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ABSTRACT
We present a new theoretical population synthesis model (the Galaxy model) to examine and
deal with large amounts of data from surveys of the Milky Way and to decipher the present
and past structure and history of our own Galaxy. We assume the Galaxy to consist of a
superposition of many composite stellar populations belonging to the thin and thick discs, the
stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A
global model for the Milky Way’s gravitational potential is built up self-consistently with the
density profiles from the Poisson equation. In turn, these density profiles are used to generate
synthetic probability distribution functions (PDFs) for the distribution of stars in colour–
magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar
kinematics by means of the moment method on a (perturbed)-distribution function. Spiral
arms perturb the axisymmetric disc distribution functions in the linear response framework
of density-wave theory where we present an analytical formula of the so-called ‘reduction
factor’ using hypergeometric functions. Finally, we consider an analytical non-axisymmetric
model of extinction and an algorithm based on the concept of probability distribution function
to handle CMDs with a large number of stars. A genetic algorithm is presented to investigate
both the photometric and kinematic parameter space. This galaxy model represents the natural
framework to reconstruct the structure of the Milky Way from the heterogeneous data set of
surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.

Key words: surveys – Hertzsprung–Russell and colour-magnitude diagrams – ISM: kinemat-
ics and dynamics – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics –
Galaxy: structure.

1 IN T RO D U C T I O N

The Milky Way (MW) provides a unique environment in which to
study the origin and evolution of galaxies on a star-by-star basis,
with a precision that is simply impossible to reach for any other
galaxy in the Universe. The European Space Agency’s cornerstone
mission Gaia, together with complementary ground-based spectro-
scopic follow-ups such as the Gaia-ESO Survey (e.g. Gilmore et al.
2012), will map the stellar distribution of the MW with unprece-
dented accuracy by providing high-precision phase-space informa-
tion, physical parameters, and chemical compositions, for roughly
one billion of the stars in our Galaxy. The exploitation of this huge
amount of data cannot be made using the methods and tools that
have been used for many decades to study much less numerous
samples of stars; it requires the development of, and experience
with, cutting-edge multidimensional data mining tools, as well as
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sophisticated methodologies to transfer the models from the space
of ‘simulations’ to the ‘plane of observers’.

Star-count techniques are born with the aim to answer a simple
astronomical question: why do we see a given distribution of stars
in the sky? Since the oldest approach to the star-count equation (e.g.
Trumpler & Weaver 1953), these techniques have represented the
most natural way to investigate the closest distribution of stars to us,
i.e. the MW. A major advancement of these techniques was achieved
by Bahcall & Soneira (1984) who applied the concept of stellar pop-
ulations to the solar neighbourhood (see also Bahcall 1984a,b) and
nowadays, more theoretically sophisticated star-count models are
the standard tools to investigate the MW stellar distribution (e.g. the
Besançon model; Robin et al. 2003). The ultimate step towards the
understanding of our Galaxy is thus represented by the extension
of the concept of stellar populations to include kinematics, dynam-
ics, photometric and chemical properties together in a global MW
modelling approach (e.g. Méndez et al. 2000; Vallenari et al. 2006).

The star-count techniques have the goal to synthetically re-
produce the observables obtained from an (unknown)-stellar
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distribution function (DF), i.e. the number of stars in a given range
of, e.g. temperature, velocities, densities, proper motions etc., by
considering the data distribution in the space of the observable quan-
tities (e.g. photometry, proper motions, radial velocities, etc.). To
achieve this goal, a number of founding pillars must be assumed to
exist on a global scale, e.g. density-profile laws, star formation his-
tories, age–metallicity relations, age–velocity dispersion relations
etc. All these relations will ultimately represent a way of decipher-
ing and constraining the MW history and evolution.

The more independent constraints a model can reproduce, the
closer these underlying relations are to the true properties of the sys-
tem analysed (the MW in our case). The star-count techniques are a
Monte Carlo type solution to a multidimensional integration prob-
lem of the star-count equation. Historically, in classical textbooks
of statistical astronomy (Trumpler & Weaver 1953) the star-count
equation is generalized to include the kinematics as follows:

dNj

dγ dm�λdCλλ′
= Njfj (γ ), (1)

where Nj is the number of stars for each given stellar population,
j, with DF fj (γ ) in the elemental volume of the phase space dγ =
{dx, dv} = {d �

� drhel, dv}. Here, rhel is the heliocentric distance of
the stars in an infinitesimal interval of magnitude dm�λ in the band

�λ and colour dC = m�λ − m�λ′ , d
�

�= dldb cos b (with l and b
Galactic longitude and latitude) is the solid angle. In Section 2, we
will review a generalized framework for equation (1) introduced
in Pasetto, Chiosi & Kawata (2012b) to recover equation (1) as a
special case of a multidimensional marginalization process.

Two of the major limitations underlying many theoretical works
based on analytical expressions for the DF fj (γ ) are the time in-
dependence of fj and its axisymmetry properties in the configura-
tion space. Related to the first assumption is the problem of self-
consistency: the DFs are not obtained by sampling the phase-space
of a system evolved in time under the effect of self-gravity. In this
approach, the DF is not numerical but a parametric function. The
second assumption of axisymmetry is led by the necessity to keep
the treatment of the dynamical evolutions as simple as possible: the
corresponding Hamiltonian is cyclic in some variables and hence
more suited for analytical manipulation.

The literature is full of alternatives to overcome these two lim-
itations, e.g. N-body simulations, the Schwarzschild method, the
made-to-measure method, full theoretical methods (e.g. Cubarsi
2007; Bienaymé & Traven 2013; Hunt & Kawata 2013; Bienaymé,
Robin & Famaey 2015; Hunt et al. 2015) etc., whose review is
beyond the goal of this paper. In this work, we will relax the ax-
isymmetry assumption for the sole thin disc components by im-
plementing a perturbative approach carried out to the linear order
on suitable small parameters to the equation of motion following
two different works by Lin, Yuan & Shu (1969) and Amendt &
Cuddeford (1991). These perturbative linear response frameworks
are the only analytical treatment available up to now that can claim
observational validation.

The perturbative treatment of Amendt & Cuddeford (1991) deals
with mirror symmetries about the plane of the Galaxy. It has been
introduced in the technique we are adopting from Pasetto PhD the-
sis 2005 (e.g. Vallenari et al. 2006) where more detail has been
given as well as comments about its implementation and observa-
tional validation. Nowadays, this work represents a good balance
between simplicity and robustness. More recent formulations can
be investigated in the future (e.g. Bienaymé 2009).

The treatment of Lin et al. (1969) is referred as density-wave
theory (DWT) and we will review in what follows the literature that
attempts to validate it from the observational point of view.

The history of the attempts to find an explanation of the spiral
features of the MW and external galaxies is long standing and still
matter of debate. We recall here (without the presumption to be
complete) a few works of observational nature that inspired our
star-count implementation of DWT. The interested reader can look
at books such as Shu (1991) or Bertin (2014).

1.1 Observational studies of DWT

The existence of a theory interpreting the spiral arm phenomenon
(e.g. Lin & Shu 1964; Marochnik 1964, 1966, 1967; Marochnik
& Ptitsina 1968; Lin et al. 1969; Marochnik & Suchkov 1969a,b)
spurred many research groups to find observational evidence that
could either support or deny such a theory. The first attempt to
interpret the mean properties of observational velocity fields of
young stars in terms of the DWT was by Creze & Mennessier
(1973). Creze & Mennessier (1973) set up a method to interpret the
observations in terms of the DWT based on two simple ingredients:
a multidimensional parametric fit and an asymptotic expansion on
small parameters of the basic equations governing the kinematics of
the DWT. This seminal study inspired many other studies in which
different results were obtained mainly due to either the adopted
multidimensional fitting procedure or the large number of involved
parameters or the different data sets in usage and their local/non-
local nature in the configuration space. Local models of the velocity
space have been considered with asymptotic expansions on different
small parameters (e.g. Nelson & Matsuda 1977; Brosche & Schwan
1981; Byl & Ovenden 1981; Comeron & Torra 1991; Mishurov et al.
1997; Mishurov & Zenina 1999; Fernández, Figueras & Torra 2001;
Garcı́a-Sánchez et al. 2001).

Nowadays this research is still far from being complete (see e.g.
Griv, Ngeow & Jiang 2013; Junqueira et al. 2013; Griv et al. 2014;
Roca-Fàbrega et al. 2014; Vallée 2014, 2016b). Recent studies con-
sider more complex models based on four spiral arms (e.g. Lépine,
Mishurov & Dedikov 2001; Vallée 2016a) and their connections
with the pattern of chemical properties of the MW (e.g. Lépine,
Acharova & Mishurov 2003; Andrievsky et al. 2004) and the not
monotonic features of the MW rotation curve (e.g. Barros, Lépine
& Junqueira 2013). Finally, this research field has been recently
boosted by numerical simulations. N-body solvers are achieving
higher and higher resolution and although they are still missing a
complete self-consistent understanding of the spiral arm dynam-
ics, several numerical techniques (e.g. the tree-code; Barnes & Hut
1986) allow us to simulate the gravitational interactions among
millions of particles with masses of the order of a few thousand so-
lar masses or less (Grand, Kawata & Cropper 2012a,b; D’Onghia,
Vogelsberger & Hernquist 2013).

The logic flux of the paper is as follows. We first want to present
(Section 2) the concept of stellar population taken from a theory
developed in its general form in Pasetto et al. (2012b) and here
adapted to the specific case of the MW stellar populations. This
will allow us to generalize the previously introduced concept of star-
counts in a larger theoretical framework, to set a few assumptions,
and to emphasize the goals of this novel Galaxy model. We present
the normalization of the star-count equation for a field of view (FOV)
of arbitrary size in Section 3 and this allows us to define the density
profiles and the consequent MW potential shape (Section 4). This
axysimmetric potential represents the basis for the development of
a self-consistent spiral treatment presented in the following section,
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MW Galaxy model 2385

Table 1. Meridional plane profile of the velocity ellipsoid. For
each fixed radius, the vertical gradient of the two velocity dis-
persion tensors is indicated in the fourth and fifth columns. The
third column gives the vertical ranges.

j zj �z ∂σRR
∂z

, ∂σzz
∂z

(kpc) (kpc) (km s−1 kpc−1)

0 z0 = 0.0 |z| = 0 0.0,0.0
I z1 = 0.5 |z| ∈ ]0.0, 0.5] 27.2,17.4
II z2 = 1.0 |z| ∈ ]0.5, 1.0] 9.7,5.4
III |z| > 1.0 0.0,0.0

but as explained above, the formulation adopted in our approach is
fully analytical, hence parametric, and so are the density-potential
couple introduced in Section 4. This leaves us with a large number
of parameters to deal with in order to model the MW. In Section 5,
a genetic algorithm is introduced for the study of these parameters
which are used to study the MW data surveys. This leads us to the
setting of the MW axisymmetric potential (Table 1) that represents
the axysimmetric basis used to develop the spiral arms perturbation
theory. Hence, in Section 6 the spiral arms formalism is presented
with its implication for the density (Section 6.1) and the colour–
magnitude diagrams (CMDs; Section 6.2) once an ad hoc extinction
model is considered (Section 6.2.1). The velocity field description is
presented in Section 7. A direct comparison with the most popular
Besançon model is detailed in Section 8 and the conclusions are
presented in Section 9.

2 T H E O RY O F ST E L L A R PO P U L AT I O N S

Robust mathematical foundations for the concept of stellar popula-
tions are still missing, but recently Pasetto et al. (2012b) proposed
a new formulation for it. We briefly summarize here the analysis of
Pasetto et al. (2012b) because it is the backbone of the population
synthesis model we are going to describe here. This approach ex-
tends the classical concepts presented in books as Salaris & Cassisi
(2005) or Greggio & Renzini (2011) to include a phase-space treat-
ment for the stellar populations. These definitions will be crucial for
the modelling approach and to formally define our goals. Moreover
they will allow us to fix some assumptions we exploited during our
work. Hence, we proceed to pin down here the more specific points
that in the theory proposed in Pasetto et al. (2012b) are introduced
in complete generality.

2.1 Theoretical framework: EMW

We define every assembly of stars born at different time, positions,
with different velocities, masses and chemical composition a com-
posite stellar population (CSP). The space of existence for the MW
CSP, EMW is considered as the Cartesian product of the phase-
space � = (x1, x2, . . . , x3N, v1, v2, . . . , v3N ) (N number of stars of
the CSP), the mass space M, and the chemical composition space
Z, EMW ≡ M × Z × �. The inclusion of the time t introduces the
‘extended’-existence space EMW × R. A more formal geometrical
definition of this space and its dimensionality for the interested
reader is given in Pasetto et al. (2012b). Because in the extended
existence space the MW stars move continuously (losing mass, en-
riching in metals and travelling orbits in the phase-space), we can
safely define a distribution for the CSP in EMW, say f MW

CSP ∈ R
+ real

always positive function under the assumption of continuity and dif-
ferentiability, i.e. f MW

CSP ∈ C∞(R+). We consider now a sample of

Figure 1. Cartoon representing the concept of a foliation of a CSP over
SSPs. SSPs result as an intersection (red rectangular area in the figure) of
planes of constant metallicity dZ (light-brown-colour) and constant phase-
space d� plane (light-green colour) with the CSP (blue). The SSPs are the
fundamental ‘atoms’ to build up the CSPs. Axes are in arbitrary units.

identical MW-systems whose initial condition spans a subvolume
of EMW, let us refer to it as the ‘MW-ensemble’. The number of
these systems, dN, spanning a mass range, dM, a metallicity range,
dZ, and phase-space interval, d�, at the instant t, is given by

dN = Nf MW
CSP dMdZd�, (2)

and the total number of systems in the ensemble is fixed, finite, and
subject to the important normalization condition∫

EMW

f MW
CSP dMdZd� = 1. (3)

Pasetto et al. (2012b) proceeded with a foliation of EMW in orthog-
onal subspaces of metallicity, dZ, and phase-space alone, d�, to
define a simple stellar population (SSP) as one of these elemental
units. A cartoon of the concept of SSPs is presented in Fig. 1.

As evident, we can assume that the DF of a CSP can be written
as the sum of disjoined DF of SSP,

f MW
CSP =

n∑
SSP=1

fSSP, (4)

where fSSP = fSSP(M,Z0, �0; t0) is the DF of a single stellar pop-
ulation born at time t0. In this framework, we can give a rigorous
geometrical interpretation and definition of CSPs and SSPs (see
Pasetto et al. 2012b). This number is related to the granularity of
f MW

CSP and hence to the growth of the entropy of the MW as a whole.
The study of the number of SSPs is beyond the scope of this pa-
per and here we will limit n to be a fixed parameter for simplicity.
Further considerations on this number are left in Section 5 in re-
lation to the machine learning approach used to study a given set
of observations. As the time passes, the stellar population evolves.
According to their masses the stars leave the main sequence (MS)
and soon after die (supernovae phase) or enter into quiescent stages
(white dwarfs phase) injecting chemically processed material into
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the interstellar medium (ISM) in form of supernovae remnants or
winds. In the same way, the evolution of an SSP in the phase-space
obeys the Liouville equation ∂f�

∂t
= −ιL[f�] with L[∗] Liouville

operator and ι imaginary units.
It is of interest for us to recall a few tools which are useful in

studying the MW. Within this framework, we will make use of the
following concepts.

(i) Present-day mass function. This is the result of the marginal-
ization of f MW

CSP over the metallicity Z and phase space �:∫
R6N ×R

Nf MW
CSP dZd� = ξ̂ (M; t). (5)

This can be expressed, e.g. by the approximate relation

ξ̂ (M; t) =
{

ξ (M) tMS
τ

tMS < τ

ξ (M) tMS > τ,
(6)

where τ = t–t0 is the age of the stellar population, tMS = tMS(M) is
the age at which a star exits the MS, and ξ (M) is the initial mass
function (IMF) of the MS stars. In our model, the form of the IMF
profiles is limited to multisegmented power laws and lognormal
formula to cover most of the literature. All the IMFs matching a
single/multi power-law family of models of the form ξ (M)dM =
ξ0( M

M� )−α dM
M� (e.g. Salpeter 1955; Kroupa, Tout & Gilmore 1993;

Kroupa 2001) are considered as well as the lognormal family of

profiles ξ (M)dM = ξ0M
−1e

− 1
2σ2

M

(log M
Mmin

)
2

dM
M� (e.g. Chabrier 2003)

where ξ 0, Mmin and σ M are free parameters.
(ii) Age–metallicity relation. By integration of the DF over the

mass, M, and the phase-space, �, we can define the relation,∫
R6N ×R

Nf MW
CSP d�dM = χ (Z; t), (7)

which gives the number of stars formed per metallicity interval at the
time t. Although several studies have been devoted to investigate the
age–metallicity relation (Pilyugin & Edmunds 1996; Rocha-Pinto
et al. 2000, 2006), the small volume of the Galaxy covered by the
data does not allow us to apply these age–metallicity relationships
to a global scale model (Bergemann et al. 2014). The problem
becomes even more puzzling for specific stellar components such
as the stellar halo (see e.g. Leaman, VandenBerg & Mendel 2013, for
the globular cluster case). Even though the age–metallicity relation
of Rocha-Pinto et al. (2006) is included in our model, we will not
use it as a standard assumption.

(iii) Phase-space DF and age–velocity dispersion relation. By
marginalizing f MW

CSP over the mass and metallicity subspace we can
write the formal relation,∫

R2
Mf MW

CSP dMdZ = e−ιLt f�(�; t0), (8)

whose analysis within the framework of a perturbative approach
of the DWT will be subject of this paper in the following sections.
Here, we anticipate only that by taking the moments on the velocities
of equation (8) we can obtain the important age–velocity dispersion
relation implemented in our model:

σv(x; t) ≡
∫

R3N

d3Nv(v − v̄)⊗2
∫

R2
Mf MW

CSP dMdZ

=
∫

R3N

(v − v̄)⊗2e−ιLt f�(�; t0)d3Nv,

(9)

with a⊗n a standard tensor n-power of the generic vector a
accounted for its symmetries. A simplified version of this relation

for a collisionless stellar system (i.e. where the Liouville operator
introduced above is replaced by the Boltzmann operator for colli-
sionless stellar dynamics) are implemented in our model with data
interpolated from the values of the work of Pasetto et al. (2012d)
and Rocha-Pinto et al. (2004, see equation 17).

Finally, by extension of the previous integral formalism of equa-
tions (5), (7) and (8) we introduce the following relations of interest
to us.

(i) Metallicity/phase-space relationship. This relation is formally
defined by η(Z, �; t) ≡ ∫

f MW
CSP dM and more interestingly we can

project it on to the configuration space:

η̂(Z, x; t) =
∫

R3N ×R

f MW
CSP d3NvdM. (10)

There is indeed observational evidence of the presence of this rela-
tion in the chemical radial gradients in the configuration space of
the MW thin disc component (see e.g. Boeche et al. 2013, 2014)
and it can be eventually implemented on the thick disc (Curir et al.
2014).

For completeness, we remind the reader that the stellar-
mass/metallicity relation can easily be defined and implemented
in our model as presented in Pasetto et al. (2012b) once a larger
sample of asteroseismology data becomes available (see references
in Section 1).

The goal of our research is to develop a technique to investigate
EMW, the existence space of the MW, through the relations that
result from the projection of the unknown f MW

CSP in the mentioned
subspaces of equations (6), (7), (8) and (10).

To this aim, we need to relate EMW to the space of observations.
This is made possible by the star-count equation, equation (1), in
combination with equation (2) in the space of the observational data.
To this aim, one has also to solve a crucial point of difficulty with
equation (1), i.e. the large fields of view that are often involved.

3 STA R - C O U N T E QUAT I O N F O R LA R G E SK Y
C OV E R AG E

Nowadays and increasingly in the future, we face the challenge of
large sky coverage surveys where the gradients of the underlying
MW stellar density distributions sensibly vary across the covered
survey area. Already large surveys (SDSS, RAVE, SEGUE, etc.)
present these characteristics, and the ongoing whole sky survey by
Gaia, due to the depth of the magnitude limit and the amplitude of

the solid angle considered (d
�

�= 4π), will provide us an enormous
amount of data to be considered. If a survey spans a large solid

angle d
�

� and has a very deep magnitude limit, then the number
of stars per FOV becomes large and its realization on a star-by-star
basis becomes unpractical. For example, the marginalization of a
f MW

CSP over d� for large-scale survey data produces a section over
dZ × dM, i.e. a Hertzsprung–Russel or a CMD that can be over-
dense: to realize it graphically we should draw dots-over-dots and
count them. This process should be repeated every time we change
a single parameter to see the effect of the variation until suitable
fitting is achieved. To surpass these CMD realization problems,
Pasetto et al. (2012b) presented a novel technique able to substitute
the generation of synthetic stars with the computing of a probability
distribution function (PDF). The convolution of several SSPs along
a line of sight (l.o.s.), thanks to equation (4), was then substituting
the Monte Carlo generation of stars for an FOV, de-facto changing
the concept of a ‘star-count’ model with a PDF model.
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We adopted here the same technique to speed up the generation
of the f MW

CSP , eventually walking back to a star-count type of model
by populating the PDF obtained for f MW

CSP only if required. The stel-
lar SSP data base used to build the f MW

CSP is the same adopted in
Pasetto et al. (2012b), though any other SSP data base can be easily
implemented virtually making the modelling approach independent
of any particular stellar physics recipes adopted by one or another
research group (rotation, overshooting, α-enhancement, helium en-
richment etc.). More details of this is described for the interested
reader in Pasetto et al. (2012b).

Nevertheless, this process of populating the PDF for each FOV
(that can be as large as the full sky) has to be treated with attention
because of the normalization relation (equation 3). In particular, the
number of stars generated along the l.o.s. and appearing in the final
CMD has to correctly account for the underlying mass fraction of
each stellar component j of the Galaxy.

Historically, to deal with equation (1), or its generalized form in
equation (2), the approach was based on the sum of several close

FOV of negotiable opening angle. It was required for d
�

� to be very
small as well as the number of stars per population Nj. The result
of these assumptions was that the underlying density distributions

within d
�

� were to a good approximation constant (if the survey was
not too deep in magnitude and hence rhel not too deep). To solve
the star-count equation under these approximations was a trivial
exercise and in the past decades it has been indeed done by several
works in this research area (e.g. Méndez et al. 2000; Ng et al. 2002;
Girardi et al. 2005; Robin et al. 2003; Vallenari et al. 2006, and

references therein). If the hypothesis of small d
�

�= dldb cos b is
to be relaxed, the computing of this number has to be performed
numerically as follows:

N =
∫

R3N

d3N x
∫

R3N

d3Nv

∫
R2

Mf MW
CSP (M,Z, �)dMdZ

=
∫

R3N

d3N x
∫

R3N

d3Nve−ιLt f�(�) (11)

=
∫

R2
d

�

�

∫
R

drhelJρ(x; t),

where J = r2
hel|cos b| is the Jacobian of the transformation T be-

tween the system of galactocentric coordinates (O, x) to standard
galactic coordinates (�, rhel, l, b):

T :

⎧⎪⎪⎨
⎪⎪⎩

x = R� − rhel cos b cos l

y = rhel cos b sin l

z = z� + rhel sin b,

(12)

where R� =
√

x2� + y2�. After this integral is evaluated, the rel-

ative number of stars within a given FOV is obtained as a function
of observable quantities (e.g. the galactic coordinates) no matter
how large the FOV is (Fig. 2). Although rhel can be unbounded, in
practice it is limited by the survey magnitude limits with Pogson’s
law and the dust extinction by taking into account an extinction
model (Section 6.2.1). We point out how the cone-geometry of Fig.

2 for the volume
∫

d
�

� drhel is of exemplificative nature. In prac-
tice, because every observed star has much larger uncertainty in
distance rhel + δrhel than in angular position{l ± δl, b ± δb}, i.e.
| δrhel

rhel
| 
 | δl

l
| and | δrhel

rhel
| 
 | δb

b
|, the mapping of the synthetically

generated f MW
CSP of every survey has a different nature. {l, b} are

not randomly generated but assumed from the data that we want to
analyse without errors while rhel is randomly generated within rhel

± δrhel depending on the particular selection function.

Figure 2. Spiral arm stellar isocontour. The intersection of the yellow sur-
face with the FOV (e.g. violet or red) is the integral performed in equation
(11). Two arbitrary solid angles, in blue or red, intersect a single spiral arm
SSP over its complicated density profile (orange), from a common solar
position slightly outside the plane of the galaxy. The relative contribution
to the number of stars in a given l.o.s. is the result of the intersection of the
global CSP with the arbitrary cone of the l.o.s.

4 THE AXI SYMMETRI C MW: D ENSI TY
DI STRI BU TI ONS, GRAV I TATI ONA L
P OT E N T I A L S A N D K I N E M AT I C S

In the context of the theory of stellar population introduced above,
we can simplify equation (8) and obtain the mass density ρ(x) as
follows:

ρ =
∫

R3N ×R2
Mf MW

CSP dMdZd3Nv

=
∫

R3N

e−ιLt f� (�; t0) d3Nv (13)

�
∫

R3
e−ιBt fγ (γ ; t0) d3v,

where in the last row of the equation we reduced the dimensionality
of the phase-space by remembering that it is possible to show that
the two-body relaxation time t2b (considered in the approximation
of independent-hyperbolic encounters) is long enough to allow us
to treat the Galaxy to a good approximation as a ‘collisionless’
system. Hence we can substitute the discrete stellar distribution
with a continuous density profile, and the Liouville operator L can
be substituted with the more simple Boltzmann operator B[fγ ] ≡
ι{H, fγ }, with H one-particle Hamiltonian and {∗, ∗} the Poisson
brackets (ι is the imaginary unit).

Unfortunately, the explicit form of f MW
CSP is unknown (the blue

manifold in Fig. 1) or has to be inferred just from simple theoretical
considerations. For this reason, we decided to base our modelling
technique on the density distributions of stars and dark matter (DM).
From the density profiles, the potential and hence the kinematics is
computed. Furthermore, from the same density profiles the relative
number of stars per bin of colour and magnitude along an l.o.s. in
the CMD is computed. This approach is not the only possible way
to proceed in analytical modelling, but we are guided by the explicit
intention to present a model focused on the interpretation of the data,
where the data are the protagonist in leading our understanding of
the phenomenon ‘Galaxy’.
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Therefore, it is of paramount importance to assign to each com-
ponent of the MW a plausible density profile ρ(x) to derive a cor-
rect global gravitational potential. In the following, we present our
treatment of the Poisson equation and hence the global gravitational
potential of the MW. These results will represent the axisymmetric
foundations of our description the DWT of spiral arms. The grav-
itational potential is derived for all components of the MW even
if we will focus only on the disc components for which, thanks to
their proximity, data of good quality can be acquired and accurate
descriptions are possible.

In our model, the location of the Sun is assumed to be at
x� = {R�, φ�, z�} = {8.00, 0.00, 0.02} kpc in a reference frame
centred on the (yet unknown) mass barycentre of the axisymmetric
model of the MW we are going to build up.

4.1 Axisymmetric SSP models

4.1.1 Thin and thick disc

As mentioned above in equation (4), we consider a multicompo-
nent model of stellar populations. For the ith component of the thin
or thick disc, we implemented a double exponential form of the
density profiles, that is, with an exponential profile decreasing with
Galactocentric radius and vertical distance from the plane. Alter-
native vertical profiles (power law and secant-square) are available
for investigation but not breaks of the exponential profiles has been
implemented (e.g. Pohlen & Trujillo 2006). Because we are going
to develop a kinematics model, no time dependence of the density
profiles is assumed. Written in cylindrical coordinates to exploit the
φ-symmetry the profile reads

ρD(R, φ, z) = ρ�e−
R−R�

hR
−

z−z�
hz . (14)

This parametric formalism depends on the density at the solar neigh-
bourhood ρ� and two scale parameters: scalelength hR and scale-
height hz for each stellar population considered. It does not contain
an explicit dependence on φ. The potential is conveniently expressed
as function of one single integral with integrand depending on the
Bessel function (e.g. Bienayme, Robin & Creze 1987) being hence
extremely rapid to compute:

�D(R, φ, z) = −4πGρ0h
−1
R

∫ ∞

0
J0(kR)(h−2

R + k2)
−3/2

×h−1
z e−k|z| − ke−h−1

z |z|

h−2
z − k2

dk, (15)

where J0 is the Bessel function of the first kind (e.g. Abramowitz
& Stegun 1972) and the scale parameter for each component ith
should be taken into account but omitted for the sake of simplicity.

The kinematic description of these disc populations is in prin-
ciple obtainable self-consistently from the numerical solution of
systems as equation (22) in Cuddeford & Amendt (1992). How-
ever, aside from the numerical difficulties, this description would
require difficult observational validation (e.g. by requiring second-
order derivatives) that makes it challenging to apply for precise
surveys such as the forthcoming Gaia. For this reason, we have
chosen in favour of an approach based on the Jeans equations. Fol-
lowing Pasetto et al. (2012c,d), we are not assuming a shape for
the fγ (γ ; t) but working on the methods-of-moments of the colli-
sionless Boltzmann equation in agreement with the simplification
of equation (13). The mean circular velocity and asymmetric drift

can then be studied with the relation:

v̄φ(R, z) =

⎛
⎜⎜⎜⎝

∣∣v̄φ

∣∣ rhel cos b cos l

R∣∣v̄φ

∣∣ R� − rhel cos b cos l

R
0

⎞
⎟⎟⎟⎠ ,

∣∣v̄φ

∣∣ =
(

v2
c − ∂ ln ρD

∂ ln R

(
σ 2

RR + σ 2
Rz

) + (
σ 2

RR + σ 2
φφ

)
(16)

+R

(
∂σ 2

RR

∂R
+ ∂σ 2

Rz

∂z
+ ∂�tot(R, z)

∂R

))1/2

,

where the dependence of the three non-null diagonal terms {σ RR,
σφφ , σ zz} on the configuration space will be written in cylindrical
coordinates as

σii,j (R, z) = ∇zσii,j (R, z)
(|z| − zj−1

) + σii,j−1

(
R, zj−1

)
, (17)

for i = {R, φ} and j = I, II, III, while the vertical profiles of the
thin disc stellar population and the non-diagonal term σ Rz will be
introduced in Section 7 and where the underlying assumption of
σ 2
RR

σ 2
zz

= const. is assumed in agreement with the DWT for spiral

arms introduced below. On the plane, equation (17) will be forced
to match the profiles⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ 2
RR (R, 0) = σRR,�e−

R−R�
hR

σ 2
φφ (R, 0) = σzz,�e−

R−R�
hR

σ 2
zz (R, 0) = (

1 + ∂ ln vc

∂R

) σ 2
RR (R,0)

2 ,

(18)

and the gradients for the three vertical profiles I, II, III are a smooth
interpolation of the values in Table 1. Moments of order up to four
(obtained directly from cumulants) are evaluated as in appendix of
Pasetto et al. (2012c).

4.1.2 Stellar halo

For the ith stellar halo component of the MW, we follow the model
proposed in Robin et al. (2003) because it is fine-tuned on the ob-
servational constraints, i.e. it is simple in its form but phenomeno-
logically justified. In the original form Robin’s profile reads

ρH∗ (r) = ρ0,H∗
r�

{
rα r > hrH∗

hα
rH ∗ r � hrH∗,

(19)

where ρ0, H� is the central stellar halo density, and hrH� the scale-
length parameter. Because we are interested in the potential formal-
ism of this density model, we compute its corresponding potential
solving Poisson’s equation in spherical coordinates and guaran-
teeing continuity (but not differentiability) to the formulation as
follows:

�H∗ (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4πGρ0,H∗
r−α�
r

(α + 2) hα+3
r,H∗ + rα+3

(α + 2) (α + 3)
∧ r > hr,H∗

−2πGρ0,H∗
3h2

r,H∗ − r2

3

(
hr,H∗
r�

)α

∧ r � hr,H∗,

(20)

where the scale parameters dependence of the ith-component of
stellar halo is omitted.

For the kinematics description of the stellar halo several mod-
els for f H∗

SSP are available in the literature with different flavours of
parameters (multiscale parameters, anisotropy, etc.). Nevertheless,
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Table 2. Kinematic and dynamical properties of the MW components. The first two thin disc stellar components implement the spiral
arm treatment described in the text. Because a map of the metallicity gradients ∇x [ Fe

H
] is still uncertain, no standard default values are

assumed and they are used as free parameters. Standard star formation profiles are adopted (e.g. Chiosi 1980, Fig. 3).

Components Scale parameters �t [ Fe
H ] σ ii�

(Gyr) (dex) (km s−1)

{ρD, hR, hz}�
[M� kpc-3, kpc, kpc]

Thin disc pop 1 (sp) 1.29 × 107, 2.57, 0.06 [0.1, 0.5] [−0.70, 0.05] 27.0,15.0,10.0
Thin disc pop 2 (sp) 1.93 × 107, 2.59, 0.06 [0.5, 0.9] [−0.70, 0.05] 30.0,19.0,13.0
Thin disc pop 3 4.96 × 107, 2.96, 0.07 [0.9, 3.0] [−0.70, 0.05] 41.0,24.0,22.0
Thin disc pop 4 3.38 × 107, 2.99, 0.09 [3.0, 7.5] [−0.70, 0.05] 48.0,25.0,22.0
Thin disc pop 5 3.34 × 107, 3.41, 0.25 [7.5, 10.0] [−0.70, 0.05] 52.0,32.0,23.0
Thick disc 2.40 × 106, 2.23, 1.35 [10.0,12.0] [−1.90,−0.60] 51.0,36.0,30.0
ISM 2.26 × 107, 4.51, 0.20

{ρ0,H∗, d0,H∗, hrH∗ , α}
[M� kpc-3, kpc, kpc]

Stellar halo pop 1 2.18 × 104, 1.00, 1.00, −2.44 [12.0,13.0] <−1.90 151.0,116.0,95.0

{MB, hr, B}
[M� , kpc]

Bulge pop 1 3.4 × 1010, 0.7 [6.0,12.0] [−0.40,+0.30]

{v0, hr, DM, q}
[km s−1, kpc]

DM 139.04, 6.70, 0.89

self-consistent models rely on a description of the halo as a dynam-
ically relaxed population. This is clearly a non-physical assumption
for a stellar population as the halo which is composed by old stars
but dynamically young, non-phase-mixed, rich in substructures as
stellar streams (see e.g. Belokurov et al. 2006).

4.1.3 DM and hot-coronal gas

The only component that we can start from the potential shape is the
DM component, because its presence is indirectly manifest but it is
not directly observed. We select a simple balance between gravity
and centrifugal forces for circular orbits to obtain the logarithmic
potential:

�DM (R, φ, z) ≡ v2
0,DM

2
log

(
h2

R,DM + R2 + q−2z2
)
, (21)

where v0 is the scale velocity, hR,DM the scalelength and q the
flattening factor. The density profile can again be obtained by use
of Poisson’s equation as

ρDM = v2
0

4πG

q2
(
h2

r,DM

(
2q2 + 1

) + R2 + 2z2
) − z2(

q2
(
h2

r,DM + R2
) + z2

)2 . (22)

No compelling reasons exist so far to split DM in more components
and the model does not consider substructures of the DM compo-
nent (e.g. Yoon, Johnston & Hogg 2011). We expect not to detect
granularity in the DM distribution from the kinematic anomalies of
the closest stars kinematics. In view of this, the presence of granu-
larity in the DM distribution, mimicking DM streams, are neglected
in our model.

We complete the review by mentioning that optionally we can
include axisymmetric components adding a hot coronal gas. This
does not influence the closest stellar dynamics of the MW stars
but in mass it is thought to contribute up to ∼5 × 1010 M� within
∼200 kpc from the MW galaxy centre (see e.g. Pasetto et al. 2012a,
and reference therein for a model including it).

4.1.4 Bulge

A separate work is in preparation on the kinematical treatment of
the central part of the Galaxy which is of course very important. Un-
fortunately, up to now the modelling of the bulge is still imprecise
and a subject of debate. A recent finding of Dékány et al. (2015)
shows an example of the ongoing research and constantly chang-
ing knowledge that we have about the central regions of the MW.
Nevertheless, in the total potential a bulge component has to be ac-
counted for and we adopt the following spherical density-potential
‘couple’ (Hernquist 1990) from which kinematics is implemented
too:⎧⎨
⎩

ρB (r) = MBhr,B

2πr(r+hr,B )3

�B (r) = − GMB

r+hr,B
,

(23)

where again the dependence of the scale parameters {MB, hr, B},
bulge mass and scale radius, respectively, from the stellar bulge
component is understood even though the subscript is omitted.

This series of equations represent the basic potential in axisim-
metric approximation. The chosen density parameters that we are
going to assume for these profiles are presented in Table 2 as results
of the technology that we are going to introduce in Section5.

These parameters are chosen in such a way that they nicely repro-
duce some important observational constraints (see also appendix
A of Pasetto 2005 and Pasetto et al. 2012c).

4.2 Axisymmetric SSP constraints

4.2.1 Circular velocity

To date several studies have covered the most important dynamical
constraints on the MW potential, i.e. its rotation curve, from several
data sets and with different techniques, both for the total stellar
rotation, for gas rotation or for single MW stellar populations (e.g.
Levine, Heiles & Blitz 2008; Xue et al. 2008; Deason, Belokurov
& Evans 2011; Deason et al. 2012; Fermani & Schönrich 2013;
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Figure 3. Circular velocities as a function of the radius and contribution
from each stellar component of the model of the galaxy. See the text for the
definitions of the equation for the rotation curve of each subpopulation.

Xin & Zheng 2013; Bhattacharjee, Chaudhury & Kundu 2014;
López-Corredoira 2014, to quote a few). From the potential adopted

here, we obtained the rotation curve analytically as vc =
√

r ∂�
∂r

,
where the individual components are not difficult to evaluate. Using
equation (21), we get for the DM component:

v2
c,DM = R2v0

2

R2 + h2
r,DM

; (24)

from equation (20) for the stellar halo profile we have

v2
c,H ∗ =

⎧⎪⎨
⎪⎩

4πG
r2(α+3)

r
rα�

∑
H ∗

ρ0,H ∗
(
rα+3 − hα+3

r,H ∗
)

hr,H ∗ < r

4πG
3

r
rα�

∑
H ∗

ρ0,H ∗hα
r,H ∗ r < hr,H ∗ ,

(25)

where we assumed the same α∀H ∗, H ∗ ∈ N indexing the stel-
lar populations, i.e. with a simple abuse of notation we wrote
v2

c,H ∗ = ∑NH∗
H ∗=1 v2

c,H ∗ with NH ∗ number of stellar halo populations
implemented in Table 2 (one in this case). For the bulge population
from equation (23), we get

v2
c,B = GR

∑
B

MB(
R + hr,B

)2 , (26)

with B ∈ N indexing the populations as above. The disc compo-
nents are only slightly more complicated by the presence of the
Bessel function that can be nevertheless handled numerically (e.g.
Abramowitz & Stegun 1972) from equation (15) in the form:

v2
c,D = 4πGR

∑
D

ρ0,D

∫ ∞

0
dk

1

hR,D

(
h−2

R,D + k2
)3/2

kJ1(kR)

h−1
z,D + k

,

(27)

where D ∈ N indexes the disc populations.
Finally in Fig. 3, we present the velocity curves of the various

components of the Galaxy according to the corresponding density
profiles already discussed above and with parameters summarized
in Table 2 as a result of the technique presented in Section 5.

4.2.2 Oort functions: O±

The slope of the rotation curve, locally related to the Oort’s con-
stants, has long been known to depend on the local gas content,
which does not monotonically vary with the radius and contributes
significantly to the local gradient of the rotation curve (Olling &
Merrifield 1998; Olling & Dehnen 2003; Minchev & Quillen 2007).
The profile of these functions outside the solar neighbourhood is
what we refer to as ‘Oort functions’. We will present in the next
section a map distribution of the gas content in relation to dust

distribution and extinction (Fig. 8). In the future, the estimation
of the Oort function will represent a challenge for large kine-
matic surveys such as Gaia. The Oort functions are defined as
O±(R) ≡ ± 1

2 ( vc

R
∓ dvc

dR
). Perhaps the greatest difficulty in estimat-

ing the Oort functions derives from the presence of the derivatives in
their definition. Unfortunately, current observations of the rotational
motion of the MW are not good enough to allow a calculation of
the derivatives in O±(R) directly from the data (Kerr & Lynden-Bell
1986; Hanson 1987). It is also possible to determine O+ − O− = vc

R

in an independent way from the individual values of O+ and O−

from proper motion surveys in the direction l = 90◦ or l = 270◦.
Because along these directions the stars have a small dependence on
the Galactocentric radius so the estimations are less affected by the
radial dependence of the Oort functions. Finally, the combination
− O−

O+−O− can be estimated from the velocity ellipsoid of random
stellar motions. For the first function O+ ≡ O+(R), a compact for-
mulation can be obtained as follows. For the DM component,

O+
DM(R) = 1

4vc

2R3v2
0(

R2 + h2
r,DM

)2 , (28)

for the stellar halo components of Robin’s density profiles

O+
H ∗ (R) = −πG

vc

r−α�
(α + 3) r2

∑
H ∗

ρ0,H ∗
(
αrα+3 + 3hα+3

r,H ∗
)
, (29)

for hr,H ∗ < r , while it is clearly null inside the scale radius. For the
bulge components’ contribution, we can write

O+
B (R) = GMB

4vc

∑
B

3R + hr,B

(R + hr,B )3 , (30)

and finally for the stellar discs contribution we can write

O+
D (R) = πGR

vc

∑
D

ρ0,D

hR,D

∫
R

dk
k2J2(kR)

h−1
z,D + k

1(
h−2

R,D + k2
)3/2 . (31)

Analogously for the O− function, we can write for the DM compo-
nent

O−
DM(R) = v2

0

2vc

R3 + 2Rh2
r,DM(

R2 + h2
r,DM

)2 , (32)

for the stellar halo it reads

O−
H ∗ (R) = πG

vc

r−α�
(α + 3)r2

∑
H ∗

ρ0,H ∗
(
(α + 4)rα+3 − hα+3

r,H ∗
)
. (33)

Differently from O+, the contribution from the stellar halo in the
central zones for Robin’s profile is not null, but

O−
H ∗ (R) = 16πGr

3

∑
H ∗

ρ0,H ∗

(
hr,H ∗

r�

)α

, (34)

for r � hr,H ∗ . The level of this contribution is nevertheless ex-
tremely weak and added here only for completeness. Effectively,
it is null compared with the dominant contribution of the bulge
component:

O−
B (R) = 1

4vc

∑
B

GMB

R + 3hr,B

(R + hr,B )3 . (35)

Finally, the most significant contributions that account for star and
the local gas distributions are given by

O−
D (R) = 4πG

∑
D

ρ0,D

hR,D

∫
R

dk
k

h−1
z,D + k

kRJ0(kR) + 2J1(kR)(
h−2

R,D + k2
)3/2 .

(36)
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With this equation and the parameters of Table 1, we obtain the
following values at the solar position: O+ = 15.1 km s-1 kpc-1 and
O− = −13.1 km s-1 kpc-1. For comparison, the study of Hipparcos
proper motions by Feast & Whitelock (1997a,b) yield O+(R�)
= 14.8 ± 0.8 km s-1 kpc-1 and O+(R�) − O−(R�) = 27.2 ±
0.9 km s-1 kpc-1 and by Dehnen & Binney (1998) yield O+(R�)
= 14.5 ± 1.5 km s-1 kpc-1 and O+(R�) − O−(R�) = 27.20 ±
1.5 km s-1 kpc-1.

4.2.3 Vertical force

The last significant constraint that we consider in the determination
of the MW potential is the force acting vertically on the plane. This
constraint is of paramount importance to tune the vertical profiles
of the disc and the vertical epicyclic oscillations of the orbits, thus
several studies have investigated the vertical structure of the MW on
the basis of different observations (Haywood, Robin & Creze 1997;
Chen et al. 2001; Soubiran, Bienaymé & Siebert 2003; Levine et al.
2008; Bovy et al. 2012b; Jałocha et al. 2014). We determine the
vertical force at any location within the galaxy as follows.

For the DM component, we evaluate the vertical gradient of the
potential at any radial and vertical location as

Fz,DM = v0
2z

q2
(
R2 + h2

r,DM

) + z2
, (37)

that retains information of the flattening parameter q of the DM halo.
Unfortunately, the alignment of the DM halo component with the
principal axis of symmetry of the gravitational potential is far from
clear. The triaxiality and the directions of the eigenvectors of the
inertia tensor of the DM mass distribution is at present unknown and
the problem of the stability of rotating discs inside triaxial haloes
is weakly understood from the theoretical point of view and still a
matter of debate (e.g. Debattista et al. 2013, and reference therein).
We will take q into account only for completeness and eventually
add a flattening of the DM profiles while moving inward in the
Galaxy. For the stellar halo components, the same computation
yields

Fz,H ∗ (R, z) = 4πGzr−α�
α + 3

∑
H ∗

ρ0,H ∗

(
rα − hα+3

r,H ∗

r3

)
, (38)

for
√

R2 + z2 = r > hr,H ∗ , and

Fz,H ∗ (R, z) = 4πG
∑
H ∗

ρ0,H ∗z

3
r−α� hα

r,H ∗ , (39)

otherwise. Analogously for the bulge components, we get

Fz,B (R, z) = z√
R2 + z2

∑
B

GMB(√
R2 + z2 + hr,B

)2 . (40)

Finally, for the disc component we get

Fz,D(R, z) = 4πG
∑

D

ρ0,D

hR,Dhz,D

×
∫

R

dk
ek|z| − eh−1

z,D
|z|

k2 − h−2
z,D

kJ0(kR)e
−|z|

(
h−1

z,D+k
)

(
h−2

R,D + k2
)3/2 . (41)

Our MW potential model with the values of Table 2 presents a value
of |Fz(1.1kpc)|

2πG
= 70.0 for the total vertical force on the plane that

match exactly the standard literature values of Kuijken & Gilmore
(1989b, see also Kuijken & Gilmore 1989a,c) and |Fz(2.0kpc)|

2πG
= 87.9

at the solar potion R� = 8.0 and φ� = 0.0 (e.g. see Bienaymé
et al. 2014, for compatible values at R� = 8.5). We consider these
as the major contributors to the shape of the underlying MW po-
tential. Adding other constraints will not significantly change the
distribution of the stars in the CMDs and their kinematics.

4.2.4 Further constraints

By integrating the density profiles of equations (14), (19), (22) and
(23), we obtain the total mass as a direct sum of the mass of the
components. For the DM this integration reads

MDM = v0
2

G

r3
max

r2
max + h2

r,DM

, (42)

for the stellar halo components

MH∗ = 4πr�−α

3 (α + 3)

∑
H ∗

ρ0,H ∗

d0,H ∗

(
3rα+3

max + αhα+3
r,H ∗

)
, (43)

for the bulge

MB = 4πGr2
max

∑
B

MB(
hr,B + rmax

)2 , (44)

and for the discs, by proceeding arbitrarily with an integration in
cylindrical coordinates, we can write

MD = 4π
∑
D

ρ0,De−Rmaxh−1
R,D

h−2
R,Dh−1

z,D

(
eRmaxh−1

R,D − Rmaxh
−1
R,D − 1

)
. (45)

With the parameters in Table 1, we obtain a total mass of
M = 1.12 × 1012 M� for rmax = 100 kpc (e.g. Olling & Merrifield
2001; Gerhard 2002; Klypin, Zhao & Somerville 2002; Widrow,
Pym & Dubinski 2008; Xue et al. 2008; McMillan 2011; Bhat-
tacharjee et al. 2014; Bratek et al. 2014; Kafle et al. 2014; Licquia
& Newman 2015; Huang et al. 2016). This constraint has several im-
plications on the orbits of the dwarf galaxy satellites of the MW, and
several studies have focused on total mass determination and on the
escape speed from the MW (e.g. Dehnen & Binney 1998; Wilkinson
& Evans 1999; Smith et al. 2007; Xue et al. 2008; McMillan 2011;
Licquia & Newman 2013; Bhattacharjee et al. 2014).

Finally, the determination of the local surface mass density
is tightly related to the integration presented for the total mass.
This is computed in our modelling only for the disc components

�D = 2
∑
D

ρc,D

h−1
z,D

e−Rh−1
R,D . This is a relevant constraint especially in

relation to the disc modelling of the spiral arms that we are going to
present here. With the parameters of Table 1, we estimate a value of
�D = 41 M�pc-2 at R = R�.

We do not consider here a few other issues of minor impor-
tance that a standard axisymmetric model should take into account
such as, e.g. the terminal velocities for the inner Galaxy (Vallenari
et al. 2006). Although it may provide a better constraint than Oort’s
constants for an axisymmetric galaxy, it severely affected by non-
circular motions of the ISM. Its interpretation needs much more
precise mapping of the galactic gas distribution (see also Golubov
& Just 2013; Chemin, Renaud & Soubiran 2015). In this respect,
Section 6.2.1 we will present our new non-axisymmetric distribu-
tion of gas.

5 M AC H I N E L E A R N I N G

To obtain values representative of the MW stellar, gas and
DM components (Table 2) we tune the free parameters of the
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density-potential couples formulated in the previous section on the-
oretical and observational constraints. The choice to represent a
given set of data with a fixed number n of SSP is one of the ma-
jor underlying constraints that we have adopted in our formalism.
This forced us to a statistical interpretation of parametric-nature
and hence a supervised-machine learning approach. Unsupervised
learning in the framework of neural networks will be explored in a
future investigation (Pasetto 2016, in preparation).

Within this parametric approach, among the most sophisticate
and robust techniques available to date are the genetic algorithms.
A genetic algorithm is an adaptive stochastic optimization algo-
rithm involving search and optimization, and it was first introduced
by Holland (1975). Holland created an electronic organism as a
binary string (‘chromosome’), and then used the genetic and evo-
lutionary principles of fitness-proportionate selection for reproduc-
tion, random crossover, and mutation to explore the space of so-
lutions. The so-called ‘genetic programming languages’ apply the
same principles using an expression tree instead of a bit string as
a ‘chromosome’. In astronomy, the Pikaia genetic algorithm has
been already considered in the galactic kinematics in (see 2005
Pasetto, PhD thesis, Charbonneau 1995; Metcalfe & Charbonneau
2003). We consider the following quite generic task to model a
given data set with a set of adjustable parameters. This task consists
of finding the single parameter set that minimizes the difference
between the model’s predictions and the data. A ‘top-level’ view
of the canonical genetic algorithm for this task can be read as fol-
lows: we start by generating a set (‘population’) of trial solutions,
usually by choosing random values for all model parameters; then
evaluate the goodness of fit (‘fitness’) of each member of the current
population (e.g. through a chi-square measure with the data). Then
the algorithm selects pairs of solutions (‘parents’) from the current
populations, with the probability of a given solution being selected
made proportional to that solution’s fitness. It breeds the two so-
lutions selected and produces two new solutions (‘off-spring’). It
repeats the selection of the population and its progeny until the num-
ber of off-springs equals the number of individuals in the current
population by replacing the new population of off-springs over the
old one. It then repeats the whole sequence until some termination
criterion is satisfied (i.e. the best solution of the current population
reaches a fit goodness exceeding some preset value).

A genetic-algorithm based approach to a given optimization task,
as defined above, resembles a kind of forward-modelling: no deriva-
tives of the fit function goodness with respect to model parameters
is needed to be computed. Nothing in the procedure outlined above
depends critically on using a least-squares statistical estimator; any
other robust estimator could be used, with little or no change to the
overall procedure. In the kinematical applications, the model needs
to be evaluated (i.e. given a parameter set, compute a synthetic data
set and the associated goodness of fit).

In the process of CMD fitting, the genetic algorithm has a long
history in the Padua group starting from the works of Ng et al.
(2002) and has been implemented in the kinematic fitting of ob-
servational data in Vallenari et al. (2006). The algorithm has been
run on true data to reproduce radial velocities (Gilmore, Wyse &
Norris 2002), the GSC-II proper motion catalogue Vallenari et al.
(2006) and the RAVE data set equipped with 2MASS proper mo-
tions in Pasetto et al. (2012d, 2012c). The detailed study of the MW
potential is beyond the goal of this paper (and maybe meaningless
at the sunrise of the Gaia-era), but we limit ourselves to present in
Table 1 the guest parameters for the MW potential just introduced
and achieved so far. They will represent the starting values of the
founding potential that we are going to perturb in the next section

to obtain the spiral arms description which represents the core of
this work.

6 D ENSI TY DESCRI PTI ON O F
NON-AXI SYMMETRI C FEATURES

The axisymmetric potential that we have introduced above and
summarized in equation (2) represents the starting point for the
perturbative approach that we introduce hereafter.

As previously anticipated, the first framework that we are intro-
ducing is the DWT. It deals in its original form with the description
of the in-plane motion of the stars in a spiral galaxy. It is a lin-
ear response theory for an unperturbed generalized Schwarzschild
distribution function (SDF):

Q ≡ (v − v̄)T σ−1
v (x; t) (v − v̄) ,

f Sch ≡ e−1/2Q(x)+η,
(46)

where Q is a quadratic positive definite form, σv(x; t) a second rank
symmetric tensor defined in equation (9), η(x) a continuous and
differentiable scalar function and with the superscript (∗)T, we refer
to the transpose of an array and with (∗)−1 to the inverse element
of an array (not the inverse matrix). It is normalized accordingly
with (2π)−3/2|σ |−1/2e−η/2 ≡ (2π)−3/2|σ |−1/2�0(R). We will recall
in what follows the basis of this theoretical framework of the DWT
without explicit proof, but we will present a new hypergeometric
form for the expression of the first moments of the perturbed DF that
were previously known only in an integral form. We will highlight
the advantages of our formulation.

The second perturbative framework adopted here has been devel-
oped by Amendt & Cuddeford (1991) and it has been previously
adopted in our modelling technique by Pasetto, PhD thesis 2005 in
Vallenari et al. (2006). Here, we will only recall the theoretical ba-
sis of this second perturbative framework dealing with the vertical
behaviour of the kinematics above and below the disc plane, and
we will compare it with the DWT. In the axisymmetric case, the
matrix σv(x; t) acquires an especially simple diagonal form and the
dependence of the three non-null diagonal terms has been already
introduced in Section 4.1.1.

6.1 Linear response theory to a spiral perturbation pattern

The most popular self-consistent fully analytical treatment available
in literature to study the spiral arms is based so far on the DWT
proposed by Lin et al. (1969) and Marochnik & Suchkov (1969a,b).
In these works, a sinusoidal perturbation to the axisymmetric poten-
tial for a discoidal stellar distribution is considered. This description
stands on two theoretical pillars of the stellar dynamics: the epicy-
cles approximation theory and linear response theory to Boltzmann
collisionless equation (see also Section 2). Here, we limit ourselves
to introduce the basic functions as definitions, without proofs, for-
warding the reader to specialized text on stellar dynamics for a
coherent exposition of these topics (e.g. Bertin 2014). If we perturb
an axisymmetric potential with a sinusoidal wave, we need to search
for the self-consistent condition for a potential of a spiral drawn by
a shape-function ψ(R) ≡ −2 cot(p) log( R

R0
) where p is the pitch

angle p ∼ 8◦, R0 is the starting radius of the spiral perturbation, R0

∼ 2.6 kpc, and m = 2 is the number of spiral arms that we assume.
The values adopted here are examples for the MW case but they
have not been deduced through data analysis of Section 5. A large
literature review has been presented in Section 1.1 from where we
extracted the adapted values for the exercise presented below. The
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variable �p is the rotation pattern of the spiral structure; the theory
so far is developed for a constant �p, even though no strong obser-
vational constraints are available to justify this assumption. Recent
N-body simulation studies suggest �p = �c(R), where �c(R) is the
angular speed at R (e.g. Wada, Baba & Saitoh 2011; Grand, Kawata
& Cropper 2012a), while the other studies interpret the spiral arms
in N-body simulations as overlapping multiple-density waves cov-
ering different radial ranges, with different pattern speed,

∑
i �p,i .

and slower pattern speeds in the outer region (Roškar et al. 2012;
Sellwood & Carlberg 2014). Nevertheless, no strong observational
evidence is available to date to formalize �p = �p(R, φ, z; t).

In what follows, we will simply assume �p ∼ 35.0 km s−1 kpc−1.
We define �a(R) ≡ −�a

0R e−R/hs to be amplitude of the spiral arm
potential profile, where an indicative scalelength hs ∼ 2.5 kpc is
assumed and �a

0 ∼ 887.0 km2s−2kpc−1 from Roca-Fàbrega et al.
(2014). These numerical values are taken from the literature re-
viewed in Section 1.1 and are of illustrative nature to the present
capability of our modelling approach alone. They are not meant to
be best-fitting values through the technology explained in Section
5 to any particular survey.

The DWT is developed in epicycle approximation. The epicycle
approximation is probably the weakest of the assumptions adopted
in our model. In the next section, we will review some observational
evidence of the failure of this approximation in the solar neighbour-
hood. Here, we proceed simply by adopting the modification that the
perturbative linear approach induces on this approximation, without
presenting a critical review, even though improved tools are already
available (Dehnen 1999a). The main role of this approximation is
to decouple in equation (46), the radial/azimuthal from the verti-
cal direction thus simplifying them. From the potential introduced
in the previous sections, we can define the rotation frequency as
�(R) ≡ vc

R
together with its derivative ∂�

∂R
= 1

R
∂vc

∂R
− vc

R2 . The radial

epicycle frequency is then given by κ = 2�
√

1 + R
2�

∂�
∂R

. Finally,
recalling that the wavenumber is the derivative of the shape function
introduced above, k = ∂ψ

∂R
, we can compute Toomre’s number as

X ≡ k
κ
σRR. In our approach, Toomre’s number can eventually ac-

quire a vertical dependence trough the velocity dispersion profiles
introduced above (equation 17). Because a self-consistent theory
for the vertical motion of the stars in the presence of spiral arms
is missing, a large freedom is left to the researcher to investigate
different approaches.

After the introduction of these quantities, we are in the position
to make use of the results of Lin et al. (1969). A solution of the
evolution equation (i.e. the linearized Boltzmann equation) ι∂f1

∂t
−

B0[f1] − B1[�1] = 0 is considered in the form:

f1 (x, v; t) =
∫ t

−∞

〈
∇x′�1,

∂f Sch
(

x′, v′)
∂v′

〉
dt ′, (47)

with natural boundary conditions f1 → 0 as t → +∞. Here,
〈∗, ∗〉 represents the standard inner product. Under the assump-
tion that the perturbations take the form of spiral waves �1(x; t) =
�a(R)eι(mφ−ωt+∫ R

kdR), in a ‘tightly wound’ approximation, i.e. |kR|

 1, we get rapidly to the form for the perturbed DF on the plane
as

f1 = − �1

σ 2
RR

f Sch

⎛
⎜⎝

1 − sinc−1 (νπ ) ×

× 1

2π

∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ

⎞
⎟⎠ , (48)

with sinc−1(νπ) ≡ sin(νπ)
νπ

the ‘sinc’ function, where we set here for

simplicity the frequency ratio ν ≡ ω−m�p

κ
, and 1

γ 2 ≡ σ 2
φφ

σ 2
RR

= κ2

(2�)2

in agreement with the hypothesis underlying equation (18). Finally,
we simplified the notation writing the peculiar velocities as v − v̄ =
{ vR

σRR
, γ

vφ−vc

σRR
, vz

σzz
} = {u, v, w}.

We are ready now to proceed to compute the first-order moments
of this DF that we adopted in our kinematic model. The moment
of order zero and one was already carried out in numerical form by
the authors in appendix A of Lin et al. (1969) to the first order, and
the second-order central moments were recently proposed by Roca-
Fàbrega et al. (2014) in a work focused on the vertex deviation and
the bracketing of the resonances. Nevertheless, in the original work
by Lin et al. (1969) and in the work Roca-Fàbrega et al. (2014),
the numerical integral was passed over in favour of a more compact
analytical formalism, and the divergences due to the resonances
were not considered.

We present here a different solution for these moments in the
form of hypergeometrical functions instead of numerical integrals.
We will underline later the advantages of our formulation in the
context of the present modelling approach. We will also offer
a necessary solution to cover the resonances and to make the
model suitable for the star-count approach that we are developing
here.

6.1.1 Zero-order moments of the perturbed DF

The family of the perturbed density profiles result as the zero-order
moment of the total DFs given by f = fSch + f1 with fSch defined by
equation (46) and f1 by equation (48). We write

�(R, φ; t) ≡
∫

R3
f dvRdvφdvz =

∫
R3

(
f Sch + f1

)
dvRdvφdvz.

(49)

By exploiting the notation introduced above, we can write

�1

�0
=

∫
R3 f1dvRdvφdvz∫

R3 f SchdvRdvφdvz

= − �1

σ 2
RR

1

�0

∫
R2

(
1 − sinc−1 (νπ) (50)

× 1

2π

∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ

)
f Schdu dv dw,

and in particular, we reach the form

� = �0 + �1

= �0 − �0
�1

σ 2
RR

(
1

�0

1

2π

∫
R3

(
1 − sinc−1(νπ ) (51)

×
∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ

)
f Schdu dv dw

)
,

which is the obvious generalization of the work of Lin et al.
(1969) to the case of vertical velocity DFs. If we remember that∫

R3
1

(2π)3/2 e−(u2+v2+w2)dudvdw = 1, the terms inside the external
brackets reads simply

= 1 − sinc−1(νπ )

2π

∫
R3

du dv dw e− u2+v2+w2
2

× 1

(2π)3/2

∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ .

(52)
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Figure 4. Left-hand panel: on-the-plane section of the perturbed density profile from equation (56) at φ = 0. The blue line is the profile with singularity at
the resonance location R = Rres, the red line is the analytical continuation from Rres ± εR with εres = 1.4kpc and the underlying green profile is the overall
profile continued over the resonance (see the text for details). Right-hand panel: same green perturbed density profile of left-hand panel but for a random set
of varying φ angles (and random colour). The purpose is just to show how smooth the passage is between one line and another at different φ−s.

At this point, by changing the integration order, we can obtain

= − sinc−1 (νπ)

2π

1

(2π)3/2

∫ π

−π

dτ

×
∫

R3
dudvdwe− u2+v2+w2

2 eι(sτ+X(u sin τ+v(1+cos τ )))

= − sinc−1 (νπ)

2π

∫ π

−π

dτ (eιντ−X2(1+cos τ ))

= − sinc−1 (νπ)

2π

∫ π

−π

dτe−X2(1+cos τ ) (cos (ντ ) + ι sin (ντ ))

= − sinc−1 (νπ)

2π

∫ π

−π

dτe−X2(1+cos τ ) cos (ντ )

= −⎛
⎝ 1

2
, 1

⎞
⎠ F̃(1−ν,1+ν)(−2X2)

≡ −(
1
2 ,1

) F̂(1−ν,1+ν).

(53)

Here, we introduced the generalized hypergeometric function:

2F̃2 (a1, a2; b1, b2; z) ≡ 2F2 (a1, a2; b1, b2; z)

�(b1)�(b2)

= 1

�(b1)�(b2)

∞∑
k=0

(a1)k(a2)k
(b1)k(b2)k

zk

k!
,

(54)

with (a)n ≡ a(a + 1) . . . (a + n − 1) = �(a+n)
�(a) the Pochhammer

symbol and � the Eulero Gamma function. In particular, we ad-
vance the notation of the hypergeometric function to

(a1,a2)F̂(b1,b2) ≡ 2F̃2

(
a1, a2; b1, b2; −2X2

)
. (55)

We can then recollect the terms to express the density in a compact
way as

� = �0 + �1

= �0

(
1 − �1

σ 2
RR

(
1−(

1
2 ,1

) F̂(1−ν,1+ν)

))

= �0

(
1 − �1

σ 2
RR

X2

1 − ν
�

)
.

(56)

This represents the formula for the density profile perturbed by the
spiral arms that we are going to implement.

As a corollary of this result, it is evident that we are able for the
first time to propose a form for the ‘reduction-factor’ �. This was

historically introduced in Lin et al. (1969) as the factor to which
we have to reduce the response of a stellar disc below the value of
a cold disc (this is presented by direct integration in Appendix A
too). This compact formulation of the density perturbation due to
spiral perturbations presents extremely rapid computation benefices
because of the presence of the hypergeometric function 2F2. This
will turn out to be especially useful for a technique that wants to
be able to realize mock catalogues, where these integrals have to be
computed a larger number of times to span a huge parameter space
or to realize a high number of stars by populating PDFs. The plot of
the density profiles for the values of the potential of Table 2 and the
parameters assumed above are in Fig. 4. As evident from the plot,
the previous equation (56) presents a singularity at the resonances
that we are going to treat in the next section.

6.1.2 Interpolation schemes over the resonances

As evident from Fig. 4, at the radius where the resonances are located
(i.e. wherever 1 − ν = 0) a divergence in the density profile of � is
present. To satisfy the normalization equation (3), we need to cover
this divergence. From Fig. 4, it is evident how the closure required
by the stellar population theory in equation (3) (in the special case of
equation 13 and 46) leads to a failure of the normalization condition.
The PDF generated by equation (56) cannot be populated in a star-
count dot-by-dot fashion because of the infinite number of stars
necessary to fill the locality of the radius R = Rres.

Two are the options immediately available at this point that we
tested.

(i) We can apply a bilinear interpolation in cylindrical coordi-
nates. We solve the condition of continuity �|p1 = a10 and differ-
entiability {∂�

∂R
, ∂�

∂φ
, ∂�

∂R∂φ
}p1 = {a11, a12, a13} in each of the four

points of the grid where the potential scheme introduced above has
been valued. The linear matrix for the system of 16 equations in 16
unknowns is invertible and can be solved for two radii, one internal
to the Lindblad resonance Rres − εR, and one external to it, at Rres +
εR. Finally the function equation (56) is extended (as the red curve
in Fig. 4).

(ii) We can develop the function equation (56) on a orthogo-
nal set of basis in cylindrical coordinates (e.g. the Bessel function
Jα introduced in Section 4). Then we can mimic the behaviour
of the DF �(R) ∼ ∑∞

n=1 cnJα,n(R) where Jα,n(R) ≡ Jα(zα,n
R

Rmax
)

and zα, n is the zero of the Bessel function Ja, with coefficients
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Figure 5. Left-hand panel: the integral of the continued density profile �sp (green) and the unperturbed axisymmetric (orange). Right-hand panel: integration
profile at different azimuthal directions φ, each for each colour, versus εR.

cn = 〈�,Jα,n〉
〈Jα,n,Jα,n〉 . This approach passes through a long computing of

inner products and hence is very slow, it does not respect precisely
the values of the original � and, while it can be worked out effi-
ciently once eigenfunctions of the Laplacian operator are consid-
ered, it loses efficiency when the purpose is to cover the resonances
on the velocity space.

To bypass these difficulties encountered, we developed here a
general scheme that works rapidly both for the treatment of reso-
nances on the densities (i.e. first-order moments of fSch) as well as
for resonances for the moments of higher order (mean, dispersion
etc.).

To achieve this goal, we proceed to investigate here a method
that only extends a given profile function along the radial direction
R with a polynomial P of degree deg(P ) = 4, i.e. P = ∑4

i=0 cix
i .

The methodology can of course work equally well with deg(P ) = 3
to match the number of constraints at the points P(Rres − εR) and
P(Rres + εR) where it is valued together with its derivative. Nev-
ertheless, the same scheme with deg(P ) = 4, allows us to impose
to the first- and second-order moments closer values to the corre-
sponding unperturbed functions, thus allowing us to gently reduce
the perturbations to the density and velocity fields to zero if desired.

The reason for this polynomial solution to work is the azimuthal
symmetry of the underlying unperturbed model. As evident from
the condition of resonances, 1 − m(�p−�(R))

κ(R) = 0, the divergences
have no dependence on the azimuthal angle φ. In the framework
of the DWT, we can individuate the resonances location only by
analysis of the radial direction R. The results of this interpolation
scheme are presented in Fig. 4 (right-hand panel), where a very
close azimuthal spanning is operated to check the validity of the
continuation polynomial scheme presented, with evidently satisfac-
tory results.

The choice of the exact value that the scheme induces at the
resonance is by itself a free parameter that we investigate here
below.

6.1.3 The choice of the interpolating radius

The only parameter left unspecified in this interpolation scheme
is the radius at which the scheme has to take over the DWT pre-
dictions. This is a single parameter, one condition is sufficient to
fix it and the most natural one is based on the continuity equation.
We require that the difference in mass between the continued �sp

and the unperturbed �0 axisymmetric density distributions are the

same (see Fig. 5)

� (εR) =
∫

R+×[0,2π[

(
�0 − �sp (εR)

)
RdRdφ. (57)

This condition is equivalent to minimize the impact of the arbitrary
shape that we chose to use to cover the resonances. If we convolve
the integrals over all the angular directions we obtain Fig. 5 (right-
hand panel). As is evident in the figure, the minimal difference
between the integrated mass predicted by �0 and �sp is achieved
for εR ∼ 1.5 kpc. Finally in Fig. 6, the plot of the density profiles
in the plane and above and below the plane are shown.

A black line marks the solar radius: the solar location is assumed
to be at φ� = 0 but it is not a result of an investigation of any
data set. So far all the values obtained in Table 2 are the results
from studies in the axisymmetric formalism of Section 4. A non-
axisymmetric investigation of the solar position in the MW plane
is within the DWT framework is, to our knowledge, not available
(and beyond the goal of this paper).

The vertical density profile of the spiral arms is not directly
obtained from the DWT, which is developed only in the plane.
Here, we are not searching for a self-consistent determination of the
density profile, instead we assume decoupling of the vertical and
radial profile in the configuration space assigning the axisimmetric
density profile of the disc stellar population to the spiral arms profile
too (Fig. 7).

As evidenced in the figure, the effect of the spiral arms is a tiny
contraction of the vertical profile with respect to the corresponding
unperturbed one. This is in response to the dependence of the density
profiles to the velocity dispersions. Because of equation (9), i.e. the
so-called ‘age–velocity dispersion’ relation evident in the MW, the
older the SSP of the spiral arm is, the smaller is this contraction.

6.2 CMDs of spiral features

Once the density is computed, we know the relative contribution of
all the stellar populations that we want to implement in our model
(Table 1). At a given distance, we compute the synthetic photometry
of an observed FOV by distributing the SSPs, or the stars, along the
density profiles according to their relative contribution. The new
approach presented in Section 2 allows us to use virtually any data
base available in literature (and this part of the software is freely
available upon request to the authors). If we want to include the
treatment of the spiral arm density distribution on the photometry,
the major problem is the extinction along the l.o.s. It has to be
accounted for accordingly with the spiral arm distribution of the
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Figure 6. Left-hand panel: density profile in the plane of the MW. The Sun is located at {R, φ, z}� = {8.0, 0.0}[kpc]. A black circle suggests the solar
radius, despite a fixed position for φ� not being investigated here, it is assumed φ� = 0 [deg] for simplicity. The figure shows the plane at z = 0. Right-hand
panel: out of plane density distribution for two slices symmetric below and above the plane.

Figure 7. Vertical profile of the spiral arm component at R = 6, 8 and
10 kpc (solid lines). The unperturbed exponential is added for comparison
with a dashed line.

stars and the gas. In particular, if we want to populate a PDF rep-
resentative of a CMD for the stellar density distribution computed
with the density profiles introduced above, we need an extinction
model accounting for a gas distribution following the spiral arms
distribution too.

To account for this extinction, we developed a model of gas
distribution based on the spiral density profiles introduced above,
but for cold discs (� = 1 in equation 56).

6.2.1 Extinction model

While propagating throughout a galaxy, the intensity of the star light
decreases because of absorption and scattering due to the presence

of interstellar dust. The combined effect, called extinction, has to be
taken into account in order to derive the stars intrinsic luminosity
from its observed flux. In order to predict the effect of interstellar
dust on the observed CMDs, we calculated the extinction towards
each SSP or each star in our model galaxy as follows.

We assumed that the dust is traced by the gas in our galaxy
model and that its density, relative to the gas density (shown in
Fig. 8), as well as its optical properties, are well described by
the dust model of Draine & Li (2007). This dust model has been
calibrated for the dust extinction curve, metal abundance deple-
tion and dust emission measurements in the local MW. From this
dust model, we consider the extinction coefficient kλ,ext per unit
gas mass. From kλ,ext and the gas density distribution, ρISM, we
derive the optical depth crossed by the star light along the path be-
tween each star and the observer (located at the sun position): τλ =∫ ∗
� kλ,extρISMdrhel. Then, the extinction in magnitudes is derived as

Aλ = 2.5τλlog e.
The determination of the predicted observed flux of a star taking

into account dust extinction in a galaxy model is affected by several
caveats. First, the optical properties of the dust are known to change
substantially for different l.o.s. within the MW (e.g. Fitzpatrick
1999). Therefore, any MW dust model can only be interpreted as an
average model for many directions within the Galaxy. Furthermore,
the amount of obscuration due to the dust is known to change
significantly between the ‘diffuse’ and ‘dense’ ISM. In particular for
very young stars, still embedded in their parent molecular cloud, our
approach is surely underestimating their extinction (since the Draine
& Li 2007 model is calibrated for the diffuse ISM and molecular
clouds are not resolved in our model for the gas distribution). In
this work, we assumed that the dust follows the gas distribution
within our galaxy model and that the dust optical properties are
uniform. Although quite simple, this approach is sufficient to show
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MW Galaxy model 2397

Figure 8. ISM gas distribution from equation (56). Note that this kind of
density plots map a linear (i.e. R) and an angular (i.e. φ) quantity over square.
This is causing strong distortions over the range of R > 8 kpc and careful
attention has to be paid in its interpretation.

the general effect of the presence of spiral arms on the predicted
CMD (Fig. 10).

6.2.2 Sources of stellar tracks, isochrones, SSPs in different
photometric systems

We adopt the stellar models and companion isochrones and SSPs
with magnitudes and colours in various photometric systems of the
Padua data base because they have been widely tested and used
over the years in many areas of observational stellar astrophysics
going from the CMDs of stellar clusters, to populations synthesis
either star-by-star or integral photometry (magnitudes and colours)
or spectral energy distributions, and others.

(i) Stellar tracks. We will not review the physics of these stellar
tracks here but we just mention that over the years, these mod-
els were calculated including semiconvection in massive stars (e.g.
Chiosi & Summa 1970), ballistic-convective overshooting from the
core (Bressan, Chiosi & Bertelli 1981), overshooting from the bot-
tom of the convective envelope (Alongi et al. 1991), turbulent diffu-
sion from the convective core and convective shells (Deng, Bressan
& Chiosi 1996a,b; Salasnich, Bressan & Chiosi 1999), plus sev-
eral additional improvements and revisions (Alongi et al. 1993;
Bertelli et al. 1994; Fagotto et al. 1994a,b; Bertelli & Nasi 2001;
Bertelli et al. 2003, 2008, 2009). The stellar models in use are those
by Bertelli et al. (2008, 2009), which cover a wide grid of he-
lium Y, metallicity Z, and enrichment ratio �Y/�Z. The associated
isochrones include the effect of mass-loss by stellar wind and the
thermally pulsing AGB phase according to the models calculated
by Marigo & Girardi (2007).

(ii) The data base of SSPs. We briefly report here on the data base
of isochrones and SSPs that has been calculated for the purposes of
this study. The code in use is the last version of YZVAR developed
over the years by the Padova group and already used in many
studies (for instance Chiosi & Greggio 1981; Chiosi et al. 1986,
1989; Bertelli et al. 1995; Ng et al. 1995; Aparicio et al. 1996;
Bertelli & Nasi 2001; Bertelli et al. 2003) and recently extended to
obtain isochrones and SSPs in a large region of the Z − Y plane.
The details on the interpolation scheme at given �Y/�Z are given
in Bertelli et al. (2008, 2009). The present isochrones and SSPs are
in the Johnson–Cousins–Glass system as defined by Bessell (1990)
and Bessell & Brett (1988). The formalism adopted to derive the
bolometric corrections is described in Girardi et al. (2002), whereas
the definition and values of the zero-points are as in Marigo &
Girardi (2007) and Girardi et al. (2007) and will not be repeated
here. Suffice it to recall that the bolometric corrections stand on
an updated and extended library of stellar spectral fluxes. The core
of the library now consists of the DFNEW ATLAS9 spectral fluxes
from Castelli & Kurucz (2003), for Teff ∈ [3500, 50 000] K, log10g ∈
[ − 2, 5] (with g the surface gravity), and scaled-solar metallicities
[M/H] ∈ [ − 2.5, +0.5]. This library is extended at the intervals
of high Teff with pure blackbody spectra. For lower Teff, the library
is completed with the spectral fluxes for M, L and T dwarfs from
Allard et al. (2000), M giants from Fluks et al. (1994), and finally
the C star spectra from Loidl, Lançon & Jørgensen (2001). Details
about the implementation of this library, and in particular about the
C star spectra, are provided in Marigo & Girardi (2007). It is also
worth mentioning that in the isochrones we apply the bolometric
corrections derived from this library without making any correction
for the enhanced He content which has been proved by Girardi et al.
(2007) to be small in most common cases.
The data base of SSP cover the photometric projection of any rea-
sonable EMW. The number of ages Nτ of the SSPs are sampled
according to a law of the type τ = i × 10j for i = 1, . . . , 9 and
j = 7, . . . , 9, and for NZ metallicities are Z = {0.0001, 0.0004,
0.0040, 0.0080, 0.0200, 0.0300, 0.0400}. The helium content asso-
ciated with each choice of metallicity is according to the enrichment
law �Y/�Z = 2.5. Each SSP has been calculated allowing a small
age range around the current value of age given by �τ = 0.002 × 10j

with j = 7, . . . , 9. No α-enhanced or He-enhanced tracks are in use
in this example (e.g. α-enhanced tracks can easily be taken from an
external data base, e.g. Pietrinferni et al. 2006 or He-enhanced from
Bertelli et al. 2008), and interpolated as in the previous scheme, al-
though this extra-dimension SSP interpolation is beyond the goals
of this paper focused on the kinematics of the spiral arms popula-
tions. In total, the data base contains Nτ × NZ

∼=150 SSP. This grid
is fully sufficient for our purposes. For future practical application
of it, finer grids of SSPs can be calculated and made available. To
calculate SSPs, one needs the IMF (see comments after equation 6)
of stars of which there are many formulations in the literature. Care
must be paid that the IMF of the SSPs is the same of the Galaxy
model to guarantee self-consistency of the results. By construction,
the IMF contains a normalization factor which depends on the IMF
itself and the type of constraint one is using, e.g. the total number of
stars in a certain volume, the total mass of stars in a certain galaxy
component etc. In the case of an SSP, the normalization constant is
usually defined imposing the total mass of the SSP to be MSSP =
1 M�, so that it can immediately be used to find the total luminos-
ity (magnitude) of a stellar assembly with a certain total mass (See
Section 3 and equation 11). Needless to say that other libraries of
stellar models and isochrones can be used to generate the data base
of SSPs, the building blocks of our method. The same is true about
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Figure 9. CMD in V and I band for a field l ∈ [88, 92]◦ b ∈ [ − 2, 2]◦ and magnitude limit V < 20 mag for the present model (left-hand panel) and for
the Besançon model (right-hand panel, see Section 8 for details). In our model (left-hand panel), field stars are represented with PDF and only spiral arms
star population is visualized in a scatter-type CMD. The logarithmic scale used in this plot is mandatory to interpret the plot and computed as explained in
Section 3. For comparison, the Besançon model on the right-hand panel is presenting the classical scatter-type CMD where we overlapped the isocontour for
the number of stars.

the code generating the SSPs: we have adopted our code YZVAR,
of course other similar codes in literature can be used provided they
may reach the same level of performance. A code generating SSPs
from any data base of stellar populations is available upon request
to the authors of Pasetto et al. (2012b). Equally for the photometric
systems. So the matrix method for generating the DFs for starting
SSPs does not depend on a particular choice for the data base of
stellar tracks, isochrones, and photometric system.

(iii) Simulation of photometric errors and completeness. Real
data on the magnitudes (and colours) of the stars are affected by
photometric errors, whose amplitude in general increases at de-
creasing luminosities (increasing magnitude). The photometric er-
rors come together with the data itself provided they are suitably
reduced and calibrated. Photometric errors can be easily simulated
in theoretical CMDs. The procedure is simple and straightforward
(see for instance Pasetto et al. 2012b, for all details). To compare
data acquired along a given l.o.s. with theory one has to know the
completeness of the former as a function of the magnitudes and
pass-band (Stetson & Harris 1988; Aparicio & Gallart 1995). This
is long known problem, and tabulations of the completeness factors
must be supplied in advance. The only thing to mention here is that
correcting for completeness will alter the DF of stars in the cells
of the observational CMD we want to analyse. These tabulations of
completeness factors must be supplied by the user of our method.

(iv) CMDs rasterization. Modern, large surveys of stellar popu-
lations easily generate CMDs containing millions of stars or more,
of different age, chemical composition, position in the host galaxy,
suffering different reddening and extinction etc. so that even plot-
ting the CMD can be a problem not to speak about deciphering it
for the underlying star formation and chemical enrichment histo-
ries, mass and spatial distribution of the stellar component under
examination. We have already introduced the concept PDF for a
stellar population, we want now to particularize it to the case of
the CMD and introduce the concept of a tessellated CMD. Given
two photometric pass-bands δλ and δλ′ and associated magnitudes

and colours, one can soon build two CMDs mδλ versus mδλ′ –mδλ

and mδλ′ versus [mδλ′ –mδλ] and divide this in elementary cells of
size �mδλ and �[mδλ–mδλ]. To the population of each cell con-
tribute stars from all SSPs whose evolutionary path crosses the cell.
The regions occupied by stars in the MS, red giant, red clump, and
asymptotic giant phase this latter stretching to very low effective
temperatures (red colours) are well evident and long lived phases
display a higher number of stars compared to the short lived ones.
As explained some blurring of the CMD can be caused by varying
extinction across the galaxy under consideration. In the case of deep
FOV, the effect of different distances for the stars is included, adding
a further dimension to the problem treated with equation (11).

6.2.3 PDF versus CMDs

In Fig. 9 (left-hand panel), we present the PDF of the CMD in V and
I pass-bands for an ideal field {l, b}cen ∈ {90◦, 0◦} with opening
angle ∼2◦ and a limiting magnitude of V < 20 mag. We note that the
PDF is not normalized to [0, 1] but by means of the integral equation
(11) is normalized to the number of stars effectively predicted by
the IMF, star formation history and density profiles as introduced
above. The PDF of spiral arms alone has been populated by orange
dots to reproduce a scatter diagram (i.e. the classical CMD) for the
stellar population and superposed to the PDF distribution of the
field stars. The stars in the spiral arm almost overlap with the MS
stars of the field. The faint evolved sequence is visible at the right of
the MS. The right-hand panel shows the distribution of stars in the
analogous field generated by the Besançon model1 where standard
scatter plots are used for the CMDs. A detailed comparison of
the kinematics of the MW stellar populations in our model and
in the Besançon model is left for Section 8. Here, we want to

1 Online version of the 2013 July 5, 9:46 CEST.
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Figure 10. Left-hand panel: CMD for the sole field stellar population derived by using the extinction model introduced in Section 6.2.1. Right-hand panel:
CMD realized assuming a double exponential extinction profile on the sole field stars.

point out how our technique (presented in Pasetto et al. 2012b)
is particularly fast because of the use of PDFs as opposite to the
scatter diagrams used in the Besançon model. This is a key feature
of our model and it is particularly suited to deal with the upcoming
era of large surveys where the realization of several CMDs per
second is necessary in order to explore large parameter spaces.
Vice versa this exploration seems to be a practical impossibility in
models such as the Besançon (if not by involving heavy parallel
calculus machines) where the techniques requires the realization of
scatter plots with dots-over-dots plotted in each colour–magnitude
square (cf. explanation in Section 3). Clearly from the Besançon
model, we can reach the same PDF distribution presented in our
technique (e.g. by binning the scatter plot in the right-hand panel
of Fig. 9) but the two models work fundamentally in the opposite
direction. Our modelling approach works by generating convolved
PDFs and then (if necessary) by populating them to obtain a scatter
plot, vice versa the Besanç model works by obtaining first the
scatter plots diagrams and then (if necessary) by binning them to
have PDF.

Finally, in Fig. 10 we show two examples of tesselated CMDs
for a population of field stars observed in the V and I pass-bands
and in which two different extinction profile have been adopted.
The left-hand panel shows the case with extinction represented by
the asymmetric gas spiral distribution of Fig. 8, whereas in the
right-hand panel two exponential laws are used for the extinction.
The logarithmic colour code is proportional to the value of the PDF
in each cell. Once the stars are distributed on the CMD, we can
test the effect of the new extinction model. The large impact of
the gas distribution along the spiral arms in shaping the composite
CMD is soon evident. Analysing this particular field in more de-
tail is beyond the goal of the present study. However, it is worth
mentioning that the combined effects of the large viewing angle
and the density gradient in mass density due to spiral arms have
combined to stretch the distribution of stars to the red side of the
CMD. This is because of the more concentrated gas/dust distri-
bution rising up rapidly at about 1.3 kpc from the solar position
along the l.o.s. In a near future, surveys like Gaia will be able
to provide great insight on the distribution of gas and dust across
the MW. In this context, the technique we have developed can

soon be adapted to a star-by-star approach to directly determine the
extinction.

7 V ELOCI TY FI ELD DESCRI PTI ON O F
NON-AXI SYMMETRI C FEATURES:
A Z I M U T H A L A N D V E RT I C A L T I LT O F T H E
VELOCI TY ELLI PSOI D

The tilt of the velocity ellipsoid with respect to the configuration
space axis generates non-null diagonal terms in the matrix σv(x)
introduced in equation (46). We derive here these non-null terms in
the context of two independent theories.

Following what was done for the zero-order moment of fSch, we
rely on the DWT to derive the moments of order one or more for the
velocity field on the plane, and on the study by Amendt & Cuddeford
(1991) for the velocity moments on the meridional plane.

Finally once the moments of the velocity DF are obtained, the
velocity of the field is derived from the diagonalization of σv(x) by
simply solving the eigen-system:

det(σ−1 − λI) = 0, (58)

with I the unit matrix and λ the eigenvalues, and populating the
corresponding tilted PDF.

7.1 Radial-azimuthal velocity field

7.1.1 Radial mean stream velocity

The computation of the velocity field proceeds exactly as above for
the moment of order zero. We start with the radial moment defined
as

v̄R = 1

�

∫
R3

f vRdvRdvφdvz

= �0

�
v̄0,R + �0

�

1

�0

∫
R3

f1vRdvRdvφdvz

= 1

�

∫
R3

f1vRdvRdvφdvz,

(59)
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Figure 11. Left-hand panel: mean radial velocity v̄R for a spiral stellar population. The Sun is arbitrarily located at {R, φ, z}� = {8.0, 0.0, 0.02}[kpc, deg,
kpc] and its circle radius shown in black. The figure is on the plane at z = 0. Right-hand panel: density contrast �sp–�0 at one contour level. Density contrast
is negative in blue-colour.

where v̄0,R = 1
�0

∫
f SchvRdvRdvφdvz = 0 and remembering equa-

tion (48) we evidently need to compute the following

v̄R = −�0

�

�1

σ 2
RR

1

�0

∫
R3

f Sch

(
1 − sinc−1 (νπ)

2π

×
∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ

)
u

σ 3
RR

γ
σzzdudvdw.

(60)

But the RHS of the previous equation reads

= −�0

�

�1

σ 2
RR

1

�0

σ 3
RR

γ
σzz

(∫
R3

f Schududvdw −
∫

R2
f Sch

× sinc−1 (νπ )

2π

∫ π

−π

eι(ντ+X(u sin τ+v(1+cos τ )))dτ

)
ududvdw,

(61)

where the first term in the round brackets is identically null because
no average radial motion is expected on an axisymmetric disc. We
simplify further equation (60) by introducing explicitly equation
(46) as

v̄R = �Sch

�

�1

σRR

sinc−1 (νπ)

(2π)2

∫ π

−π

dτ

×
∫

R2
dudvdweι(ντ+X(u sin τ+v(1+cos τ )))ue− u2+v2+w2

2 ,

(62)

so that carrying out explicitly the integral on the bottom row of the
previous equation we get

v̄R = �0

�

�1

σRR

X

2π
sinc−1 (νπ)

∫ π

−π

dτ ι sin τeιντ−X2(1+cos τ ), (63)

and finally, making use of the equation (53), we are able to write
the first-order moment in the radial direction as

v̄R = �0

�

�1

σRR

X

2
sinc−1 (νπ)

×
(

(
1
2 ,1

) F̂(−ν,2+ν) − (
1
2 ,1

) F̂(ν,2−ν)

)
.

(64)

We plot an example of the computing of equation (64) in Fig. 11.
As evidenced in the moment of order zero, the amplitude of the
response in the velocity field at the resonances grows beyond the
limits permitted by the linear response theory of Lin et al. (1969)
and the theory breaks down. Analytical continuation is applied also
in this case within the same framework developed for the first-
order moment above. For a spiral pattern with trailing spiral arms,
i > 0, it is easy to prove that the wavenumber k = ∂ψ

∂R
< 0 and

so ψ is a decreasing function of R. Hence, for example, if we are
considering the regions where �p > �(R) (see also Fig. 6) we have
that ν > 0. Inside the spiral arm, it is �1 > 0 so that we must
have �1 < 0. Hence, with the centre of the spiral being given by the
phase ϕ = 0, we recover the results expected by the density spiral
wave theory that presents mean radial motion towards the Galactic
Centre inside the spiral arm and a motion outwards in the interarm
regions ϕ = ±π depending on the location where �p = �(R) as
shown in Fig. 11 just above the ∼6.5 kpc (Faure, Siebert & Famaey
2014). As evidenced by the one contour style of this figure where
�sp − �0 has been plotted, the mean radial velocity field of Fig.
11 is in-phase with the density as expected from DWT. This test
is not only performed to graphically validate the computation of
the velocity moments through hypergeometric functions, but more
importantly, to evidence the goodness of the continuation scheme of
Section 6.2.1 over the resonance on the velocity space. As evident
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Figure 12. Left-hand panel: mean stream azimuthal velocity over all the disc. Right-hand panel: mean stream azimuthal velocity for spiral arm distributed
SSP (green). It’s evident the strong influence of the spiral arms in the measure circular velocity (see the text for detail). For comparison, the rotation curve of
Fig. 3 is added in the range of interest of the spiral arms.

from the plot, the expectation holds even above and very close to
the resonances, R ∈ [Rres − εres, Rres + εres], a result which is not
obvious to prove analytically.

7.1.2 Azimuthal mean velocity

It is even more interesting to describe the influence of the spiral
arms in the mean azimuthal velocity for its implications regarding
the location of the Sun relative to the local standard of rest. Because
of the similarity of the integrations performed previously in the
radial direction, we report here simply the results. We obtain for the
azimuthal direction

v̄φ = �Sch

�
vc − �Sch

�
�1

vc

σ 2
RR

(
1 − νπ

sin (νπ)
(

1
2 ,1

) F̂(1−ν,1+ν)

)
,

(65)

that we plot on Fig. 12. As shown in this figure, the average az-
imuthal perturbation on the circular velocity is of the order of 5–
10 km s−1, i.e. compatible with the motion of the sun relative to the
LSR. This result is extremely interesting no matter where the reso-
nance is located. At every radius, the spiral arm presence affects the
mean motion and can severely bias the works aimed to determine
the motion of the Sun with respect to the circular velocity (the local
standard of rest). This is in line with what is already evidenced by
numerical simulations (e.g. Quillen & Minchev 2005; Faure et al.
2014; Kawata et al. 2014). Unfortunately, up to now the result has
only a theoretical value because it is affected by the uncertainties
on the resonances’ locations, on the validity of the DWT, and on
the uncertainty of the Sun’s location.

7.1.3 Dispersion velocity tensor

The moments of order two can be calculated by direct integration,
but the procedure is more cumbersome and the integrals not eas-
ily tractable analytically. A simpler and fully algebraic procedure
is followed here bypassing the direct integration in favour of the
second order not central moments. The desired results will be then
achieved with the help of the previously obtained equations (64)
and (65). We present here the computation for the first of these
moments; the results for the following orders are obtainable follow-
ing a similar procedure. From the definition of non-central radial
moment of order two we write

v2
R = 1

�

∫
R3

f v2
RdvRdvφdvz

= 1

�

∫
R3

(
f Sch + f1

)
v2

RdvRdvφdvz

= �0

�
σ 2

RR + 1

�

∫
R3

f1v
2
RdvRdvφdvz,

(66)

and remembering the definition of f1 from equation (48) we obtain

v2
R = �0

�
σ 2

RR − 1

�

�1

γ

σzz

σ−2
RR

∫
R3

�0

(2π)3/2σRRσφφσzz

×e− u2+v2+w2
2

(
1 − sinc−1(νπ)

2π
×∫ π

−π
eι(ντ+X(u sin τ+v(1+cos τ )))dτ

)
u2dudvdw

= �0

�
σ 2

RR − �0

�
�1

(
1 − sinc−1(νπ )

(
(

1
2 ,1

) F̂(1−ν,1+ν)

−2X2
(

(3/2,2)F̂(2−ν,2+ν) − 3 (5/2,3)F̂(3−ν,3+ν)

)))
. (67)
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In the same way, we obtain for the azimuthal term (the computation
is tedious but straightforward):

v2
φ = �0

�
v2

c

(
1 − �1

σ 2
RR

(
1 − νπ

sin(νπ) ( 1
2 ,1)F̂{1−ν,1+ν}

))
, (68)

and for the mixed term:

vRvφ = �1

σRR

�0

�

sinc−1 (νπ)

2

X

γ

× (
γ vc

(
(1/2,1)F̂(−ν,ν+2) − (1/2,1)F̂(ν,2−ν)

)
(69)

+ ιXσRR

(
(3/2,2)F̂(1−ν,ν+3) − (3/2,2)F̂(ν+1,3−ν)

))
.

The computing of these terms results from a simple application
of the hypergeometric formalism introduced above. The last step
to achieve the dispersion velocity terms for the velocity ellipsoid
perturbed by spiral arms comes as a simple collection of the previous
results as

σRR = v2
R − v̄2

R,

σφφ = v2
φ − v̄2

φ,

σRφ = vRvφ − v̄φ v̄R,

(70)

and with equations (69), (68), (67), (65), and (64), we conclude the
computation of the second-order moments.

Of particular interest is for example the plot of the mixed term
σ Rφ because of its connection with the azimuthal tilt (of an angle
lv) with respect the configuration space cylindrical coordinates of
the velocity ellipsoid on the plane:

lv (R, φ, z) = 1

2
arctan

(
2σ 2

Rφ

σ 2
RR − σ 2

φφ

)
, (71)

i.e. the vertex deviation that we plot in Fig. 13. There is much
observational evidence for the dependence of the tilting of the ve-
locity ellipsoid on the plane (since Lindblad 1958; Woolley 1970)
and recently it has been studied in Pasetto et al. (2012d). In the
latter work, a detailed plot of this trend has been shown not only
on the plane but also above and below the plane. These data based
on the RAVE survey highlight a decrease of the vertex deviation
above and below the plane. This observational trend is important
to validate the vertical treatment of the vertex deviation outside the
plane. Because the theory is not self-consistently validated outside
the plane, we point out that the dependence on ‘z’ of equation (71)
comes from the vertical dependence of σ Rφ , σ RR and σφφ . While the
behaviour of σ RR and σφφ outside the plane are given by equation
(17), which find observational constraints in the values in Table 1,
the trend of σ Rφ = σ Rφ(z) is entirely a simplified assumption we
adopted in equation (70). The results of the convolution of just two
SSPs of pop 1 and pop 2 of Table 2 (Fig. 14) treated with DWT
seem to qualitatively reproduce the observational trend of Pasetto
et al. (2012d, their left-hand panel in Fig. 12).

7.1.4 Limits of the adopted approach

Even if the tilt of the velocity ellipsoid presents a regular trend,
the present theory accounts only for the contribution of the spiral
arms which is well known to be incomplete. The stream motions
are expected to have major impact on the velocity distribution in
the solar neighbourhood as proven by several authors (e.g. Woolley
1970; Mayor 1972; Hilton & Bash 1982; Bassino, Dessaunet &
Muzzio 1986; Dehnen 1999b; Soubiran et al. 2003; De Simone,
Wu & Tremaine 2004; Seabroke & Gilmore 2007). In order to

Figure 13. Vertex deviation of the velocity ellipsoid at the plane. No graph-
ical smoothing is applied in the contour plot to evidence the grid resolution
adopted.

Figure 14. Vertex deviation outside the plane on the solar radial position
lv = lv(R�, 0, z).

correctly account for the tilt, a complete map of the distribution of
the molecular clouds encountered by the stars along their past orbits
is needed. To date, this target is out of reach thus weakening any
study of the kinematics and dynamics of MW based on direct orbit-
integration. This is one of the main reasons spurring us to apply
the method of moments in our model of the Galaxy. A limitation
of our approach is surely the lack of a self-consistent treatment of
the vertical DF. The DWT is limited to in-plane stellar motions (the
vertical and planar motions are uncoupled because of the epicyclical
approximation). This represents a serious drawback of the theory
that makes it not fully coherent with the assumptions we are going to
make on the vertical tilt of the velocity ellipsoid. None the less, we
will include the vertical tilt in the Galaxy model because, as shown
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in Fig. 14, our approach seems to capture, at least qualitatively, the
information hidden in the observational data acquired by Pasetto
et al. (2012d).

7.2 Vertical velocity field

The study of the local vertical profiles of the MW discs has long
tradition and is still pushed mostly under axisymmetric assumption
(e.g. Siebert, Bienaymé & Soubiran 2003; Soubiran et al. 2003;
Bienaymé et al. 2006; Soubiran et al. 2008; Just & Jahreiß 2010;
Just, Gao & Vidrih 2011). The study of the vertical kinematics
of spiral arms is still an open research field (e.g. Widrow et al.
2012; Williams et al. 2013). The kinematical description of the
implemented model outside the plane is formally obtained here for
the axisymmetric case. Nevertheless, the tilt of the velocity outside
the plane and the non-isothermality for single SSP reduce to zero
thus matching the in-plane description presented in the previous
section.

7.2.1 Vertical tilt of the velocity ellipsoid

The last non-null cross term considered in equation (43) is σ 2
Rz =

σ 2
Rz(R, φ, z). It represents the tilt of the principal axis of the ve-

locity ellipsoid with respect to cylindrical coordinates outside the
plane. By symmetry in any axisymmetric model we expect that
σ 2

Rz(R, 0) = 0, so that the principal axes of the velocity ellipsoid
are aligned with the cylindrical coordinates in the plane. This is
not generally true in a non-axisymmetric model or in a model with
non-null radial average velocity (Cubarsi 2014a,b). Out of the plane
the alignment is poorly known. For small z, we can write

σ 2
Rz

(
R�, z

) ≈ σ 2
Rz

(
R�, 0

) + z
∂σ 2

Rz

(
R�, 0

)
∂z

+ O
(
z2

)
, (72)

where σ 2
Rz(R�, 0) = 0 if and only if the model is axisymmetric.

The z-derivative of σ 2
Rz (the last term of equation 72) evaluated

on the plane gives the orientation of the velocity ellipsoid just
above or below the plane. Eddington (1915) and Dejonghe & de
Zeeuw (1988) have shown that the velocity tensor is diagonal in
coordinates (if they exist) in which the potential is separable. In the
case where the MW potential is separable in cylindrical or spherical
coordinates, corresponding to mass distributions which are highly
flattened and dominated by the disc or spherical halo, we recover the
limiting case of the vertical titling of the velocity ellipsoid (Ghosh,
Bhattacharjee & Cowsik 1989; Evans, de Zeeuw & Lynden-Bell
1990; Hunter et al. 1990; Merritt & Stiavelli 1990; Dejonghe &
Laurent 1991; Evans & de Zeeuw 1992; Osipkov 1994; Arnold
1995; Mathieu & Dejonghe 1996; Bienaymé 1999; Verolme & de
Zeeuw 2002; Famaey & Dejonghe 2003; Helmi, White & Springel
2003; van de Ven et al. 2003).

These two cases correspond to the upper and lower boundaries
of the tilt term. They are usually written as

∂σ 2
Rz (R, 0)

∂z
= λ(R)

σ 2
RR (R, 0) − σ 2

zz (R, 0)

R
, (73)

whereλ(R) ∈ [0, 1]. The factor λ(R) can be derived either analytically
from orbit integration or is assumed λ = 0 for simplicity (e.g.
van der Kruit & Freeman 1986; Lewis & Freeman 1989; Sackett
& Sparke 1990). Numerical simulations (e.g. Carlberg & Innanen
1987; Bienaymé 2000) are performed to calculate explicitly the
moments for a given gravitational potential. The result of the above
studies is that, at the Sun’s position λ � 0.5. In our model for the

Galactic kinematics, we prefer to adopt the analytical formulation
of λ(R) given by Amendt & Cuddeford (1991):

λ(R) = R2∂R,z,z�

3∂R� + R∂R,R� − 4R∂z,z�

∣∣∣∣
(R,z=0)

. (74)

The expression (74) is null for a potential separable in cylindrical
coordinates because the term ∂�tot

∂R∂z2 = 0. In spherical coordinates
λ = 1, the relation (73) will be used in the following to describe the
tilt of the velocity ellipsoid, obtaining for the DM halo

λDM(R) = − R2

R2
(
q�

2 − 2
) + 2hr,DM

2
(
q�

2 − 1
) , (75)

and similarly, a unitary constant value for the bulge and stellar halo
components is estimated. Finally, for the important contribution of
the disc we simplify equation (73) as

λD(R) = −
∫ ∞

0

kR2J1(kR)h−1
z dk

R
(
k − 4

hz

)
J0(kR) + 2J1(kR)

(76)

that has to be included in equation (73) with a sum over all the discs
components.

Finally, we close this section noting that the vertical tilt in the
azimuthal-z direction, i.e. σφz, has no clear global trend in de-
pendence on the configuration space σφz = σφz (R, φ, z, e.g.
Pasetto et al. 2012d), hence we simply assume here globally
σφz = const. = 0.0. This does not mean that locally σφz has to
be zero: velocity active regions (e.g. Feitzinger & Spicker 1986)
especially in relation to galactic fountains, minor mergers of dwarf
galaxies absorbed by the MW and globular clusters passing through-
out the MW disc can easily produce areas of the MW discs where
σφz �= 0.0 as well as σφz �= σ zφ if large magnetic fields are present.

7.2.2 Non-isothermal profile of the Galactic discs

It is common to assume that the velocity distribution is isothermal

in the vertical direction, or more precisely that ∂σ 2
zz

∂z
= 0 ∀fSSP as

we have already done in Section 7.1. This is certainly a reasonable
assumption for small z, although there is no reason why the galactic
disc should be isothermal at all. Bahcall (1984b, but see also Bahcall
1984a; Bahcall & Soneira 1984) treated the problem assuming that
non-isothermality can be simulated by the superposition of more
isothermal components. The observations of Kuijken & Gilmore
(1989a,b,c) show significant departures from isothermality at large
z. One can prove (Amendt & Cuddeford 1991) that in a cool disc

σ 2
Rz = −σ 2

zz

∂σ 2
zz

∂z
( ∂σ 2

zz

∂R
)−1. This tells us immediately that if the tilt

term of the ellipsoid is zero, then the velocity dispersion is constant
in the vertical direction. Therefore, the assumption of an isothermal
structure for fSSP is true only in the case of a gravitational poten-
tial which is separable in cylindrical coordinates. In the case of no
strict isothermality, this approximation is valid within 1 kpc from
the plane, where the fractional change in σ 2

zz is expected to be less
than 3 per cent (Amendt & Cuddeford 1991; Cuddeford & Amendt
1991). For all reasonable gravitational potentials, σ 2

RR > σ 2
zz and one

can prove that σ 2
zz has an extremum (minimum) on the plane, i.e.

first derivative null ∂σ 2
zz

∂z
= 0 (Hill, Hilditch & Barnes 1979; Fuchs

& Wielen 1987; van der Kruit 1988; Wainscoat, Freeman & Hyland
1989). For small z and fixed R = R�, one can perform the Taylor ex-

pansion σ 2
zz(R�, z) � σ 2

zz(R�, 0) + 1
2 z2 ∂2σ 2

zz(R�)

∂z2 + o(z3). Assum-
ing now that σ 2

RR(R�, 0) = α · σ 2
zz(R�, 0) as for Section 7.1, one
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Figure 15. Proper motion distribution (left-hand panel) for a field of about 10 000 stars with spiral arms. The contribution of the spiral arms population is
evidenced with subscript‘sp’. Right-hand panel: same as left-hand panel but for radial velocity. The CMD of this example is in Fig. 9.

obtains
σ 2
zz(R�,z)

σ 2
zz(R�,0)

� 1 + λ(R�)

2R� (α − 1)|∂ ln σ 2
zz

∂R
|(R�,0)z

2. Supposing

that σ 2
zz ∝ ρ in the plane, as in van der Kruit & Searle (1982),

and that ρ follows an exponential law with constant scalelength hR

we have
σ 2
zz(R�,z)

σ 2
zz(R�,0)

� 1 + λ(R�)

2R� (
σ 2
RR (R�,0)

σ 2
zz(R�,0)

− 1) z2

hR
which describes

the non-isothermal case as

σ 2
zz

(
R�, z

) � σ 2
zz

(
R�, 0

)

+
(

λ
(
R�

)
2R�

(
σ 2

RR

(
R�, 0

)
σ 2

zz

(
R�, 0

) − 1

)
z2

hR

)
σ 2

zz

(
R�, 0

)
, (77)

or

σ 2
zz(R, z) � σ 2

zz (R, 0) + λ (�)
(
σ 2

RR − σ 2
zz

)
2 · hR · R

∣∣∣∣∣
(R,0)

z2, (78)

which is clearly not constant. We have implemented this last formu-
lation in our models to take the non-isothermal structure of the thin
discs into account. This SSP non-isothermality based on Amendt &
Cuddeford (1991) and Cuddeford & Amendt (1991) hydrodynami-
cal model, applies to single stellar population (SSP) alone. However,
it is observationally very difficult to identify a truly homogeneous
population, i.e. in chemistry but also in age (e.g. Bovy et al. 2012a).

Finally, we can collect all this kinematic infrastructure to project
it on the space of observations by plotting, e.g. the PDF of the proper
motion μl, b and radial velocities vr populated for the same field of
Fig. 9 in Fig. 15.

8 C O M PA R I S O N W I T H T H E L I T E R AT U R E

Star count techniques have a long history and a comparison of all
the different flavours of this approach is a complex task. Mainly two
kinds of kinematical models and associated star counts are available
in the literature. The first ones do not depend on the underlying grav-
itational potential. They contain a large number of constants treated
as free parameters and therefore can quickly fit large samples of data
simply because they do not integrate the Poisson equation. A proto-
type of this modelling approach is Ratnatunga, Bahcall & Casertano
(1987, see e.g. Ratnatunga, Bahcall & Casertano 1989; Casertano,
Ratnatunga & Bahcall 1990), who first applied the kinematical de-
convolution of a DF in the phase space. Another model of this kind,
with substantially no differences, is by Gilmore (1984). Mendez
& van Altena (1996) and Méndez et al. (2000) further refined the
star-counts approach to kinematical problems. Their work is based
on the epicycle theory of disc kinematics and presents an original

treatment of the differential rotation based on the Jeans equations
that allow studying of the asymmetric drift for each disc population.
The limitation of these models is that the epicycle approximation
limits the analysis of the disc kinematics only to regions near the
plane and does not consider the vertical tilt of the velocity ellipsoid.
Models of this kind, which are not based on a constrained potential
may lead to somewhat non-physical solutions. Nevertheless, thanks
to their simplification, they are useful to investigate more difficult
problems which require formulations that are more sophisticated.
For instance, the problem of the vertex deviation requires the ax-
isymmetric hypothesis in the Poisson-solver to be relaxed. These
difficulties are the subject of debate and strictly linked with the
problems of modelling the bulge too.

The most popular global Galaxy model available in the literature
and to which a finer comparison is due, is the Besançon model.
This model has roots in the works by Robin & Creze (1986) and
Bienayme et al. (1987), later improved by Robin et al. (2003). This
model not only simulates CMDs, taking into account all evolution-
ary phases of a star down to the white dwarf stages, but makes use
of a kinematical description linked to the gravitational potential.

However, this model is not fully consistent from a dynamical
point of view, equipped with much weaker dynamical constraints
than what we are presenting here and missing a non-axisymmetric
treatment of spiral arms. The method developed by Robin et al.
(2003) is summarized in Bienayme et al. (1987). Assuming suitable
density profiles for the components of a galaxy, their method cal-
culates the total density profile using the Poisson-solver in axisym-
metric stationary conditions. The authors derive the gravitational
potential from

��(I )
tot (R, z) = 4πGρtot

(
R, z; R̂(I )

C , ρ̂
(I )
C , M̂

(I )
B , Ĥ

(I )
z,i

)
, (79)

where {R̂(I )
C , ρ̂

(I )
C , M̂

(I )
B , Ĥ

(I )
z,i } are, respectively, the core radius of the

halo, the central density of the disc, the total mass of the bulge, and
the different scaleheights of the disc at their first (I) guess input. This
equation yields the first guess of the potential ⇒ �

(I )
tot (R, z) where

{R̂(I )
C , ρ̂

(I )
C , M̂

(I )
B } have been considered as parameters. Obviously,

some standard constraints are imposed such as the rotation curve

v(I )
c (R) = R∂R�

(I )
tot (R, z = 0)

1/2
which can be compared with the

observational data. The parameters are varied to match the rotation

curve vc,bestfit(R) = R∂R�
(I )
tot (R, z = 0; R(II )

C , ρ
(II )
C , M

(II )
B , Ĥ

(I )
z,i )

1/2

and the new parameters {R̂(II )
C , ρ̂

(II )
C , M̂

(II )
B } are used to

obtain a second guess for the potential ��
(II )
tot (R, z) =

4πGρtot(R, z; R̂(II )
C , ρ̂

(II )
C , M̂

(II )
B , Ĥ

(I )
z,i ) satisfying the first dynam-

ical constraint set by the rotation curve. The model seeks then

MNRAS 461, 2383–2409 (2016)

 at U
niversity C

ollege L
ondon on A

ugust 19, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


MW Galaxy model 2405

to satisfy the Boltzmann equation. Using the Jeans equation
their model assumes, in contrast with our model, that σRz =
(vR − v̄R)(vz − v̄z) = vRvz = 0 i.e. ∂ρvRvz

∂R
− ρvRvz

R
= 0. With this

simplification, the Jeans equation reduces to ∂ρv2
z

∂z
+ ρ ∂�tot

∂z
= 0

and assuming isothermal behaviour σ 2
zz

∂ρ
∂z

+ ρ ∂�tot
∂z

= 0, where

σ 2
zz = (vz − v̄z)

2 = v2
z . This equation can immediately be solved

�tot(R, z) = c1 − σ 2
zz ln(ρ(R, z)). This means that another solution

of this equation is �tot(R, z = 0) = c1 − σ 2
zz ln(ρ(R, z = 0)). Sub-

tracting the two solutions, we obtain another solution and the im-
plemented equation σ 2

zz ln( ρ(R,z)
ρ(R,0) ) = −�tot(R, z) + �tot(R, 0), that

is already present in Mihalas & Routly (1968). The model makes
use of this equation to obtain the best fit of the disc scalelength with
an iterative procedure. The dynamical consistency is clearly poorer
than that in our kinematical model, where formulation for the mixed
terms σ Rφ = σ Rφ(�tot) and σ Rz = σ Rz(�tot) are both obtained with
consistency from the potential as well as the non-isothermality of
σ zz(z). This helps to decrease the large number of parameters, thus
strengthening the consistency of our model. Our approximation im-
plicitly assumes a kinematically cold disc. Moreover, in the case of
the Galactic potential no analytical, realistic formulation of the third
integral of motion (which is likely responsible for the small irregu-
larities present in the Galaxy structure) is available. Therefore, it is
not yet analytically possible to derive a correct DF that, thanks to the
Jeans’ Theorem, could satisfy the self-consistency requirements. A
hypothesis in common to our kinematical model and the one by
Robin et al. (2003) is the stationary state of the DF. The trishifted
Gaussian represents the only analytical solution of the Boltzmann
equation in a steady state and it is commonly adopted in several
models.

As it is not easy to satisfy the dynamical consistency, many
kinematical models are possible and their solution is degenerate.
Based on these considerations, instead of the iterative procedure
adopted in Robin et al. (2003) for which no unique solution is
guaranteed, it is perhaps better to let all parameters remain free to
converge to the best-fitting solution with no ad hoc limits. Clearly,
the best way to proceed is to simultaneously constrain as many
parameters as possible with the suitable minimization algorithms
that we described in Section 5.

Finally, we point out how in our model, the Poisson solver is ex-
actly the same as in Robin et al. (2003), but our analytical treatment
allows us to consider the coupled potential along the vertical-radial
direction. This is not possible with the Robin et al. (2003) model
that neither follows the vertical variation of the vertical tilt of the
velocity ellipsoid nor the variations of the velocity ellipsoid vertical
axis with the stellar populations nor the radial velocity coupling
with the presence of spiral arms. Both the Robin et al. (2003) and
our models allow for a gradient in the vertical component of the tem-
perature profiles, i.e. σ 2

zz(R) = ∑n
i=1 σ 2

zz,i . However, in the Robin
et al. (2003) model all the σ 2

zz,i are considered constant for all stellar
populations, i.e. σ 2

zz,i = const.∀i. Therefore, the temperature gradi-
ent is a consequence of the different scaleheight of each population.
In contrast, each stellar population in our model has its own vertical
profile, i.e. σ 2

zz,i = σ 2
zz,i(R)∀i. This makes it possible to examine

separately different types of SSP. The task is nowadays feasible
thanks to the wealth of data and even more in the near future with
Gaia, whose data will probably give definitive answers to long last-
ing problems such as the vertical isothermality, presence of DM and
the origin of the Galactic discs.

Our model has the significant advantage of reproducing several
observational constraints, such as (Section 4) the rotation curve,
the outer rotation curve, the Oort functions and constants, the mass

inside 100 kpc, the vertical force, the surface density, and the pa-
rameter λ in the solar neighbourhood.

Clearly, the space of parameter dimensions grows with the square
of the number of parameters; however, the number of important
parameters is rather small. The interplay between a gravitational
potential satisfying all the constraints and parameter adjustment to
fit the observational CMDs secures the kinematical consistency of
the model, as the kinematics are simultaneously derived from the
potential and the properties of the stellar populations generating the
potential. One has to remember that the DF has different dispersion
axes for each population and that the angular momentum for the
orbits is linked to the rotational velocity via the Boltzmann equation
moments.

9 C O N C L U S I O N S

We presented a Galaxy model which can be used to investigate large
data sets focused from MW surveys in great detail, of the Milky Way
with particular attention to the kinematical modelling. This model
gathered the heritage of the Padua model that stems from the early
studies of the stellar content of the Palomar–Groeningen survey
towards the Galactic Centre by Ng et al. (1995) and Bertelli et al.
(1995), followed by studies of specific groups of stars and inter-
stellar extinction by Bertelli et al. (1995, 1996), Ng & Schultheis
(1997) and Ng & Bertelli (1996) to mention a few, the studies of
the stellar content towards the Galactic Pole (Ng et al. 1997), the
development of a new minimization technique for the diagnostics
of stellar population synthesis (Ng 1998a), the study of the Galactic
Disc Age–Metallicity relation (Carraro, Ng & Portinari 1998), the
possible relationship between the bulge C-stars and the Sagittarius
dwarf galaxy (Ng 1998b), the developments of AMORE (Auto-
matic Observation Rendering) of a synthetic stellar population’s
CMD based on the genetic algorithm (Ng et al. 2002), the study
of 3D structure of the Galaxy from star-counts in view of the Gaia
mission (Vallenari et al. 2003) and of the kinematics of the Galactic
populations towards the North Pole with mock Gaia data (Vallenari
et al. 2004, 2006; Pasetto 2005).

The building blocks of the Padua Galactic model are a synthetic
Hertzsprung–Russell diagram generator a kinematical model, and
an MW gravitational potential model. This tool has now been up-
dated following a novel approach to the theory of population syn-
thesis that borrows and adapts to the present aims a few concepts
from statistical mechanics.

(i) The model is grounded on the concept of the PDF for
stellar populations. The system-Galaxy is framed in a theoret-
ical existence space where it is characterized by a number of
key relations (mass function, age–metallicity, phase-space, and
metallicity/phase-space).

(ii) The model is able to analyse and reproduce observable quan-
tities regardless of size and amounts of the data to a analyse: this is
achieved thanks to the use of PDF instead of star-counts.

(iii) The distribution of mass and mass density and associated
gravitational potential are thoroughly discussed and formulated for
each component of the MW together with a few other important
issues such as the rotation curve, the vertical force acting on the
plane, the presence of spiral arms and their effects on dynamics and
kinematics, the presence of non-axisymmetric features etc.

(iv) Particular effort is paid to include spiral arms for which we
develop a completely new treatment of the mass density, kinematics
and extinction. Several treatments of the resonance areas to deal with
the star-count technique have been explored and implemented.

MNRAS 461, 2383–2409 (2016)

 at U
niversity C

ollege L
ondon on A

ugust 19, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2406 S. Pasetto et al.

(v) A novel formulation for the extinction has been implemented
to account for the new non-axisymmetric features of the model and
in preparation for a forthcoming star-count model of the bulge.

(vi) A genetic algorithm has been included to deal simultane-
ously with photometric information, as well as kinematical and
gravitational information.

(vii) Particular care is paid to the photometric population synthe-
sis to simulate the photometric properties, magnitudes and colours
for samples of stars of unprecedented size taking advantage of the
concept of PDF to populate CMDs and luminosity functions bearing
in mind the data that will soon be acquired by space observatories
like Gaia.

(viii) The model has been compared with similar models in lit-
erature, for instance the popular Besançon model, to highlight dif-
ferences and similarities.

The range of applicability of our Galaxy model is very large. It
can already be applied to existing MW surveys on which the model
has already been tested. None of the existing surveys are actually
comparable with Gaia for precision and amounts of data, but all of
them already investigate different aspects of the Galaxy. To men-
tion a few, we recall the Radial Velocity Experiment (Steinmetz
et al. 2006; Zwitter et al. 2008; Siebert et al. 2011) of which the
fourth data release (Kordopatis et al. 2013) has been used to test the
model (Pasetto et al. 2012c,d). The Galaxy model could be applied
to the data coming from the Apache Point Observatory Galactic
Evolution Experiment (e.g. Majewski et al. 2015), a companion
programme of the Sloan Digital Sky Survey (Ahn et al. 2014) that
makes available an infrared catalogue of several hundred thousands
radial velocities (from high-resolution spectra) that are suitable to
stellar population studies within the plane. This data base is espe-
cially interesting when used in combination with the data from the
Kepler/K2 mission, because this would allow us to investigate stel-
lar populations also with photometry. The ongoing GALAH survey
(De Silva et al. 2015), a large Australian project that will measure
the abundances of 30 elements together with HERMES providing
spectrographic measurements of radial velocities is another exam-
ple to which the Galaxy model could be applied to investigate the
galactic archaeology and archeochemistry.

Finally, our model can be applied also to entirely different astro-
physical scales, such as in asteroseismology. When spectroscopic
analysis is combined with seismic information, precise constraints
on distances, masses, extinction and finally ages can be obtained.
The CoRoT red giant field (e.g. Chiappini et al. 2015) analysis is an
example, even though the statistical samples are still very small.

A golden age for systematic studies of MW is imminent. Exist-
ing photometric and spectroscopic surveys, as well as future ones
such as Gaia, will be crucial to obtain the ultimate model of our
own Galaxy, a fundamental local step to interpret the Universe in
a cosmological framework. In this context, the Galaxy model we
have developed is awaiting complete validation by more precise
kinematical data, ages and metallicities. In the meantime, we have
presented here the first kinematical model that can simultaneously
deal with the age–velocity and dispersion–metallicity relations in
a robust dynamical-kinematical framework over the whole space
of variables defined by the proper motions, radial velocities, and
multiband photometric data (magnitudes and colours). Future de-
velopments will include an upgrading of the bulge to include non-
axisymmetric descriptions of the bar and chemical enrichment.

The Galaxy model can be access from the internet inter-
face at www.galmod.org and questions addressed at the email:
galaxy.model@yahoo.com.
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Bienaymé O., 2009, A&A, 500, 781
Bienaymé O., Traven G., 2013, A&A, 549, A89
Bienayme O., Robin A. C., Creze M., 1987, A&A, 180, 94
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Robin A. C., Reylé C., Derrière S., Picaud S., 2003, A&A, 409, 523
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Pichardo B., 2014, MNRAS, 440, 1950
Rocha-Pinto H. J., Maciel W. J., Scalo J., Flynn C., 2000, A&A, 358, 850
Rocha-Pinto H. J., Flynn C., Scalo J., Hänninen J., Maciel W. J., Hensler

G., 2004, A&A, 423, 517
Rocha-Pinto H. J., Rangel R. H. O., Porto de Mello G. F., Bragança G. A.,

Maciel W. J., 2006, A&A, 453, L9
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A P P E N D I X A : H Y P E R G E O M E T R I C
F O R M U L AT I O N O F T H E ‘ R E D U C T I O N
FAC TO R ’

There is quite a number of works in the literature, see section 1,
that based the interpretation of the reduction factor on the work of
Lin et al. (1969) through the computation of the ‘q’-factor, i.e. the
integral of equation B8 in appendix B of the mentioned paper. In
this appendix, we express for the first time that integral as a function
of the well-known hypergeometric function. To achieve this result,
we make use of the following theorem.

Theorem: from Erdlyi et al. (1954, Vol 2, pg. 400, equation 8), we
have that for any {z, α, β, γ, δ} ∈ C with Reγ > 0, Reρ > 0 and
Re(γ + ρ − α − β) > 0 the following relation holds:

2F2 (ρ, γ + ρ − α − β; γ + ρ − α, γ + ρ − β; z)

= � (γ + ρ − α) � (γ + ρ − β)

� (γ ) � (ρ) � (γ + ρ − α − β)
ez

×
∫ 1

0
xγ−1(1 − x)ρ−1e−xz

2F1 (α, β; γ ; x) dx, (A1)

with 2F2(∗) the hypergeometric function and � the Eulero-gamma
function.

We want to prove the following corollary to the previous theorem.
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Corollary. For any {z, ν} ∈ R, the following relation holds:

1

2π

∫ π

−π

cos(νs)e−z(cos(s)+1)ds = 2F̃2

(
1

2
, 1; 1 − ν, ν + 1; −2z

)
,

(A2)

where 2F̃2 is the hypergeometric-regularized function.

Proof. We start relating the hypergeometric-regularized function,
2F̃2, to the hypergeometric function, 2F2, by writing

2F̃2

(
1

2
, 1; 1 − ν, ν + 1; −2z

)

= sin(πν)

πν
2F2

(
1

2
, 1; 1 − ν, ν + 1; −2z

)
. (A3)

This equation, because of the theorem equation (A1) reduces to

sin(πν)

πν
2F2

(
1

2
, 1; 1 − ν, ν + 1; −2z

)

= sin(πν)

πν

�(1 − ν)�(ν + 1)

π
e−2z

∫ 1

0

e2xz
2F1

(
ν, −ν; 1

2 ; x
)

√
1 − x

√
x

dx

= 1

π

sin(πν)

ν

ν

sin (πν)
e−2z

∫ 1

0

e2xz cos
(
2ν arcsin

√
x
)

√
1 − x

√
x

dx

= e−2z

π

∫ 1

0

2e2y2z cos (2ν arcsin y)√
1 − y2

dy

= e−2z

π

∫ π/2

0
2e2zsin2q cos (2qν) dq, (A4)

where in the second line we made use of 2F1 and Eulero-gamma
function properties, in the third and fourth rows we change variables,
x = y2 and y = sin q, accounting for the dominion of integration.
The last relation is clearly an even function, thus

2F̃2

(
1

2
, 1; 1 − ν, ν + 1; −2z

)
= 1

π

∫ π

0
e−2z+2zsin2s/2 cos (νs) ds

= 1

2π

∫ π

−π

e−z(1+cos s) cos(νs)ds,

(A5)

which concludes our proof. The expression for the reduction factor
comes then easily.

Needless to say that the advantage of having this formulation for
the reduction factor stands not only in the compact elegant formal-
ism, but probably more on the rapidity of performing its evaluation.
A test on a commercial processor available to date (Intel core-I7,
3.0 GHrz) shows that the integral evaluation against the hypergeo-
metrical formulation is ∼10−4 s−1. This translates as the possibility
(to date) to generate mock catalogues for a small survey of data
with about ∼104 stars each second, against a generation of the
same kinematics catalogue by numerical integration (with adap-
tive Runge–Kutta scheme) in about 3 hr! This result is even more
striking if you distribute the computation on several processors.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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