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ABSTRACT
We present here the first stellar models on the Hertzsprung–Russell diagram, in which convec-
tion is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al.
The aim is to compare the results of the new theory with those from the classical, calibrated
mixing-length (ML) theory to examine differences and similarities. We integrate the equations
describing the structure of the atmosphere from the stellar surface down to a few per cent of
the stellar mass using both ML theory and SFC theory. The key temperature over pressure
gradients, the energy fluxes, and the extension of the convective zones are compared in both
theories. The analysis is first made for the Sun and then extended to other stars of different
mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones,
temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from
the ‘calibrated’ MT theory for main-sequence stars. We conclude that the old scale dependent
ML theory can now be replaced with a self-consistent scale-free theory able to predict correct
results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory
offers a deeper insight of the underlying physics than numerical simulations.

Key words: convection – Sun: evolution – Hertzsprung–Russell and colour – magnitude dia-
grams – stars: horizontal branch.

1 IN T RO D U C T I O N

Convection is one of the fundamental mechanisms for carrying
energy throughout a star from the deep interior to the outermost
layers. This may happen during the pre-main-sequence, Hayashi
phase of stars of any mass that are fully convective, during the main-
sequence phase in central cores of stars more massive than about
1.3 M�, in the main-sequence phase of very low mass stars (lower
that about 0.3 M�) that remain fully convective, and in the central
cores of all stars burning helium (and in massive stars) heavier fuels
up to iron. Convection occurs also in intermediate convective shells
of some stars, in the outermost layers of stars of any mass where
ionization of light elements occurs, and in very deep convective
envelopes of red giant branch (RGB) and asymptotic giant branch
(AGB) stars. Convection is present in white dwarfs, in the internal
regions of stars in pre-supernova stages, during the collapse phase
of Type II SNae, and the carbon-deflagration stages of Type Ia
SNae. Convection is therefore ubiquitous in stars of any mass and
evolutionary phase: it contributes significantly in the transport of
energy across the layers of a star, from the deep interior to the
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surface and substantially changes the structure of a star by mixing
the material across it.

In a star, convection sets in where and when the condition
∇ rad < ∇ad is violated, where ∇ rad and ∇ad are the radiative and
adiabatic logarithmic temperature gradient with respect to pressure,
i.e. ∇rad ≡ ∣∣ d ln T

d ln P

∣∣
rad

and ∇ad ≡ ∣∣ d ln T
d ln P

∣∣
ad

(e.g. Cox & Giuli 1968;
Kippenhahn, Weigert & Weiss 2012). While in the inner convec-
tive regions of a star the large thermal capacity of convective ele-
ments induces a temperature over pressure gradient of the medium,
∇ ≡ ∣∣ dlnT

d ln P

∣∣, that is nearly adiabatic, i.e. ∇ − ∇ad � 10−8 � 0, in
the outer layers both the temperature gradients of the medium and
of the element ∇e ≡ ∣∣ dlnT

d ln P

∣∣
e

differ significantly from ∇ad (super-
adiabaticity). Convective elements in these regions have low thermal
capacity and thus the approximation ∇ − ∇ad � 0 can no longer
be applied: ∇e and ∇ must be determined separately to determine
the amount of energy carried by convection (and radiation) with an
appropriate theory.

Despite the great importance of convection in modelling the struc-
ture and evolution of a star, a satisfactory treatment of stellar convec-
tion is still open to debate and until now a self-consistent description
of this important physical phenomenon has been missing. Reviews
of the current state-of-art of the turbulent non-linear magnetody-
namics knowledges in the stars (mostly in the sun) can be found in
several books (e.g. Biskamp 1993; Somov 2006; Hughes, Rosner
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& Weiss 2012). The goal has been to establish from basic physical
principles a self-consistent description of convection represented
by a group of equations with no ad hoc parameters.

In this context, the most successful theory of stellar convection
in the literature is the mixing-length theory (ML theory). The ML
theory stands on the works of Prandtl (1925), Biermann (1951), and
Böhm-Vitense (1958). Thanks to the success it has achieved over
decades of usage, it is considered as the reference paradigm to which
any new theory has to be compared. In the ML theory, the motion of
convective elements is expressed by means of the mean-free-path
lm that a generic convective element travels inside the convectively
unstable regions of a star (e.g. Kippenhahn et al. 2012). lm is as-
sumed to be proportional to the natural distance scale hp given by
the pressure stratification of the star. The proportionality factor is
called the ML parameter �m, which is implicitly defined by the
relation lm = �mhp. Although this parameter must be determined
with external arguments i.e. the calibration of the ML theory on
observations of the Sun, the possible dependence on the star mass
and evolutionary stage (their position in the HRD) can be neither
excluded nor assessed. The ML parameter has a paramount impor-
tance in calculating the convective energy transport, and hence the
radius and effective temperature which fix the trajectory of the stars
in the HRD.

To overcome this situation, several approaches have been pro-
posed in literature. The simplest one is the already mentioned fit of
results obtained with a ML parameter to observations of different
stars in the CMD. In alternative formulations allow the ML pa-
rameter to change with the position on the HRD (e.g. Pinheiro &
Fernandes 2013). This approach is an extension of the original idea
by Böhm-Vitense (1958) of the fit on the Sun. Helioseismology
and/or asteroseismology (Brown & Gilliland 1994; Christensen-
Dalsgaard 2002; Chaplin 2013; Chaplin & Miglio 2013) and much
better data on the Sun produced by Solar Heliospheric Observatory
(SOHO) offer independent ways of testing stellar convection and
constraining the ML theory in turn (e.g. Ulrich & Rhodes 1977;
Kueker, Ruediger & Kitchatinov 1993; Grossman 1996).

Recently, sophisticated fully 3D-hydrodynamic simulations have
been used to model and test convection. This approach requires
large, time consuming computational facilities to integrate the 3D-
Navier–Stokes equations (e.g. Ludwig, Jordan & Steffen 1994;
Bazán & Arnett 1998; Ludwig, Freytag & Steffen 1999; Brun &
Toomre 2002; Meakin & Arnett 2007; Brown et al. 2008; Miesch
et al. 2008; Brun, Miesch & Toomre 2011; Chiavassa et al. 2011;
Collet, Magic & Asplund 2011; Augustson et al. 2012; Magic et al.
2013; Magic, Weiss & Asplund 2015; Salaris & Cassisi 2015).

The advantage here is that, unlike in the 1D integrations,
parameter-free models of convection can be used. However, it has a
very poor interpretative power: to extract a theoretical model from
a simulation is not any simpler than writing a new one from scratch.

Finally, the third approach is to develop ML parameter free
(or scale-free) theories by construction. It is worth mentioning, a
few examples as Lydon, Fox & Sofia (1992), Balmforth (1992)
or Canuto & Mazzitelli (1991) where nevertheless other free-
parameters have been used instead of the ML. The turbulent scale-
length in Canuto & Mazzitelli (1991) is the most popular case.

In a recent paper, Pasetto et al. (2014) developed the first theory
of stellar convection that is fully self-consistent and scale-free. In
this scale-free convection (SFC) theory, the convective elements
can move radially and expand/contract at the same time, and, in
addition to the buoyancy force, the inertia of the fluid displaced
by the convective elements and the effect of their expansion on the
buoyancy force itself are taken into account. The dynamical aspect

of the problem is formulated differently than in the classical ML
theory, and the resulting equations are sufficient to determine the ra-
diative and convective fluxes together with the medium and element
temperature gradients, as well as the mean velocity and dimensions
of the convective elements as a function of the environment physics
(temperature, density, chemical composition, opacity, etc.), with no
need of the ML parameter. Pasetto et al. (2014) applied the new the-
ory to the case of the external layers of the best model representing
the Sun calculated with the calibrated ML theory by Bertelli et al.
(2008).

In this study, the SFC analysis is extended first to model atmo-
spheres and then to exploratory stellar models calculated with the
new theory. The results are similar to those based on the classical
ML theory.

The plan of the paper is the following. In Section 2 we briefly
present the schematic structure as it is relevant for our study. In
Section 3 we summarize our treatment of stellar convection as pre-
sented in Pasetto et al. (2014). In Section 4 we present the solution
of the stellar equation that we are going to adopt. In Section 5 we
treat the boundary condition for the convective outer layers of the
stars. In Section 6 we present some application to the first stellar
model of our theory. In Section 7 we comment on our results. In
Appendix A we summarize the basic equations of stellar structure
in the photosphere and atmosphere, together with a few key thermo-
dynamical quantities concerning the equation of state (EoS) with
ionization and radiation pressure. In the Appendix B, first we briefly
review the classical ML theory with particular attention to the one
we have used here and then present the key hypotheses, assumptions
and results of the new SFC theory of Pasetto et al. (2014).

2 SC H E M AT I C ST RU C T U R E O F A STA R

Three regions can be considered in the treatment of the physical
structure of a star.

(i) The most external layers, i.e. the photosphere described by
the optical depth, the bottom of which yields the surface of the star
and determines the radius r∗ and effective temperature Teff.

(ii) The atmosphere which extends downwards for about the
3–5 per cent in mass of the star, M∗ from the bottom of the photo-
sphere Matm

M∗ ∈ [1.0, 0.97/0.95[ (with this notation we specifically
refer to the outer layer in radius of the star, as opposite to the cen-
tral part that would be indicated as, e.g. M

M∗ ∈ [0.1, 0.2[). In the
atmosphere the approximation of constant luminosity (i.e. without
sources or sinks of energy) can be assumed, and light elements like
H and He are partially ionized. Convection is far from the regime
of ∇ − ∇ad � 0. In this region both the ML theory and SFC theory
find their prime application.

(iii) The inner regions from Matm to the centre in which energy
production takes place, ionization of all elements such as H, He, C,
N O etc. is complete and convection becomes adiabatic. This inner
region of the stars can contain a convective envelope, extension
of the convective region in the atmosphere but in which convec-
tion is nearly adiabatic. The convective envelope can extend quite
deeply in the star. Stars in the mass range M∗ ∈ [0.3, 1.1[ M�
or so have a radiative core on the main-sequence, stars with
M∗ ≤ 0.3 M� are fully convective during their whole live. Stars
more massive than about M∗ ≥ 1.1/1.3 M� develop a convective
core from which convective overshooting can occur. Massive stars
(M∗ ≥ 10 M�) may develop intermediate convective shells in the
post-main-sequences stages. All stars have convective cores during
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the core- He burning phase and beyond (their occurrence depending
on the star’s mass).

The notation in use and the physical description of regions (i)
and (ii) are as in the Göttingen stellar evolution code Hofmeister,
Kippenhahn & Weigert (1964), the ancestor of the code used by
Padova group for about five decades (see also below for more de-
tails). Details are given for the physical structure and mathematical
technique used to calculate the physical variables in regions (i) and
(ii) in the Appendix A. Specifically we present the basic equations
for the photosphere and atmosphere, the treatment of ionization, and
a few important thermodynamical quantities such as specific heat
at constant pressure cP, the ambient gradient ∇ad and thermody-
namical quantity �1 for a gas in presence of radiation pressure and
ionization that are needed to describe the super-adiabatic convection
both in the ML and SFC theory.

Details on the main assumptions concerning the physical input
of the equations describing region (iii), the treatment of convective
overshooting from the core (if required) are given in Section 6.

3 TH E S E T O F EQUATI O N S F O R TH E S F C
T H E O RY

The system of equations equation (60) as in Pasetto et al. (2014)
must be solved to determine the convective/radiative-conductive
transfer of energy in the photosphere and atmosphere of a star.
They are well defined equations once the quantities {T, κ , ρ, ∇ rad,
∇ad, g, cp} are considered as input and considered constant. These
quantities are, respectively, the local averaged temperature of the
star, interpolated opacity tables, averaged density of the star, the
radiative gradient as in equation (A15), the adiabatic gradient as in
equation (A23) in the appendix, gravity and heat capacity at constant
pressure as in equation (A21), considered as quantities averaged
over an infinitesimal region dr and time interval dt. This means that
the time-scale over which these quantities vary is supposed to be
much larger than the time over which the results of the integration
over the time of the system of equations for convection are achieved.
Under these approximations, the system of equations proposed in
Pasetto et al. (2014) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhpρ
∇

ϕrad/cnd + ϕcnv = 4ac
3

T 4

κhpρ
∇rad

v2

ξe
= ∇−∇e− ϕ

δ ∇μ
3hp

2δvt0τ +(∇e+2∇− ϕ
2δ ∇μ)

g

ϕcnv = 1
2 ρcpT (∇ − ∇e) v2t0τ

hp

∇e−∇ad
∇−∇e

= 4acT 3

κρ2cp

t0τ

ξ2
e

ξe = (
t0
2

)2 ∇−∇e− ϕ
δ ∇μ

3hp
2δvt0τ +(∇e+2∇− ϕ

2δ ∇μ)
gχ (τ ) ,

(1)

where ϕrad/cnd is the radiative/conductive flux, a the density-
radiation constant, c the speed of light, T the local average temper-
ature, κ the opacity, hP the pressure scaleheight, ρ the star density,
ϕcnv the convective flux, ξ e the average size of the convective cell
moving with a average velocity v, g the gravity, τ = t

t0
a normalized

time and χ = ξe

ξ0
a normalized size of the convective elements. All

these quantities are here treated as locally and temporally averaged.
More details on the physical meaning of all the quantities are given
in the Appendix B where a somehow different derivation of exactly
these equations is explored and commented. The form taken by the
above equations in the case of chemically homogeneous layers is

straightforwardly derived from setting ∇μ = 0. Let us briefly com-
ment each equation of equation (1) from (i) to (vi), highlighting the
points of novelty with respect to the ML theory.

(i) and (ii) In this set of equations, the first two represent
the radiative plus conductive fluxes ϕrad|cond, and the total flux
ϕrad|cond + ϕconv which defines the fictitious radiative gradient ∇ rad.

(iii) The third equation introduces one of the new aspects of the
theory: the average velocity of the convective elements at a given
location within the stars. Compared to the ML theory the velocity
is derived from the acceleration which in turn contains the inertia
of the displaced fluid. The remarkable point of this equation is
that for chemically homogeneous layers (∇μ = 0) it reduces to
the equivalent in Schwarzschild approximation for stability against
convection.

(iv) The fourth equation represents the convective flux. Although
the overall formulation is the same as in the ML theory, here the
velocity is corrected for the effects of the inertia of the displaced
fluid. See also below for the discussion on the asymmetry of the
velocity field.

(v) The fifth equation greatly differs from its analogue of the ML
theory. It measures the radiative exchange of energy between the
average convective element and the surrounding medium taking into
account that convective elements change their dimension, volume
and area of the radiating surface as function of time because of
their expansion/contraction. In this theory, the energy transfer is
evaluated at each instant whereas in the classical ML theory the
mean size, volume and area of the emitting surface of the convective
elements are kept constant. The dependence of the energy feedback
of the convective element with its surrounding is the heart of this
description of convection processes.

(vi) The last equation yields the mean size of the convective el-
ements as a function of time. Its presence is particularly important
because it replaces the ML theory assumption about the dimen-
sion of the convective elements and also the distance travelled by
these during their lifetime. This equation achieves the closure of the
system of equations.

In the following subsection we will comment on a few aspects of
the SFC theory.

3.1 Time dependence and uniqueness theorem

The system of equations equation (1) and its solution contain the
time. Therefore one may argue that the ML, free parameter of the
ML theory, is now replaced by the time and that there is real no ad-
vantage with the new theory of convection but for a better descrip-
tion of the dynamics. Furthermore, there are six degrees of freedom
over six unknowns instead of the five degrees of freedom plus one
free-constant over five unknowns of ML theory equation (B1). The
solution of this apparent problem is achieved by the Uniqueness
Theorem. Pasetto et al. (2014) have rigorously demonstrated that
the ratio χ/τ 2 → const as the time grows and the solutions of
the system of equations (1) have to be searched in the manifold
described by

(∇ − ∇e)2

(∇rad − ∇) (∇e − ∇ad)
= const. (2)

When the solutions enter the regime χ/τ 2 → const where the
Uniqueness theorem holds, we simply speak of an ‘asymptotic
regime’ for the solutions. This equation describes a surface con-
taining the manifold of all possible solutions. By assigning ∇ rad

and ∇ad at each layer within a star, ∇ and ∇e are asymptotically
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related by a unique relation. There is no arbitrary scalelength to be
fixed. This theorem proves that, to the first order, there exists an
unique manifold solution of the system equation (1). The evolution
of the system is forced to stay in a single time-independent manifold
by the relation existing between the evolution of the average size of
the convective elements and the environment where the convective
elements are embedded. This relation holds only in the subsonic
regime, but in such a case it is completely general.1 In our context it
implies that the temporal evolution of the system equation (1) has to
cancel out: an asymptotic behaviour of the physical variables must
exist. The time variable is needed to know when the asymptotic
regime is reached by the system and the theory becomes fully ap-
plicable. The Uniqueness Theorem ‘de-facto’ closes the equations
and rules out the need of the ML free parameter.

3.2 Comoving reference frame S1

The advantage of an analysis made in a comoving reference frame
centred on the convective element can be captured with these simple
arguments. We consider the kinetic energy associated with a convec-
tive element in the reference system S0(O; x) not comoving with the
element. From the equation of the potential flow (e.g. equation B8),
putting at rest the flow far away from the bubble (i.e. adding a flux
〈v, x〉) we can obtain Ek = 1

2 ρ
∫

V
‖v‖2d3x = π

3 ρξ 3
e

(
6ξ̇ 2

e + v2
)
.

Here the spatial or temporal averages for the quantities ξ̄e, v̄, ...

are omitted but they are implicitly taken into account. For the po-
tential energy, excluding the contribution of the surface tension as
mentioned above, we can write simply write Ep = Ep(ξ e, P∞) + 
g,
i.e. the potential energy is the sum of the potential energy of the
fluid Ep(ξ e, P∞) (that in S0 is a function of the size of the convective
element and of the pressure far away from the bubble) and the grav-
itational potential of the star. If we limit ourselves to the equations
of motion (EoM) for the radial direction outside the stars, r, the
EoM is⎧⎪⎨
⎪⎩

d
dt

(
∂L
∂ξ̇e

)
− ∂L

∂ξe
= 0

d
dt

(
∂L
∂ṙ

) − ∂L
∂r

= 0
⇔

⎧⎪⎨
⎪⎩

3
2 ξ̇ 2

e + ξ̈eξe − P (ξe)−P∞
ρ

= 0

A = 2g,

(3)

with L the Lagrangian of the system. Thanks to the Lagrangian
formalism, knowing the explicit formulation for Ep(ξ e, P∞) is
not necessary, because it satisfies the equation Ep (ξe, P

∞) =
− ∫

V
(P (ξe) − P ∞) d3x. With the aid of the equation for hydro-

static equilibrium we re-obtain equation (B11) of the first Theorem
in Pasetto et al. (2014) but without the term containing the accelera-
tion A (or with A = 0) that provides the dynamical coupling between
S0 and S1. This forced us to apply directly the Lagrangian formal-
ism to non-inertial reference frames as already done by Pasetto &
Chiosi (2009, section 3.1) in a different context (see also Landau &
Lifshitz 1969, section 39 for the point mass approximation). Finally,
we note how this suggests also a different, completely independent
derivation of the main theorem of section 4.1 of Pasetto et al. (2014)
from a Lagrangian formalism.

1 This relation can be applied to any convectively driven system suitably
described by an EoS: stars as well as planetary atmospheres, fluids, and
plasmas in general.

Figure 1. Evolution with the time of the pressure difference DP/P∞ at the
surface of a generic convective element. The time necessary to reach the
pressure equilibrium is not null, and the equilibrium it is reached only ‘far
away’ form the surface of the convective element. A convective element
cannot exist at all, if it is assumed to be always in perfect mechanical
equilibrium with the environment.

3.3 Local departure from hydrostatic equilibrium

The SFC theory of convection is based on the assumption of non-
local pressure equilibrium and hence local deviations from rigorous
hydrostatic equilibrium (a situation therein-after referred to as me-
chanical equilibrium), i.e. the stellar plasma is not in mechanical
equilibrium on the surface of the expanding/contracting convective
element while this latter is moving outwards/inwards. A convective
element coming into existence for whatever reason and expanding
into the medium represents a perturbation of local pressure that can-
not instantaneously recover the mechanical equilibrium (pressure
balance) with the surrounding. The condition of rigorous mechani-
cal equilibrium with the stellar medium is met only ‘far away’ from
the surface of a convective element, i.e. only in the limit ξ e → ∞.

In many textbooks of stellar astrophysics (e.g. Cox & Giuli 1968;
Kippenhahn et al. 2012), the simple assumption of instantaneous
pressure equilibrium is made because of the high value of the sound
speed. Indicating the pressure difference between the element (at
the surface) and medium as DP ≡ P − P∞, it is generally assumed
DP = 0 identically. This is clearly a wrong assumption if one needs
to argue about local deviations from hydrostatic equilibrium. There
exists no instantaneous pressure equilibrium. No matter how fast
it is reached, the sound speed is not infinite. We take advantage
of the equation (3) (which is a particular case of theorem of sec-
tion 4.1 in Pasetto et al. (2014)) to demonstrate this. In Fig. 1, we
show the temporal behaviour of the ratio DP/P∞ derived from the
first Lagrangian equation of System equation (3) using, e.g. for the
temporal evolution of ξ e an arbitrary relation of the type ξ e ∝ τ 2.
As evident from Fig. 1, only far away from the convective element
P

P∞ → 1, i.e. DP
P∞ → 0 ∀τ . Note that the potential flow approxi-

mation, the assumption of irrotational fluid (no vorticity), and the
evolution (increase/decrease) of the surface of a convective element
predicted by our theory (see Sections B2.2 and B2.3), all act to de-
termine the long range behaviour of the pressure perturbation. In a
fluid with null vorticity, the pressure perturbation scales as O

(
ξ−1
e

)
,

the case shown in Fig. 1. In a fluid with non-zero vorticity the pres-
sure perturbation is expected to scale with the distance as O

(
ξ−3
e

)
(e.g. Batchelor 2000). This should leave detectable traces at the
small wave-numbers, k, end of the energy spectrum, E(k), which
is known to be heavily dependent on the long range behaviour. A
direct comparison of this issue with numerical simulations is left for
future investigations (Pasetto et al., in preparation). Even though the
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theory does not require the mechanical equilibrium for the convec-
tive element, because the star as a whole is in hydrostatic equilibrium
the condition is also formally met for the equation of convection,
but only far away from the surface of the convective element. How-
ever, by ’far away’ we mean always a distance close enough so that
the local density has remained nearly constant. This description of
the physical situation as far as the mechanical equilibrium at the
surface of a convective element is concerned agrees with current
understanding of fluid dynamics (Landau & Lifshitz 1959; Batch-
elor 2000) and the current more approximate assumption made by
the classical ML theory that convective elements expand/contract
in mechanical equilibrium with the surroundings.

3.4 Surface tension on convective elements

It is worth recalling here that in the SFC theory no physical surface
is enclosing a convective element and therefore the Young–Laplace
treatment of the surface tension is not applied. This approach dif-
fers from classical literature on fluids in which the surface tension
is taken into account (e.g. Tuteja et al. 2010, and reference therein).
Our approach is consistent with astrophysical 3D-hydrodynamical
simulations where convection is represented by small volumes mov-
ing up and down for a short time, not surviving long enough for
surface tensions to be relevant.

3.5 More general remarks: strength and weakness of the SFC
theory

In addition to be above issues, we would like to shortly comment
here on points of strength and weakness of the SFC theory that
deserve further investigation.

Since the early studies of Boussinesq (1870), Prandtl (1925) and
on the Reynolds stress model, the closure of the hierarchy of av-
eraged moment equations represented a formidable challenge for
the description of turbulence and convection. Despite its simplicity,
our model represents the first and to date unique way to close the
equation of stellar convection, without any arbitrarily free assump-
tions. It is fully analytical: neither ad hoc fitting on HRD stars nor
numerical simulations are required to find closure of the equations.
Furthermore, rotation can be implemented in a simple fashion be-
cause the formalism of accelerated reference frames of type S1 is
already in situ.

Up to now only few points of weakness have been identified.
First of all, the SFC theory is a linear theory. Therefore it cannot
deal with nonlinear phenomena that would require higher order ex-
pansion over ε ≡ |v|

|ξe | � 1 and a suitable treatment of resonances.
This problem has not been investigated yet in the context of this
theory for the stellar plasma but it may have strong physical im-
plications. The uniqueness theorem that provides the closure of the
stellar equation does not hold in the non-linear regime. Hence, we
expect that second-order effects will require further free parame-
ters, as it was the case of the ML theory, to reach a finer physical
description.

Closely related to the previous problem is the determination of
the distribution function of the size of the convective cells. The
distribution function of a turbulent cascade of eddies is not Gaussian.
In our study, we consider only with the first-order moments of
the unknown underlying distribution function. This approach is far
from being a correct description of the reality. However, even if
the number of underlying moments required to map correctly the
distribution function and hence the nature of the convection within
the stars is very high, it is not infinite (see e.g. Cubarsi 2010).

The sizes of the convection cells are expected to span from
large integral scales containing the most of the kinetic energy in

an anisotropic motion down to the Kolmogorov’s micro-scales of
the small eddies with randomly isotropic motion where the viscous
forces are effective (at least for high Reynold numbers). For the sake
of simplicity, dealing with the stellar plasmas, we limit ourselves to
a treatment favouring the self-consistency to the complexity.2

Finally, by construction, this SFC theory does not suitably de-
scribe the border regions of convective zones where convective cells
could overshoot from the Schwarzschild border into the surround-
ing radiative regions. This is possible only suitably modifying this
SFC theory (Pasetto et al., in preparation).

Based on the results that we are going to present here, we are
confident that some of the above criticisms will be found to be
unimportant. Indeed, we will find in what follows that the first
stellar models, with the envelope convection treated according to
the Pasetto et al. (2014) theory are similar to those derived from the
best tuned ML theory. We will return to the implications of these
results in relation with the above criticisms in Section7.

3.6 Direct numerical and large eddy simulations

Before introducing the mathematical and numerical method we
have adopted to solve the system of equations (1), it is worth dis-
cussing briefly numerical techniques for solving the Navier–Stokes
equations.

1D numerical simulations are suitably and successfully designed
to generate large grids of stellar models, evolutionary tracks and
isochrones, to quickly map the whole HRD, and to compare model
results with observational data. Thanks to the 1D formalism, the
physics of stellar structure and evolution is one of the best known
area of astrophysics. 1D solutions are still worth being pursued in
order to test the self-consistency of the SFC theory and to highlight
the advantages it offers with respect to the classical ML theory.
Nevertheless, nowadays models based on the full 3D formalism are
becoming more and more common and important in astrophysics
and it would be worth comparing the results of our 1D SFC theory
with some of these 3D numerical solutions of Navier-Stokes based
on direct numerical (DNS) or Large-Eddy (LES) schemes. However,
to provide a direct comparison requires these solutions to be tailored
specifically with this test in mind. None are immediately available,
hence we leave such a comparison to future investigations, and in
Section 6 we limit ourselves to a quick comparison of some of our
results with those from full 3D simulations.

The numerical integration of partial differential equations (PDE)
has a long story, even if the integration schemes of the Navier–
Stokes equations of convection are relatively recent (see the review
by Glatzmaier 2013). The major advantage in using numerical sim-
ulations of stellar convection is that no closure schemes are required
as in most analytical treatments and that the entire spectrum of the
sizes of convective elements (at least in principle in the DNS) can be
considered. For comparison, our approach deals only with average
quantities, i.e. equation (1) refers only to the first-order moments of
an underlying (unknown) distribution of the sizes of convective ele-
ments. Therefore, at this stage of the SFC theory we are still missing
the redistribution of the energy down to the cascade of convective
cells that in contrast can be followed with fully hydrodynamical
simulations. However, remarkably, from numerical and observa-
tional experiments it is well known that the majority of the kinetic
energy in convective transport is contained in the larger convective
elements and that the convection reaches a ‘fully developed’ state

2 Concerning the chaotic versus turbulent nature of the inertia term that we
retained in the Navier–Stokes equations see, e.g. Ottino (1989).
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after some time, a behaviour that recall the asymptotic behaviour
evidenced in our analytical solution.

Moreover, the treatment of the fully hydrodynamic even equa-
tions in 3D schemes is not free of limitations. Drawbacks of the DNS
are the resolutions and the computational time. From the early stud-
ies of Orszag (e.g. Orszag 1971; Orszag & Patterson 1972), where
the Reynold numbers (based on the Taylor microscale) were of the
order �λ ∼ 35, we today have simulations with �λ ∼ 800/1000 on
average (e.g. Ishihara et al. 2007). Even so, this hampers the applica-
bility of DNS to stellar cases, owing to the very high � ∼ 0.02�2

λ >

1010, because the number of data points N, scales with the number
of degrees of freedom of the turbulence, �9/4 (Landau & Lifshitz

1959) as N3 ∼
(

Lgrid

�

)3
�9/4, and hence the computational time be-

comes exceedingly long. All this imposes a limit to the spatial scale
Lgrid to a few Kolmogorov integral scales, say Lgrid ∼ 5�. Pseudo-
spectral methods in the LES formalism and spherical symmetric
geometry can improve the situation, but only partially (e.g. Brun &
Toomre 2002; Canuto et al. 2006). The success of the LES approach
relies on the fact that energy tends to travel downwards the energy
cascade, from large to small scale convective elements. These latter
are finally cut off by residual-stresses and viscosity so that the large
scales should not know about the absence of the small ones.

The potential offered by the LES scheme has been amply demon-
strated; for instance, it has been successfully used in combination
with the anelastic spherical harmonics solver with increasing
degree of complexity in several studies of solar physics (e.g. Brown
et al. 2008; Brun et al. 2011; Augustson et al. 2012) where rotation,
tachocline and compressibility of the fluid are taken into account.
LES is also suited to interpret results from a first-order-moment
system like that in equation (1). LES’s main limitations are mostly
related to periodicities such as those generated by fake anisotropies
or long-range correlations (e.g. Ishihara, Gotoh & Kaneda 2009;
Kenada & Morishita 2014; Jimenez & Kawahara 2014, for a
review).

Aware of the limitations implicit in our theory represented by
equation (1) when compared with full 3D hydrodynamic simula-
tions, we present in the section below the method we have adopted
to solve the basic equations of the SFC theory. Then, instead of
undertaking a detailed comparison of the results with those from
LES, we proceed to calculate full stellar models and evolutionary
tracks based on the SFC theory (see Section 6) and show that the
new stellar models directly agree with those based on the classical
ML theory and that 1D-based models can fairly agree with the data
of real stars which is the goal of this work.

4 SO LV I N G T H E BA S I C E QUAT I O N S

We present an algebraic numerical procedure to solve the system
of equation (1). Following Pasetto et al. (2014) we assume g4 = g

4

and α = acT 3

κρ2cp
where all the symbols have their usual meaning and

we limit ourself to the homogeneous case ∇μ = 0. Inserting the
first of equations (1) into the second, and performing a number of
algebraic manipulations, the system equation (1) rapidly reduces to
this set of four equations in four unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2 = 4g4ξe(∇−∇e)
3hp
2δvτ +2∇+∇e

4α(∇rad−∇)
3hp

= v2t0τ (∇−∇e)
hp

∇e−∇ad
∇−∇e

= 4ατ

ξe
2

ξe = g4χ(∇−∇e)
3hp
2δvτ +2∇+∇e

.

(4)

There are several different techniques for finding the solutions of the
system equation (4). In what follows we limit ourselves to present
the most stable of these solutions from a algebraic/numerical point
of view.

From the second equation of system equation (4) we isolate the
gradient of the convective elements:

∇e = 4α(∇ − ∇rad)

3v2t0τ
+ ∇, (5)

and insert it into the other equations of system equation (4) to obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v2 = 32αδg4ξe(∇rad−∇)
2δ∇(4α+9v2t0τ)+9vhpt0−8αδ∇rad

3v2t0τ (∇ad−∇)
4α(∇−∇rad) = 4ατ

ξe
2 + 1

ξe = 8αδg4χ(∇rad−∇)
2δ∇(4α+9v2t0τ)+9vhpt0−8αδ∇rad

.

(6)

We proceed further by extracting the ambient gradient from the first
of the previous equations:

∇ = 8αδ∇rad

(
v2 + 4g4ξe

) − 9v3hpt0

18δv4t0τ + 8αδ
(
v2 + 4g4ξe

) , (7)

and introduce it into the remaining two equations to obtain a simple
equation, that relates ξ and v:

4ξe = v2χ

ξe

, (8)

and a more complicated equation that relates all the other quantities:

−9v3hpt0 − 8αδ∇rad

(
v2 + 4g4ξe

)
+2δ∇ad

(
9v4t0τ + 4α

(
v2 + 4g4ξe

))
=

(
4ατ

ξe
2 + 1

)
12αv(2δv∇rad τ+hp )

τ
.

(9)

The first of these equations, equation (8), offers an immediate so-
lution for the size and/or velocity of a convective element. Once
equation (8) is inserted in equation (9) we obtain a quintic equa-
tion in ξ e (the current size of a convective element in S1). At this
point, we are tempted to exploit the fact that by construction ξ e is
always positive, and search for real positive solutions of the quintic
equation in ξ e:

5∑
i=0

ciξ
i
e = 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c5 = 1

c4 = ±hP
√

χ

4δ∇adτ

c3 = αt0χ(∇ad+2∇rad)
9∇adτ

c2 = 12α±hP t0χ3/2+αδg4t0
3τχ2(∇ad−∇rad)

144δ∇adτ2

c1 = 4α2t0
2∇radχ

3∇ad

c0 = ± α2hP t2
0 χ3/2

3δ∇adτ
,

(10)

where ci ∈ R
+
0 , i = 1, ..., 5 and ξe ∈ R

+
0 . Nevertheless this ap-

parent advantage is not so helpful in practice. The solution of a
quintic equation represents a formidable problem that kept occu-
pied the most eminent minds of the past centuries and only in the
19th century a solution formula in terms of ultraradicals (elliptic
functions) has been found (connection with icosahedral symmetry,
King 2008). The implementation of this technique, despite offering
a general analysis of equation (10), is beyond the goal of this paper.
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We are mostly focusing on the impact and physical meaning of the
convection equation (4) for the stars and on validating our theory.
To this aim, we make use of physical assumptions and the theorem
of uniqueness in Pasetto et al. (2014) to reach a comprehensive
interpretation of our system. Hence, we omit to develop a complete
mathematical treatment of the quintic equation (10) and proceed
with the following arguments.

The average size of the convective elements is in bijective re-
lation with the time (see Pasetto et al. (2014) appendix A, fig.
A1). Our theory is valid only after some time interval has elapsed
since the birth of a convective element (the time interval is however
small compared to any typical evolutionary time-scale of a star).
Similar considerations apply to the size of a convective element.
Therefore both τ and ξ e represent equally useful (unbounded) inde-
pendent variables over which to solve our equations. The theorem
of uniqueness proved that the system equation (1) has to develop an
asymptotic behaviour for the independent variables and hence, e.g.
on the velocity v too.

Because a quintic equation has solutions only in terms of ultrarad-
icals, we find more convenient first to express the quintic equation
in terms of v and then to operate numerically to solve it. The ad-
vantage and simplicity in determining numerically an asymptotic
velocity v overwhelms in the practice the utility of the positive na-
ture of ξ e. Hence, we here propose to replace in equation (8) the
variable ξ e with the variable v to obtain the quintic as function of
v (where positive and negative solutions have to be investigated).
From equation (8) we get (χ > 0 and ξ e > 0, see also Appendix B):

ξe = |v| √χ

2
, (11)

so that the system equation (4) reduces to

5∑
i=0

civ
i = 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c5 = 1

c4 = hP

2δt0∇adτ

c3 = 4α(∇ad+2∇rad)
9t0∇adτ

c2 = − α(±δg4t0
2τ

√
χ(∇rad−∇ad)−12hP )

18δt0
2∇adτ2

c1 = 64α2∇rad
3t0

2∇adχ

c0 = 32α2hP

3δt0
3∇adτχ

.

(12)

Owing to the odd velocity dependence of equation (12), the the-
ory predicts different average velocities for up/down motions of
convective elements. This effect has been already observed in nu-
merical simulations (e.g. Arnett et al. 2015) and here now evident in
our fully analytical treatment. The implication of this effect will be
examined in greater detail in a forthcoming paper (Pasetto et al., in
preparation) where over/under-shooting of the convective elements
will be investigated.

Therefore, at each layer of the convective regions (which means
at assigned input physics: density, temperature, etc.) the time has
to be changed until the so-called asymptotic regime is reached (see
Section 3). The time scanning is made according to the relation
t = 10e + �e [s] where, e.g. e = 1, 2, ..., 15 in steps of �e. �e is
suitably chosen according to the desired time space and accuracy.
Typical values �e ∈ [0.01, 0.05] produce fine resolution for the
purpose of our work. At each time step t̂ the integration of the
quintic of equation (12) is performed with robust numerical algo-

rithm (Jenkins & Traub 1970) and with the solution meeting the
conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im [v] = 0

ξe

(
t̂
)

> ξe

(
t̂ − dt

)
v

(
t̂
)

> v
(
t̂ − dt

)
v(t̂−dt)

v(t̂) > � ,

(13)

where � is a suitable percentage of the asymptote reached, for in-
stance 98 per cent (i.e. � = 0.98 in our notation). When this occurs,
the velocity has reached its asymptotic value and the solutions are
determined.

When the velocity v of a typical convective element is known,
one can immediately calculate its dimension ξ e and temperature
gradient ∇e, the temperature gradient of the medium ∇, the con-
vective flux ϕcnv, and finally the radiative flux ϕrad|cnd. As the
quintic equation contains the integration time τ , all these quan-
tities vary with time until they reach their asymptotic value.
Furthermore, at each time the quintic equation has solutions of
which only those with null imaginary part have physical mean-
ing and only those satisfying all the selection criteria equation
(13) have to be considered. To illustrate the point, we take a cer-
tain layer located somewhat inside the external convective zone.
The layer is at the inner edge of the super-adiabatic zone and it
characterized by the following values of the physical quantities
R = 6.067 36 × 108 m, T = 6.295 06 × 103 K, P = 1.485 94 ×
104 Newton m−2, ρ = 3.630 78 × 10−4 kg m−3, κ = 9.671 64 ×
10−2 m2 kg−1, ∇ad = 0.384, ∇ rad = 0.503, and μ = 1.279, solve
the quintic equation and derive the whole set of unknowns listed
above as a function of time until they reach the asymptotic value.
The results are shown in Fig. 2 limited to the convective flux ϕcnv

(left-hand panel) and ambient temperature gradient ∇ (right-hand
panel). In this figure we display all the physical solutions, i.e. with
Im[v] = 0. These are indicated by the green dots. Looking at the
left-hand panel, at increasing time the number of real solutions
varies from one to five and past 104 s to three and asymptotically
only two. Similar trend is shown by the plot in the right-hand panel.
The same quantities can also be obtained from the classical ML
theory using the equations presented in Section B1. In this case
only one real solution exists at each time. This is indicated by
the black dots in both panels. Finally, of all the solutions given
by the SFC theory only one is filtered by the selection criteria, i.e.
the one with the highest value of ϕcnv and ∇. Therefore, in this layer
the asymptotic value of the SFC theory solution is the same as that
of the ML theory.

Is this situation the same for all layers of the convective zone?
It answer is no, the SFC theory differs from the ML theory in
the outermost regions, whereas it closely resembles the ML theory
going deeper and deeper inside. The issue is examined in detail
below.

5 SF C T H E O RY V E R S U S M L T H E O RY O N T H E
S U R FAC E BO U N DA RY C O N D I T I O N S

The luminosity and effective temperature of a star of mass M∗ and
chemical composition [X, Y, Z] depend on the energy production
(the luminosity) and the energy transport (the effective temperature).
The latter, in turn, depends on the combined effect of the radiative
and convective transport in the stellar atmosphere, and the very
outer layers of this in particular.
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Figure 2. Convective flux (left-hand panel) and temperature gradient ∇ of the ambient medium (right-hand panel) as a function of time for a layer in the outer
convective zone of the main-sequence model of the 1 M� star with chemical composition [X = 0.703, Y = 0.280, Z = 0.017]. In the two panels, we show the
solutions from the quintic equation (12) of the SFC theory with their multiplicity (green dots) and the corresponding ones from the ML theory (black dots)
with parameter �m = 1.68. For times longer than a few 104 s one of the solutions from the SFC theory almost coincides with that from the ML theory. This
layer falls at the inner edge of the region with strong super-adiabaticity.

Figure 3. Similar to Fig. 2 but for the velocity (left-hand panel) and the ambient temperature gradient ∇ (right-hand panel) and for a different layer of the
outer convective zone of the 1 M� with composition [X = 0.703, Y = 0.280, Z = 0.017] on the main sequence. This layer is below the photosphere but above
the region of very strong super-adiabaticity. The physical units and the meaning of the symbols are the same as in Fig. 2. The degree of super-adiabaticity is
larger that in Fig. 2. While the large values of the velocities from the SFC theory coincide with those from the ML theory for times longer that few 103 s, the
temperature gradient does not.

What is the behaviour of the SFC theory at this external boundary
condition and how to treat it? The theory developed is fully dynam-
ical, i.e. it includes explicitly the time. Hence careful boundary
conditions have to be accommodated to avoid to apply the theory
where it loses physical significance, i.e. every time the evolution
does not reach the ‘asymptotic regime’. In the very external lay-
ers, a convective elements cannot travel and/or expand upwards
beyond the surface of the star. This greatly reduces the dimension
and velocity and lifetime in turn of an element that came into ex-
istence close to the star surface. Therefore it is likely that close to
surface, the maximum time allowed to an element is shorter than
the time required to reach the asymptotic values of all character-
istic physical quantities of the element, the velocity in particular.
As a side implication of these considerations, we expect that the
resolution of the simulation, i.e. the mass and size zoning, num-
ber of mesh points etc. of the integration technique, should also
play a key role in this issues. In other words, we expect a complex
interplay between the mathematical and the numerical technique
employed to simulate the stellar environment embedding the sys-
tem equation (1) and the fundamental physics describing the in-
trinsically dynamical nature of the convection theory in use. This
is expected also from the physical fact that the theory works on
stellar layers not too large compared to spatial scale over which
the gradients in the main quantities become relevant, but large
enough to contain a number of convective elements well repre-
sented by statistical indicators (as mean, dispersion etc.). This con-

dition can possibly be missed at the boundary of the star (centre or
surface).

The careful analysis of the outermost layers of stellar atmo-
spheres reveals that while the values and profile of the velocity as
a function of the position derived from the ML theory and SFC
theory are nearly comparable, those for the ambient temperature
gradient ∇ derived from the ML theory greatly differs from
the corresponding ones obtained from the SFC theory. This is
shown in Fig. 3 for one of external layers of the 1.0 M� with
the chemical composition [X = 0.703, Y = 0.280, Z = 0.017]
on the main sequence. The layer in question is located at
the outer edge of the super-adiabatic zone and it is charac-
terized by R = 6.067 36 × 108 m, T = 7.194 49 × 103 K,
P = 1.786 49 × 104 N m−2, ρ = 3.819 44 × 10−4 kg m−3,
κ = 3.258 37 × 10−1 m2 kg−1, ∇ad = 0.345, ∇ rad = 1.204,
and μ = 1.277. As in Fig. 2, a very fine time spacing is adopted.
Finally, the meaning of the symbols is the same as in Fig. 2. Also
in this case we compare the SFC theory results with those from
the ML theory. Looking at the velocity (left-hand panel), there is
coincidence between the SFC theory and ML theory for the high
value past the age of a few 103 s, whereas for ∇ at the time of a few
103 s, the solutions from the ML theory and the SFC theory show
the minimum difference however without reaching coincidence,
whereas they strongly deviate both for lower and higher values of
the time (similar behaviour is found in other model atmospheres
that are not shown here for the sake of brevity).
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Figure 4. Top panel: the profile of the convective velocity as a function of
the pressure across the atmosphere of the 1.0 M� star with initial chemical
composition [X = 0.703, Y = 0.280, Z = 0.017], logL/L� = 0 and age of
about 4.6 Gyr, our best candidate to disposal that should fit the position
of the Sun on the HRD. Three profiles are shown; the one derived from
the ML theory (black solid line), the one derived from the SFC theory
(blue dotted line) when the velocity at all layers is let reach the asymptotic
regime (� = 1 everywhere), and finally the third one (red dashed line) when
the velocity in the outer layers can only reach a fraction of the asymptotic
value (� < 1 in the outer layers). Bottom panel: the same as in upper panel
but for the temperature gradient ∇ of the medium.

To lend further support to the above results, we look at the sys-
tematic variation of both velocity and ambient temperature gradient
across the external convective zone of the model with chemical
composition [X = 0.703, Y = 0.280, Z = 0.017] and log L

L� = 0 at

the age of 4.6 Gyr, our best candidate to disposal to fit the position
of the Sun on the HRD. The results are presented in Fig. 4 and
are compared to those of the ML theory. The red solid lines show

the asymptotic velocity and companion ∇ derived from the straight
application of the SFC theory. In the case of the ML theory (the
black dots), the concept of an asymptotic regime for the velocity
and ∇ in turn does not apply because given the physical condition
of the medium there is only one, time-independent value for both
the velocity and ∇. Velocities and temperature gradients in the deep
regions of the convective zone predicted by the SFC theory and ML
theory are nearly coincident whereas towards the surface they tend
to greatly differ. The temperature gradients of the SFC theory is
much lower than the one of the ML theory. Too low a value for the
ambient ∇ would immediately imply a smaller radius and a higher
effective temperature in turn (the luminosity being mainly driven by
the internal physical conditions is hardly affected by what happens
in the atmosphere). The immediate consequence is that the final
position on the HRD of the evolutionary track is too blue to be able
to match the Sun. Similar results are found also for models of star
of different mass and evolutionary stage.

From this analysis, we learn that not all layers of a convective
regions, those near the stellar surface in particular, can reach the
asymptotic regime for the convective velocity (and also all other
relevant quantities). To clarify this important issue, we proceed as
follows.

We start calculating the time at which the solution of the quin-
tic equation satisfies all the conditions of equation (13) (e.g. with
� = 0.95). This usually occurs when the time is about 105–106 s
and sometime less in the outermost layers. We name this time ‘nu-
merical time tasy’. It is not a physical time but a numerical-method
dependent variable: different � fixed arbitrarily give different tasy.
Then we argue that in a convective region, owing to continuous
upward/downward motion of the fluid elements, the effect of any
variation/perturbation of the physical quantities will soon or later
propagate throughout the convective region at a speed whose maxi-
mum value is the sound speed vs = √

�1P/ρ (with the usual mean-
ing of all the symbols).3

Suppose now that the whole convective region has a width �rcnv.
At each layer of the convective zone, we may calculate the sound
velocity vs and associate a temporal time-scale tcnv, i.e. the time-
scale a convective element would require to expand its size to the
whole convective region. At each layer we have that the convective
element expansion rate ξ̇e → vs and the maximum size �ξ e satisfies
the condition �ξ e = �rcnv/2 so that we define tcnv as

tcnv ∼ �ξe

ξ̇e

= �ξe

vs

= �rcnv

2vs

. (14)

At any layer the asymptotic regime cannot be reached if the two
time-scales are in the ratio
tasy

tcnv
= � < 1. (15)

This condition fixes also the maximum fraction of the local velocity
with respect to its asymptotic value reached in each layer. The
percentage � varies with the position. Going deeper into the star
the sound velocity increases, tcnv decreases, and the condition (15)
is always violated, i.e. the asymptotic velocity is reached anyhow.
In these regions the ratio � always reaches the maximum value
� = 1.

3 It is worth noting here that since we are dealing we the most external layers
in which the ionization of light elements (H,He, C, N, O, etc...) takes place,
the expression for �1 to use is the one containing the effect of ionization as
well as radiation pressure. See appendix B or Cox & Giuli (1968) for details
on the expression for �1 we have used.
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Figure 5. The profile of � across the atmosphere of the MS model of the
1.0 M� star with chemical composition [X = 0.703, Y = 0.280, Z = 0.017].
Note the fall of � to the minimum value followed by the rapid increase to
� = 1 at increasing pressure.

To illustrate the point, in Fig. 5 we show the profile of � through-
out the atmosphere of the zero age main-sequence model of the
1 M� star. It is worth noting that the asymptotic value of the ve-
locity can be reached everywhere except in the outermost layers of
the star for log P < 6 N m−2. As far as we can tell, this behaviour
is the same in stellar models of the same mass but in different evo-
lutionary stages and in models in the same evolutionary stage but
different mass. Now we go back to the case of the stellar model rep-
resenting the Sun and look at the velocity and ambient temperature
gradient across the atmosphere when the condition equation (15) is
applied. Now a profile � similar but not identical to that of Fig. 5 is
at work. The results are also plot in Fig. 4 (the red dashed lines in
both panels). Now the profiles of velocity and ∇ in the outermost
regions are much similar to those of the ML theory and therefore
similar stellar models are expected (see Section 6).

From a technical point of view, the extent of the convective re-
gion �rcnv is not known a priori and therefore an iterative procedure
must be adopted starting from a reasonable guess. Basing on the
calculations of many model atmosphere, �rcnv, we expressed start-
ing guess value for the convergence as �rconv � hp × N, where hp

is the pressure scaleheight of the outermost layer and N the typi-
cal number of mesh points describing an atmosphere when logP is
the independent variable. This finding greatly facilitates the task of
choosing the initial guess for �rcnv. One or two iterations of the
atmosphere are sufficient to refine �rcnv to the desired value. Our
model atmospheres are calculated with N � 150 mesh points. Us-
ing different codes with different resolving algorithm and numerical
precision, different values of N can be found being this a limitation
of the numerical integration scheme.

The procedure we have described acts as numerical scheme for
the boundary conditions on the velocity profile in the outermost
regions of a star. The number N of mesh points in the atmosphere is
not a free parameter, but it is fixed by the mathematical technique
and accuracy of the integration procedure (in our case N � 150)
and therefore it cannot be changed without changing these latter.
Other stellar codes should have different values of N. However, lim-
ited to the following discussion we will take advantage of relations
(14) and (15) to assess the model response to variations of �rcon,
�, velocity v of the convective elements and finally ∇ by simply
varying N. At each layer, keeping the sound velocity vs constant
(the physical quantities P, ρ etc. are assigned) lower Ns would
imply smaller �rcnv, higher values of � and velocity in turn, too
low ∇s in outermost layers, and eventually too blue evolutionary

Figure 6. Evolutionary sequences of the 0.8 M� (top panel)
and 1.0 M� (right-hand panel) stars with chemical composition
[X = 0.703, Y = 0.280, Z = 0.017] at artificially varying the number N
of mesh points in the atmosphere as indicated. Only the case with N = 150
and the right value of �rcnv shows a track in agreement with current results
in literature. The quintic is solved with time resolution �e = 0.01. As ex-
plained in great detail in the text, low values of N correspond to small size
of the convective region, high values of the velocity, smaller radii and hence
higher effective temperatures. The opposite is the case of large values of
N. Therefore only the correct �rcnv, profile �, and velocities in the region
of strong super-adiabaticity yield stellar models and evolutionary tracks in
agreement with real HRDs. In other words, only the correct application of
the SFC theory yields results able to reproduce the observations.

tracks in the HRD with respect to those from the ML theory. The
opposite is the case for higher values of N. The results of these
numerical experiments are shown in Fig. 6 for a test evolution-
ary sequences for the 0.8 and 1 M� with chemical composition
[X = 0.703, Y = 0.280, Z = 0.017], that are calculated forcing a
variation of the size �rcnv by varying the number N as indicated. In
conclusion, the correct physical description of the outermost layers
of the external convective region of a star is crucial to calculate
stellar models able to reproduce the position of real stars on the
HRDs.

6 R ESULTS

As already recalled in the previous sections, both the classical ML
theory and the new SFC theory find their best application in the con-
vective regions of the outer layers of a star where the super-adiabatic
convection occurs. Therefore, first we investigate the physical struc-
ture of model atmospheres that are calculated both with the standard
ML theory and the new SFC theory.
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Figure 7. Structure of the outer layers of the Sun. Solar fluxes and temperature gradients profiles for the internal convective stratification of the star. The upper
panels show the radiative flux ϕrad|cnd (left) and the convective flux ϕcnv (right). The bottom panels display the element gradient ∇e (left) and the ambient
gradient ∇ (right). The red dashed lines refer to SFC theory whereas the black solid lines to the ML theory.

The numerical code for the atmosphere models has been extracted
from the classical Göttingen code developed by Hofmeister et al.
(1964) and used and implemented by the Padova group for more than
four decades. Over the years, this code has been developed to include
semiconvection (e.g. Chiosi & Summa 1970), ballistic convective
overshoot from the central core (Bressan, Chiosi & Bertelli 1981),
envelope overshoot (Alongi et al. 1991), turbulent diffusive mixing
and overshoot (Deng, Bressan & Chiosi 1996a,b; Salasnich, Bressan
& Chiosi 1999), and finally the many revisions of the input physics
and improvements described in Bertelli et al. (1994a, 1995, 2003,
2008), Bertelli & Nasi (2001). The version used here is the one by
Bertelli et al. (1994b) in which we have replaced the ML theory
with the SFC theory. The value of �m adopted for the ML theory
is taken from Bertelli et al. (2008) and provides calibrated models
matching the properties of the Sun on the HRD. The adopted value
is �m = 1.68. The structure of the atmosphere models is according
to the equations and physical input described in Sections 2, B1,
and B2.

6.1 The outer layers of Sun-like stars: atmosphere models

We take the evolutionary track of 1 M� with chemical composi-
tion [X=0.71, Y=0.27, Z=0.02] calculated by Bertelli et al. (2008)

and isolate the model that fairly matches the position of the Sun on
the HRD, i.e. log L/L�=0 and log Teff=3.762. The atmosphere is
shown in Fig. 7. In each panel we show the results for the standard
ML theory (using � = 1.68 and the SFC theory. We display the ra-
diative flux ϕrad|cnd (top left panel) and the convective flux ϕconv (top
right panel), the logarithmic temperature gradient of the element ∇e

(bottom left panel) and of the medium ∇, (bottom right panel). The
colour code indicates the underlying theory of convection, black for
the ML theory and red for the new theory. It is soon evident that
while the profiles of the fluxes are virtually identical with the two
theories, the gradients ∇e and ∇ are much different, a result already
visible in Fig. 4. In both cases, the extent of convective zones is
similar. By construction the position on the HRD is the same. For
the sake of illustration we show in Fig. 8 the case of a 2.0 M� star
with same chemical composition and in an advanced stage along
the RGB, the luminosity is log L/L� = 2.598 and the effective
temperature log Teff = 3.593. The situation is much similar to the
previous one. The new SFC theory yields the same path on the
HRD as the calibrated MLT, however the greatest merit of former is
that no ML parameter or calibration is required. The properties of
convection are fully determined by the physics of the layer in which
convection is at work. By taking the outer envelope of the model
whose luminosity and effective temperature are those of the Sun
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Figure 8. The same as in Fig. 7 but for the 2 M� in a late stage along the RGB, log L/L� = 2.598 and log Teff = 3.593.

and looking at the stratification of the main variables (temperature,
density pressure, radiative and convective fluxes, velocity and as-
sociated dimensions of convective elements, temperature gradient
in presence of convection), it is soon evident that the ML theory is
indeed a particular case in the more general solutions predicted by
the SFC theory. As we go deeper into the atmospheres, the solutions
for the ML theory and SFC theory tend to diverge. This is expected
and it simply reflects the fact that these external solutions are not
constrained to match the inner solution at the transition layer (typ-
ically M/M∗ � 0.97, where M and M∗ are the mass at the layer r
and total mass, respectively). Small differences among the two so-
lutions tend to amplify as we go deeper inside. This is more evident
in case of the 2.0 M� star along the RGB. This can be fixed only
by considering complete stellar models. Hence a few preliminary
exploratory stellar models will be presented below.

6.2 Preliminary, complete stellar models with the sfc theory

We have calculated a few test evolutionary sequences of complete
stellar models for different initial mass and fixed chemical composi-
tion. The stellar models are followed from the main-sequence stage
up to the end of the RGB or core helium exhaustion, as appropriate
to the initial mass of the star.

Several important remarks are mandatory here before present-
ing the stellar models under consideration. First the SFC theory
we have described is specifically designed to deal only with con-
vection in the outer layers of the stars: it cannot be applied to
deal with physical situations in which convective overshooting ei-
ther from central cores and/or convective intermediate shells is tak-
ing place. However, we would like to mention that the formalism
developed by Pasetto et al. (2014) derives the acceleration acquired
by convective elements under the action of the buoyancy force in
presence of the inertia of the displaced fluid and gravity. There-
fore, it is best suited, with the necessary modification, to derive
the motion of the convective elements beyond the formal limit set
by the Schwarzschild condition, the penetration of these into the
surrounding radiative regions, the dissipation of their kinetic en-
ergy and finally the redistribution of energy and physical properties
of the layer interested by their motion, i.e. to describe convective
overshooting. We are currently working on extending SFC the-
ory to the convective overshooting (Pasetto et al., in preparation).
Therefore, in order to calculate new stellar models with the SFC
theory, we must use one of the prescriptions for convective over-
shooting from the core currently in literature. We adopt here the
ballistic model of convective overshooting developed by Bressan
et al. (1981) end since adopted by the Padova group. It is not the
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Figure 9. The HRD of the 0.8, 1.0, 1.5, 2.0, and 2.5 M� stars with initial chemical composition [X = 0.703, Y = 0.280, Z = 0.017] calculated from the main
sequence to advanced evolutionary stages using both the classical ML theory (the dotted lines) and the SFC theory (solid lines of different colours). The 0.8,
1.0, 1.5 and 2.0 M� models are carried to a late stage of the RGB before core He-ignition (He-Flash), whereas the 2.5 M� is evolved up to very advanced
stages of central He-burning (Yc � 0.1). The stellar models are calculated with the Padova code and input physics used by Bertelli et al. (1994b) and Bertelli
et al. (2008), see also the text for more details. The models are meant to prove that the SFC theory with no ML parameter is very close to the classical ML
theory with calibrated ML parameter (�m = 1.68 in our case).

best solution but it is sufficient to obtain significant exploratory
results.

The code considered in this models is the same from which we
have taken all the routines to calculate the model atmospheres. All
the input physics, i.e. opacities (radiative conductive and molecu-
lar), nuclear reaction rates, EoS, and the prescription for convective
overshooting from the core are as described by Bertelli et al. (2008),
to whom the reader should refer for all details. In particular, it is
worth recalling that the treatment of core overshooting relies on
Bressan et al. (1981) that stands on the ML theory (to derive the
velocity of convective elements) and makes use of the ML param-
eter �c = 0.5 for all masses M∗ ≥ 1.5 M�, �c = 0 for stars with
mass M∗ ≤ 1 M�, and finally �c = M∗/ M� − 1.0 for stars in
the interval 1.0 < M∗/ M� ≤ 1.5. Overshooting from the bottom
of the convective envelope along the RGB follows from Alongi
et al. (1991) with �e = 0.25. Therefore, the interiors are calculated
according to the classical prescription, whereas the outer layers are
treated according to the SFC theory. This is an intermediate step
towards the correct approach in which convective overshoot in the
internal regions is treated in the framework of SFC theory.

We note that an obvious drawback of using the Bertelli et al.
(1994b) code is that the input physics is somewhat out of date with
respect to more recent versions of the same code, eg. Nasi et al.
(2008), Bertelli et al. (2008, 2009), and finally the very recent revi-
sion of the whole code by Bressan et al. (2012), Chen et al. (2014)

and Tang et al. (2014). The choice of the Bertelli et al. (1994b) code
is motivated by the large body of stellar models calculated with
this and worldwide used. In any case, this satisfactorily permits the
comparison of stellar models with the same code, input physics and
both ML theory and SFC theory. Work is under way to calculate
new grids of stellar models with SFC theory using an independent
code with very modern input physics i.e. the Garching code named
GARSTEC by Weiss & Schlattl (2008).

For the purposes of this exploratory investigation we present here
five evolutionary sequences for stars of initial mass 0.8, 1.0, 1.5,
2.0, and 2.5 M� and chemical composition [X = 0.703, Y = 0.280,
Z = 0.017] calculated from the main sequence to advanced evolu-
tionary stages using both the classical ML theory (�m = 1.68 in our
case) and the SFC theory. The 0.8, 1.0, and 1.5 M� sequences are
indicative of the old stars in Globular Clusters and very old Open
Clusters, whereas the 2.0 and 2.5 M� sequences correspond to in-
termediate age Globular and Open clusters. The 2.0 M� is the last
low mass star of the adopted chemical composition undergoing core
He-Flash (Bertelli et al. 2008). The HR Diagram is shown in Fig. 9,
where the grey dots indicate the sequences with the ML theory and
the dotted lines of different colours show those with the SFC theory.
The 0.8, 1.0, 1.5, and 2.0 M� models are carried to a late stage
of the RGB before core He-ignition (He-Flash), whereas the 2.5
M� is evolved up to very advanced stages of central He-burning,
Yc � 0.1 (no He-Flash has occurred). The corresponding models
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with the classical ML theory (dotted paths) are taken from Bertelli
et al. (2008).

In general the two sets of models are in close agreement. However
looking at the results in some detail, the new tracks tends to have a
slightly different inclination of the RGB. The SFC tracks are nearly
identical to those of the ML theory at the bottom and progressively
becomes redder towards the top, i.e. the RGBs of the low mass
stars are less steep than those of the classical MLT models. Looking
at the case of the 1 M� star, the MLT model are calculated with
�m = 1.68 upon calibration on the Sun and kept constant up to the
end of the RGB and afterwards. The models with the SFC theory
do not require the ML parameter but fully agree with the MLT ones
during the core H-Burning phase but by the time they reach the
RGB tip they would be in better agreement with MLT models with
a smaller values of the ML parameter. The required decrease of �m

is difficult to quantify at the is stage of model calculations. How-
ever, it agrees with the analysis made by with Magic et al. (2015)
of 3D radiative hydrodynamic simulations of convection in the en-
velopes of late-type stars in terms of the 1D classical ML theory.
Using different calibrators and mapping the results a s function of
gravity, effective and effective temperature Magic et al. (2015) find
that at given gravity the ML parameter increases with decreasing
effective temperature, the opposite at given effective temperature
and decreasing gravity. There are also additional dependencies on
metallicity and stellar mass that we leave aside here. Looking at the
case of the Sun, passing from the main sequence to a late stage on
the RGB, the ML is found to decrease by as much as about 10 per
cent. Applying this to stellar models, a less steep RGB would result
as shown by our model calculations with the SFC theory. Owing
to the complexity of the new SFC theory with respect to the clas-
sical ML theory, the results are very promising. These preliminary
model calculations show that that the SFC theory with no ML pa-
rameter is equivalent to the classical ML theory with calibrated ML.
More work is necessary to establish a quantitative correspondence
between the two theories of convection.

7 C O N C L U S I O N S A N D F U T U R E WO R K

We have presented here the first results of the integration of stellar
atmospheres and exploratory full stellar models to which the new
convection theory developed by Pasetto et al. (2014) has been ap-
plied. To this aim, a mathematical and computational algorithm and
a companion code have been developed to integrate the system of
equations governing the convective and radiative fluxes, the temper-
ature gradients of the medium and elements and finally, the typical
velocity and dimensions of the radial and expansion/contraction
motion of convective elements. In parallel we have also calculated
the same quantities with the standard ML theory in which the ML
parameter has been previously calibrated. All the results obtained
with ML theory are recovered with the new theory but no scale
parameters are adopted. We claim that the new theory is able to
capture the essence of the convection in stellar interiors without a
fine-tuned parameter inserted by hand.

The main achievement of the theory presented in this paper is
not only to prove that satisfactory results can be achieved, as was
already done by the ML theory, but more importantly to clarify
that our understanding of the stellar structure is correct and fully
determined by the underlying physics. Each star ‘knows its own
convection’: i.e., where it is located, how much it extends and how
much energy it is able to carry away. This is the meaning and the
power of the self-consistent results we have just presented. Finally,
the theoretical picture we have developed has a predictive power

that merely descriptive analyses of numerical simulations still miss.
In other words, successful numerical experiments of laboratory hy-
drodynamics with millions of degrees of freedom do not imply a
complete understanding of the phenomenon under investigation. An
emblematic example of this is offered by the impressive simulations
by Arnett et al. (2015). However, even in this case the closure of the
basic equations involved in their hydrodynamic simulations is not
possible. This has been instead achieved by the much simpler and
straightforward formulation of the same problem by Pasetto et al.
(2014). Based on these preliminary results we are confident that this
is the right path to follow. However, before moving towards more
complicated physical situations such as convective overshoot and
semiconvection and extending our theory to deal with these phe-
nomena (Pasetto et al., in preparation), it is necessary to check the
overall consistency of the new theory by calculating stellar models
over all possible evolutionary phases according to the mass of the
star, to extend the calculations to wider ranges of initial masses
(namely to massive stars where mass loss by stellar winds is im-
portant all over their evolutionary history and the very low mass
ones where convection is becoming more and more important), and
finally to consider other initial chemical compositions. Work is in
progress to this aim (Pasetto et al., in preparation).

Finally, a numerical code for the solution of the polynomial (12)
or (10) both in ξ e and |v| is available upon request to the first author.
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APPENDI X A : THE EXTERNA L LAY ERS:
BA S I C E QUAT I O N S A N D I N P U T PH Y S I C S

In these appendices, we provide the precise disposition of the equa-
tions we have used in this paper, with the aim of enhancing the ease
with which our results can be replicated and checked.

We start with the treatment we have used for the photosphere.

A1 The photosphere

Given the total mass M∗ and the chemical composition [X, Y, Z]
(following standard notation, X represents the H concentration, Y the
He and Z the remaining elements so that X + Y + Z = 1 identically
holds), and adopting the spherical symmetry, and a system of polar
coordinates x = {r, θ, φ} centred on the barycentre of a star, the
boundary conditions at the surface of a star are

r = r∗ Tsup = Tph ρsup = ρph. (A1)

Determining Tph and ρph (or Pph) is not simple, requiring a detailed
treatment of the external layers of a star. The photosphere, which
corresponds to the surface of a star, is defined as the most external
layer from which the radiation coming from inside is eventually
radiated away and above which the Local Thermodynamic Equi-
librium can no longer be applied. It is the last layer at which the
radiation is nearly identical to that of a blackbody at the temper-
ature T. This layer is also used to define the effective temperature
Teff implicitly as

L = 4πr2
∗σT 4

eff . (A2)

The photosphere is also the layer at which the matter is no longer
transparent to radiation. We make use of the concept of optical depth
at the photon frequency ν, κν , the Eddington approximation (i.e.
independence of the specific frequency ν) for the radiative transfer
equation and the grey body approximation. The momentum flux
equation for a photon fluid reads

∂ϕ

∂t
+ 〈∇x, Pν rad〉 = −ρκνϕ, (A3)

where ϕ is the radiative flux of photons and Pν rad is the pres-
sure radiation tensor for photons of frequency ν and 〈•, •〉 denotes
the inner product. Eddington introduced the function Kν which is
widely used in the literature and is related to the outward compo-
nent of the monochromatic pressure tensor Prad, ν of frequency ν

as Prad, ν = 4πKν together with two functions: Hν (the Eddington
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flux) and Fν related by Prad, ν = 4πHν = πFν .4 Making use of the
grey-body approximation and this notation, equation (A3) reads

dK

dτ
= F

4
. (A4)

Because we assumed radiative equilibrium, we can integrate the
above equation to obtain the mean intensity I = 1

4π

∮
Id� over the

solid angle d� as

I = 3

4
F (τ + Q) , (A5)

where the Eddington condition I = 3K has been employed on equa-
tion (A4) and Q is the integration constant. For a linear intensity
relation, Iν = aμ + b with μ = cos θ cosine director outwards
from the star pointing to us, we can fit the Sun limb darkening with
a
b

∼= 3
2 and determine the constant Q (normalized to the Sun) as

Q ∼= 2
3 . Finally, if we assume that in the stellar layer considered the

mean-free-path of a photon is much smaller than the characteris-
tic scalelength where the temperature changes, λν = 1

ρκ
� hT , the

diffusion-approximation applies (I ∼= a
4π

T 4) and with the definition
of effective temperature above, we obtain:

T 4 = 3

4

(
τ + 2

3

)
T 4

eff . (A6)

Therefore, the photosphere is the layer whereby τ = 2/3. A more
rigorous solution by Chandrasekhar (1960) (see also Mihalas 1982,
p. 62) sees the factor 2

3 in the previous equation substituted by
q(τ ) ∈ ]0.577, 0.710[. This relation yields the dependence of the
temperature on the optical depth in the region τ = 0 (ρ = 0) to
τ = 2/3 in the grey atmosphere approximation.

Finally, the pressure at the photosphere is given by the hydrostatic
equilibrium condition as a function of τ ,

Pph = Gm

r2

∫ τph

0

1

κ
dτ, (A7)

where Pph = 0 at τ = 0 and radiation pressure is neglected and G is
the gravitational constant. The opacity κ is a function of position,
κ = κ(r), and therefore the state variables P, T, ρ, and chemical
composition μ. However, to a first approximation κ can be consid-
ered constant. It follows from this that

Pph = 2

3

1

κph

Gm

r2
(A8)

Note that the effect of radiation pressure the can be absorbed by

recasting in the above equation the gravity as geff = g − κσT 4
eff

c

with g = GM
r2 . The relationships for Tph and Pph define the natu-

ral boundary conditions for the system of equations describing a
stellar structure. To conclude, temperature, pressure and density in
the regions above the photosphere are expressed as functions of the
optical depth τ , whereas below the photosphere to be determined
they require the complete set of stellar structure equations.

A2 The atmosphere

In absence of rotation, magnetic fields and in hydrostatic equilib-
rium, the structure of a star is defined by the following equations:

4 These functions can be proved to be simply statistical moments of the
intensity weighted by cos θ and cos 2θ related to the radiative flux and the
radiative pressure in any direction θ pointing outside the star to the observer.

(i) The mass conservation

dM

dr
= 4πr2ρ, (A9)

where M = M(r) is the mass inside the sphere of radius r.
(ii) The gravitational potential 
g satisfying the Poisson relation

d
g

dr
= 4πgρ. (A10)

(iii) The condition of mechanical equilibrium for a fluid at rest
(Euler equation):

dP

dr
= −ρ

GM

r2
, (A11)

with G is the gravitational constant.
(iv) The equation for the energy conservation

dL

dr
= 4πr2ρ(εN − εν + εg), (A12)

where εN, εν and εg are the nuclear, neutrino losses, and gravitational
sources, respectively.

(v) Finally, the equation for energy transfer, which can be ex-
pressed as follows

d ln T

d ln P
= ∇, (A13)

where ∇ depends on the dominating physical mechanism for
energy transport: ∇ rad/cnd for radiation plus conduction, ∇cnv for
convection (typically in stellar atmospheres), and simply ∇ad in
presence of adiabatic convection (typically in deep stellar interiors).

In the atmosphere, first it is more convenient to use the pressure
P instead of the radius r as the independent variable, and second all
the three energy sources εn, εg, and εν can be assumed to be zero so
that the luminosity is a constant L(M) = L = const. Consequently
equation (A12) is no longer needed and equations (A9), (A11),
(A13) read:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d ln M
d ln P

= − 4πr4P
GM2

d ln r
d ln P

= − rP
GρM

d ln T
d ln P

= ∇,

(A14)

with L(P ) = L = constant. respectively.
These equations must be complemented by the EoS in the at-

mosphere, P = P(ρ, T, μ) with μ the molecular weight of the
chemical mixture (inclusive of ionization), the opacity κ(ρ, T, μ),
and the expressions for ∇ that depend on the transport mechanism
at work. If ∇ rad < ∇ad, the energy flows by radiative transport and
the temperature gradient of the medium is

∇ = ∇rad = 3

16πacG

κLP

MT 4
, (A15)

with a density-radiation constant and c speed of light. If ∇ rad ≥ ∇ad

convection sets in, and the energy flux is carried by radiation and
convection. we indicate with ϕ, ϕcnv and ϕrad|cnd the total energy flux,
the convective flux, and the radiative plus conductive (if needed)
energy flux lumped together.5 Among the three fluxes the obvious

5 Conduction has an important role in the degenerate cores of red giants
and advanced stages of intermediate-mass and massive stars, and dominates
in the isothermal cores of white dwarfs and neutron stars. The conductive
flux can be expressed by the same relation for the radiative flux provided
the opacity is suitably redefined. In the external layers of a normal star

MNRAS 459, 3182–3202 (2016)



3198 S. Pasetto et al.

equation ϕ = ϕcnv + ϕrad|cnd applies. In this region four temperature
gradients are at work: the gradient of convective elements ∇e, the
gradient of the medium in presence of convection ∇cnv, the adia-
batic gradient ∇ad, and a fictitious gradient still named ∇ rad as if all
the energy flux were carried by radiation. While the flux carried by
radiation is easily known, the flux carried by convection requires
a suitable theory, to specify ∇ and ∇e. The above system of equa-
tions (A14) together with those describing the convective transport
represent the environment of the stellar atmosphere in which super-
adiabatic convection is at work either according to the ML theory or
the new SFC theory that will be shortly summarized in Appendix B.

To complete the physical description of the stellar medium, we
need to present here thermodynamic quantities that are used to
derive temperature gradients and the convective flux in presence of
ionization and radiation pressure.

A3 Ionization and thermodynamics of an ionizing gas

To proceed with the calculation of ∇e and ∇ required by the systems
of equations (B1) for ML theory or (1) for the SFC theory we need
∇ad and cP for a gas made of a number elemental species in various
degrees of ionization and in presence of radiation pressure. Despite
several formulations of this equation exist in literature (e.g. Baker
& Kippenhahn 1962; Hofmeister et al. 1964; Cox & Giuli 1968;
Kippenhahn & Weigert 1994; Kippenhahn et al. 2012), we present
here the basic equations adopted in this paper. They are taken from
Baker & Kippenhahn (1962) however adapted to our notation and
strictly limited to those used in our code.

A3.1 Ionization

Consider a mixture of atoms of type i = 1, ..., N, each of which with
ne, i electrons and ne, i + 1 stages of ionization indicated by r = 0, ...,
ne, i (we neglect here the case of atoms in a give stage of ionization
but different state of excitation), the fraction of atoms of type i in the
ith stage of ionization (i.e. that have lost i electrons) is xr

i . The total
fraction y

j
i of atoms of type i which are in ionization stages higher

than ith is yr
i = ∑ne,i

s=r+1 xs
i . Let us indicate the relative number of

atoms of type i as ν i = ni/n with n total atoms of N types. The total
fraction fe of free electrons is then:

fe =
N∑

i=1

νi

ne,i∑
r=0

rxr
i =

N∑
i=1

ne,i−1∑
r=0

νiy
r
i . (A16)

We introduce the function

Kr
i ≡ ur+1

u

2

Pgas

(2πme)3/2(kBT )5/2

h3
e

− χr
i

kB T , (A17)

for r = 0, 1, .....Zi − 1, where χr
i is the rth ionization potential of atom

i, u the statistical weight of the state r, kB the Boltzmann constant
and h the Plank constant. Then, to derive the degree of ionization
we need to solve the system of

∑N
i=1(ne,i − 1) Saha’s equations

together with the N equations
∑ne,i

r=0 xr
i = 1 for the

∑N
i−1 ne,i quan-

tities Xr
i :⎧⎨

⎩
xr+1
i

xr
i

fe

fe+1 = Kr
i∑ne,i

r=0 xr
i = 1,

(A18)

conduction in practice has no role and the above notation is superfluous.
However in view of the future extension of the SFC theory to internal
convection and/overshooting, we keep also here this more general notation.

that can be solved numerically. In most cases, however, the ioniza-
tion potentials χr

i differ sufficiently from each other so that only one
ionization is taking place at any time. Therefore for a given i = k only
xs

k and xs+1
k are different from zero. The condition (

∑ne,i

r=0 xr
i = 1

can then be approximated by xs
i + xs+1

i = 1 and accordingly yr
k = 0

for r > s, ys
k = xs+1

k , and yr
k = 1 for r < s, and the Saha’s equation

becomes a quadratic expression:

ys
k

1 − ys
k

As
k + νkY

s
k

1 + As
k + νky

s
k

= Ks
k , (A19)

with the aid of the auxiliary quantity

As
k ≡

N∑
i �=k

ne,i−1∑
r=0

νiy
r
i + νk

ne,i−1∑
r �=s

yr
k , (A20)

that has a fully algebraic solution.

A3.2 Thermodynamics

The derivation of ∇ad and cP accounting for the effect of ionization
is as follows. In equation (A16) and (A20) we absorb the indexes
over the atoms and ionization, i.e. we write simply fe = ∑N

i=1 νiyi

and Ak ≡ ∑N
i �=k νiyi . Then, for any stellar layer the specific heat cp

is

cP = �
μ0

(
5

2
+ 4(1 − β)(4 + β)

β2

)
(1 + fe) +

∑
i

νi

Gi

F 2
i ,

(A21)

where the auxiliary functions Fi and Gi are

Fi ≡ 5
2 + 4(1−β)

β
+ χi

kBT

Gi ≡ 1
yi (1−yi ) + νi

fe(1+fe),

(A22)

where 1 − β = aT 4

3P
, μ = μ0

1+fe
, δ = −(

∂ ln ρ

∂ ln T

)
P

, and

α = −(
∂ ln ρ

∂ ln P

)
T

have been used. Finally, under the same hy-
potheses, the adiabatic gradient is

∇ad =
(

1 + (1−β)(4+β)
β2

)
(1 + fe) + 1

β

∑
i

νi

Gi
Fi(

5
2 + 4(1−β)(4+β)

β2

)
(1 + fe) + ∑

i
νi

Gi
F 2

i

. (A23)

where ∇ad is 0.4 for a perfect neutral gas with no radiation, tends to
0.25 for a fully ionized gas in presence of radiation, and may further
decrease to about 0.12 in presence of ionization as in the case of
external layers. Finally, the generalized adiabatic exponent �1 (that
is needed to calculate the sound velocity) is

�1 = (
2β(3β(β + 8) − 32)(fe + 1)Gi − 4β3Fi

2νi

)
× (νi (β (2Fi + 3) − 8) ((8 − β (2Fi + 3)) − 8β)

+6β (7β − 8) (fe + 1) Gi + βνi (β (4Fi + 39) − 64))−1.

(A24)

All the model atmospheres used in this study are calculated includ-
ing radiation pressure and ionization of light elements and the effect
of these on all thermodynamical quantities in use. For more details
the reader should refer to the original sources (Baker & Kippenhahn
1962; Hofmeister et al. 1964; Cox & Giuli 1968; Kippenhahn &
Weigert 1994; Kippenhahn et al. 2012).
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A P P E N D I X B: TH E M L A N D S F C TH E O R I E S
O F C O N V E C T I O N

The above equation of stellar structure in the atmosphere require a
suitable theory of convection. In this appendix first we summarize
the version of the classical ML theory we have adopted and then we
shortly review the new SFC theory of Pasetto et al. (2014) In what
follows we will omit the proofs of the results to focus attention on
the resolution techniques of the equations presented.

B1 ML theory: a summary

The equations for the energy flux transport of the ML theory are
available from the literature in several forms (equivalent in content).
They are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4ac
3

T 4

κhpρ
∇

ϕrad|cnd + ϕcnv = 4ac
3

T 4

κhpρ
∇rad

v2 = gδ (∇ − ∇e) l2m
8hp

ϕcnv = ρcP T
√

gδ
l2m

4
√

2
h−3/2

p (∇ − ∇e)3/2

∇e−∇ad
∇−∇e

= 6acT 3

κρ2cP lmv
,

(B1)

where hp is the scaleheight of the pressure stratification of the star,
v the average velocity of the convective element, and all other sym-
bols have their usual meaning. In particular we recall that lm is the
mean dimension and mean free path of the convective elements be-
fore dissolving and releasing their energy excess to the surrounding
medium. It is customarily expressed as lm = �mhp, where �m is the
ML parameter. The derivation and solution of this system of equa-
tions can be found in any classical textbook of stellar structure (e.g.
Kippenhahn & Weigert 1994; Hofmeister et al. 1964; Kippenhahn
et al. 2012). In the literature, there are several versions of the ML
theory (see Pasetto et al. 2014, and references) but in this paper we
prefer to follow the one presented by Hofmeister et al. (1964) and
adopted by the Padova group in their stellar evolution code to cal-
culate the structure of the most external layers of a star (see Bertelli
et al. 2008, and references).

The set of equations (B1) can be lumped together in a dimen-
sionless equation among the three gradients ∇ (of the medium in
presence of convection), ∇ rad, and ∇ad. Introducing the quantity

V ≡ 3acT 3

cP ρ2κl2m

√
8hp

gδ

W ≡ ∇rad − ∇ad,

(B2)

we may derive from system equation (B1) the dimensionless equa-
tion

(ξ − V )3 + 8

9
V

(
ξ 2 − V 2 − W

) = 0, (B3)

where ξ is the positive root of ξ 2 = ∇ − ∇ad + V2. The solution of
equation (B3) is algebraic. Writing equation (B3) in standard form

ξ 3 − 17U 3

9
− 19U

9
ξ 2 + 3U 2ξ − 8UW

9
= 0, (B4)

and using the Tschirnhaus transformation, ξ = η + 19U
9 , we get

η3 + 368

243
U 2η − 9344

19683
U 3 − 8

9
UW = 0. (B5)

Writing this equation in the compact form η3 + py + q = 0, the
associated discriminant is � = −4p3 − 27q2 < 0. Hence, we expect

the solutions of equation (B3) to have only one real root given by

η = 3

√√√√ 1

2

(
−q +

√
q2 + 4

27
p3

)
+ 3

√√√√ 1

2

(
−q −

√
q2 + 4

27
p3

)

(B6)

with p = 368
243 V 2 and q = − 9344

19683 V 3 − 8
9 V W . Inverting the Tschirn-

haus transformation we obtain the final solution. Once ∇ is known,
one may derive ∇e from the relation ∇e − ∇ad = 2V

√∇ − ∇e,
so that the four gradients and the fluxes ϕrad and ϕcnv are deter-
mined, and the whole problem is solved. Despite this apparent
simplicity, in the literature there are several different expressions
for the coefficient of the cubic equation (Cox & Giuli 1968; Maeder
2009; Kippenhahn et al. 2012, e.g.) or even for the equation system
equation (B1). We will keep the solution obtained from the above
equations.

B2 The new theory of stellar convection

The drawback of the ML theory is the ML parameter that cannot
be determined in the framework of the ML theory itself. Vice versa
the theory proposed by Pasetto et al. (2014) describes the motion
of convective elements taking into account that in addition to the
upward /downward motion due to the buoyancy force they also
expand/contract while moving so that they are subjected to other
effects. By doing this, new equations are found which together with
those based on the energy conservation lead to a self-consistent de-
scription of the motions of convective elements without introducing
arbitrary free parameters. As expected, the physics of the medium
itself determines all the properties of convection at each unstable
layer of a star.

The key idea of the new theory of stellar convection by Pasetto
et al. (2014) is simple. Considering a rising convective element, in
a 1D model of a star, because of the spherical symmetry, the motion
occurs along the radial direction, while at the same time the ele-
ment increases its dimension. The opposite happens for an element
sinking into the medium: we have radial motion and shrinkage.
The upward (downward) motion and expansion (shrinkage) of the
element are intimately related (indeed the element rises because it
expands and sinks because it shrinks). We remind the reader that in
the classical ML theory only the radial motion is explicitly consid-
ered whereas expansion and shrinkage although implicitly present
are not taken into account. We emphasize that the presence of the
ML parameter simply mirrors the incomplete description of the mo-
tion of convective elements that is limited to the radial direction.
Therefore the natural trail to follow to develop an alternative scale-
free theory of convection is to look at the expansion/contraction, the
radial motion being physically connected. The goal can be easily
achieved if instead of using the natural reference frame S0 cen-
tred on a star’s centre (inertial system), we make use of a frame
of reference S1 centred on and comoving with the generic con-
vective element (non-inertial system). In S1, the element is at rest
with respect to the surrounding medium while it expands / con-
tracts into it. The two reference frames are schematically shown in
Fig. B1 (see aslo Pasetto et al. 2014). In this case the motion of
a generic element can be described by the integral of the Navier–
Stokes equations, i.e. the Bernoulli equation, in which neglecting
magnetic fields and viscous terms (typical of high-Reynold-Number
fluids in which viscous terms are small compared to inertia terms),
the velocity potential approximation can be adopted. In the follow-
ing, we provide a summary of the SFC theory by Pasetto et al. (2014)
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Figure B1. Schematic representation of a convective element seen in the
inertial frame SO and in the comoving frame S1. The element is represented
as spherical body for simplicity. The centre of the sphere indicated as O′
corresponds also to the position of the element in S0. The generic dimension
of the convective element as seen in S1 is indicated by ξ e.

highlighting the main hypotheses, fundamental equations and the
key results.

B2.1 Formulation of the problem and basic equation

As already said, the stellar medium is considered as a perfect fluid
with a suitable EoS function of time t and position x as viewed in the
inertial system S0 of Fig. B1. A perfect fluid is intrinsically unstable
and turbulent, therefore the higher the Reynolds number the bet-
ter the above approximation. Furthermore, on macroscopic scales
the stellar interiors are represented by a perfect fluid in mechani-
cal and thermodynamical equilibrium and where detailed balance
is acquired; all other contributions (viscous ∼ η∇2

xv0, centrifugal
in presence of rotation ∼ v0 × �, stratification, induction equation
for the presence of magnetic fields, etc,...) except gravity and pres-
sure gradient are neglected; on large integral scales, �, the fluid is
irrotational ω = ∇x × v0 = 0 (i.e. with null vorticity ω) and incom-
pressible (i.e. solenoidal ∂ρ

∂t
= 0 ⇒ 〈∇x, v0〉 = 0 where, according

to the notation adopted after equation (A3), the inner product 〈•, •〉
here reduces to the ordinary scalar product).6 Finally, the concept
of potential flow can be exploited: the velocity field can be derived
from the gradient of suitable potential v0 = ∇x
v0 (see Landau
& Lifshitz 1959, chapter 1). This approximation has direct conse-
quences on the applicability of the SFC theory outside astrophysics
(whose investigations goes beyond this work). Well know limita-
tions related to the fluid boundaries because of boundary layers
(flow in a pipes, aerodynamics, etc.) are of minor interest to the

6 The concept of a large distance scale for incompressibility and irrotational-
ity is defined here from a heuristic point of view: this length scale should be
large enough to contain a significant number of convective elements so that a
statistical formulation is possible when describing the mean convective flux
of energy (see below), but small enough so that the distance travelled by the
convective element is short compared to the typical distance over which is
possible when describing the mean convective flux of energy (see below),
but small enough so that the distance travelled by the convective element
is short compared to the typical distance over which significant gradients
in temperature, density, pressure etc. can develop (i.e. those gradients are
locally small).

astrophysical case if we consider the larger dimensions involved in
stars and the consequent very high Reynolds numbers. In S1, com-
bining the Euler’s and mass conservation equation, we can obtain
the Bernoulli equation for non-inertial reference frames as Pasetto
et al. (2012):

∂
v0

∂t
+ P

ρ
+ |v0|2

2
+ 
g = f (t) − 〈A, ξ〉 (B7)

where 
v0 is the velocity potential generating the fluid velocity v0

and 
g the gravitational potential. This relation describes the stellar
plasma in which convection is at work.

The main target of any theory of stellar convection is to find solu-
tions of equation (B7) linking the physical quantities characterizing
the stellar interiors such as pressure, density, temperature, veloci-
ties etc. and the mechanics governing the motion of the convective
elements as functions of the fundamental temperature gradients
with respect to pressure introduced above, i.e. the radiative gradient
∇ rad, the adiabatic gradient ∇ad, the local gradient of the star ∇,
the convective element gradient ∇e and the molecular weight gra-
dient ∇μ. The problem can be tackled making use of the velocity
potential.

B2.2 Velocity potential in an accelerated frame S1

Let us now introduce the reference frame S1 : (O ′, ξ ) comoving
with and centred on the centre of the generic element. From the
geometry shown in Fig. B1, the radius of a generic convective
element of spherical shape is indicated as |xe − xO′ | = re in S0

and |xe − xO′ | = ξe in S1. Pasetto et al. (2014) have demonstrated
that the total potential flow outside the surface of the moving and
expanding/contracting elements in S1 is given by


′ = − 〈v, ξ〉
(

1 + 1

2

ξ 3
e

|ξ |3
)

− ξ̇eξ
2
e

|ξ | , (B8)

so that the corresponding velocity in S1 can be written as

v′
0 = 3

2
(〈v, n̂〉 n̂ − v) + ξ̇e n̂

∣∣∣∣
|ξ |=ξe

, (B9)

with meaning the symbols as in Fig. B1. The above expression is
evaluated at the surface of the convective element. It is also easy
to show that this equation yields correct results at the surface of
the element once written in spherical coordinates with θ the angle
between the unitary vectors êz and ξ̂ . The time derivative of equation
(B7) is

∂
′

∂t

∣∣∣∣
|ξ |=ξe

= −3

2
ξe 〈A, n̂〉 − 3

2
ξ̇e 〈v, n̂〉 − ξ̈eξe − 2ξ̇ 2

e (B10)

where the relative acceleration of the two reference frames is indi-
cated with A. The inclusion of equation (B8), (B9) and (B10) in
equation (B7) leads to the general relation

v2

2

(
9

4
sin2θ − 1

)
− vξ̇e

3

2
cos θ +

(
P

ρ
+ 
g

)
=

+ Aξe

(
3

2
cos θ − cos φ

)
+ ξ̈eξe + 3

2
ξ̇ 2
e , (B11)

where A = |A| is the norm of the acceleration, φ the angle between
the direction of motion of the fluid as seen from S1 and the acceler-
ation direction, and θ the angle between the radius ξ in S1 and the
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velocity v. It is interesting to note that if we consider approxima-
tively equal the pressure above and below the convective element,
we can use the previous equation to obtain an relation for the mo-
tion of the barycentre of a non-expanding convective element. At
an arbitrary point of this rigid-body approximation we get:

v2

2

(
9

4
sin2θ − 1

)
= Aξe

2
cos φ

−v2

2
= ±Aξe

2

v2 = ∓Aξe, (B12)

which is one of the equations that we want to integrate. A different
derivation of this equation will be given in Section B2.4 below.
Equation (B11) is the version in spherical-coordinates of a general
theorem (see Pasetto et al. 2014, section 4.1) whose applicability
is large but of little practical usefulness because of its complexity.
Nevertheless, it is the cornerstone of the new theory.

B2.3 The motion-expansion/contraction rate relationship

In order to obtain equations that are analytically treatable, Pasetto
et al. (2014) limited their analysis to the linear regime. To this
aim they needed a parameter the value of which remains small
enough to secure the linearization of the basic equations. If we
limit ourselves to subsonic stellar convection, it is assumed that
the upward/downward velocity of a convective element, v, will be

much smaller that its expansion rate
∣∣∣ dξ̇ e

dt

∣∣∣ ≡
∣∣∣ξ̇ e

∣∣∣, i.e.

|v| � ∣∣ξ̇e

∣∣ . (B13)

This seems to be a reasonable assumption for the majority of the
situations we are examining because asymptotically in time the
expansion rate of the convective element will tend to the local
sound velocity. This allows us to develop a linear theory based on
the small parameter ε ≡ |v|

|ξ̇e| � 1. In this limit case, equation (B11)

becomes

ξ̈eξe + 3

2
ξ̇ 2
e + Aξe

2
= 0, (B14)

which rules the temporal evolution of the expansion rate of a con-
vective element. The solution of this equation is difficult but feasible
and we refer to the appendix of Pasetto et al. (2014) for all math-
ematical details. The asymptotic solution for τ = t

t0
→ ∞ is of

interest here and it is given as a function of the dimensionless size
of a generic convective element, χ ≡ ξ

ξ0
, by

χ (τ ) = 1

4
τ 2 +

√
π� (7/8)

� (3/8)
τ + π�(7/8)2

�(3/8)2 , (B15)

i.e. the asymptotic dependence is ∼τ 2 plus lower order correction
terms.7 As a consequence of this also the time averaged value, that
we again define with abuse of notation as χ (τ ) = 1

τ

∫ τ

0 χ
(
τ ′) dτ ′,

7 The same expression given in Pasetto et al. (2014), their equation (23) or
(A6), contained a typos that is amended here. In the RHS of their equation
(A6) the factor 2 should read 1/2. Their fig. (A1) is nevertheless unchanged
because already plotting the correct (A6) without errors.

will grow with the same temporal proportionality:

χ (t) = 1

τ

∫ τ

0

(
τ�

(
3/8

) + 2
√

π�
(

7/8

))2

4�
(

3/8

)2 dτ

= τ 2

12
+

√
πτ�

(
7/8

)
2�

(
3/8

) + π�
(

7/8

)2

�
(

3/8

)2 (B16)

This is the equation we are going to use below.

B2.4 The acceleration of convective elements

In S0 the motion of an element of mass me is driven by Ftot =
Fg + FP = me ẍ where Fg is the gravitational force and FP the
force due to the pressure exerted by the surrounding medium, and
the total force FT is acting on the barycenter. In S1 summing up
all the contributions to the pressure on the element surface exerted
by the medium from all directions (represented by the normal n̂ and
the solid angle d�) we obtain

−
∫

P n̂d� = FP = −
(

2

3
πAρξ 3

e + 4

3
πgρξ 3

e + 2πρvξ̇eξ
2
e

)
,

(B17)

The RHS of this equation contains three terms: the buoyancy force
on the convective element 4

3 πξ 3
e ρg, the inertial term of the fluid

displaced by the movement of the convective cell, i.e. the reaction
mass 1

2
4
3 πξ 3

e ρ ≡ M
2 , and a new extra term −2πξ 2

e ρvξ̇e arising from
the changing size of the convective element: the larger the convec-
tive element, the stronger the buoyancy effect and the larger is the
velocity acquired by the convective element. These terms must be
included in the Newtonian EoM that reads8

Az = −g
me − M

me + M
2

− 2πρ

me + M
2

vξ̇eξ
2
e . (B18)

The last step now is to work out the vertical component of the
acceleration Az as a function of the temperature gradient ∇, ∇μ ≡
∂ ln T
∂ ln μ

(gradient in molecular weight), and ∇e (convective element).
Using the above expression for Az and applying a lengthy and
tedious procedure that takes into account how the densities of the
medium and convective element vary with the position, one arrives
at the result

Az � g
∇e − ∇ + ϕ

δ
∇μ

3hp

2δ�z
+ (∇e + 2∇ − ϕ

2δ
∇μ

) , (B19)

with α and δ introduced in Section A3 and ϕ ≡ ∂ ln ρ
∂ ln μ

. Particu-
larly interesting is the case of a homogeneous medium in which
∇μ = 0, If we reduced equation to the leading order in hp

�r
→ ∞,

in a chemically homogeneous convective layer we recover the well
know result:

Az � −g
2

3

δ

hp

(∇e − ∇) �r (B20)

as asymptotic approximation of order O
(

A
g

)
. We note that using

equation (B20) we can integrate the EoM of the convective ele-
ment in S0: Az = z̈ = −g 2

3
δ

hp
(∇e − ∇) z. Hence, it is easy to ver-

ify that a double integration would lead z = 1
2 A0e

−Xt
(
e2Xt + 1

)

8 In Pasetto et al. (2014), the expression for the same acceleration, their
equation (26), contained a typing mistake amended here.
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with X2 ≡ g 2
3

δ
hp

(∇ − ∇e) so that the velocity of the convective el-

ement will be given by v = ż = Xv0e
Xt − 1

2 Xz0e
−Xt

(
e2Xt + 1

) �
X2tz0 + O(t)2. From this relation we also get v2 = A2

z t
2. But to the

leading term ξe

ξe0
∝ 1

4
t2

t2
0

(see also Section B2.3) so that t2 = Az
t2
0

ξe0

and now remembering that t2 = − 4
Az

ξe, we obtain again the pro-

portionality v2∝Aξ e already presented in Section B2.2.
It is then immediately evident how this expression implies the

Schwarzschild criterion for convective instability (∇e − ∇ < 0) as
the denominator of equation (B20) is always positive by definition.
This is a very important result because it allows us to recover the
Schwarzschild and/or Ledoux criteria for instability: even with the
new criterion, the convective zones occur exactly in the same regions
predicted by the Schwarzschild criterion. For more details on this
issue see Pasetto et al. (2014).

B2.5 The final set of equation for the SFC theory

The final step to undertake is to set up the equations for the con-
vective flux, the typical dimension of the convective elements, their
velocity etc. The only minor point to comment briefly concerns the
possible inclusion of the conductive flux. Since from a formal point
of view the conductive flux is customarily expressed in the same way
as the radiative one provided the pure radiative opacity is suitably
replaced by 1

κ
= 1

κrad
+ 1

κcnd
with obvious meaning of the symbols

(see for instance Cox & Giuli 1968; Kippenhahn & Weigert 1994,
or any other textbook), in the equation below we have indicated the
portion of total flux carried by radiation plus conduction with the

notation ϕrad/cond and suitably redefined the opacity κ . If conduction
is not important all this reduces to the standard radiative flux. The
definition of the convective flux is the standard one.

The system of equations derived by Pasetto et al. (2014) that must
be solved to determine the convective/radiative-conductive transfer
of energy in the atmosphere is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhpρ
∇

ϕrad/cnd + ϕcnv = 4ac
3

T 4

κhpρ
∇rad

v2

ξe
= ∇−∇e− ϕ

δ ∇μ
3hp

2δvt0τ +(∇e+2∇− ϕ
2δ ∇μ)

g

ϕcnv = 1
2 ρcpT (∇ − ∇e) v2t0τ

hp

∇e−∇ad
∇−∇e

= 4acT 3

κρ2cp

t0τ

ξ2
e

ξe = (
t0
2

)2 ∇−∇e− ϕ
δ ∇μ

3hp
2δvt0τ +(∇e+2∇− ϕ

2δ ∇μ)
gχ (τ ) .

(B21)

At each layer, this system is defined once the quantities {T, κ , ρ,
∇ rad, ∇ad, ∇μ, g, cp} (considered as averages over an infinitesimal
region dr and time dt) are given as input. This means that the
time-scale over which these quantities vary is supposed to be much
longer than the time over which the time integration of system is
performed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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