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Abstract 
This review summarises the need for MRI with in situ neuromodulation, the key safety challenges and 

how they may be mitigated, and surveys the current status of MRI safety for the main categories of 

neuro-stimulation device, including deep brain stimulation, vagus nerve stimulation, sacral 

neuromodulation, spinal cord stimulation systems, and cochlear implants. 

 

When neuro-stimulator systems are introduced into the MRI environment a number of hazards arise 

with potential for patient harm, in particular the risk of thermal injury due to MRI-induced heating. 

For many devices however, safe MRI conditions can be determined, and MRI safely performed, albeit 

with possible compromise in anatomical coverage, image quality or extended acquisition time. 

 

The increasing availability of devices conditional for 3Tesla MRI, whole-body transmit imaging, and 

imaging in the on-stimulation condition, will be of significant benefit to the growing population of 

patients benefitting from neuromodulation therapy, and open up new opportunities for functional 

imaging research. 
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1.1 Introduction 
Neuromodulation and magnetic resonance imaging (MRI) both rely at a fundamental level on 

interactions between electromagnetic fields and tissue. It is not surprising therefore that there can 

exist significant electromagnetic interactions between implanted neuromodulation apparatus and the 

MRI scanner. These interactions may disrupt the imaging process, degrading image quality, or, more 

importantly, cause loss of therapeutic neurostimulation, damage to the neuromodulation equipment, 

or injury to the patient. Nevertheless, MRI and neuromodulation devices may coexist safely under 

specific, controlled circumstances, if the necessary device-specific conditions for safe MRI can be 

defined and satisfied.  

This article reviews the need for MRI with in situ neuromodulation, summarises the key safety issues 

and how they may be mitigated, and surveys the current status of MRI safety for the main categories 

of neuro-stimulation device.  Recent developments are discussed which promise to make MRI 



available to increasing numbers of patients previously contraindicated for MRI on account of their 

implants, and open new avenues for functional-imaging research.  

Neuro-stimulation systems typically consist of metallic electrode contacts, either paddle-type 

electrodes or small arrays of cylindrical electrodes, at the end of insulated flexible leads, connected, 

via subcutaneous extension cables, to an implantable pulse generator (IPG) containing the pulse-

generating electronics and a power cell.  

Systems with this basic configuration have found clinical application in treating a range of conditions1, 

for instance deep brain stimulation (DBS) is established as a treatment for Parkinson’s disease or 

dystonia2; vagus nerve stimulation (VNS) has been shown to decrease seizure frequency in patients 

with medically refractory epilepsy3; occipital nerve stimulation (ONS)4 has shown benefit in a variety 

of headache disorders; spinal cord stimulation (SCS) is valuable in the management of intractable pain 

syndromes5 and sacral neuromodulation (SNM) has been advocated for the treatment of bladder and 

bowel dysfunction6,7. The same general physical hazards in the MRI environment are common across 

the devices delivering these therapies, although the precise conditions under which MRI may be safely 

performed, if existing, are device-model specific.  As paediatric neuro-stimulation therapy continues 

to increase in importance8, the need for devices engineered to better withstand the MRI environment, 

with rigorously defined conditions for safe MRI will become even more pressing. Cochlear implants 

(CIs), although differing in their design and function from the more generic types of neuro-stimulator 

listed above,  are an important class of device frequently deployed in children9, with specific MRI 

safety management issues which will be discussed in a separate section below.  

 

1.2 The need for MRI with in situ neuromodulation 
There are three broad motivations for undertaking MRI in patients with in situ neuromodulation 

devices: firstly, in many centres, MRI is an enabling technology in the workflow for neuro-stimulator 

implantation and therapy management. For instance intra- or post-operative MRI to verify anatomic 

electrode contact positions, and if necessary guide positional adjustment,  as well as to assess for 

haemorrhagic complications, may be valuable in DBS implantation surgery10–13. Even if alternative 

methods to verify lead location, such as electrophysiological recordings or post-operative CT images 

fused to pre-operative MRI14 are employed, MRI in subjects with pre-implanted electrode leads and 

IPGs may be necessary if implantation of one or more additional electrode leads, or revision of pre-

existing lead position is indicated to achieve more effective therapy. 

 

Secondly, functional magnetic resonance imaging (fMRI) testing the influence of the ’on’ and ‘off’ 

stimulation conditions upon cerebral activation networks is becoming an important tool to elucidate 

the neurophysiological mechanisms underlying the success of neuro-stimulation therapy, or to 

explore the unique opportunity of controlled neuro-modulation as an experimental model15. 

Published fMRI studies involving conventional implanted neuro-stimulation systems include examples 

with DBS16–20, VNS21,22,SNM 23 and SCS24. 

 

Thirdly, as a result of the success of neuro-stimulation therapy across a wide range of clinical 

conditions, significant numbers of individuals now have implantable pulse generators and electrode 

leads in situ: very many of these patients are likely to require MRI later in life, possibly for indications 

not directly related to their neuro-stimulation therapy. For instance approximately 82-84% of SCS-

implanted patients are expected to need at least 1 MRI within 5 years of implantation25. In many 

centres MRI safety concerns have led to patients with implanted neuro-stimulators being disbarred 



from MRI on safety grounds26, or, a sufficiently strong indication for MRI may have caused 

consideration of device explantation27.  

 

1.3 Potentially hazardous MRI-implant interactions 
Since MRI avoids the use of ionizing radiation for image formation, it is generally considered a highly 

safe modality, appropriate for repeated examinations even in the paediatric population. However, 

there are additional hazards when active implantable medical devices (AIMDs) such as neuro-

stimulator systems are introduced into the MRI environment which may compromise the AIMD 

function or create risk of significant patient injury. 

 

The hazards arising during MRI with in situ neuro-stimulators are reviewed in a number articles1,28,29. 

In brief, the scanner main magnetic field (B0), required to align a sufficient majority of the microscopic 

nuclear magnetic moments to generate detectable bulk magnetisation, typically lies in the range 1.5-

7.0 tesla for human scanning, i.e. up to 100,000 times greater than the earth’s magnetic field. This 

field is permanently switched on, and can exert upon ferrous or electrically conducting components 

magnetic displacement or rotational forces, with risk of device displacement. The imaging process also 

requires switched spatially- and rapidly time-varying magnet gradient fields, with a rate of change of 

field strength (dB/dt) sufficient to induce voltages in neuro-stimulator circuits, which in extremis may 

interfere with therapeutic stimulation delivery, produce parasitic stimulation, or damage the IPG 

circuitry.  Finally, MRI signals are generated by exciting the nuclear magnetization with low amplitude, 

short duration pulses of a magnetic field (B1) rotating at radio-frequencies (RF pulses).  In subjects with 

no implanted devices, RF pulses applied during scanning ordinarily elicit small increases in tissue 

temperature, largely by dielectric energy absorption, which safety restrictions act to limit to less than 

1oC for routine scanning30. However, extended electrically-conducting structures, such as neuro-

stimulator leads, can amplify and focus the B1 field, causing local tissue energy deposition many times 

higher than that which would occur in the absence of the implant. The resulting local temperature 

elevation may be sufficient to cause thermal injury under MRI conditions that would otherwise be 

perfectly safe in an implant-free individual. This generates a significant heating hazard at neuro-

stimulator electrode contacts where the impedance between the stimulator circuit and tissue is low. 

It is this MRI-induced heating that presents a particular concern in practice31,32, and which has been 

historically an obstacle to establishing safe MRI conditions for AIMDs. Since the rotational frequency 

of B1 is directly proportional to B0, frequency-dependent RF interactions, and hence the risk of 

injurious heating for specific implant configurations, may vary with scanner main field strength. 

  

1.4 The need for caution 
While the design of contemporary neuromodulation systems to a great extent mitigates hazards 

arising from the main static and time varying magnetic gradient fields, the risk of thermal injury due 

to RF-induced heating during MRI remains a concern. This is not just a theoretical risk: numerous 

studies have demonstrated significant temperature rises at electrode contacts during MRI of in vitro 

tissue models (e.g.33–35), and there have been,  e.g. for DBS systems, a number of reports of adverse 

events where MRI was undertaken outside of prescribed safe conditions36,37.  

 

1.5 Device Categories 
To avoid ambiguity in discussing the safety of items in the MRI environment, three categories of device 

are defined in ASTM international standard F2503-1338, namely: 

 



MR Unsafe 

‘an item which poses unacceptable risks to the patient, medical staff or other persons within the MR 
environment.’ 
MR Safe 

‘MR Safe—an item that poses no known hazards resulting from exposure to any MR environment. MR 
Safe items are composed of materials that are electrically nonconductive, nonmetallic, and 
nonmagnetic’  
MR Conditional 

‘an item with demonstrated safety in the MR environment within defined conditions. At a minimum, 
address the conditions of the static magnetic field, the switched gradient magnetic field and the 
radiofrequency fields. Additional conditions, including specific configurations of the item, may be 
required.’ 
 

No neuro-stimulation devices can be categorised as “MR safe”, since they all contain electrically 

conductive materials. Some systems may be categorised as “MR unsafe”, meaning MRI is completely 

contraindicated; this might be because the devices have been tested and shown to be unsafe in the 

MR environment, or because there is available no test data adequate to establish safe MRI conditions. 

Neuro-stimulator devices are more commonly classed as “MR conditional” – safe MRI is possible under 

predetermined safe operating conditions. These conditions are specific to the model of neuro-

stimulator and its configuration, and may include limitations on the Bo field strength, the strength and 

slew rate of imaging field gradients (dB/dt), the Bo spatial gradients within and beyond the scanner 

magnet bore, the positioning and electrical configuration of the neuro-stimulator circuit, and the 

degree of exposure to B1 RF energy during the imaging procedure. There may also be conditions 

relating to patient positioning and the need for monitoring during scanning. The device function may 

need to be verified before and after MRI, and the IPG set to a specific mode for scanning. Abnormal 

electrode impedance readings, or any evidence of broken electrode leads are generally 

contraindications to MRI. MRI safety conditions may differ between fully implanted systems and 

situations when the leads are externalised, for instance at the surgical stage following electrode lead 

implantation but prior to subcutaneous lead-extension routing and IPG positioning. 

 

MRI RF exposure is conventionally quantified in terms of the specific absorption ratio (SAR), which is 

the rate of energy absorption per unit mass of tissue, with units Watts.kg-1. The pulse sequence SAR 

depends upon the duration, magnitude and number per unit time of the RF pulses. The numerical 

relationship between the actual tissue local SAR, and the pulse-sequence parameters is not 

straightforward to obtain: scanner manufacturers each use their own proprietary mathematical 

models to estimate this, and thus scanner-reported SAR values may vary between scanner models 

even for nominally identical pulse sequences39. The numerical models used obviously do not account 

for the possible presence of B1-field focussing items within the tissue, and thus the true local tissue 

SAR close to neuro-stimulator electrode contacts may markedly exceed the scanner-estimated head, 

or whole-body, average SAR, with concomitant risk of local thermal injury. For these reasons SAR 

limitations have previously been specified quite conservatively in device MRI conditions32. 

 

 

1.6 MR conditional devices:  safe MRI conditions in practice 
There are essentially three sources of information regarding AIMD MRI safe operating conditions: 
device manufacturers’ product labelling, the peer reviewed scientific literature and local testing and 
risk assessment.  Websites, such as www.mrisafety.com or http://www.magresource.com/ are useful 

http://www.mrisafety.com/
http://www.magresource.com/


compendia of information, but when available the latest available product information should be 
obtained direct from the device manufacturer, as MRI safety conditions are regularly updated.   
 

1.6.1 Defining safe conditions for MRI 
To define safe MRI conditions for an AIMD, it is necessary to assess the magnetic field interactions 

causing displacement, twisting forces, or interference with electro-mechanical function, the possibility 

of voltages induced in the AIMD circuit by the switched magnetic field gradients, the potential for B1 

RF related heating, and the severity of image artefacts caused by the device.  

To obtain regulatory approval for a device with respect to the use of MRI, the device manufacturer 
must document tests performed to determine the conditions under which a patient with that implant 
can safely undergo MRI. These tests must be sufficient to characterize the behaviour of the device in 
the MR environment, and the results used to specify parameters affecting safety and describe any 
condition that is known to produce an unsafe situation. These MRI Conditions are listed in the device 
labelling, including approved instructions for use, package inserts, operator manuals, patient 
information cards, and information pamphlets. 
 
Principles and procedures for medical device testing and labelling with respect to MRI are described 
in a serious of standards40, representing consensus guidance from regulatory bodies, device 
manufacturers and the scientific and medical communities. An important recent advance has been 
the development of a test specification specifically related to the MRI safety of AIMDs38. This 
specification includes a comprehensive 4-tier assessment of RF heating risk involving computational 
modelling with in vitro test validation, with body shape models including children. Adoption of this 
specification is likely to lead to a significant reduction in the uncertainty margin when assessing a 
particular device, meaning that the final MRI conditions may be less restrictive while still maintaining 
the same overall uncertainty budget.  
 
If device manufacturer-defined conditions are unavailable, or cannot be satisfied by the required 
radiologically-indicated MRI protocol, then either the device must be considered a contraindication to 
MRI, or, subject to the local institutional regulations for clinical risk management, on-site testing and 
risk assessment may be appropriate if the necessary expertise is available. While it is generally beyond 
the resources of a local hospital or clinical research facility to achieve rigorous testing to meet the 
exacting requirements of 38, nevertheless, local in vitro testing of MRI-induced heating using in gel-
filled test objects using fibre-optic temperature probes, according to the general principles outlined 
in the full standards38,41 may be helpful to inform local risk assessment. In such a case it is important 
to assume a wide, conservative error margin regarding permissible RF exposure limits, and to adopt 
extreme caution before extrapolating the results to device and scanner configurations different from 
the specific arrangement tested.  
 
While compliance with device manufacture-supplied MRI guidelines in the preferred operating 
situation, as will be detailed below, “off label” MRI of subjects with implanted neuro-stimulators has 
been apparently safely performed in various clinical and research contexts. This practice however 
should always involve a thorough safety assessment, risk-benefit analysis focussed on patient safety, 
and consideration of the need for informed consent. 
 
 
 

1.7 Designing conditionally-safe MRI protocols  
Once the MRI conditions for a particular AIMD have been established, it is assumed that the MRI 
manufacturer has designed the MRI instrument such that the necessary parameters may be accurately 
defined, controlled and measured, according to the relevant international standard30. 



 
It is then finally contingent on the MRI operator to specify user-selectable scanning parameters, 
including the scanner field strength (where the choice between different scanner models exists), the 
specific pulse-sequence and sequence parameters, and the specific RF coils used for excitation and 
reception, to ensure compliance with the conditions. RF exposure can be controlled in two ways, often 
used in combination: by appropriate parameter choices to limit the pulse sequence SAR, or by 
selecting a transmit coil that limits the area of the neuro-stimulator circuit exposed to the RF field. 
 

1.7.1 Sequence parameter choices to limit RF exposure 
The RF exposure limits stipulated in AIMD device conditions are frequently below the maximum levels 

permitted in routine MRI in the absence of implants30. Thus modification of conventional acquisition 

protocols may be required to achieve compliance, possibly involving compromise in terms of reduced 

image quality or extended acquisition time. In the simplest case the sequence repetition time may be 

increased to reduce SAR while increasing the examination duration, or for 2D scans, the number of 

slices excited per repetition cycle can be reduced with the compromise of reduced anatomical 

coverage. Alternative strategies to SAR reduction include specifying the use of longer amplitude RF 

pulses, or replacing an intrinsically high SAR acquisition method, for instance the fast spin-echo 

method routinely used in diagnostic brain imaging, with alternative pulse sequences, such as 2D or 3D 

gradient echo sequences with intrinsically lower SARs on account of the lower excitation flip angles 

used in these methods. Protocols modified to accommodate device MR conditions have been 

described for SCS42, VNS43  and DBS10. 

 

1.7.2 Choice of RF transmit coil to limit RF exposure 
A common practice has been to reduce the area of the neuro-stimulator circuit exposed to the scanner 

transmit field, and hence minimize induced currents and consequent heating, by using a head-only 

transmit coil. Contemporary MRI systems conventionally use a “body transmit coil” to apply B1 RF 

pulses across the entire volume of the scanner bore. The MRI signals are then detected by arrays of 

smaller receiver coils, usually restricted to and conforming closely to the anatomical region of interest. 

The advantage of this arrangement is that whole body transmission yields a relatively uniform RF 

excitation, and multi-channel receive coils provide optimal signal-to-noise ratio with the option of 

time-saving image acceleration using partially parallel reconstruction methods44. If brain imaging only 

is required however, specialist head-only transmit-receive coils are available, usually as a special 

order, which perform the dual function of signal excitation and reception, with the advantage that the 

area of the stimulator circuit exposed to the RF is significantly reduced in cases when the IPG is located 

in the subclavicular region, as for DBS, vagal nerve, or occipital nerve stimulators, and eliminated 

entirely in the case of lower body neuro-stimulators such as sacral nerve or spinal stimulators. The 

principal disadvantage is that the signal-to-noise or acquisition acceleration benefits of multi-channel 

receiver arrays are lost.   

 

 

1.7.3 Operational safety management 
Once the conditions for safe MR for a specific device have been determined, and an appropriate MRI 
acquisition designed, it is vital that standard operating procedures for imaging specific devices are 
established and disseminated to the radiography staff, that requests for MRI examinations with active 
devices are specifically protocolled, that the device manufacturer and model number are confirmed 
and recorded before the examination, and that scan-time records of the RF exposure are maintained. 
A multi-disciplinary approach to MRI safety, combining scientific, radiological and radio-graphical 
expertise is key to safely managing MRI with complex implants.  



 
 

1.8 MRI Conditions for specific classes of device 
 

1.8.1 Deep brain stimulation systems 
Of all of the neuromodulation systems in clinical use, DBS systems have received the most attention 
with respect to MRI safety. Numerous in vitro safety investigations have been described19,33,35,39,45-52 
and reports of patient series10,20,53–56 with few or no adverse incidents directly attributable to exposure 
to the MRI environment. Medtronic first released MRI guidelines for their DBS devices in 2002, with 
requirements including head-coil only transmit and SAR restricted to 0.4W/kg. In 2005 the conditions 
were revised with a more conservative SAR limit of 0.1 W/kg32. In practice many centres found this 
limit too stringent to permit effective MRI, and either ceased offering MRI to this patient group, or 
proceeded, following local risk assessment, with less restrictive “off-label” MRI protocols. Reports of 
safe scanning outside of the manufactures product label guidelines10,19,54,57–61, combined with the 
previously cited in vitro studies suggested that the manufacturer’s guidelines may in fact have erred 
too far to the conservative side. In April 2015 the company announced extended labelling for eligible 
DBS devices with less restrictive RF power limits defined in terms of B1,rms, and the possibility of using 
body-coil transmit62. St Jude Medical have also in the past released MRI conditions for their Libra DBS 
product, quoted in29&10.  
 

1.8.2 Sacral neuromodulation systems 
For a number of years following the introduction of clinical SNM, consistent with device 

manufacturer’s then guidelines, SNM was widely considered a total contraindication to MRI, although 

two pioneering studies suggested that under appropriate conditions MRI could be safely 

performed63,64.  Current SNM system MRI conditions for the Medtronic InterStim SNM systems permit 

head-only transmit coil MRI at 1.5T65. 

1.8.3 Spinal Cord Stimulation systems 
Following an early case study in 3 individuals66 safe MRI in patients with implanted SCS systems has 

been demonstrated in 2 patient series67, one with a reduced SAR protocol 42, and fMRI studies at 1.5T68 

and 3T24. There are currently a number of SCS systems available with approved MRI Conditions from 

St Jude Medical69, Medtronic70, Boston Scientific71 for 1.5T head-transmit only scanning, and for the 

latter two companies more recent systems eligible for whole-body transmit MRI70,72 at 1.5T.  

 

1.8.4 Vagus nerve stimulation systems 
An early report of 25 patients scanned at 1.5T with a head transmit/receive coil with no permanent 

adverse effects73, subsequent in vitro measurements74 and further patient series scanned at 3T again 

with a head transmit/receive coil75, 76, 43 support the view that under controlled conditions MRI is safe 

with the Cyberonics VNS Therapy system. Current approved MRI conditions for this device permit 

imaging at either 1.5T or 3T with a head-only transmit coil77. 

1.8.5 Cochlear implants 
These devices generally consist of an external component, a unit to detect and process sound from 
the environment and generate electromagnetic signals received by an internally implanted element 
which directly stimulates the cochlear via an embedded electrode array to create the sensation of 
hearing. The external headpiece is held in place by magnetic attraction to an internal receiver placed 
under the skin behind the ear78. In addition to the MRI environmental hazards discussed above in 
relation to generic neuro-stimulator systems, the presence of the implanted magnetic creates 
additional risks due to the possibility of  displacement, demagnetisation or polarity reversal when 



introduced into the scanner B0 field, and gross artefacts on MRI images79.  Cis were originally 
considered a contraindication to MRI but now 1.5T and increasingly 3T conditional labelling is available 
for many cochlear implants 79,80. Nevertheless, there remain recent reports of potential complications, 
in particular internal magnet movement81, despite conformance with manufacturers’ MRI 
conditions82. Under controlled conditions, MRI can be successfully performed in patients without the 
need for cochlear implant magnet removal; although  the risk of internal magnet movement may 
remain significant, even with the recommended tight supportive head-wrap application83, and there 
have been reports of adverse events and discomfort during MRI84,85.   
 
 

1.9 Recent developments in MR Conditional labelling  
 

1.9.1 B1,rms as a measure of RF exposure 
Inter-vendor variations in the method for determining scanner-reported sequence SAR resulting in  
inter-scanner variations in implant heating for the same nominal SAR49 have driven suggestions for 
alternative metrics to limit RF exposure for implant safety. 
 
Since the local tissue SAR can be theoretically related to the time average of the B1 RF field amplitude, 
it has been proposed that B1,rms given by 
 

𝐵1,𝑟𝑚𝑠 =  √∫ (𝐵1(𝑡))2𝑑𝑡
𝑡𝑥

0

𝑡𝑥
  

 
where tx is the measurement period, specified as 10s38 to be may be of value to limit the allowable RF 
power deposition in implant manufacturer labelling. If the scanner B1 amplitudes are correctly 
calibrated during the routine pre-scan adjustments, then B1,rms may be directly calculated for a given 
acquisition  without numeral approximation.  The resulting values are directly comparable between 
pulse sequences on different scanners. Clinical MRI systems from each of the main vendors now 
provide a user-display of the currently active pulse sequence of B1,rms alongside SAR estimates, 
enabling the user to readily confirm if a specific sequence meets the required B1,rms restriction.  
  
The availability of this more open and specific RF exposure metric may lessen the need for highly 
conservative RF limits compared with those defined in terms of more ambiguous scanner-reported 
SARs. It is expected that this approach will be increasingly adopted by AIMD manufacturers in their 
labelling; In 2015 Medtronic adopted this approach in their extended labelling for their Activa DBS 

product line, specifying a maximum B1,rms of 2T for eligible devices86.  
 
 

1.9.2 Permitting body coil transmit 
As detailed above, head-only transmit coil operation has been a specified condition for many AIMDs 

to reduce the area of the RF-exposed neuro-stimulator circuit to minimize heating risk; In vitro tests 

for DBS equipment have indicated that for an otherwise identical experimental arrangement, body 

coil transmission does indeed produce an increase in RF heating relative to head coil transmission52, 

although with appropriate control of the sequence SAR temperature increases can remain within safe 

limits46. More rigorous manufacturer device testing in line with38, and the adoption of  B1,rms, as a metric 

to limit RF exposure is expect to allow MRI conditions to be established which permit the use of whole-

body coil transmission with a number of benefits: firstly, head-only transmit coils are not available at 

all MRI installations and may represent an additional expense. More fundamentally body-coil transmit 



permits the use of multi-channel array receive coils, providing improved image signal-to-noise ratio, 

and the possibility of acquisition acceleration by partially parallel acquisition44. Another major 

advantage is that operating in whole-body transmit mode permits scanning of lower body regions, 

making e.g. spine or abdominal MRI available to implanted patients for the first time.  Examples of 

recent approved labelling permitting whole-body MRI for specific eligible devices are available for the 

Medtronic Activa DBS system86 and SCS systems from Medtronic70 and Boston Scientific72. 

 

 

1.9.3 MRI ‘on stimulation’ 
Manufacturer’s guidance, and common practice in most centres, has been to require that the IPG 
output is set to “off” or “0V output” during MRI procedures. There are potential advantages to being 
able to scan “on stimulation”: to avoid loss of the benefit of neuromodulation during the MRI 
procedure, reducing patient discomfort and minimizing the risk of image degradation due to subject 
motion. Also research functional imaging comparing “on” and “off” stimulation conditions requires 
scanning with active stimulation by definition.   
 
While In vitro tests monitoring the IPG output during MRI with previous DBS devices reported IPG 
toggling between on and off state20, and  occasional delayed pulses 45, a similar investigation of a more 
recent DBS product suggested that MRI had no apparent effect upon the stimulator pulse output, and 
while  small differences in RF-induced  heating between the ‘on’ and ‘off’ stimulation state were seen, 
overall heating remained within safe limits (45).  Numerous papers reporting successful fMRI studies 
involving neuro-stimulators in the ‘on’ condition16,17,19–24,34,68 suggest that ‘on’ stimulation scanning 
can be safe, at least under certain conditions. MRI conditional labelling for a small number of devices 
now allows ‘on’ stimulation scanning with certain restrictions86; it is expected that the range of devices 
thus labelled will increase as device designs and safety testing continues to improve. 
 
 

1.9.4 3T and higher vs. 1.5T 
Many of the current approved label MRI conditions are based on measurements performed on 1.5T 
MRI systems and permissible scanning is limited to that field strength only. Clinical MRI systems 
operating at 3T and above are increasing available, offering higher sensitivity and greater soft-tissue 
contrast, driving a need to establish safe MRI conditions for neuro-stimulator devices at these fields. 
While technical specification TS 1097438 currently specifically addresses testing limited to 1.5T,  in vitro 
results suggests have tested RF heating at higher fields. Results suggest that for the devices tested, 
while a nominally identical acquisition sequence played out at 3T versus 1.5T produces slightly higher 
temperature increases, the overall temperature increases remained within reasonable safe limits, 
with no device malfunction reported, for DBS19,45,46 and VNS75 arrangements. These findings have been 
corroborated with ex vivo animal implantation models 87,88 at 3T, and a number of published 3T patient 
studies with no report of adverse incidents19,75. Current labelling for the Cyberonics VNS Stimulation 
System permits 3T scanning with a head-only transmit coil77 and again it is expected that labelling 
permitting 3T MRI will become available for further devices in the near future. 
  
 

1.10 Summary and Conclusions 
 

Safe MRI of many neuro-stimulation devices is possible, but it remains essential to determine the 
specific conditions for safe scanning for a given device, and ensure that the necessary radiology and 
MRI physics expertise is available to ensure compliance. While some devices remain classified as MR 
unsafe, there are encouraging developments from the medical device industry which are extending 



the availability of MRI to increasing numbers of patients with active implants for whom MRI was 
previously contraindicated. The moves towards whole-body eligible MRI conditions and 3T 
conditionally-safe devices will extend the clinical benefits of MRI for patients with neuro-stimulators, 
and provide an improved platform for functional-imaging based neuromodulation research. 
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