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Abstract—Source code similarity measurement is a fundamen-
tal technique in software engineering research. Techniques to
measure code similarity have been invented and applied to vari-
ous research areas such as code clone detection, finding bug fixes,
and software plagiarism detection. We perform an evaluation of
30 similarity analysers for source code. The results show that
specialised tools including clone and plagiarism detectors, with
proper parameter tuning, outperform general techniques such
as string matching. Although these specialised tools can handle
code similarity in local code bases, they fail to locate similar
code artefacts from large-scaled corpora. This is increasingly
important considering the rising amount of online code artefacts.
We propose a scalable search system specifically designed for
source code. It lays a foundation to discovering online code reuse,
large-scale code clone detection, finding usage examples, detecting
software plagiarism, and finding software licensing conflicts. Our
proposed code search framework is a hybrid of information
retrieval and code clone detection techniques. This framework
will be able to locate similar code artefacts instantly. The search
is not only based on textual similarity, but also syntactic and
structural similarity. It is resilient to incomplete code fragments
that are normally found on the Internet.

I. INTRODUCTION

Source code similarity measurement is frequently used in
software engineering research. Techniques to measure code
similarity are invented and applied to various research areas
such as code clone detection [6], finding bug fixes [23],
and software plagiarism detection [35]. These techniques are
successfully put to use in analysing software projects and
local code bases in companies or open source systems [10],
[15], [20], [29], [32]. Nowadays there are plethora of source
code files and incomplete code fragments proliferating on the
Internet. For example, online code artefacts from GitHub or
Stackoverflow are invaluable since they can be mined in order
to gain insights of several emerging challenges in software
development, e.g. online code reuse, software licensing conflicts
[10], [12], and usage examples [24]. Computer science students
are also benefited from online Q&A websites by having a vast
amount of examples to study from [33]. On the other hand,
the reuse of online code examples can lead students to the
problem of plagiarism [18], [19].

Most of similar online code artefacts are not only textually
similar but they also can share similarity at syntactic or
structural level. This syntactic or structural similarity com-
monly occur due to modifications made to the code such
as variable renaming, statements insertions, deletions, and
replacements. Current text-based search engines such as Bing

and Google are not specifically designed for source code.
Code search engines such as BlackDuck OpenHub [1] also
do not handle modifications made to source code very well
[24]. Unfortunately, specific tools like classical code clone
[16], [21], [37] and source code plagiarism detectors [17],
[35] cannot handle this large amount of code artefacts. They
cannot be scaled to process millions of files with billion lines
of code in a reasonable amount of time. This prompts new
techniques for large-scale clone detection to emerge [25], [34],
[38]. However, these techniques mainly target on complete
code blocks or functions while galore of code snippets on
the Internet, e.g. from Stackoverflow, are incomplete code
fragments.

II. RESEARCH QUESTION AND CONTRIBUTIONS

This research is motivated by a question “how to effectively
locate similar source code with pervasive modifications
from large-scaled code corpora?”. To answer this question,
we propose the following contributions:

A broad, thorough study of the performance of tools and
techniques against pervasively modified source code: We com-
pared 30 source code similarity measurement tools and found
that specialised tool such as clone detection and plagiarism
detection tools outperform compression-based and general
document similarity tools. We also evaluated a normalisation
technique using decompilation and found that it is effective
against pervasive modifications [36].

Internet-scaled similar code search: We are creating and
evaluating a large-scaled similar code search technique that
is resilient to incomplete code. The preliminary results show
that our information retrieval framework enhanced by clone
detection techniques can locate similar code fragments with
high precision.

Applications of the code search framework: We plan to apply
our large-scale code search framework to empirical software
engineering research. Specifically, we will perform a study
of finding online code reuse between online code corpora
(e.g. Stackoverflow, GitHub) and open source projects.

III. RELATED WORK

Cloned code is created by duplication of source code due
to reusing of well-written code, hardware/platform variations,
templating, or customisations [22]. Similarly, software plagia-
rism is a copying of source code with an intention to hide its
origin and found in both computer science education [8], [9]
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and software industry [3]. To locate these similar pieces of
cloned and copied code, several clone and plagiarism detectors
have been invented in the past decades. They are based on
various code similarity measurement techniques such as string
matching [37], [41], token matching [7], [11], [13], [14], [17],
[21], [35], [38]–[40], [42], tree similarity [5], [16], or sub-graph
similarity [27], [28].

Code clone and plagiarism detection tools usually apply
normalisation to source code. Code normalisation is a process
of transforming source code into an intermediate representation.
The similarity detection is then performed on the intermedi-
ate representation instead of the original source code text.
Normalisation can improve the tools’ precision and recall by
canonicalising textual and structural changes that have been
made to the source code. Examples of code normalisation found
in clone and plagiarism detection include a usage of pretty
printing [37], blind or consistent identifier renaming [21], [35],
[37], token stream [21], [35], and abstract representation using
abstract syntax tree (AST) [5], [16] or program dependence
graph (PDG) [28].

Information retrieval (IR) technique is an established field
of study underpinning modern search engines. Information
retrieval techniques provide nearly instant searching time over
massive datasets. There are numbers of indexing, querying,
and ranking methods introduced by IR research community [4],
[26], [31]. It has been mainly used for text search in very large
databases or over the web. Recently, source code similarity
detection using information retrieval technique is emerging in
modern clone and plagiarism detection due to its scalability
over large code bases [7], [38].

IV. METHODOLOGY AND RESULTS

This research is divided into two parts. The first part covers
a study of existing similarity measurement tools and techniques.
The second part introduces a novel method to search for similar
code in a large-scaled code database and its applications.

A. Code Similarity in the Presence of Pervasive Modifications

We performed an empirical study of 30 similarity analysers
on 50 Java source code with pervasive modifications. The
pervasive modifications are code changes that affect the
whole source file and are mostly found in code cloning,
code plagiarism, and code refactoring. We created a ground
truth dataset of pervasively modified code using ARTIFICE
(source code obfuscator), ProGuard (byte code obfuscator),
Java compiler (javac), and two decompilers: Krakatau and
Procyon. The overall process is depicted in Figure 1. We
applied obfuscators and decompilers to each original Java file
to generate several of its pervasively modified counterparts.
The 30 analysers are executed against this dataset and report
pairwise similarity values. Only pairs of Java programs that
are from the same original program are true positives. Thus,
we thoroughly searched and selected the tools’ settings and
similarity thresholds that give the best classifications. Finally
we compare the tools using their F-scores.
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Fig. 1. The experimental framework for evaluation of code analysers against
pervasively modified source code [36]

Furthermore, it is known that normalisation strongly affects
the accuracy of similarity detection. We included compilation
and decompilation as a pre-processing step of source code
with pervasive modifications. The evaluation of the tools was
repeated with a compilation and decompilation applied to the
dataset before performing the detection. We analysed the results
and compared them using F-scores.

Results: Table I lists the selected tools, including clone detec-
tors; plagiarism detectors; compression tools; general similarity
measurement tools, and their performance against pervasive
modifications. The best performing tool in terms of F-score is
the widely used token-based clone detector, CCFinderX (ccfx),
followed by simjava, a token-based plagiarism detector, and the
string-based clone detector, simian. Normalised compression
distance (NCD) which is a compression-based algorithm were
observed to give comparable F-scores over all of its variants
with different compression techniques. Table I only reports the
tools’ optimised parameter settings due to space limitations.
The complete optimised settings and results can be found from
the study website1.

Furthermore, we observed that normalisation by decompila-
tion reduces the numbers of false positive and false negative
of all the tools. The two decompilers, Krakatau and Procyon,
provide comparable performance with Krakatau having slightly
better F-measure scores for most of the tools. Six tools
including ccfx, deckard, jplag-java, plaggie, sherlock, and
simjava did not report any false classification at all after
compiled and decompiled by Krakatau.

B. Internet-scaled Similar Code Search: ISiCS

Classical code clone and plagiarism detectors do not scale
well to large-scaled datasets [38]. Although there are scalable
approaches to overcome this limitation [25], [34], [38], they
still fail to handle incomplete code fragments. This is crucial
since there are many of these fragments residing on the Internet
especially on Q&A websites. Our “Internet-scaled Similar Code
Search (ISiCS)” framework is a code search framework that is
scalable and resistant to code incompleteness.

In ISiCS, information retrieval (IR) techniques are exploited
as the underlying infrastructure of code retrieval and similarity
measurement. Code clone detection techniques are adopted
for code abstraction and normalisation. The search indexes
are designed to store online code artefacts collected from

1http://crest.cs.ucl.ac.uk/resources/cloplag/
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TABLE I
TOOL PERFORMANCE COMPARISON ON PERVASIVELY MODIFIED JAVA

SOURCE CODE WITH AND WITHOUT DECOMPILATION (KRAKATAU) USING
THE TOOLS’ OPTIMAL CONFIGURATIONS.

Tool/Technique Optimised Settings F-score
(Original) Original Decomp.

Clone det.
ccfx b=20,21,24,t=1..7 0.9095 1.0000

b=22,23,t=7
deckard MINTOKEN=30 0.8595 1.0000

STRIDE=2
SIMILARITY=0.95

iclones minblock=10 0.6033 0.9407
minclone=50

nicad abstract=expressions 0.7080 0.9370
simian minline=5,ignoreIdf 0.8719 0.9980
Plagiarism det.
jplag-java t=3 0.8045 1.0000
jplag-text t=8 0.8582 0.9843
plaggie M=7 0.8210 1.0000
sherlock N=6,Z=3 0.8284 1.0000
simjava r=22 0.8941 1.0000
simtext r=4 0.5622 0.9754
Compression
7zncd-BZip2 mx=1,3,5 0.8301 0.9494
7zncd-LZMA mx=7,9 0.8160 0.9501
7zncd-LZMA2 mx=7,9 0.8189 0.9511
7zncd-Deflate mx=9 0.8157 0.9500
7zncd-Deflate64 mx=9 0.8142 0.9500
7zncd-PPMd mx=9 0.8078 0.9513
bzip2ncd C=1..9 0.8219 0.9453
gzipncd C=9 0.8153 0.9535
icd ma=Deflate,Deflate64 0.7404 0.8605

mx=9
ncd-bzlib N/A 0.8163 0.9419
ncd-zlib N/A 0.8282 0.9474
xz-ncd -e 0.8228 0.9560
Others
bsdiff N/A 0.5797 0.9075
diff N/A 0.6996 0.8815
py-difflib SM noautojunk 0.8393 0.9056
py-fuzzywuzzy token set ratio 0.8167 0.9712
py-jellyfish jaro distance 0.6169 0.7937
py-ngram N/A 0.7925 0.9098
py-sklearn N/A 0.6802 0.9107

famous programming websites. These online code artefacts
can be extracted from archives provided for downloads from
Stackoverflow and GitHub, or crawled by web crawlers from
websites that do not provide such download options. One of
ISiCS goals is resiliency to incomplete code artefacts. Thus,
its token-based similarity measurement method do not rely on
code block or function completeness. Incomplete code snippets
are processed as-is while complete source code files are parsed
and processed at method level.

We envisage the complete ISiCS framework to contain more
than one search index. Multiple indexes with different code
abstract representations can enhance the recall of the search.
Using this method, code artefacts are stored in one index
only if they can be transformed into that index’s required
representation. Figure 2 represents the “multi-representation”
search framework containing three search indexes. The first
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Fig. 2. The framework of Internet-scaled Similar Code Search (ISiCS)

index exploits token-based representation. It stores source code
in a form of n-grams of normalised tokens [6], [21]. The
normalisation handles variable name, data type, and identifier
modifications while n-grams [30] is used to capture code
sequences. The second and the third index store source code in
its textual and structural representation (e.g. AST [5], [16] or
PDG [28]) respectively. For each index, we choose a similarity
measure from the choices of six state-of-the-art IR similarity
ranking functions: TF-IDF, BM25, DFR, IB, LMDirichlet, and
LMJelinekMercer [2], [4], [31].

At query time, a code query Q is processed to create three
sub queries Q1, Q2, Q3 as depicted in Figure 2. Each of the sub
queries contains suitable representation of the code according
to its respective index. The sub queries are then use to search
from their designated index. The search results are aggregated
and the ranked results of similar code is reported.

Preliminary Results: We implemented the proposed ISiCS
framework based on Elasticsearch [2], an open-source high
performance distributed search engine. The current implementa-
tion consists of single search index of token-based normalised
n-grams. The ISiCS search index has four parameters: size
of grams in n-gram, Java normalisation options, information
retrieval similarity functions, and parameters of the IR similarity
functions. The complete set of parameters and their possible
values are shown in Table II. To obtain the highest precision
for similar code search, we tuned the system by searching for
the optimal set of configuration for these four parameters. The
tuning dataset was extended from the experiment of pervasively
modified source code [36].

The results of optimised configuration for each of the six
IR similarity functions are listed in Table III. We selected the
precision-at-n as the error measure [31] since the widely used
precision and recall are difficult to measure over large datasets
without a ground truth. We found that the best configuration
with the highest precision-at-10 of 0.938 is by using Divergence
From Randomness (DFR) similarity function [4] with inverse
term frequency (if ) as the basic model of information content,
Laplace’s law of succession (l) as the first normalisation of
information gain, and uniform distribution of term frequency
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TABLE II
PARAMETERS OF ISICS

Parameter Values
Size of grams 2,3,4,5

Java normalisation d (data type), j (Java class), k (Java keyword),
p (Java package), s (string), w (word)

IR similarity functions TFIDF, BM25, DFR,
IB, LMDirichlet, LMJelinekMercer

IR sim fnc. parameters Varied based on each specific sim func.

TABLE III
THE BEST SETTINGS OF ISICS AGAINST PERVASIVELY MODIFIED CODE

BASED ON PRECISION-AT-10.

IR sim fnc. Parameter Value Norm. n-gram Prec@10

DFR
basic model if kw 2-gram

0.938after effect l
normalization h1

LMJelinekMercer lambda 0.9 p 3-gram 0.927
TF-IDF disc overlap true,false k,dkp 3-gram 0.908

BM25
k1 0.0 .. 2.4 kp,dkp 3-gram

0.908b 0.0 .. 1.0
disc overlap true,false

IB

distribution ll kp,dkp 3-gram

0.907

lambda ttf
normalization h1
distribution spl none 3-gram
lambda df
normalization h1

LMDirichlet mu 500,750 d, none 3-gram 0.898

(h1) for the second normalisation. The best code abstraction
for this DFR similarity is n-grams of normalised Java keyword
and word tokens (kw) with gram size of 2.

V. FUTURE WORK

A. Evaluation and Improvements of ISiCS

ISiCS system with the derived optimised settings will be
evaluated by benchmarking with state-of-the-art clone detection
tools such as CCFinderX [21], NiCad [37], and scalable code
clone/search tools [25], [34], [38]. The comparison will be
done both in terms of scalability, i.e. time to create index and
search on large-scale code corpus, and precision of finding
similar code artefacts.

Furthermore, we plan to incorporate the variable-length gram
(VGRAM) technique [30] as an improvement to the existing
fixed-length gram. Source code statements are usually varied
in lengths. Thus, flexibility of gram sizes in VGRAM may
capture code sequence better than traditional fixed-size n-gram.
The framework will be more generalised since finding the
proper size of n is no longer needed. We also plan to add more
indexes to capture code similarity at different code abstraction
levels. The VGRAM-based framework with multiple indexes
will be evaluated again against its original implementation and
related tools.

B. Applications of the Code Search Framework

We plan to demonstrate applications of ISiCS framework
with an empirical study of online code reuse between online
code corpora and open source projects. Nowadays, program-
mers search and use code examples from Q&A websites
(e.g. Stackoverflow [33]) in their software development. They

Open source projects

Project#n
Project#n

GitHub

Stackoverflow

Online code database

ISiCS

Reused code fragments

Project#n
Project#2
Project#1

C1

C2

Cn

C3

Fig. 3. Searching for online code reuse in open source projects using ISiCS

also integrate libraries from online repositories (e.g. GitHub)
into their projects. The study aim to (1) detect code propagation
between online code corpora and open source projects, and (2)
investigate software licensing issues caused by reuse of online
source code.

The corpora can contain incomplete code fragments and
these fragments may also be pervasively modified to fit in
the new environments. ISiCS framework is a suitable tool
due to both its scalability and its flexibility of code similarity
measurement. Online code artefacts will be stored in the search
index and queried by source code from open source projects.
The framework then reports pairs of reused code fragments for
further analysis. The process is illustrated in Figure 3.

VI. CONCLUSION

Source code similarity is a fundamental technique in software
engineering underlying code cloning, software plagiarism,
similar code search, and software licensing conflicts. This
research focuses on an empirical evaluation of current state-
of-the-art code similarity tools and techniques, and framework
for searching similar code over large-scaled corpora.

With presence of pervasive modifications, we found that
specialised code similarity analysers such as clone detectors
and plagiarism detectors outperform general similarity measure-
ments provided by string similarity or compression-based tools.
We also discovered the optimised parameter settings of the 30
selected tools from our study. Normalisation by compilation
and decompilation is observed to be effective against pervasive
modifications with six tools reporting no false classification.

The first version of Internet-scaled similar code search
(ISiCS) framework has been implemented. We searched for its
optimal configurations against pervasively modified source code
based on precision-at-10 error measure. We plan to enhance
the system by incorporating VGRAM and multi-representation
techniques, then evaluate the system with state-of-the-art tools.
The framework will finally be put to use in an empirical
software engineering study of online code reuse.
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