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Pseudohypoparathyroidism type 1b (PHP1b) is charac-

terized by hypocalcemia, hyperphosphatemia, increased

levels of circulating parathyroid hormone (PTH), and no

skeletal or developmental abnormalities. The goal of

this study was to perform a full characterization of a

familial case of PHP1b with neurological involvement

and to identify the genetic cause of disease. The ini-

tial laboratory profile of the proband showed severe

hypocalcemia, hyperphosphatemia and normal levels

of PTH, which was considered to be compatible with

primary hypoparathyroidism. With disease progression

the patient developed cognitive disturbance, PTH lev-

els were found to be slightly elevated and a picture of

PTH resistance syndrome seemed more probable. The

diagnosis of PHP1b was established after the study of

family members and blunted urinary cAMP results were

obtained in a PTH stimulation test. Integration of whole

genome genotyping and exome sequencing data sup-

ported this diagnosis by revealing a novel homozygous

missense mutation in PTH1R (p.Arg186His) completely

segregating with the disease. Here, we demonstrate

segregation of a novel mutation in PTH1R with a pheno-

type of PHP1b presenting with neurological symptoms,

but no bone defects. This case represents the extreme

end of the spectrum of cognitive impairment in PTH

dysfunction and defines a possible novel form of PHP1b

resulting from the impaired interaction between PTH and

PTH1R.
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Hypoparathyroidism (HP) and pseudohypoparathyroidism
(PHP) are a group of heterogeneous conditions in which
hypocalcemia and hyperphosphatemia occur as a result of
deficient parathyroid hormone (PTH) secretion or end-organ
PTH resistance (Thakker 2004). As a consequence of
hypocalcemia, patients typically present with signs and
symptoms of peripheral neuromuscular hyperexcitability
(perioral numbness, paresthesias of the distal extremities
or muscle cramping) that can progress to carpopedal spasm
or tetany. Chronic HP and, more rarely, PHP are associated
with central neurologic manifestations like epileptic seizures
and extrapyramidal signs (Bhadada et al. 2011; Guberman
& Jaworski 1979; Mitchell et al. 2012). The classical radio-
logical finding is calcification of the basal ganglia (Faissolle
et al. 2008; Goswami et al. 2012; Kahloul et al. 2009) and
encephalopathy (Gupta et al. 2011; Handa et al. 1995; Oech-
sner et al. 1996) or rapidly progressive dementia (Adorni et al.
2005; Mateo & Gimenez-Roldan 1982; Nicolai & Lazzarino
1994; Zambrana Garcia et al. 1998) have been described, but
are usually responsive to treatment and rarely progressive
(Stuerenburg et al. 1996).

Hypoparathyroidism is mainly an acquired disease, char-
acterized by low or inappropriately normal levels of PTH,
resulting from damage or surgical excision of the parathy-
roid glands or autoimmune mechanisms. Genetic forms
of HP are rare and usually associated with mutations in
four genes: calcium-sensing receptor (CASR) (Bai et al.
1996; Pearce et al. 1996; Watanabe et al. 1998), glial cells
missing homolog 2 (GCM2) (Ding et al. 2001), guanine
nucleotide-binding protein alpha-11 (GNA11) (Mannstadt
et al. 2013), and PTH itself (Arnold et al. 1990; Parkinson &
Thakker 1992; Sunthornthepvarakul et al. 1999).

Pseudohypoparathyroidism was first described by Fuller
Albright et al. (1942) (Albright F., 1942) and the nomencla-
ture used was based on the observation of renal resistance
to PTH and increased levels of the hormone. Pseudohy-
poparathyroidism is divided into types I and II according to the
absence or presence, respectively, of an increment in urinary
cAMP excretion in response to exogenous PTH administra-
tion. PHP type 1 is further subdivided into PHP1a, PHP1b and
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PHP1c. PHP1a, Albright’s hereditary osteodystrophy (AHO),
is associated with multiple hormone resistance, including thy-
roid stimulating hormone (TSH) and gonadotropins, causing
hypothyroidism and gonadal failure, respectively. The disease
is explained by a decrease in the levels and activity of G
protein. PHP1c also exhibits AHO, but the molecular mecha-
nism seems to be related with a defect in the catalytic unit
of adenylate cyclase or GNAS mutations leading to defec-
tive Gs-alpha-receptor interactions and consequent hormone
resistance (Thiele et al. 2011). In PHP1b the observed hor-
mone resistance is mostly limited to PTH, patients do not
exhibit AHO and have normal G protein activity. In theory,
these typical findings in PHP1b could potentially be caused by
a defect in the type 1 PTH receptor PTH1R (OMIM 168468),
however, sequencing of the gene in PHP1b patients found no
mutations in protein-coding exons or gene promoter regions
(Jan de Beur et al. 2000; Schipani et al. 1995b), and no link-
age has been shown so far to the PTH1R locus in PHP1b
families (Fukumoto et al. 1996, 1998). Given the complexi-
ties in the molecular, biochemical and physical features of
PTH disorders, molecular testing is critical for achieving a
clear diagnosis and validating the inheritance pattern in any
given family. Nonetheless, the majority of familial cases of
isolated HP and PHP remain unexplained most likely because
adequate evaluation of known genes has not been under-
taken, and because other genes must be involved in the
molecular pathogenesis. Obvious potential candidate genes
are the PTH receptor genes, nevertheless, to our knowl-
edge; no mutations in these genes have been previously
identified as causing these disorders. Here we report a Por-
tuguese family with PHP type 1b with heterogeneous PTH
levels and neurological manifestations, due to a novel PTH1R
mutation.

Methods

Genetic analyses
All studied individuals gave written informed consent for this study,
which was approved by the University Hospital of Coimbra ethics
committee and complies with the Declaration of Helsinki. In order
to assess the presence of large structural variants and to perform
homozygosity mapping, DNA samples from six siblings (II.1–II.6,
Fig. 1) were run on Illumina’s HumanOmniExpress BeadChips as
per manufacturer’s instructions (Illumina, San Diego, CA, USA). Data
was visualized and analysed using the GenomeStudio Data Analysis
Software (Illumina). After exclusion of molecular changes in GNAS by
direct sequencing, Multiplex Ligation-dependent Probe Amplification
(MLPA) and methylation tests in the index case, exome sequencing
was performed in three siblings (II.1, II.2 and II.3, Fig. 1) with
Illumina’sTruSeqExome Enrichment according to the manufacturer’s
instructions. Sequencing was performed in Illumina’s HiSeq2000
using 100 bp paired-end reads. Sanger sequencing was used to
establish segregation of the mutation with disease status in all
samples available for testing. Details for these analyses are given in
the Supporting Information.

PTH stimulation test
A PTH stimulation test was performed in the index case using
subcutaneous recombinant human PTH-(1–34). In accordance with
a protocol recently described (Todorova-Koteva et al. 2012), urinary
cAMP and urinary phosphate were measured before PTH injection
(baseline) and 2 and 4 h after the PTH challenge.

Figure 1: Pedigree of the studied family. Black symbols rep-
resent affected and white symbols represent unaffected family
members. DNA was available from all siblings (generation II) and
from the father (I.1). An arrowhead represents the index case.
Results for segregation of the mutation with disease are shown
below each symbol with all unaffected individuals carrying either
1 (+/−) or 2 (−/−) reference alleles and all affected siblings har-
bouring the mutation in the homozygous state (+/+). The ‘+’
symbol represents presence of the mutation and the ‘–’ symbol
represents absence of the mutation.

Results

Clinical and laboratory findings in the index case

The index case is a Caucasian 68 years-old female, with
the diagnosis of epilepsy at age 22, controlled with carba-
mazepine 800 mg/day. She had normal psychomotor devel-
opment, no history of learning problems, and completed 6
years of education. Her past medical history was relevant for
bilateral cataract with surgical extraction at the age 40, as well
as a femur fracture at 44 years.

At 49 years old, complex partial seizures became recurrent
and refractory to medication and she was first admitted to our
inpatient unit for further investigation. Symptoms suggestive
of tetany (mainly spasms of the inferior limbs) were present.
On general physical examination she had no apparent dys-
morphic features, brachidactyly, other deformities or subcu-
taneous calcifications. The bedside cognitive evaluation was
unremarkable. Neurological examination revealed a slightly
spastic ataxic gait, without cognitive impairment or other cen-
tral nervous system (CNS) signs. In the diagnostic investiga-
tion, brain computed tomography (CT) scan showed multiple
calcifications of basal ganglia and cerebellum (Fig. 2). Elec-
trocardiogram (ECG) was normal, and electroencephalogram
(EEG) revealed a generalized slowing and bilateral temporal
paroxysmal activity, predominantly on the left side. Serum
biochemical analysis presented severe hypocalcemia and
hyperphosphatemia with normal proteins and renal function
(Table 1). Parathyroid hormone levels were found to be within
the normal range on successive evaluations. Thyroid func-
tion was normal and there were no other endocrine defects.
The patient was at this time diagnosed with primary HP and
started oral calcium supplementation with calcium carbon-
ate 4 g/day and calcitriol 0.25 μg/day, in addition to mainte-
nance of carbamazepine. Thereafter her physical condition
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Figure 2: Computed tomographic scan of the patient’s brain. CT scans show extensive, bilateral calcification of dentate nuclei and
cerebellar white matter (a), basal ganglia (b) and centrum semiovale and periventricular white matter (c).

normalized, seizures stopped and soon after hospital dis-
charge she recovered her normal life and professional activity.
Meanwhile, she was regularly followed at the endocrinol-
ogy outpatient department, with dose adjustments of the
calcium carbonate and calcitriol in accordance with serum
calcium and phosphorus levels. In November 2009, at 66
years old, she developed an acute confusional state follow-
ing an orthopaedic surgery, without complete recovery after
discharge. Afterwards, the family noticed a progressive cog-
nitive, although fluctuant, deterioration and functional decline
in daily living activities. She was admitted to our inpatient
department three months after the beginning of these symp-
toms. The neurological examination revealed moderate to
severe cognitive deterioration (see Supporting Information
for details). At this time, laboratory analyses revealed a mild
hyperphosphatemia with normocalcaemia and a slight ele-
vation of PTH levels (Table 1). Based on the blunt interval
change in the urinary cAMP over time (Table 2), the patient
was found to have resistance to PTH action and the diag-
nosis of PHP was assumed. Since mutations of GNAS are
known to be associated with PTH resistance, the gene was
tested at this time with negative results. Even though phar-
macological intervention was tried, namely with in-care rigor-
ous control and maintenance of normal serum calcium and
phosphorus levels, through the careful adjustment of the cal-
cium carbonate and calcitriol supplementation, the patient
became bedridden, with hypokinetic rigidity, mutism and spo-
radic motor agitation and died after 2 years. Progression of
clinical features, EEG and biochemical profile over time are
summarized in Table 1.

Family history and investigation
A key feature of this case was the possible familial aggre-
gation, pointing to a genetic form of disease. Family history
evaluation and investigation revealed that the patient’s par-
ents were both from the same small village and a common
ancestor was mentioned (Fig. 1). The patient’s mother had

died of stroke in late life with no history of epilepsy, neu-
rological or metabolic/bone disease. The father was always
asymptomatic and refused laboratory or brain imaging, but
consented to DNA sampling and analysis. He died 2 years
after assessment, at 92 years of age without relevant symp-
toms. As is indicated in Fig. 1, the second generation included
six siblings, 55 to 68 years old, of whom the index patient
is the oldest. Subjects II.3, II.5 and II.6 were asymptomatic
and with serum Ca, Ph and PTH levels within the normal
range (Table 3). Subjects II.2 and II.4 both had the diagnosis of
parathyroid dysfunction with cerebral calcification. Patient II.2
at the age of 50 experienced speech problems and, consid-
ering the neurological condition of her sister, requested lab-
oratory investigation. Results were remarkable for hypocal-
cemia, hyperphosphatemia, high levels of PTH, normal thy-
roid function and cerebral calcifications. The diagnosis of PHP
was proposed and the symptoms reverted with calcium car-
bonate and calcitriol. At the moment, with 67 years, she men-
tions subjective memory complaints but declined neuropsy-
chological examination. A recent brain CT disclosed extensive
calcifications of the basal ganglia, periventricular white mat-
ter, centrum semiovale and cerebellar white matter. Recent
laboratory tests confirmed the high levels of PTH with nor-
mocalcaemia and normophosphataemia (Table 3). Given the
family history, her brother (subject II.4, 62 years old), also
had a diagnosis of parathyroid dysfunction at the age of 45,
although being asymptomatic. Laboratory tests confirmed
similar results of hypocalcemia, hyperphosphatemia and high
levels of PTH. Treatment with calcium carbonate and calcitriol
was prescribed. Recent investigations confirmed very high
levels of PTH with normocalcemia/normophosphatemia and
the presence of pallidal calcifications on brain CT (Table 3).

Genetic analyses

Homozygosity mapping in the six siblings revealed three large
regions (>1 Mb) of loss of heterozygosity in chromosome 3
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Table 1: Clinical progression and correlation with calcaemia, phosphataemia, parathyroid hormone levels and electroencephalogram
findings in the index case

December 1992
(49 yo) 1993–2010

February 2010
(66 yo)

August 2011
(67 yo)

November 2011
(68 yo)

September 2012
(68 yo)

Clinical
manifestations

PC seizures;
Tetania

None Confusional
syndrome;
Progressive
cognitive
deterioration

Recovery of motor
and mental
functions

Cognitive and
motor
worsening

Bedridden, with
hypokinetic
rigidity and
mutism

MMSE 30/30 13/30 25/30 0/30 (Mutism) 0/30 (Mutism)
Calcemia (mg/dl)
(Normal range:

8.1–10.4)

3.9 7–8 8.4 8.3 9.1 8.5

Phosphatemia
(mg/dl)

(Normal range:
3.0–5.0)

6.7 4.5–5.5 5.2 4.6 mg/dl 3.8 4.0

PTH (pg/ml)
(Normal range:

9–72)

45 35–45 74 13.2 26 36

EEG Generalized
slowing;
bilateral
temporal
spikes

FIRDA; bilateral
temporal spikes

Paroxysmal activity
on
temporo-occipital
regions

yo, years old (age of the patient in each evaluation); EEG, electroencephalogram; FIRDA, frontal intermittent rhythmic delta activity; PC,
Partial Complex; PTH, Parathyroid hormone; Dec, December; Feb, February; Aug, August; Sept, September.

Table 2: Results of the parathyroid hormone stimulation test in
the index case.

Baseline 2 h after PTH 4 h after PTH

Urinary cAMP/Cr
(nmol/mg)

18.70 13.80 15.50

Urinary PO4
(mmol/L)

3.8 13.5 8.8

cAMP, 3′,5′ cyclic adenosine monophosphate; Cr, creatinine;
PO4, phosphate; PTH, parathyroid hormone.

that were present in all affected, and absent in unaffected
siblings (Table 4 and Fig. S1, Supporting Information).

By exome sequencing, a total of 5419 variants (includ-
ing single nucleotide variants, insertions and deletions) were
found to be shared by the two affected siblings and absent
in the unaffected one. Under a recessive model and based
on the rarity of the phenotype presented by the family,
we applied a series of filtering steps (Table 5) to select
homozygous, autosomal, non-synonymous variants that had
not been previously reported at high minor allele frequencies
in established databases containing exome sequencing data
(dbSNP132, EVS or 1000 Genomes Project) and in our own
HEX database containing exome sequencing data for neu-
ropathologically normal elderly individuals.

Only one novel variant was found after applying all filters
and this was the PTH1R p.Arg186His, c.557G>A homozy-
gous mutation. This variant is not present in the ExAC

database, is highly conserved between species (Fig. 3), and
is predicted by Polyphen-2 and PROVEAN as probably dam-
aging and deleterious. To confirm that we had not missed
variants in genes within the homozygous regions, we calcu-
lated per-base coverage for each sample at the segregating
loci (see Supporting information).

Sanger sequencing was performed to confirm the mutation
and to establish if it segregated with the disease in the
studied family. Complete segregation was found, with all
affected siblings being homozygous for the mutation and
unaffected individuals being either heterozygous carriers or
harbouring two reference alleles (Figs. 1,3).

Discussion

Initially, the proband’s laboratorial presentation with severe
hypocalcemia, hyperphosphatemia and normal levels of PTH
was compatible with the diagnosis of primary HP. Later on,
when she developed cognitive disturbance and PTH lev-
els were slightly elevated, we were compelled to further
investigate a PTH resistance syndrome. A PTH stimulation
test was performed using subcutaneous recombinant human
PTH-(1–34). The results of PTH infusion test in our patient
were remarkable for a blunted urinary cAMP, which is typi-
cal for PTH resistance syndromes. The normal phosphaturic
response observed may be considered atypical in this con-
text, but a similar dissociated response has been described
previously in patients with PHP (Kharb et al. 2011; Lewin et al.
1978; O’Neill et al. 1981; Stogmann & Fischer 1975). Some
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Table 3: Biochemical and imagiological characteristics of the family members (affected members are under treatment)

II-1 (index patient) II-2 II-3 II-4 II-5 II-6

Calcemia (8.4–10.2 mg/dl) 8.5 8.7 9.4 8.6 9.3 8.4
Phosphatemia (2.5–4.5 mg/dl) 4.0 3.6 3.8 3.5 3.1 2.9
PTH (10–70 pg/ml) 35–74 172–198 53.7 365–500 47 31
TSH (0.27–4.20 mUI/L) 1.5 1.8 0.94 2.3 2.1 0.83
Cranial CT scan Multiple calcifications Multiple calcifications N Pallidal calcifications N N
Medication Calcium carbonate+ calcitriol Calcium carbonate+ calcitriol – Calcium carbonate+ calcitriol – –

The identifications for family members relate to Fig. 1. N, normal; ‘-’, no medication.

Table 4: Regions of extended homozygosity (>1 Mb) shared by
affected and absent in unaffected siblings

Chromosome Start (bp) End (bp) Size (bp)

3 50 039 303 51 137 089 1 097 786
3 88 327 613 90 194 622 1 867 009
3 155 929 451 165 555 125 9 625 674

Start and End refer to the positions in chromosome 3, hg19.

explanations have been proposed, perhaps the more plau-
sible one is that vitamin D supplementation normalizes the
phosphaturic response (Kharb et al. 2011; Stogmann & Fis-
cher 1975). An alternative hypothesis is that phosphaturic
response to PTH may be independent of tubular adenylate
cyclase stimulation in these patients (Stogmann & Fischer
1975). The integration of these results, with the high levels
of PTH observed in other family members led us to propose
the diagnosis of PHP. The further classification of PHP type 1b
was based in the absence of bone malformation (osteodys-
trophy), as well as other endocrine defects, including normal
thyroid function. We do not have an explanation for the unex-
pected normal PTH levels observed in our index case, which
are divergent from the other two affected siblings and were
possibly misleading. We can speculate whether this inabil-
ity to increase PTH levels in response to a peripheral resis-
tance is related to the severity of disease and especially to
the inexorable evolution to dementia and akinetic mutism. In
fact, PTH levels seem to modulate the severity of disease in
all affected family members: subject II.4 has very high lev-
els of PTH (365–500 pg/ml) and is asymptomatic; subject II.2
presents high PTH levels (172–198 pg/ml) and a mild pheno-
type (late onset cataracts and memory complaints); subject
II.1 has mostly normal PTH levels and a severe cognitive
deterioration. One other possible explanation, although highly
unlikely, is the presence of two rare but very similar diseases
in the same family. The unavailability of molecular data for
GNAS in the affected siblings of the index case precludes
the exclusion of this possibility (more details in Supporting
Information).

Neurological involvement

The phenomenology and severity of the neurological involve-
ment deserves some further comment. Delirium and cogni-
tive decline are manifestations of HP and PHP, being usu-
ally associated and maybe pathophysiologically related to

the presence of intracranial calcification (Adorni et al. 2005;
Baptista et al. 1997; El Otmani et al. 2013; Kowdley et al.
1999; Nicolai & Lazzarino 1994; Roca et al. 1995). Hypocal-
cemia seems to be a key factor for calcifications as well as for
common neurological symptoms like tetany, muscle cramp-
ing and seizures, which usually respond quickly to calcium
replacement (Friedman et al. 1987; Fujita 2004). This was the
case for our patient, where neuromuscular hyperexcitabil-
ity and seizures were easily controlled and remained sta-
ble during disease progression. Cognitive deficits may also
constitute transitory symptoms of acute hypocalcemia, usu-
ally integrating a more complex state of confusion and delir-
ium, during episodes of status epilepticus or as a manifesta-
tion of encephalopathy with reversible brain edema (Gupta
et al. 2011; Hossain 1970; Palmer et al. 1959). The profile
of cognitive impairment initially presented by our patient
also configures the definition of a confusional sate or delir-
ium related to metabolic encephalopathy (DSM IV; Associ-
ation 1994). Hypocalcemia seems improbable according to
the favourable evolution of other hypocalcemia-related symp-
toms and the apparent dissociation between symptoms and
calcium/phosphate serum levels (Table 1). Moreover, the
patient had no clinical or imagiological signs of brain edema,
and epilepsy was controlled. There is at least one report of a
reversible dementia-HP and consistent normocalcaemia with
a rapid improvement and normalization of symptoms after
therapy with 1,25-dihydroxy-cholecalciferol, suggesting that
low levels of vitamin D could be a key factor (Stuerenburg
et al. 1996). However, our patient was on a stable dose of
calcitriol (0.25 μg/day) since the beginning of symptoms, indi-
cating that this is not a likely explanation in this case.

A review of the literature revealed that stable and severe
cognitive deficits and dementia have been essentially associ-
ated to chronic HP and PHP and widespread intracranial cal-
cifications (Baptista et al. 1997; Cartier et al. 2002; El Otmani
et al. 2013; Modrego et al. 2005). Dementia appears late in
the course of the disease in most cases, and it is character-
ized as a subcortical dementia, probably secondary to min-
eral deposits in subcortical structures, leading to disruption
of frontostriatal circuits and dysfunction of inter-hemispheric
relations (Cartier et al. 2002). Additionally, dementia, as well
as hypokinetic rigidity, are considered late-stage manifesta-
tions of PH, and the least likely symptoms to respond to ther-
apy (Friedman et al. 1987). Our patient also configures this
type of sub-cortical frontal dementia, but with a more rapid
and aggressive profile, and is paradigmatic of these overlap-
ping syndromes, which may also indicate the existence of
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Table 5: Bioinformatics analysis of whole-exome sequencing in the studied family

Individuals

Filter step II.1 II.2 II.3

Variants in coding regions or at splice sites 18 205 18 044 17 220
and homozygous 7832 7788 8140
and not in dbSNP 132, 1000Genomes or control exomes 24 23 25
and changes aminoacid or splice site 20 16 16
and shared between affected and absent from unaffected siblings 4
and located within shared homozygosity regions 1 (PTH1R:p.Arg186His)

Filtering pipeline applied to the studied family whole-exome sequencing data.

common pathological mechanisms subjacent to delirium and
dementia. The mechanism of calcium deposition is not clear,
but according to others may be due to chronic abnormalities
of intra- and extracellular concentrations of calcium and phos-
phate (Fujita 2004; Goswami et al. 2012). Proposed mech-
anisms of extrapyramidal dysfunction and maybe demen-
tia include altered vessel permeability to calcium and tis-
sue ischaemia, abnormal synaptic excitability and ephaptic
transmission, or local shifts in calcium concentration, possi-
bly mediated by altered activity of the cerebral isoform of PTH
responsive adenyl cyclase (Warren et al. 2002). In our opinion
there were no other co-morbidities in our patient to explain
this dementia end-stage. In fact, all forms of treatable demen-
tia were excluded and there were no biomarkers of degen-
erative dementia, namely Alzheimer’s disease. Besides, the
observed clinical profile, with a fluctuating encephalopathy
rapidly evolving to dementia with extrapyramidal features and
finally to hypokinetic rigidity and mutism is atypical for degen-
erative dementias. The other affected family members are
less symptomatic, but the clinical phenomenology of her sis-
ter is similar, presenting essentially with cognitive symptoms
and extensive brain calcifications.

PTH1R mutations

Mutations in PTH1R have previously been associated with
five different diseases, reflecting the wide range of functions
and pathways in which this receptor is involved. Homozy-
gous mutations have been associated with Blomstrand’s
chondrodysplasia, a human embryonic lethal disorder char-
acterized by advanced endochondral bone maturation, and
with Eiken syndrome, presenting with skeletal features
contrasting to the Blomstrand’s phenotype and mainly char-
acterized by retarded ossification (Duchatelet et al. 2005).
Heterozygous mutations have been associated with Pri-
mary failure tooth eruption and with Jansen’s metaphyseal
chondrodysplasia (a rare form of dwarfism associated with
hypercalcemia) (Decker et al. 2008; Schipani et al. 1995a).
Additionally, germline and somatic mutations have been
associated with Ollier disease (a type of enchondromatosis)
(Hopyan et al. 2002), although this association is still to be
confirmed (Rozeman et al. 2004). Table S2 summarizes the
different types of mutations previously associated with these
diseases. Here, we associate a novel homozygous missense
mutation in PTH1R with PHP1b. The mutation, located in
residue 186 of the protein, is predicted to be pathogenic by

different prediction software and this residue, located just
at the N-terminal extracellular/transmembrane-1 junction,
has previously been shown to be essential for contact with
position 13 of PTH (Adams et al. 1998). The proband in
this family presents no symptoms of either Blomstrand’s
chondrodysplasia or Eiken syndrome and no family members
reported delayed tooth eruption. This indicates that the
location of the change in the protein is probably relevant
for the downstream associated phenotype. The interaction
between PTH and PTH1R has been predicted as a two-site
general interaction model involving two main components:
(1) an interaction between the C-terminal domain of the
ligand and the N-terminal domain of the receptor – mainly
contributing to binding affinity; and (2) an interaction between
the N-terminal portion of the ligand and the juxtamembrane
region of the receptor – contributing to signalling (Gardella
& Juppner 2001). More specifically, point mutations at the
neighbouring hydrophobic residues Phe184, Leu187 and
Ile190 were shown to impair the interaction with PTH(3–34)
and PTH(1–14) with a PTH(1–34) analog possibly crosslink-
ing to PTH1R at Arg186 (Carter et al. 1999). The late onset
of disease in this family is in accordance with the conclusion
that the effect of two different mutations (p.Arg186Lys and
p.Arg186Ala) engineered in the same residue as the mutation
here described, is local and does not involve global conforma-
tional changes of the receptor. As such, this novel mutation
(p.Arg186His) is expected to diminish the binding affinity
and ligand specificity of the receptor, rather than abolish
the overall function of PTH1R (Adams et al. 1998). In fact, a
very similar phenotype to the one observed in this family has
recently been reported to be associated with a novel homozy-
gous mutation in PTH. The five previously known PTH
mutations were all located in exon 2 of the gene that encodes
the pre-pro leader sequence of the hormone. All these muta-
tions lead to inadequate secretion of the mature PTH(1–84)
polypeptide. The novel PTH mutation (p.Arg25Cys) identified
by Lee et al. is the first located within the 𝛼-helical portion of
PTH that mediates critical binding interactions with PTH1R
and was shown to impair the PTH/PTH1R activation (Lee
et al. 2015). The mutation we identified in PTH1R is expected
to have a similar effect in this ligand-receptor complex, pos-
sibly defining a novel form of PHP1b resulting from the
impaired interaction between PTH and PTH1R.

In summary, the index case reported here represents the
extreme end of the spectrum of cognitive impairment in PTH
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dysfunction and is a dramatic example of refractivity to treat-
ment. Considering that this is also the first family identified to
have PHP1b due to a mutation in PTH1R, we can speculate
that this cognitive profile is the phenotype of this mutation.
Furthermore, the resistance to PTH may be explained by an
abnormal interaction between PTH and the PTH1R receptor,
eventually modulated by a compensatory-elevation of PTH.
These are potentially interesting mechanisms to explore fur-
ther with functional analyses.
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Appendix S1: Methods.
Figure S1: Homozygosity analysis. The left panel rep-

resents the large tracts of homozygosity shared between
affected and absent in unaffected siblings across the entire
genome and depicted as blue bars over the corresponding
chromosome. Only three regions >1 Mb segregate with the
disease in this family. The right panel shows the results for
chromosome 3 from whole genome genotyping represented
by the log ratio in the bottom and B allele frequencies for each
of the six siblings. The pink vertical line indicates the location
of PTH1R in chromosome 3. All affected siblings have large
homozygous regions encompassing PTH1R while unaffected
siblings show heterozygosity in the same locus.

Figure S2: Bone X-ray of the proband. Bone X-ray showing
generalized osteopenia, but without skeletal abnormalities
suggestive of Albright’s hereditary osteodystrophy, Blom-
strand’s chondrodysplasia, Eiken skeletal dysplasia or Murk
Jansen type of metaphyseal chondrodysplasia.

Figure S3: Cerebral SPECT of the index case. Cerebral
SPECT disclosed cerebral hypoperfusion mainly at the frontal
regions and basal ganglia, predominantly on the left side.
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