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Abstract 

Background and Purpose. A multicenter validation of a proposed semi-automatic method for 

hyperintense MS lesion segmentation on dual-echo MRI is presented. 

Materials and Methods. The classification technique used by the method is based on a region 

growing approach starting from manual lesion identification by an expert observer, with a final 

segmentation refinement step. The method was validated in a cohort of 52 relapsing-remitting MS 

patients, with dual-echo images acquired in 6 different European centers.  

Results. A mathematical expression was found that made the optimization of the method 

independent of the need of a training dataset. The automatic segmentation was in good agreement 

with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 

ml). Assessment of the segmentation errors showed no significant differences in algorithm 

performance between the different MR scanner manufacturers (p value > 0.05).  

Conclusion. The method proved to be robust, and no center-specific training of the algorithm was 

required, giving the possibility for the application in a clinical setting. Adoption of the method 

should lead to improved reliability and lower operator time required for image analysis in research 

and clinical trials in MS.  

 

Key Words: Neuroimaging, MRI post-processing, Multiple sclerosis, Lesion segmentation. 

ABBREVIATIONS: DE = dual-echo; PD = proton density; SD = standard deviation; EDSS = 
Expanded Disability Status scale; DSC = dice similarity coefficient; RMSE = root mean square 
error; FPF = false positive fraction; FNF = false negative fraction; TPF = true positive fraction.  

 

 

 

 

 



Introduction 

Assessment of the disease burden on MR images from MS patients, both for research and 

for clinical trials, requires quantification of the volume of hyperintense lesions on T2-weighted 

images.1 However, lesion segmentation remains challenging, and the required accuracy and 

reproducibility are difficult to achieve. Ideally, segmentation should be automated, or require the 

minimum of operator input in order to minimize the operator time required, and reduce bias;2-4 

however, manual segmentation is still the gold standard.  

Although several methods for fully-automated MS lesions segmentation have been 

published, their performance is difficult to compare. This is because they are usually validated 

without a common framework5 and, even if within the same framework such as the MS lesion 

segmentation challenge presented at the MICCAI 2008,6 the validation is done using a small 

dataset of cases and does not include a DE proton-density (PD)/T2-weighted images dataset. 

Moreover, the majority of the methods are optimized and tested on FLAIR MR images that benefit 

from CSF signal suppression and better contrast between focal lesions and the surrounding tissue7-

9 in comparison with the more established techniques that use DE sequences. Large datasets of DE 

MR images are available from past studies and their acquisition is still common both for research 

and for clinical trials, so that there is still the need to develop methods for lesion segmentation on 

these data.10  

We have previously proposed a semi-automated method for MS lesion segmentation on DE 

MR images based on a region growing approach, that results in a considerable reduction in the 

amount of time required for lesion segmentation compared with manual segmentation and shows 

good agreement with the ground truth.11  

Most large MRI studies of MS involve multiple scanning centers with different scanner 

manufacturers.12 While all centers would use a common scanning protocol with pulse sequence 

parameters restricted within certain ranges, there are inevitable differences in image contrast due 

to hardware and software differences. The aims of the current work were to analyze the training 



procedure required by the algorithm and to validate the lesion segmentation method proposed in a 

multicenter context. The method was validated by comparing the lesion segmentations obtained 

using the proposed method with manual segmentations, across different MR scanner 

manufacturers.  

 

Methods  

Background. The method was presented at the BrainLes MICCAI workshop 201511 and 

validated for a single acquisition center on 20 patients. Refer to the supplementary material for the 

methodological framework of the lesion segmentation technique. 

MRI Acquisition. The dataset consisted of 52 MS patients, part of a project on imaging 

correlates of cognitive impairment in MS, acquired in six European centers which are part of the 

MAGNIMS consortium (Amsterdam, Graz, London, Milan, Naples and Siena) using 3.0 Tesla MRI 

scanners from a range of manufacturers (2 scanners from Philips Medical Systems; 2 scanners from 

General Electric Medical Systems; 2 scanners from Siemens Medical). To be included, patients had 

to be aged between 20 and 65 years, have a diagnosis of relapsing-remitting (RR) MS,13 no relapse 

or corticosteroids treatment within the month prior to scanning and no history of psychiatric 

conditions (see Supplementary Table 1). Only MRI sequences without visually relevant artifacts 

were selected for the current analysis.  

The research protocol was approved by the local ethics review boards of participating 

centers, and all subjects gave written informed consent. 

A similar MRI acquisition protocol was used for all patients: DE TSE; TR=ranging from 

4000 to 5380 ms, TE1=ranging from 10 to 23 ms, TE2=ranging from 90 to 102 ms, echo train 

length=ranging from 5 to 11, 44 contiguous, 3-mm thick axial slices, parallel to the AC-PC plane, 

with a matrix size=256 x 256, recFOV=75% and a FOV=250 x 250 mm2. 

The characteristics of MR hardware and number of patients acquired at each center are 

summarized in Supplementary Table 2. 



Analysis of the training procedure. The use of different scanners could cause hardware-

dependent differences in image quality. In this study, we assumed that patients scanned on 

different scanners from the same manufacturer using the same RF coils and MRI protocol would 

have comparable image quality and could therefore be grouped together for the analysis.  

Manual identification of lesions was used to initialize the algorithm, while manual 

segmentation was used for the training and validation of the proposed method. Both tasks were 

performed using software for medical image analysis Jim Version 6 (Xinapse Systems, Colchester, 

UK). Manual identification and segmentation of lesions was performed by an experienced rater 

with 7 years’ experience in MS lesion segmentation. In the case of doubts in lesion identification, 

a senior rater was consulted. 

For image standardization (step 1), a group of 12 patients (two from each center) with a low 

lesion load was selected. A high lesion load was avoided since a high number of hyperintense 

lesions could significantly alter the shape of the image intensity histograms and affect the 

estimation of the standard parameters. For the computation of the standard parameters, using scans 

from healthy subjects would be preferable, but these are not always available in a clinical 

environment.  

Since the method required a training step, the selection of a reliable set representative of the entire 

dataset, in terms of lesion load and sample size for each MR manufacturer, was investigated. 

Patients were grouped by scanner manufacturer. A threshold function (step 3) was calculated for 

each group and steadily decreasing the number of MS patients included in the training set. First, all 

patients were included, and then at each step three patients were removed from each group. The 

choice of which patients to remove was made by attempting to maintain a balanced lesion load (i.e., 

a variation within ±10 %) across the three different MR manufacturers. This analysis was 

performed in order to assess the relationship between the sample size and the threshold function for 

each MR manufacturer, to lead to a proper selection of the training set for this method. A straight 

line was fitted to the seed intensity values plotted against the optimal threshold values, obtaining the 



threshold function for the initial region growing. The linear relationship between the normalized 

seed intensity and the optimal threshold values was empirically obtained. 

To evaluate the sensitivity of the segmentation results to the slope (m) of the threshold 

function, 17 simulated threshold functions were generated to initialize the region growing. These 

functions consisted of a straight line passing from a common point (described in detail in the 

results) and with a slope varying from 0.1 to 0.9 in steps of 0.05 (a wider range of values than that 

founded in the training). The lesion segmentation was performed without the refinement step, to 

evaluate only the effect of a different slope on the results.  

The optimal threshold function was selected from the simulated ones by maximizing the 

Dice similarity coefficient (DSC) between the manually and automatically outlined lesions (as 

described in the paragraph below).  

Moreover, we investigated whether the 2 parameters identifying the optimal training straight line 

could be estimated directly from the image to be segmented, thus avoiding the need of a training 

procedure implying the acquisition of an extra group of patients and the manual lesion 

segmentation. 

Since it was found that the training based on manual segmentation could be avoided (see results), 

the entire dataset could be used as test dataset and the optimized procedure was applied to the whole 

group of MS patients. 

 

Statistical analysis 

The root mean square error (RMSE) in lesion volume for the proposed method relative to the 

manual segmentation was computed. The RMSE values, grouped by scanner manufacturer, were 

compared to evaluate any performance differences between MR manufacturers. It was assumed that 

the observations from the three manufacturer groups were independent of each other. The 

Wilcoxon-Mann-Whitney test was used to test for differences in errors between the groups. This is 

a non-parametric test of the null hypothesis that two independent samples come from the same 



population, against an alternative hypothesis. The test was performed pairwise between the three 

groups: test 1 was performed between the lesion segmentation errors on the images acquired on 

Siemens scanners compared to Philips scanners; test 2 was between Siemens scanners and General 

Electrics scanners; test 3 was between General Electric scanners and Philips scanners. The 

segmentations produced by the proposed method were compared to manual segmentations 

performed by an expert physician, using the DSC. DSC values range from zero to one, where zero 

corresponds to no overlap between the two segmentations, and one corresponds a perfect overlap. 

The false positive fraction (FPF), false negative fraction (FNF) and true positive fraction (TPF) 

were computed for each lesion to indicate the percentage of voxels correctly or incorrectly 

classified as lesion by the method. The “ground truth” for assessing the true and false positive rates 

was the binary lesion mask obtained after manual segmentation, comparing individual lesions pixel-

by-pixel between the manual and automatic mask.  

 

Results 

The threshold functions (plots of threshold value against seed intensity) showed a similar 

trend with decreasing of the number of patients included in the training set: as the sample size 

decreased the fitted lines maintained a similar slope and approximately they pass through a similar 

point (Figure 1). The seed intensity at this ‘common point’ was found to be the intensity of the GM 

peak on the standardized histogram. This is due to the fact that the image standardization process 

fixed the GM peak for all the PD-w images to the same intensity value. Thus, this value as seed 

point would produce similar thresholds during the training, and after the fitting operation on the 

training set these points were interpolated producing a single ‘common point’ between the 

functions. Furthermore, on the y-axis this point represents the intensity variation on the GM 

standard intensity distribution that discriminates the lesion intensity values, which mostly overlap 

with GM intensity values, from the surrounding tissue (WM).  



The effect of a different slope of the threshold functions on the segmentation results was 

evaluated. The slope of the threshold function was varied between 0.1 and 0.9, and higher DSC 

scores were found (DSC>0.6) at higher values of slope (m>0.7), although this improvement was not 

significant. 

From those findings, the thresholds used in initial seed growing were expressed as:                                  

;                                         [1] 

where m was fixed to 0.9, T is the threshold for the region growing, Iseedi is the seed intensity value 

for lesion i; IGM and σGM were respectively the intensity of the GM peak and the standard deviation 

of the GM distribution on the standard histogram. Equation [1] was used to compute the threshold 

function, and then the method was performed without training on manual segmentation. 

Comparison of data between the different scanner manufacturers (Siemens vs Philips, 

Siemens vs GE and GE vs Philips) showed that there was no evidence that lesion segmentation 

errors came from different distributions. The mean values of segmentation errors for each MR 

manufacturer were: RMSEGE = 1.99 ml, RMSEPHILIPS = 1.59 ml, RMSESIEMENS = 1.86 ml. The 

statistical test performed between the groups revealed no differences of segmentation performance 

between manufacturers: ptest1=0.65, ptest2=0.44 and ptest3=0.30. 

The validation metrics were extracted for each lesion load of each patient, considering each 

lesion as a connected region in 3-D space for the computation of its total volume. In Figure 2, the 

metrics evaluated for each patient over all lesions are graphically reported. The following were 

obtained after averaging the metrics over all patients: DSC = 0.62; RMSE = 2 ml; TPF = 0.76; FPF 

= 0.36; FNF = 0.22. 

An example lesion segmentation result is shown in Figure 3. 

 

Discussion 

Since manual segmentation is time-consuming and is subject to inter- and intra- observer 

variability, automatic segmentation of MS lesions is an active research field with many proposals 



presented in the last years.5 The method validated in this study has several advantages. First, it 

works on DE MR images. Most of the proposed methods segment lesions on FLAIR sequences, that 

benefit from suppression of the CSF signal and better contrast between focal lesions and the 

surrounding background.7-9, 14-16 However, large amounts of data have been and are currently being 

acquired for research and clinical trials using DE PD/T2w images. Thus, with use of the proposed 

method, it should be possible to rapidly analyze these large sets of images. Second, despite the 

limitation of the manual identification of lesions by an expert physician, this initialization ensures 

the correct identification of all lesions and avoids the problem of the identification of entire false 

positive lesions (since only possible misclassification of lesion pixels can occur). This is a common 

challenge for fully automatic lesion segmentation methods, which tend to be sensitive to the image 

quality.4 In the method proposed, we avoid this issue by maintaining manual identification of 

lesions and automating the segmentation task that is the most time-consuming operation. Some 

automatic lesion segmentation tools with available code (LST, SLS and Lesion-TOADS) expect as 

input FLAIR images. As a consequence, a comparison with our method would be unfair. Moreover, 

the majority of the proposed methods have been validated on a restricted number of cases and 

within single centers or simulated MRI acquisitions.5, 17, 18 Also a validation of the method on data 

provided by the MICCAI Grand Challenge workshop 2008 would be unfeasible due to the absence 

of a DE sequence in the dataset.6, 19 In this study, a validation of the method against manual 

segmentation in a multicenter context was presented, proving that the method was robust to scanner 

differences and its performance was not MR software and hardware-dependent.  

During an initial assessment of the size of the training set needed, it was found that the 

threshold functions extracted for the initial region growing algorithm were not noticeably affected 

by including smaller numbers of subjects, and that there were no significant differences between the 

thresholds functions computed from each scanner manufacturer group. Moreover, using the 

simulated threshold functions, it emerged that once their intersection point was found, changes to 

the slope introduce only a small non-significant improvement at higher values; thus, the most 



important feature of the threshold function was the crossing point of the lines, which was a result of 

the standardization process.  

These results allowed us to find an expression for the threshold function used in the initial 

region growing part of the algorithm, thus avoiding the training step using manual segmentation. 

Since the segmentation results improved when using a higher slope of the threshold function, m=0.9 

was selected to allow the use of higher thresholds and a less restricted region growing segmentation. 

This is because of the stop condition on the threshold value (see Eq. [1] of the supplementary 

material): a higher threshold implies a higher difference between the seed point and the i-th pixel 

intensity value that stops the region growing, so a larger range of intensities classifiable as lesion 

(less restricted segmentation). This was made possible because we included an edge detection step 

in the segmentation that acts as a barrier to stop the region growing even if a too high threshold is 

used. Because of noise or artifacts on the images, the two stop conditions were used in combination 

for a good result. However, using a high slope for the threshold function might generate a bias 

between lesions with higher and lower intensity values relative to the crossing point of the straight 

line: that is, with a high slope, lower intensity lesions would have lower threshold values, causing a 

more restricted region growing while the opposite would be observed for higher intensity lesions. 

This bias was avoided by applying a threshold refinement step, in which a more robust threshold is 

computed to restart the region growing, thus correcting too restricted segmentation due to lower 

threshold values. Hence, using Eq. [1] to find the threshold function, we avoided the training step 

using manual segmentation, making the applicability of the proposed technique easier in clinical 

settings. Regarding the possible bias between different lesion loads, from Figure 2 (lower-right 

graph) it seemed that the difference between automatic and manual lesion load becomes larger with 

increasing lesion load. This could be explained by the fact that a high lesion load could be due to 

many small lesions or a few but very large lesions. In the first case, a difference of a few pixels 

between the automatic and manual segmented lesion (that is visually undetectable), summed up for 

all lesions, could result in a relevant difference in the quantification of lesion load between the two 



methods. In the second case, a difference of more pixels, for example at lesion border (again 

visually undetectable), could result in a relevant difference in lesion load quantification between 

manual and automatic segmentation. 

The stability and robustness of the method was assessed when working on data from 

different scanner manufacturers. The initial step in image analysis standardizes the intensity values 

between the PD-w MRI scans, allowing the use of fixed intensity parameters. The method was not 

significantly affected by possible hardware or software dependent differences between MRI 

scanners.  

Lesion segmentation performed using the new method showed good agreement with the 

ground truth (DSC = 0.62 and TPF = 0.76). The difference between the lesion load estimated using 

the proposed method and with manual segmentation gave a mean error of 19% (RMSE = 2 ml), 

with low misclassification of lesion voxels (FNF = 0.22 and FPF = 0.36).  

The evidence of the benefit for the operator time required to segment lesions was 

demonstrated in our previous work.11 In the current study, the significant reduction in time for the 

segmentation task was confirmed. For the lesion loads we considered, the average time for manual 

lesion segmentation of a single MRI scan was about 50 minutes for the segmentation task only, 

while for the new method the average time for the same task was about 55 seconds, a reduction in 

time of about 98.2%.  

In cases where lesions have intensity similar to that of CSF, the method gives segmentations that 

extend beyond the real boundary of the lesions. This happened in very few cases in this study, and 

was mainly for periventricular lesions. It may be possible to improve this in future by introducing 

further information about lesions, perhaps using other MR tissue contrast such as co-registered T1-

w images. This improvement could also be useful for a more certain lesion boundary delineation in 

case of diffuse lesions in patients with high lesion load. Notably, the method did not encounter 

difficulties in segmenting subcortical/cortical lesions. This is due to the edge detection step using 

the high pass filter: the border of subcortical/cortical lesions were well-defined with respect to the 



surrounding tissue, differently from what happened to periventricular lesions, that had intensity 

values similar to the CSF on DE scans. 

The method implemented is based on a 2-D region growing approach since it started from 

initial seed points positioned in 2-D. The choice of 2-D implementation was due to the fact that 

images were not acquired using 3-D MR sequences, therefore resolution along z-axis (slice-

thickness) is lower than the axial one. The adaptation of the method to 3-D approach could be a 

future extension when 3-D MR sequences are available, to reduce the interaction time of the expert. 

Similarly, the applicability of the method on different images (e.g, pre- and post-contrast T1-

weighted sequences) would require some modifications and retraining of the method for the new 

contrasts. 

The algorithm relies on manual identification of lesions which must be performed by an 

expert operator, while the most time consuming task, i.e. outlining each lesion, is fully automated. 

However, it would obviously be preferable to avoid all manual intervention to remove any operator 

dependence. In future it may be possible to fully automate T2-hyperintense lesion segmentation by 

using other MRI contrasts such as FLAIR or Double Inversion Recovery sequences.20 Finally, the 

reproducibility of the method should be evaluated in longitudinal studies.  

 

Conclusions 

 In this study, we evaluated the performance and stability of a semi-automatic method for MS 

lesion segmentation using DE data acquired from different centers with different scanners, 

compared with manual segmentation by an expert physician. The method proved to be robust and 

stable when working on data from different scanner manufacturers. It emerged also that no center-

specific training of the algorithm was required, making the method suitable for direct use on a wide 

range of images. Adoption of the method should lead to improved reliability and lower operator 

time required for image analysis in research and clinical trials in MS. 
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Figure legends 

 

Figure 1. Threshold functions obtained after the training step for each different scanner 

manufacturers at the decreasing of the training set sample sizes (i.e., number of subjects included) 

as indicated. It is possible to observe that with decreasing sample size, the linear regression 

functions did not modify their trends.  

 

Figure 2. DSC values (top left), mean TPF/ FPF values (top right) and mean FNF values (bottom 

left) are shown for each patient. In the bottom right, a scatter plot to compare manual lesion load 

against automatic lesion load is shown. The dashed line is the line of identity. 

 

Figure 3. Example lesion segmentations for three patients (in the three rows) from three different 

scanners by the proposed method (in red) compared to the expert operator segmentation (in blue). 

The corresponding T2-w images are shown in the right column. 

 

 

 









Supplementary material 

The methodological structure of the lesion segmentation technique is described below. 

1 – Image standardization. One difficulty with non-quantitative MRI techniques is that the 

image intensities are arbitrary, even within the same protocol, for the same scanner and the same 

subject.1 This issue becomes important in multicenter studies where different MRI scanners are 

used and when a segmentation technique is applied that requires an intensity threshold value. In 

such cases, standardization of image intensities is vital to correct for the arbitrary intensity scaling 

for different acquisitions. The standardization procedure used here transforms each intensity value 

of the original PD-weighted image into a new unique intensity value on the standardized image.2 To 

do this, a linear transformation is performed between the intensity values of the two images, such 

that the histogram of the transformed image has the GM peak position and the first and the last 

percentiles (1% and 98%) projected into standardized values.2 After the standardization process, the 

histograms have comparable intensities and a fixed intensity value for the highest intensity mode.  

For the computation of the standard values, an initialization step must be performed only 

once for a given MRI protocol on a cohort of patients, in which the three intensity parameters (GM 

peak, and the first and last percentiles) are estimated from each histogram of the training set, 

averaged and then used to calculate the linear transformation required to generate the standardized 

image for the protocol.  

2 – Region growing algorithm. The core of the algorithm is the pixel-based region growing 

approach. This clustering method examines neighboring pixels of initial "seed points" and 

determines whether the pixel neighbors should be added to the region according to similarity 

constraints.3 The process is iterated until a similarity condition is violated. The main constraint used 

for the growth of the segmented region is the intensity similarity, based on a threshold that varies 

according to a relationship determined during a training process. 

3 – Training. Region growing is used on a training dataset of lesions that were previously 

manually identified in 2-D on the PD-weighted images using a marker point and outlined by an 
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where Is is the intensity of the seed point and Ii is the intensity of an adjacent pixel to be classified 

on the standardized PD-w image; T is the threshold value (extracted from the training function; 

different for each lesion). If this condition is violated for all the adjacent pixels, the region growing 

stops for that lesion. 

It was selected for running the segmentation algorithm to use the standardized PD-w image instead 

of the half-way contrast image because of an easier pre-processing/training, since it was done only 

on a MRI sequence; while the advantage of both PD/T2-w sequences was integrated in the method 

including the lesion edge detection in the stop condition. 

5 – Threshold refinement step. After initial segmentation, the intensity distribution of each 

lesion is employed to estimate a more robust intensity threshold for the region growing. The 

percentiles of the standardized PD-w intensity distribution of the lesions are used to compute a new 

threshold to restart the region growing from the results of the first segmentation. The percentile of 

the intensity distribution used as a new threshold is selected according to the size of the lesion, 

which gives the sample size of the distribution. The lower the sample size (until 3 pixels), the 

higher the percentile selected (linearly from 5th until 20th percentile) in order to avoid the inclusion 

of outliers. The feasibility of the percentiles selected was empirically assessed.  

The lesion segmentation method was implemented in Matlab®. 

 

 

 

 

 

 

 



Supplementary Table 1. Main demographic, clinical and conventional MRI characteristics of 

patients enrolled in this study at six European centers. Center A: Amsterdam, B: Naples, C: Graz, 

D: London, E: Milan, F: Siena. 

 

Center A B C D E F 

Men/Women 4/4 3/8 5/1 3/4 3/7 1/9 

Mean age (SD) (years) 45.2  
(6.7) 

38.8 (7.8) 
37.2 

(10.2) 
39.4  
(9.8) 

37.4 
(8.3) 

39.8 
(6.2) 

Median EDSS (range) 3.5  
(2.0-4.0) 

1.5  
(1.0-6.0) 

2.5  
(0-4.0) 

2.0  
(1.0-4.0) 

1.5  
(1.5-4.0) 

1.5  
(1.0-4.0)

Mean disease duration 
(SD) (years) 7.4 (4.5) 12.4 (7.9) 8.9 (7.3) 4.4 (2.5) 7.4 (9.1) 8.1 (4.4) 

Mean T2 lesion load 
(SD) [ml] 

11.65 
(10.72) 

7.28 
(5.90) 

21.20 
(21.14) 

13.51 
(17.30) 

8.63 
(7.75) 

5.16 
(5.68) 

Mean # of lesions 66 65 90 91 57 73 

 

Abbreviations: SD, standard deviation; EDSS, Expanded Disability Status scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2. MRI acquisition centers with scanner manufacturer, coil, and the number 
of patients included at each center. Center A: Amsterdam, B: Naples, C: Graz, D: London, E: 
Milan, F: Siena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Center Manufacturer/Model Coil 
# of 

patients 

A General Electric Medical Systems – 

Signa HDxt 
8-channel High Resolution Brain coil 

8 

B 11 

C Siemens MAGNETOM  Tim Trio 

(Syngo MR B15) 

32-channel head coil (12 head 

anterior + 20 head poterior) 

6 

D 7 

E 
Philips Medical System - Achieva SENSE Head coil 8-elements 

10 

F 10 
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