3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝐸𝑢𝑂 + 𝐶𝑙− ↔ 𝐸𝑢𝐶𝑙𝑂 + 𝑒−    𝐸 =
−∆𝐺0

𝐹
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𝐸𝑢𝐶𝑙3 +𝑂
2− ↔ 𝐸𝑢𝐶𝑙𝑂 + 2𝐶𝑙−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

2𝐸𝑢𝐶𝑙𝑂 + 𝑂2− ↔ 𝐸𝑢2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝐸𝑢𝐶𝑙3 +𝑂
2− ↔ 𝐸𝑢𝑂 + 3𝐶𝑙− − 𝑒−   𝐸 =

∆𝐺0

𝐹
−
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Gadolinium (Gd) species 

 

2𝐺𝑑 + 3𝑂2− ↔ 𝐺𝑑2𝑂3 + 6𝑒
−    𝐸 =

−∆𝐺0

6𝐹
+
3𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝐺𝑑 + 𝑂2− + 𝐶𝑙− ↔ 𝐺𝑑𝐶𝑙𝑂 + 3𝑒−   𝐸 =
−∆𝐺0

3𝐹
+
𝑅𝑇𝑙𝑛10

3𝐹
𝑝𝑂2− 

2𝐺𝑑𝐶𝑙𝑂 + 𝑂2− ↔ 𝐺𝑑2𝑂3 + 2𝐶𝑙
−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝐺𝑑𝐶𝑙3 + 𝑂
2− ↔ 𝐺𝑑𝐶𝑙𝑂 + 2𝐶𝑙−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝐺𝑑 ↔ 𝐺𝑑3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

 

Molybdenum (Mo) species 

 

𝑀𝑜 + 2𝑂2− ↔ 𝑀𝑜𝑂2 + 4𝑒
−    𝐸 =

−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑀𝑜𝑂2 +𝑂
2− ↔ 𝑀𝑂3 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑀𝑜𝑂2 + 𝐿𝑖2𝑂 + 𝑂
2− ↔ 𝐿𝑖2𝑀𝑜𝑂4 + 2𝑒

−  𝐸 =
−∆𝐺0

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑀𝑜𝑂3 + 𝐿𝑖2𝑂 ↔ 𝐿𝑖2𝑀𝑜𝑂4    𝑝𝑂2− =
∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑀𝑜 + 𝐿𝑖2𝑂 + 3𝑂
2− ↔ 𝐿𝑖2𝑀𝑜𝑂4 + 6𝑒

−   𝐸 =
−∆𝐺0

6𝐹
+
4𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝑀𝑜𝐶𝑙2𝑂 + 𝑂
2− ↔ 𝑀𝑜𝑂2 + 2𝐶𝑙

−   𝑝𝑂2− =
∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑀𝑜 ↔ 𝑀𝑜2+ + 2𝑒−     𝐸 =
−∆𝐺0

2𝐹
 

𝑀𝑜2+ ↔ 𝑀𝑜5+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝑀𝑜𝐶𝑙2 + 2𝑂
2− ↔ 𝑀𝑜𝑂2 + 2𝐶𝑙

− + 2𝑒−   𝐸 =
−∆𝐺0

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑀𝑜𝐶𝑙5 + 2𝑂
2− ↔ 𝑀𝑜𝑂2 + 5𝐶𝑙

− − 𝑒−   𝐸 =
∆𝐺0

𝐹
−
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑀𝑜𝐶𝑙2 + 𝑂
2− ↔ 𝑀𝑜𝐶𝑙2𝑂 + 2𝑒

−   𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 
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𝑀𝑜𝐶𝑙5 + 𝑂
2− ↔ 𝑀𝑜𝐶𝑙2𝑂 + 3𝐶𝑙

− − 𝑒−   𝐸 =
∆𝐺0

𝐹
−
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑀𝑜𝐶𝑙5 + 3𝑂
2− ↔ 𝑀𝑜𝑂3 + 5𝐶𝑙

− + 𝑒−   𝐸 =
−∆𝐺0

𝐹
+
3𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Technetium (Tc) species 

 

𝑇𝑐 + 2𝑂2− ↔ 𝑇𝑐𝑂2 + 4𝑒
−    𝐸 =

−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑇𝑐𝑂2 + 𝑂
2− ↔ 𝑇𝑐𝑂3 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

2𝑇𝑐𝑂3 + 𝑂
2− ↔ 𝑇𝑐2𝑂7 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑇𝑐 ↔ 𝑇𝑐3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝑇𝑐𝐶𝑙3 + 2𝑂
2− ↔ 𝑇𝑐𝑂2 + 3𝐶𝑙

− + 𝑒−   𝐸 =
−∆𝐺0

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Ruthenium (Ru) species 

 

𝑅𝑢 + 2𝑂2− ↔ 𝑅𝑢𝑂2 + 4𝑒
−    𝐸 =

−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑅𝑢𝑂2 + 2𝑂
2− ↔ 𝑅𝑢𝑂4 + 4𝑒

−    𝐸 =
−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑅𝑢 ↔ 𝑅𝑢3+ + 3𝑒−     𝐸 =
−∆𝐺0

3𝐹
 

𝑅𝑢𝐶𝑙3 + 2𝑂
2− ↔ 𝑅𝑢𝑂2 + 3𝐶𝑙

− + 𝑒−   𝐸 =
−∆𝐺0

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Rhodium (Rh) species 

 

2𝑅ℎ + 𝑂2− ↔ 𝑅ℎ2𝑂 + 2𝑒
−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑅ℎ2𝑂 + 𝑂
2− ↔ 2𝑅ℎ𝑂 + 2𝑒−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑅ℎ ↔ 𝑅ℎ+ + 𝑒−     𝐸 =
−∆𝐺0

𝐹
 

𝑅ℎ+ ↔ 𝑅ℎ2+ + 𝑒−     𝐸 =
−∆𝐺0

𝐹
 

𝑅ℎ2+ ↔ 𝑅ℎ3+ + 𝑒−     𝐸 =
−∆𝐺0

𝐹
 

2𝑅ℎ𝐶𝑙 + 𝑂2− ↔ 𝑅ℎ2𝑂 + 2𝐶𝑙
−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
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2𝑅ℎ𝐶𝑙3 + 𝑂
2− ↔ 𝑅ℎ2𝑂 + 6𝐶𝑙

− − 4𝑒−   𝐸 =
∆𝐺0

4𝐹
−
𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑅ℎ𝐶𝑙3 + 𝑂
2− ↔ 𝑅ℎ𝑂 + 3𝐶𝑙− − 𝑒−   𝐸 =

∆𝐺0

𝐹
−
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

 

Cadmium (Cd) species 

 

𝐶𝑑 + 𝑂2− ↔ 𝐶𝑑𝑂 + 2𝑒−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐶𝑑 ↔ 𝐶𝑑2+ + 2𝑒−     𝐸 =
−∆𝐺0

2𝐹
 

𝐶𝑑𝐶𝑙2 + 𝑂
2− ↔ 𝐶𝑑𝑂 + 2𝐶𝑙−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
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Appendix C - Electrode potential and pO
2-

 equations for the Li-K-W-O-Cl system’s 

predominance diagram 

 

𝑊𝑂2 + 4𝑒
− ↔𝑊 + 2𝑂2−    𝐸 =

−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑊𝑂3 + 2𝑒
− ↔𝑊𝑂2 + 𝑂

2−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑊2+ + 2𝑒− ↔𝑊     𝐸 =
−∆𝐺0

2𝐹
   

𝑊4+ + 2𝑒− ↔𝑊2+     𝐸 =
−∆𝐺0

2𝐹
   

𝑊𝑂3 + 2𝐶𝑙
− ↔𝑊𝑂2𝐶𝑙2 +𝑂

2−   𝑝𝑂2− =
∆𝐺0

𝑅𝑇𝑙𝑛10
   

𝑊𝑂2 + 2𝐶𝑙
− − 2𝑒− ↔𝑊𝑂2𝐶𝑙2   𝐸 =

∆𝐺0

2𝐹
  

𝑊𝑂2𝐶𝑙2 + 6𝑒
− ↔𝑊 + 2𝑂2− + 2𝐶𝑙−   𝐸 =

−∆𝐺0

6𝐹
+
2𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝑊𝑂2𝐶𝑙2 + 2𝐶𝑙
− + 2𝑒− ↔𝑊𝐶𝑙4 + 2𝑂

2−  𝐸 =
−∆𝐺0

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑊𝑂2𝐶𝑙2 + 4𝑒
− ↔𝑊𝐶𝑙2 + 2𝑂

2−   𝐸 =
−∆𝐺0

4𝐹
+
2𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑊𝑂2 + 2𝐶𝑙
− + 2𝑒− ↔𝑊𝐶𝑙2 + 2𝑂

2−   𝐸 =
−∆𝐺0

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2−
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Appendix D - Electrode potential and pO
2-

 equations for the Li-K-Ti-O-Cl system’s 

predominance diagram 

 

3𝑇𝑖 + 2𝑂2− ↔ 𝑇𝑖3𝑂2 + 4𝑒
−    𝐸 =

−∆𝐺0

4𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑇𝑖3𝑂2 + 𝑂
2− ↔ 3𝑇𝑖𝑂 + 2𝑒−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

2𝑇𝑖𝑂 + 𝑂2− ↔ 𝑇𝑖2𝑂3 + 2𝑒
−    𝐸 =

−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

3𝑇𝑖2𝑂3 + 𝑂
2− ↔ 2𝑇𝑖3𝑂5 + 2𝑒

−   𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑇𝑖3𝑂5 + 𝑂
2− ↔ 3𝑇𝑖𝑂2 + 2𝑒

−    𝐸 =
−∆𝐺0

2𝐹
+
𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐿𝑖2𝑇𝑖𝑂3 ↔ 𝑇𝑖𝑂2 + 𝐿𝑖2𝑂    𝑝𝑂2− =
∆𝐺0

𝑅𝑇𝑙𝑛10
 

3𝐿𝑖2𝑇𝑖𝑂3 + 2𝑒
− ↔ 𝑇𝑖3𝑂5 + 3𝐿𝑖2𝑂 + 𝑂

2−  𝐸 =
−∆𝐺0

2𝐹
+
4𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

2𝐿𝑖2𝑇𝑖𝑂3 + 2𝑒
− ↔ 𝑇𝑖2𝑂3 + 2𝐿𝑖2𝑂 + 𝑂

2−  𝐸 =
−∆𝐺0

2𝐹
+
3𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝐿𝑖2𝑇𝑖𝑂3 + 2𝑒
− ↔ 𝑇𝑖𝑂 + 𝐿𝑖2𝑂 + 𝑂

2−   𝐸 =
−∆𝐺0

2𝐹
+
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

3𝐿𝑖2𝑇𝑖𝑂3 + 6𝑒
− ↔ 𝑇𝑖3𝑂2 + 3𝐿𝑖2𝑂 + 3𝑂

2−  𝐸 =
−∆𝐺0

6𝐹
+
6𝑅𝑇𝑙𝑛10

6𝐹
𝑝𝑂2− 

𝐿𝑖2𝑇𝑖𝑂3 + 4𝑒
− ↔ 𝑇𝑖 + 𝐿𝑖2𝑂 + 2𝑂

2−   𝐸 =
−∆𝐺0

4𝐹
+
3𝑅𝑇𝑙𝑛10

4𝐹
𝑝𝑂2− 

𝑇𝑖𝑂2 + 𝐶𝑙
− + 𝑒− ↔ 𝑇𝑖𝐶𝑙𝑂 + 𝑂2−   𝐸 =

−∆𝐺0

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑇𝑖3𝑂5 + 3𝐶𝑙
− + 𝑒− ↔ 3𝑇𝑖𝐶𝑙𝑂 + 2𝑂2−   𝐸 =

−∆𝐺0

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑇𝑖2𝑂3 + 2𝐶𝑙
− ↔ 2𝑇𝑖𝐶𝑙𝑂 + 𝑂2−   𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑇𝑖𝐶𝑙𝑂 + 𝑒− ↔ 𝑇𝑖𝑂 + 𝐶𝑙−    𝐸 =
−∆𝐺0

𝐹
 

𝑇𝑖𝐶𝑙𝑂 + 3𝐶𝑙− − 𝑒− ↔ 𝑇𝑖𝐶𝑙4 +𝑂
2−   𝐸 =

∆𝐺0

𝐹
−
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑇𝑖𝐶𝑙𝑂 + 2𝐶𝑙− ↔ 𝑇𝑖𝐶𝑙3 +𝑂
2−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
 

𝑇𝑖𝐶𝑙𝑂 + 𝐶𝑙− + 𝑒− ↔ 𝑇𝑖𝐶𝑙2 + 𝑂
2−   𝐸 =

−∆𝐺0

𝐹
+
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 

𝑇𝑖𝑂 + 2𝐶𝑙− ↔ 𝑇𝑖𝐶𝑙2 + 𝑂
2−    𝑝𝑂2− =

∆𝐺0

𝑅𝑇𝑙𝑛10
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𝑇𝑖3𝑂2 + 6𝐶𝑙
− − 2𝑒− ↔ 3𝑇𝑖𝐶𝑙2 + 2𝑂

2−  𝐸 =
∆𝐺0

2𝐹
−
2𝑅𝑇𝑙𝑛10

2𝐹
𝑝𝑂2− 

𝑇𝑖4+ + 𝑒− ↔ 𝑇𝑖3+     𝐸 =
−∆𝐺0

𝐹
 

𝑇𝑖3+ + 𝑒− ↔ 𝑇𝑖2+     𝐸 =
−∆𝐺0

𝐹
 

𝑇𝑖2+ + 2𝑒− ↔ 𝑇𝑖     𝐸 =
−∆𝐺0

2𝐹
 

𝑇𝑖𝑂2 + 4𝐶𝑙
− ↔ 𝑇𝑖𝐶𝑙4 + 2𝑂

2−    𝑝𝑂2− =
∆𝐺0

2𝑅𝑇𝑙𝑛10
 

𝑇𝑖𝑂2 + 3𝐶𝑙
− + 𝑒− ↔ 𝑇𝑖𝐶𝑙3 + 2𝑂

2−   𝐸 =
−∆𝐺0

𝐹
+
2𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑂2− 
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