
Smart Contract Templates:
foundations, design landscape and research directions

Christopher D. Clack
Centre for Blockchain Technologies
Department of Computer Science

University College London

Vikram A. Bakshi
Investment Bank CTO Office

Barclays

Lee Braine
Investment Bank CTO Office

Barclays

August 3, 2016

Abstract

In this position paper, we consider some foundational topics regarding smart contracts
(such as terminology, automation, enforceability, and semantics) and define a smart
contract as an agreement whose execution is both automatable and enforceable. We
explore a simple semantic framework for smart contracts, covering both operational and
non-operational aspects. We describe templates and agreements for legally-enforceable
smart contracts, based on legal documents. Building upon the Ricardian Contract triple,
we identify operational parameters in the legal documents and use these to connect
legal agreements to standardised code. We also explore the design landscape, including
increasing sophistication of parameters, increasing use of common standardised code, and
long-term academic research. We conclude by identifying further work and sketching an
initial set of requirements for a common language to support Smart Contract Templates.

1 Introduction
The aim of Smart Contract Templates [1] is to support the management of the complete
lifecycle of “smart” legal contracts. This includes the creation of legal document templates by
standards bodies and the subsequent use of those templates in the negotiation and agreement
of contracts by counterparties. They also facilitate automated execution of the contract and,
in the event of dispute, provide a direct link to the relevant legal documentation.

The templates and agreements may (or may not) be agnostic to the method by which a
contract is executed – that is a design choice for the template issuer, counterparties, network,
etc. The intention is to interface with a wide range of execution platforms. Smart legal
contracts could potentially be executed as software agents operating on distributed ledgers
(such as Corda [2], Ethereum [5], Hyperledger [12], etc.).

Here we aim to make a practical contribution of relevance to financial institutions. We
consider how contracts are written, how they are executed, how they are enforced, and how to
ensure that the execution of a contract is faithful to the meaning of the legal documentation.
We discuss these issues using reasonably straightforward language, so that it is accessible not
only to financial institutions but also to lawyers, regulators, standards bodies, and policy
makers. We hope that the issues and views raised in this paper will stimulate debate and we
look forward to receiving feedback.
Acknowledgements: We would like to thank Clive Ansell (ISDA), Ian Grigg (R3) and
Darren Jones (Barclays) for their helpful feedback.

c© Barclays Bank PLC 2016
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).
Provided you adhere to the CC BY license, including as to attribution, you are free to copy and redistribute this work in
any medium or format and remix, transform, and build upon the work for any purpose, even commercially.
BARCLAYS is a registered trade mark of Barclays Bank PLC, all rights are reserved.

Electronic copy is available at http://arxiv.org/abs/1608.00771

1

https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1608.00771


2 Foundations
In order to lay the foundation for subsequent discussion, there are several topics that require
elaboration. Here we consider the key topics of terminology, automation, enforceability, and
semantics.

2.1 Terminology — “smart contracts”

In [15], Stark gives an overview of the two different ways that the term “smart contract” is
commonly used:

1. The first is entirely operational in nature, involving the execution of software agents,
typically but not necessarily on a shared ledger. The word “contract” in this sense
indicates that these software agents are executing certain obligations and may take
control of certain assets within a shared ledger. There is no clear consensus on the
definition of this use of the term “smart contract” — each definition is different in subtle
ways [18, 17, 16, 3]. Stark renames these agents as smart contract code.

2. The second focuses on how legal contracts can be expressed and executed in software.
This therefore encompasses operational aspects, issues relating to how legal contracts
are written and how the legal prose should be interpreted. There are several ideas and
projects which focus on these aspects such as the Ricardian Contract [7], CommonAccord
[4] and Legalese [13]. Stark renames these as smart legal contracts.

Given that there is no clear consensus on the terminology being used, it is important that we
should be clear in this paper. Here we prefer that the term “smart contract” should cover
both versions, so we adopt a higher-level definition based on the two topics of automation and
enforceability, that are explored in depth in sections 2.2 and 2.3:

A smart contract is an agreement whose execution is both automatable and enforceable.
Automatable by computer, although some parts may require human input and control.
Enforceable by either legal enforcement of rights and obligations or tamper-proof execution.

This is sufficiently abstract to cover both “smart legal contracts” (where the agreement is a
legal agreement, which is then capable of automatic execution in software) and “smart contract
code” (which may not necessarily be linked to a formal legal agreement, yet must be executed
automatically). It simply states a requirement that the contract must be enforceable without
specifying what is the aspect being enforced; for smart legal contracts these might be complex
rights and obligations, whereas for smart contract code what is being enforced may simply be
the execution of the code.

We focus on smart legal contracts, with the expectation that it will be possible for execution
to occur using smart contract code. In addition to our definition of smart contract given above,
throughout the rest of this paper we also for clarity adopt Stark’s terms smart contract code
and smart legal contract.

2



2.2 Automation

We have chosen to say that a smart contract “is automatable” rather than that it “is
automatically executed” because in practice there are parts of a legal agreement whose
execution might not be automatic and will require human input and control. However, to be
a “smart contract” we require that some part of the execution is capable of being automated
(otherwise it is not “smart”).

Automation is generally taken to mean being executed by one or more computers. The
phrase “by electronic means” is a synonym. Our definition of smart contracts does not require
that this automatic execution occurs on a shared ledger, though that is certainly a possible
and even probable method of execution.

As an example of how automation might be achieved using smart legal contracts, Grigg
[9] presents the Ricardian Contract triple of “prose, parameters and code”.1 The legal prose is
linked via parameters (name-value pairs) to the smart contract code that provides execution.
We might for example envisage that an executable software agent has been developed that will
be instantiated on a shared ledger and, once execution has started, will proceed to undertake
various transfers of value in accordance with the legal prose. The parameters are a succinct
way to inform the code of the final operational details.

The code in this case would be suitable for execution on a specific platform but we can
imagine in the future that multiple platforms could be targetted from a single contract.2

2.3 Enforceability

Given a smart contract must be “enforceable”, what are the elements that must be enforced?
And how? First we consider what must be enforced:

2.3.1 What to enforce

What needs to be enforced is different for smart contract code and smart legal contracts:

• For smart contract code, the key requirement is that the code should execute
successfully and accurately to completion, within a reasonable time. If the execution
platform is in complete control of all of the actions that the smart contract code
wishes to perform, then these actions should be executed faithfully and with reasonable
performance. Things that can go wrong (and therefore require “enforcement”) would
either be technical issues within the platform, or issues that take place outside of the
execution platform — an obvious example would be the physical delivery of goods.

• For smart legal contracts, things can be considerably more complex. Typically a
legal contract would have a large number of rights and obligations that accrue to the
different parties to the agreement and are legally enforceable. These are often expressed in
complex, context-sensitive, legal prose and may cover not just individual actions but also
time-dependent and sequence-dependent sets of actions. There may also be overriding
obligations on one or more of the parties such that a lack of action could be deemed to
be a wrong-performance or non-performance.

1https://en.wikipedia.org/wiki/Ricardian_Contract
2This could for example be achieved by using the list of parameters to connect the legal prose to a set of

smart software agents, e.g. one agent per execution platform.

3



2.3.2 How to enforce

Enforcement might be achieved via traditional or non-traditional methods:

• Traditional means of enforcement include a variety of dispute resolution methods such
as binding (or non-binding) arbitration, or recourse to the courts of law. There is an
established body of law, and the methods by which parties can resolve disputes are well
known. The traditional methods are backed by the power of government as embodied in
the law, law-enforcement agencies and the courts. For illegal acts, courts are for example
empowered (to different extents, according to jurisdiction) to impose fines, sequester
assets, or deprive the wrong-doer of liberty. For disputes relating to contracts, the
courts have extensive experience of adjudicating on issues of wrong-performance and
non-performance, of awarding damages or other reliefs as appropriate, and in some cases
assisting in the enforcement of payment of damages.

• Non-traditional methods of enforcement may also be imagined. For example, there
is currently debate and experimentation on the possibility of enforcing the execution of
smart contract code at a network level without the need for dispute resolution either via
arbitration or via the courts. This is a fundamentally different notion of enforcement that
is often expressed in terms of “tamper-proof” technology, with the assumption that in
a perfect implementation of the system wrong-performance or non-performance become
impossible.

“Tamper-proof” execution is typically described in terms of distributed networks of
computers that are unstoppable and in a technological sense cannot fail regardless
of malicious acts, power cuts, network disruption, natural catastrophies or any other
conceivable event.3 With such a system, it is assumed that a software agent, once
started, could not be stopped. For truly “unstoppable” software agents, code must be
embodied to take the appropriate action in response to various dynamic states that might
occur (such as another party not having sufficient funds to execute a required payment).
In a normal system, the software agent might abort and the wrong-performance or
non-performance by a party would be enforced by traditional means; but in a truly
unstoppable “tamper-proof” version of the system, all such possibilities would have to be
anticipated and appropriate actions determined in advance, so they are no longer deemed
wrong-performance or non-performance but are instead anticipated states of the system
with known resolution.

Although some groups are actively pursuing tamper-proof smart contract code, our preference
is for smart legal contracts that are enforceable by traditional legal methods for reasons
including:

• In a system with enforcement by tamper-proof network consensus, there would be no
“execute override” provisions. Agreements, once launched as smart contract code, could
not be varied. But it is quite common for provisions of an agreement to be varied
dynamically — for example, to permit a favoured client to defer paying interest by a few
days, or to permit a payment holiday, or to permit the rolling-up of interest over a period.
Unless every possible variation is coded in advance, none of this would be possible in a
tamper-proof system.

3A tamper-proof network might be used to run a “permissionless” shared system [10] — i.e. where anyone
can access the system and trusting a single party is not required. Swanson [17] gives a good overview of many
of the complex issues that arise with permissioned and permissionless distributed consensus systems.

4



• Enforcement by network consensus can only apply to the execution of obligations, or the
exercising of rights, that are under the control of the network. However, objects and
actions in the physical world are unlikely to be under full (if any) control of the network.

• Mainelli and Milne [14] observe that smart contract code “that involved payments would
require posting collateral to be completely automated. This locking-up of collateral would
lead to a serious reduction in leverage and pull liquidity out of markets. Markets might
become more stable, but the significant reduction in leverage and consequent market
decline would be strongly resisted by market participants.”

2.4 The semantics of contracts

Part of our remit is to consider the semantic construction of a contract — i.e. what is the
“meaning” of a contract? Does it have more than one meaning? How should a contract be
interpreted? We start with a simple semantic framework and view a legal contract as having
two interpretations:4

1. The operational semantics: this is the operational interpretation of the contract,
which derives from consideration of precise actions to be taken by the parties. Thus, this
is concerned with executing the contract.5

2. The denotational semantics: this is the non-operational legal interpretation (or
“meaning”) of the entire contract, including all of its obvious constituent parts and
including any other legal documents that it references. This is the meaning that would
be given to a contract when a lawyer reads the contract.

These two semantics do not consider different parts of the contract — they are both
interpretations of the whole contract, but with different aims.6

A contract may comprise several documents, and the process by which these documents are
agreed may be complex. The denotational semantics of even quite straightforward contracts
can be very large and complex, yet by contrast the operational semantics might be simple and
easily encoded for automatic execution.

The operational semantics dictate the successful execution of the contract to completion. If
a dispute arises, then the denotational semantics of the contract typically dictate what happens
next7 — i.e. in the context of the rights and obligations of the parties, the specification of
what remedies shall be applied in the case of partial-performance or non-performance by one
party.

The greater part of a legal contract may often be devoted to defining the obligations and
liabilities of the parties in the event of a problem with execution. Sometimes, the actions
to be taken in case of a material breach of contract are expressed precisely; however, this

4The consideration of denotational and operational semantics is well established in the academic discipline
of the theory of programming languages. Here we use the terms “interpretation”, “meaning” and “semantics”
as synonyms.

5Although a contract is executed by a computer program, there may be elements of physicality which are
outside the control of the computer code e.g. physical delivery and manual confirmation. Thus, as an additional
objective there may be a further level of semantics to define the interaction between the automated and the
physical worlds.

6Other semantics may also be applied, e.g. to derive different forms of risk associated with a contract.
7Although some remedial actions could be specified in the operational semantics.

5



is not always the case and dispute resolution may require a protracted process of negotiated
settlement, arbitration or court proceedings.

Furthermore, it is important to realise the important role of law. It is not possible to take
literally the doctrine that all one needs to know about a contract is contained within “the four
corners of the document” [6]. A lawyer would read and understand the contract in the context
of the governing law — i.e. each legal document must be interpreted according to the relevant
law (corporate law, consumer law, etc) of its stated or inferred jurisdiction, and therefore the
semantics of that law must also be understood. It should be noted that the issue of law relates
not only to the denotational semantics but also to the operational semantics — for example,
trading with certain countries may be illegal due to government-imposed sanctions.

Given this semantic framework for the legal contracts that underpin financial instruments,
we can derive a different perspective of smart contracts:

• smart contract code focuses exclusively on execution and therefore concerns itself only
with the execution of those operational semantics that are expressed in the code, whereas

• smart legal contracts consider both the denotational and operational semantics of a legal
contract, whose operational semantics must then be executed (possibly by smart contract
code).

This idea was previously expressed in a slightly different way by Grigg [8], displayed as a
chart where the y-axis was denoted the “Ricardian axis” of increasing semantic richness (i.e.
increasingly capturing the denotational and operational semantics of the legal prose) and the
x-axis was the “Smart axis” of increasing performance richness (primarily concerned with
the execution of the operational semantics): see Figure 1. Both are important, yet they are
orthogonal issues and with appropriate interfacing developments can potentially proceed along
both axes simultaneously.

Figure 1: From Grigg [8], the y-axis represents an increasing ability to capture
the semantics of a smart legal contract, whereas the x-axis represents the
increasing performance of smart contract code.

3 Smart Contract Templates
Smart Contract Templates provide a framework to support complex legal agreements for
financial instruments, based on standardised templates. Following Grigg’s Ricardian Contract
triple [9], they use parameters to connect legal prose to the corresponding computer code, with
the aim of providing a legally-enforceable foundation for smart legal contracts.

Complex sets of legal documentation can be augmented with the identification of
operational parameters that are key to directing the executable behaviour of the smart contract

6



code (in this paper we call these “execution parameters”) — the smart contract code is assumed
to be standardised code whose behaviour can be controlled by the input of such parameters.

Here we explore the design landscape for the implementation of Smart Contract Templates.
We observe that the landscape is broad and that there are many potentially viable sets of design
decisions. We therefore propose that a new domain-specific language should be developed
to support the design and implementation of Smart Contract Templates, and we conclude
this section by sketching some requirements for that language. The design of that language
has already begun, and we have given it the name “CLACK” — a Common Language for
Augmented Contract Knowledge.

3.1 Templates and Parameters

A template is an electronic representation of a legal document as issued by a standards body
— for example, by the International Swaps and Derivatives Association (ISDA). As illustrated
in Figure 2, a template contains both legal prose and parameters, where each parameter has
an identity (a unique name), a type, and may (but need not) have a value.

Figure 2: A template may contain both legal prose and parameters. Each
parameter has an identifier (a name), a type, and an optional value. Agreements
are derived from templates, and both the legal prose and parameters may be
customised during negotiation. Values are mandatory for all parameters in a
signed agreement.

An agreement is a fully-instantiated template (including any customised legal prose and
parameters). The customisation of legal prose and parameters at this stage is commonplace
and results from negotiation between the counterparties. We also observe that it is common
for agreements to comprise multiple documents such as Framework Agreements (e.g. a Master
Agreement) with various Annexes (e.g. a Schedule) and Credit Support Documentation (e.g.
a Credit Support Annex). Thus, the legal prose of an agreement will be derived from that of
the template, but need not be identical, and similarly the parameters of the agreement will be
derived from the template but need not be identical.

Deriving the set of execution parameters may be complicated by three factors:

1. It is common for execution parameters to be embedded in the legal prose — identification
of such parameters would initially be undertaken by visual inspection and be aided by a
graphical user interface.

7



2. Some of the values identified as “parameters” in the agreement (and in the template)
may not have an operational impact and therefore should not be included in the set of
execution parameters.

3. It is possible for a parameter to be defined (given a name) in one document, given a
value in a second document, and used (e.g. in business logic) in a third document.

Although parameters need not have values in a template, they must have values in a signed
agreement. All of an agreement’s parameter values are a critical part of the contract as
they directly reflect the business relationship between parties and those that are execution
parameters influence the operation of the contract.

3.2 The design landscape for Smart Contract Templates

In this section, we consider the possible areas for future development of Smart Contract
Templates. We do this by considering three distinct areas of development relating to:
(i) the sophistication of parameters, (ii) the standardisation of code, and (iii) long-term
research. We conclude by sketching a roadmap for future development.

3.2.1 Increasing the sophistication of parameters

Most parameters in existing legal document templates have simple types, such as date, number,
etc. These are “base” or “primitive” types8 and, as an example, Figure 3 illustrates the
identification of a date in a master agreement; once highlighted and annotated, the name
(“Agreement Date”), type (“Date”) and value (“16-Mar-2016”) of this parameter will be passed
to the executable code.

Figure 3: From a Barclays demonstration of Smart Contract Templates:
an editor permits a date in the legal prose to be highlighted, and then annotated
to denote a simple parameter. The parameter has a name “Agreement Date”,
type “Date” and value “16-Mar-2016”.

It is not necessary for parameters to be restricted to base types. It is very likely that values
of more complex types, such as lists, will also need to be transferred to the executable code.

The passing of parameters to the executable code is necessary because of the desire to use
standardised code. It would, for example, be theoretically possible to generate entirely new
code for every trade and in this case there would be no need for parameters. The number of
parameters, and the complexity of the types of those parameters, will typically increase as the
code becomes more generic.

Beyond parameters with base types and more complex types such as lists, parameters
can also be expressions containing references to other parameter names. Unless those other

8https://en.wikipedia.org/wiki/Data_type

8



parameter names are defined within the expression, the expression is effectively a function.
Where a function is passed as a parameter, this is known as a “higher-order” parameter and the
receiving code is known as a “higher-order” function.9 An example of a higher-order parameter
is illustrated in Figure 4 where some business logic in the legal prose has been highlighted and
annotated to be a parameter with name “DailyInterestAmount” of type “Expression”10 and
with a value that is an encoding of the business logic in a format that is easily understandable
by a computer.

Figure 4: From a Barclays demonstration of Smart Contract Templates:
an editor permits business logic from the legal prose to be highlighted, and
then annotated to denote a higher-order parameter. The parameter has a
name “DailyInterestAmount”, type “Expression”, and value corresponding to an
arithmetical expression.

The business logic refers to three things whose values are unknown. The first two are
simple: “the amount of cash in such currency on that day” (in the expression this is called
CashAmount), and “the relevant Interest Rate in effect for that day” (in the expression this
is called InterestRate). The third occurs in the phrase “in the case of pounds sterling”, which
requires some analysis to determine that it is referring to the prevailing currency (hence the
name Currency used in the expression) and that the normal abbreviation for pounds sterling
is “GBP”. Since this expression contains three parameter names whose values are unknown,
it will be stored in the set of execution parameters as a function taking three arguments
(CashAmount, InterestRate, and Currency) and returning a numeric value that is the result
of the expression.

It should be noted that when business logic is converted into an expression this may involve
the creation of new parameter names (e.g. a new name for the expression itself, and for
unknown quantities). Sometimes the business logic may refer to a name that is already defined
as a parameter, and sometimes it may refer to a value provided by an “oracle” — i.e. a value,
such as an interest rate, that is provided from a trusted source of data and is available to the
code while it is executing.

The use of parameters may not only be used to support greater standardisation of code.
In the far future, we may see an increasing use of a formally structured style of expression
embedded in legal prose; if all business logic in legal prose could be replaced with arithmetical
or logical expressions, such as the higher-order parameters discussed in the previous paragraph,
this would lead to reduced ambiguity in legal prose and fewer errors in translating legal prose
into execution parameters. Such adoption of formal logic into legal prose would require such
formal constructs to gain acceptance in the courts and to be admissible as evidence of the
intentions of the parties.

9https://en.wikipedia.org/wiki/Higher-order_function
10In a conventional type system this expression would have an associated function type such as:

(Decimal, Decimal, Currency) -> Decimal

9



Figure 5 illustrates our view of how the sophistication of parameters and their role in Smart
Contract Templates may evolve in the future.

Figure 5: Execution parameters may become more sophisticated in the future,
evolving from just simple base type parameters to also include more complex
higher-order parameters. In the far future, if the encoding of business logic used
in the parameters becomes acceptable to lawyers and admissible in court, then it
could potentially replace the corresponding legal prose.

3.2.2 Increasing the use of common standardised code

In the previous subsection, we observed that the passing of parameters to executable code
is necessary because of the desire to use standardised code. This is important for efficiency
reasons as different smart contract code would otherwise have to be built, tested, certified and
deployed for every different trade. The effort is reduced if such code can be standardised with
parameters being passed to each invocation of that code.

This therefore drives a desire for greater genericity of code, which can be enabled by
passing more parameters, and/or more sophisticated parameters (with more complex types).
Yet despite the gains of standardised and more generic code, there remains the problem that
each bank currently manages its own distinct codebases. If smart contract code could be
common (i.e. shared) then it could be built, tested and certified once — and then utilised by
every counterparty.

We envisage that the potential economic benefits of using common (shared) code will
drive greater adoption in the future. One possible evolutionary route could build upon
the use of common utility functions — programs that are already very nearly identical in
all counterparties. As the potential economic benefits become clearer and the supporting
technologies mature, the size and importance of such common code could increase until,
eventually, common business logic may be executed as standardised smart contract code.
Figure 6 illustrates how the sharing of code may evolve in the future.

Figure 6: Code may become more standardised in the future through increased
sharing, evolving from different codebases across banks to greater adoption of
common utility functions to common business logic.

10



3.3 Long-term research challenges

Several research challenges concerning smart contracts, distributed ledgers, and blockchains are
currently being explored in academia. Financial institutions are providing input and inspiration
by highlighting relevant business challenges in technology and operations. A good example is
the potential for greater straight-through-processing from contract to execution. Currently,
lawyers draft legal contracts, which are then negotiated and changed by possibly other teams
of lawyers, and then operations staff inspect the contract documents and/or other materials11

to identify the execution parameters that are then passed to code that may have been written
some time ago.

This raises several issues:
• Can we be absolutely certain of the meaning of the contract? Are all parties truly

agreed on the meaning of the contract, or do they instead each have a subtly different
understanding of what the contract means?

• Can we be certain that all execution parameters have been identified by the operations
staff? Can we be certain that those parameters that have been identified are indeed
operationally relevant? And can we be certain that their names, types and values been
faithfully transcribed?

• After the parameters have been passed to the code, and the code runs, can we be certain
that the code will faithfully execute the operational semantics of the contract? and will
it do so under all conditions?

A possible solution would be to develop a formal language in which to write legal documents
— i.e. contract documents — such that the semantics would be clear and the execution
parameters could automatically be identified and passed to standardised code (alternatively,
new code could be generated). This formal language would:

1. derive a number of important qualities from well-designed computer programming
languages, such as a lack of ambiguity, and a compositional approach where the meaning
of any clause can be clearly deduced without reading the rest of the document; and

2. be simple and natural to use, to such an extent that a lawyer could draft contracts using
this formalism instead of using traditional legal language.

The former aspect has already received considerable attention in academia (see survey in [11])
and beyond (e.g. open-source Legalese project [13]). In contrast, the latter aspect is likely to
be by far the greater challenge.

Another challenge is whether such a contract, written in a computer-like language, would
be admissible in court as a true and faithful representation of the intentions of the parties.
Issues of signature and tamper-evident documents are easily solved, yet whether a court would
accept the definitions of the meanings of phrases in such a contract is not immediately clear.

As illustrated in Figure 7, this problem could be solved in two ways:
1. As a first step, the language could generate a document version of the contract in a more

“natural” legal style, with the expectation that this document would be admissible in
court.

2. Eventually, further research in domain-specific languages and law could result in a new
formalism itself being admissible in court.

11Other supporting materials may include confirmations, emails, facsimiles, telephone recordings etc.

11



Figure 7: Long-term research may lead from existing separate code and legal
prose to source languages which can be automatically translated into both
executable code and legal prose, with the prose being admissible in court. Even
longer term research could result in formal languages which themselves are
admissible in court. Note, this figure omits parameters for clarity.

3.3.1 Future developments and a new supporting common language

The areas of future development described in the preceding sections are brought together in
Figure 8, illustrating the potential evolution of important aspects of legally-enforceable smart
contracts.

Figure 8: Potential evolution of important aspects of legally-enforceable smart
contracts: legal prose and parameters, code sharing, and long-term research.

As a result of this complexity, we were motivated to define a common language to support the
specification of different solutions across the design space of Smart Contract Templates.

As a pun on the name of one of the authors of this paper, the new language has been
named “CLACK” — the Common Language for Augmented Contract Knowledge. Initially
the language will help in the specification of different design choices and in the building of
prototypes. In general, the language should be as flexible as possible to support a wide range
of requirements. An initial set of requirements has been sketched as follows:

12



• It should provide support for both legal prose and parameters.

• It should support different internal structured formats, such as XML.

• It should support the output of execution parameters in a variety of formats, such as
FpML.

• It should support contracts that comprise multiple documents.

• It should manage multiple agreements being instantiated from a single template (and
hierarchies of templates).

• It should permit parameters to be defined in one document, given a value in a second
document, and used in a third document.

• It should support a wide range of parameter types, including higher-order parameters.

• It should support increasing standardisation and sharing of common code.

• It should support multiple execution platforms.

• It should support full interaction with, and increasing automation of, legal prose.

• It should support Ricardian Contracts, and therefore for example it should support digital
signing of contracts, the construction of a cryptographic hash of the contract, and the
use of that hash as an identifier for reference and recovery of the smart contract.

It is a significant challenge to ask a single specification language to do all of the above. We
aim to report on progress in a subsequent academic paper, including an abstract syntax and
concrete examples.

4 Summary and Further Work

4.1 Summary

This paper began by considering four foundational topics regarding smart contracts:
terminology, automation, enforceability, and semantics. We defined a smart contract as an
agreement whose execution is both automatable and enforceable. We viewed legal contracts
within a simple semantic framework as having two interpretations: the operational semantics
concerning execution of the contract and the denotational semantics concerning the non-
operational legal interpretation of the contract.

We then described templates for legally-enforceable smart contracts as electronic
representations of legal documents containing prose and parameters (with each parameter
comprising an identifier, a type and an optional value). Agreements are then fully-instantiated
templates (with all parameters having values), including any customised legal prose and
parameters. By also selecting the appropriate smart contract code, this approach results in
the creation of Ricardian Contract triples.

The design landscape was then explored including increasing the sophistication of
parameters from base types to complex higher-order types to business logic that could be
admissible in court and potentially replace the corresponding legal prose. We also explored
increasing the use of common standardised code through greater sharing, evolving from

13



different codebases across banks to broader adoption of common utility functions to common
business logic. Additionally, long-term academic research was outlined which could lead
to source languages which can be automatically translated into both executable code and
legal prose; even longer term research could result in formal languages which themselves are
admissible in court.

To help manage this complexity, we sketched an initial set of requirements for a common
language for specifying different solutions across the design space of Smart Contract Templates.
These new technologies could benefit not only financial services but also other industries that
could use automated legal agreement. This has a potential to provide opportunities for new
types of jobs, including highly-skilled roles.

4.2 Further Work

The CLACK language is being specified and prototyped to support Smart Contract Templates.
Next steps include fully specifying: (i) intra-document and inter-document referencing
including ambiguity and conflict resolution strategies, (ii) syntax and semantics of expressions
within higher-order parameters, etc. Our aim is to report on further development of the
CLACK language in a subsequent academic paper, including an abstract syntax and concrete
examples.

A benefit of looking to the future is that it helps to identify a potential roadmap for
applying academic research within industry. In this case, Smart Contract Templates have
already demonstrated a way to link standardised agreements to standardised code and so, in
the near term, it may be possible to utilise them within existing infrastructure. In the longer
term, they could be utilised on shared ledgers.

There are many open questions for the future. We have explored some of these questions in
this paper, but we will end with one more: is it possible to provide straight-through-processing
of financial contracts, with full confidence in the fidelity of the automated execution to the
operational semantics of the contract? This, of course, will require substantial work from
academia working with lawyers, standards bodies and the financial services industry.

References
[1] L. Braine. Barclays’ Smart Contract Templates, 2016. Barclays London Accelerator,

https://vimeo.com/168844103 and http://www.ibtimes.co.uk/barclays-smart-contract-
templates-heralds-first-ever-public-demo-r3s-corda-platform-1555329.

[2] R. G. Brown. Introducing R3 Corda: A distributed ledger designed for finanial
services, 2016. http://r3cev.com/blog/2016/4/4/introducing-r3-corda-a-distributed-
ledger-designed-for-financial-services.

[3] R.G. Brown. A simple model for smart contracts, 2015. https://gendal.me/2015/02/10/a-
simple-model-for-smart-contracts/.

[4] CommonAccord, 2016. http://www.commonaccord.org/.

[5] Ethereum, 2016. https://www.ethereum.org/.

[6] The Gale Group Inc. West’s Encyclopedia of American Law. 2nd. edition, 2008.

14



[7] I. Grigg. The Ricardian Contract. In Proceedings of the First IEEE
International Workshop on Electronic Contracting, pages 25–31. IEEE, 2004.
http://iang.org/papers/ricardian_contract.html.

[8] I. Grigg. On the intersection of ricardian and smart contracts, 2015.
http://iang.org/papers/intersection_ricardian_smart.html.

[9] I. Grigg. The sum of all chains — let’s converge!, 2015. Presentation for Coinscrum and
Proof of Work. http://financialcryptography.com/mt/archives/001556.html.

[10] M. Hancock and E. Vaizey. Distributed ledger technology: beyond block chain, 2016.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972
/gs-16-1-distributed-ledger-technology.pdf.

[11] T. Hvitved. Contract Formalisation and Modular Implementation of Domain-Specific Lan-
guages. PhD thesis, Department of Computer Science, University of Copenhagen, 2012.

[12] Hyperledger, 2016. https://www.hyperledger.org/.

[13] Legalese, 2016. http://www.legalese.com/.

[14] M. Mainelli and A. Milne. The impact and potential of blockchain on the securities
transaction lifecycle, 2016. SWIFT Institute Working Paper No. 2015-007.

[15] J. Stark. Making sense of blockchain smart contracts, 2016.
http://www.coindesk.com/making-sense-smart-contracts/.

[16] T. Swanson. Great chain of numbers: A guide to smart contracts,
smart property and trustless asset management, 2014. https://s3-us-west-
2.amazonaws.com/chainbook/Great+Chain+of+Numbers+A+Guide+to+Smart+Contr
acts%2C+Smart+Property+and+Trustless+Asset+Management+-+Tim+Swanson.pdf.

[17] T. Swanson. Consensus-as-a-service: a brief report on the emergence of
permissioned, distributed ledger systems, 2015. http://www.ofnumbers.com/wp-
content/uploads/2015/04/Permissioned-distributed-ledgers.pdf.

[18] N. Szabo. Formalizing and securing relationships on public networks. First mind, 2(9),
1997.

15


	Introduction
	Foundations
	Terminology — ``smart contracts''
	Automation
	Enforceability
	What to enforce
	How to enforce

	The semantics of contracts

	Smart Contract Templates
	Templates and Parameters
	The design landscape for Smart Contract Templates
	Increasing the sophistication of parameters
	Increasing the use of common standardised code

	Long-term research challenges
	Future developments and a new supporting common language


	Summary and Further Work
	Summary
	Further Work


