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Abstract 

 

The systematic trading of equities forms the basis of the Global Asset Management Industry. Analysts 

are all trying to outperform a passive investment in an Equity Index. However, statistics have shown 

that most active analysts fail to consistently beat the index. This Thesis investigates the application of 

Machine Learning techniques, including Neural Networks and Graphical Models, to the systematic 

trading of equities. Through approaches that are based upon economic tractability it is shown how 

Machine Learning can be applied to achieve the outperformance of Equity Indices.  

In this Thesis three facets of a complete trading strategy are considered, these are Trend Detection, 

Portfolio Construction and Order Entry Timing. These three facets are considered in an integrated 

Machine Learning framework and a number of novel contributions are made to the state of the art. A 

number of practical issues that are often overlooked in the literature are also addressed. This Thesis 

presents a complete Machine Learning based trading strategy that is shown to generate profits under a 

range of trading conditions. The research that is presented comprises three experiments: 

1- A New Neural Network Framework For Profitable Long-Short Equity Trading - The 

first experiment focusses on finding short term trading opportunities at the level of an 

individual single stock. A novel Neural Network method for detecting trading opportunities 

based on betting with or against a recent short term trend is presented. The approach taken is 

a departure from the bulk of the literature where the focus is on next day direction prediction. 

2- A New Graphical Model Framework For Dynamic Equity Portfolio Construction - The 

second experiment considers the issue of Portfolio Construction. A Graphical Model 

framework for Portfolio Construction under conditions where trades are only held for short 

periods of time is presented. The work is important as standard Portfolio Construction 

techniques are not well suited to highly dynamic Portfolios. 

3- A Study Of The Application of Online Learning For Order Entry Timing - The third 

experiment considers the issue of Order Execution and how to optimally time the entry of 

trading orders into the market. The experiment demonstrates how Online Learning techniques 

could be used to determine more optimal timing for Market Order entry. This work is 

important as order timing for Trade Execution has not been widely studied in the literature. 

The approaches that form the current state of the art in each of the three areas of Trading Opportunity 

(Trend) Detection, Portfolio Construction and Order Entry Timing often overlook real issues such as 

Liquidity and Transaction Costs. Each of the novel methods presented in this Thesis considers such 

relevant practical issues. 
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This Thesis makes the following Contributions to Science: 

1- A novel Neural Network based method for detecting short term trading opportunities for 

single stocks. The approach is based upon sound economic premises and is akin to the 

approach taken by an expert human trader where stock trends are identified and a decision is 

made to follow that trend or to trade against it.  

2- A novel Graphical Model based method for Portfolio Construction. Standard Portfolio 

techniques are not well suited to a dynamic environment in which trades are only held for 

short time periods, a method for Portfolio Construction under such conditions is presented.  

3- A study of the application of Online Learning for Order Entry Timing. Order Entry Timing 

for Trade Execution has not been widely studied in the literature. It is commonly assumed 

that trading orders would be executed at the day end closing price. In practice there is no real 

reason to trade on the close and it is shown that better execution may be obtained by trading 

at an earlier time which can be determined through the application of Online Learning.  
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Summary of Publications 

 

This Thesis builds upon ten years of work experience in the Financial Services Industry as both a 

Quantitative Analyst and as a Trader. The motivation was to conduct a substantial piece of original 

research which could find application in the Financial Services Industry. At the same time there was a 

desire to create something with a solid Academic Basis that could be published into the Academic 

Literature and that adds to the current published State of the Art. The content of this Thesis has 

formed the basis of three publications that appear in the proceedings of world renowned conferences 

in the fields of Computer Science and Neural Networks. These publications are 

 

[Publicaton-1] Sethi, M; Treleaven, P; Del Bano Rollin, S (2014). "A New Neural Network 

Framework for Profitable Long-Short Equity Trading". Proceedings of the 2014 IEEE 

International Conference on Computatonal Science and Computational Intelligence (CSCI 

2014). Vol. 1. Pages 472-475. 

[Publicaton-2] Sethi, M; Treleaven, P; Del Bano Rollin, S (2014). "Beating the S&P 500 Index  - 

A Successful Neural Network Approach". Proceedings of the 2014 IEEE Joint International 

Conference on Neural Networks (IJCNN 2014). Vol. 1. Pages 3074-3077. 

[Publicaton-3] Sethi, M; Treleaven, P (2015). "A Graphical Model Framework for Stock Portfolio 

Construction with Application to a Neural Network Based Trading Strategy". Proceedings of the 

2015 IEEE Joint International Conference on Neural Networks (IJCNN 2015). Vol. 1. Pages 1-8. 

 

These publications represent a subset of the original academic contributions of this Thesis with 

there being room for further publications. Details of such further possible publications are given 

in Chapter 7 of this Thesis. 
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Chapter 1 

Introduction 

The objective of this Chapter is to give an overview of this Thesis. In the first section the motivations 

for the Thesis are illustrated through a discussion of the Efficient Markets Hypothesis. In the second 

section an overview of the research objectives of this Thesis is presented, this is followed by a 

discussion of the Thesis subject matter in the third section. A discussion of the original contributions 

of this Thesis is presented in the fourth section: these are in summary, a novel method for single stock 

Trend Detection, a novel method for Portfolio Construction and a study of the application of Online 

Learning techniques for order entry timing. In the final section a Chapter by Chapter outline 

summary of the Thesis is presented. 

 

1.1 Motivation for This Thesis: Markets Are Predictable 

This section concludes that markets are not completely efficient and are therefore potentially 

predictable. This conclusion is important as it forms the motivation for this Thesis. The conclusion is 

reasoned through an overview of common approaches to stock selection and through a discussion of 

the Efficient Markets Hypothesis (EMH). 

The global asset management industry exceeded 74 Trillion U.S. Dollars (USD) of assets under 

management in 2014 [1], an 8% growth over the figure from 2013. Assets under management are 

expected to continue to grow as the global population increases and new markets are opened to 

investment. A significant portion of assets under management are invested into Equity Markets. As a 

representative example, the market capitalisation of the 500 stocks of the Standard and Poors 500 

Index (Bloomberg Code: SPX INDEX) alone accounted for around 19 Trillion USD of value as of 

December 2015 [2]. Approaches to stock selection for a Portfolio can be broken down into two main 

categories, Fundamental Analysis and Technical Analysis.  

The Fundamental Analysis approach [3,4] looks at the Microeconomic structure of a company and at 

the company’s competitive business environment to make a decision as to whether the stock price of 

the company is too high or too low. Fundamental Analysis may also incorporate a review of past and 

present Macroeconomic data and may also encompass a view of domestic and international 

government policy. Information is generally classified as either public information or private 

information, the former category encompassing information that is considered to be sufficiently 

widely disseminated to be generally accessible. Whilst much of the data required for Fundamental 

Analysis may be quantified, for example stock specific data such as Price to Earnings (PE) Ratios and 
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Macroeconomic data such as past period Gross Domestic Product (GDP), other data is dependent on 

the subjective judgements of human analysts.  

The field of Technical Analysis [5,6] focusses on the prediction of the movements of security prices 

by searching for patterns in historical price charts and traded volume data. Technical Analysis covers 

a wide range of methods which consider different time frames. At one extreme is the so called ‘High 

Frequency Trading’ [7] which looks for very short term dislocations in an asset price or order book, a 

trade may be held for only a fraction of a second. At the other extreme are methods such as the 

Kondratieff Wave [8] which advocates that economies, and therefore markets for certain assets, move 

through alternating fast and slow growth phases with a complete cycle lasting between 50 to 60 years. 

To imply that either Fundamental Analysis or Technical Analysis would allow the formation of a 

stock Portfolio which would consistently outperform an ‘Average’ or Market Portfolio is to imply that 

markets are predictable. However, the starting point of much of the literature in the field of 

Quantitative Finance, including the Nobel Prize winning Black-Scholes Equation [9] for pricing 

European Options, is that markets are efficient and are not predictable. The Efficient Markets 

Hypothesis (EMH) postulated by Eugene Fama [10] specifies three levels of Market Efficiency: 

Weak Form Market Efficiency – The current stock price reflects all information contained in 

historical price and volume data. All information is reflected fully, rationally and instantaneously. As 

such an active investment strategy based on Technical Analysis should not earn positive risk adjusted 

returns consistently and investors should therefore use a passive strategy, such as an investment into 

an Index Tracker. For example an investor who would want exposure to stocks that are listed in the 

USA should invest into a tracker of an index such as the Standard and Poors 500 Index (Bloomberg 

Code: SPX INDEX) rather than trying to create an individual Portfolio.  

Semi-Strong Market Efficiency – The current stock price not only reflects all historical price and 

volume data, but in addition the price reflects all publically available information (including news 

reports, analyst reports and company reports). Only unexpected information should elicit a stock price 

movement. As such a stock Portfolio constructed through the application of Fundamental Analysis 

methods should not be expected to outperform a Market Portfolio.  

Strong Market Efficiency – The current stock price not only reflects all historic price and volume 

data, but in addition the price reflects all publically and privately held information. As such no 

investors, including those with inside information, should be able to outperform a Market Portfolio. 

The Market Portfolio is commonly defined [11] as a Portfolio that consists of a market capitalisation 

weighted sum of every asset in the market. This textbook Market Portfolio would contain all assets 

including stocks and bonds, as well as more unusual assets such as antique artwork and collectable 



14 
 

toys. In practice when discussing stock Portfolios the Market Portfolio is often taken to be a relevant 

Stock Index, for example the Standard and Poors 500 Index (Bloomberg Code: SPX INDEX) could 

be taken as a representative Market Portfolio for stocks listed in the USA. 

The EMH does not require that the stock price at any point in time is the ‘correct equilibrium price’, 

only that any deviations from the equilibrium price are random and unbiased. In summary the EMH 

would tell us that any future price movements of a stock should be unpredictable. In addition, as new 

information becomes available to market participants the stock price would immediately change to 

reflect that information. If the EMH were to be believed active stock selection would be a futile 

exercise and each investor should simply hold a Market Portfolio. Although some research [12,13] 

has supported the EMH, the general consensus amongst finance practitioners is that the EMH does not 

hold true and more recent research [14,15,16] has supported this conclusion.  

Whilst the EMH is considered to hold true ‘on average’, at any time it may be the case that some 

stocks are undervalued and others are overvalued, however on average stocks should be considered 

fairly priced. At any time, for a given stock, an anomaly may cause a deviation from the EMH. Some 

research has suggested that such anomalies are not violations of market efficiency but are due to the 

research methods employed to find such anomalies. Other research has identified more consistent 

anomalies in time-series data. Examples of consistently identified anomalies include calendar 

anomalies such as the January Effect [17,18], where it has been shown that some stocks outperform at 

the beginning of January. Other commonly identified anomalies are Overreaction Anomalies [19,20] 

where periods of strong trend are followed by a subsequent trend reversal and Momentum Anomalies 

[21,22] where periods of strong trend are followed by the continuation of such a trend. Research then 

suggests that trading opportunities can be found by the identification of Overpriced and Underpriced 

stocks or alternatively by the identification of Overreaction and Momentum Anomalies that are 

causing deviations from the EMH. However, on average stocks should be considered fairly priced.  

So at this stage it appears that the EMH, whilst being a convenient starting point for much work in the 

area of Quantitative Finance, has been shown to only hold on average. This then presents a 

justification for active analysis. However, research [23] has shown that in the period from 2010 to 

2015 the vast majority of US Stock Funds based on Active Management had failed to beat the broad 

Market Indices and such underperformance was also seen over previous years. ‘Beating the Index’ as 

it is known is tough, at least for the average human analyst. The starting motivation of this Thesis is 

that a Machine could do better. 

The application of Machine Learning techniques to equity markets has received some consideration in 

the literature. A number of methods for the detection of trading opportunities have been presented and 

the problems of Portfolio Construction and Trade Execution have also received attention. Current 

methods, however, have a number of practical weaknesses, for example they often fail to consider 
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Transaction Costs and Outliers, so there is room for improvement. In addition, current research into 

each of these areas has been disjointed, the integration of the current state of the art of each field into 

a working trading strategy would not be practically possible. This all acts to reinforce motivation for 

this Thesis, there is a room for the creation of better more realistic methods, in particular where such 

methods can be developed within a framework that allows the formation of a complete strategy. 

 

1.2 Research Objectives 

The overall objective of this Thesis is to develop a complete Machine Learning based trading strategy. 

The underlying motivation to carry out this work is to show that a trading Machine can outperform 

benchmark Equity Indices, hence achieving something that the average human analyst could not. The 

three facets of Trading Opportunity (Trend) Detection, Portfolio Construction and Order Entry 

Timing are considered and novel contributions are made into each area.  

The search for trading opportunities is looked at from a Trend Detection perspective. The objective is 

to construct an economically tractable method that would only advocate trading under opportunistic 

conditions where either an Overreaction Anomaly or a Momentum Anomaly have been identified. 

Opportunistic trading would aim to avoid overtrading and excessive Transaction Costs. To achieve 

this objective, a novel Neural Network based method for detecting short term trading opportunities 

through a search for Overreaction or Momentum Anomalies is presented.  

Having found such trading opportunities the creation of a Portfolio of assets is then considered. The 

objective is to develop a Portfolio Construction technique that is well suited to a dynamic trading 

environment in which trades are held only briefly in the anticipation of the correction of an anomaly. 

To achieve this objective a novel Graphical Model based method for dynamic Portfolio Construction 

is presented. The framework is developed in a Bayesian setting and is shown to overcome many of the 

weaknesses of Frequentist based methods such as those based on Mean-Variance optimisation. 

In order to achieve real profits trades need to be executed in the market. The objective is to show that 

additional trading profits can be achieved by intelligently selecting the time at which trading orders 

are placed in the market. To achieve this objective a study of the application of Online Learning 

techniques is presented and it is shown that such techniques can be used to determine a more optimal 

timing for trade order entry than by simply trading at the closing price.  

The overall objective of this Thesis is the formation of a complete trading strategy. This objective is 

achieved through the integration of the novel techniques highlighted above into a complete trading 

strategy. Extensive back testing is used across a range of trading conditions to demonstrate the 

success of the strategy at profit generation.  
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1.3 Thesis Subject Matter 

The research that is presented comprises three experiments: 

1- A New Neural Network Framework for Profitable Long-Short Equity Trading - The first 

experiment focusses on finding short term trading opportunities at the level of an individual 

single stock. A novel Neural Network method for detecting trading opportunities based on 

betting with or against a recent short term trend is presented. The proposed approach 

considers a number of practical issues that are often overlooked in the literature, these include 

the existence of Outliers and the presence of Transaction Costs. A novel Simulated Annealing 

based method for parameter optimisation is also presented and it shown that the method is 

able to compensate for noisy data and avoid overfitting.  

2- A New Graphical Model Framework For Dynamic Equity Portfolio Construction - The 

second experiment considers the issue of Portfolio Construction. Standard Portfolio 

Construction techniques are not well suited to an environment in which trades are only held 

for short periods of times. A novel Graphical Model approach to the construction of dynamic 

Portfolios is presented.  

3- A Study Of The Application Of Online Learning For Order Entry Timing - The third 

experiment considers the issue of Order Execution and how best to time the entry of trading 

orders into the market. The experiment demonstrates how Online Learning techniques could 

be used to determine more optimal timing for Market Order entry. This work is important as 

order timing for Trade Execution has not been widely studied in the literature. 

 

1.4 Major Contributions 

This Thesis makes the following Contributions to Science: 

1- A novel Neural Network based method for detecting trading opportunities for single stocks. 

The approach presented is akin to the approach taken by a human trader where stock trends 

are identified and a decision is made to follow that trend or to trade against it, as such 

searching for Momentum or Overreaction Anomalies. This is a departure from the bulk of the 

current state of the art which is mainly focussed towards outright direction estimation. At 

each potential trading opportunity a positive decision to trade will rarely be reached, this is to 

say that at most times an individual stock would be seen as fairly priced. The approach taken 

is to maximise Risk Weighted Return, this is also a departure from the current state of the art 

which predominantly focusses on the probability of correctly estimating the next day 

direction. It is not uncommon for successful expert traders to use a model with a directional 
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accuracy of less than 50% and in the same vain the focus of the novel methods that are 

developed herein is not to maximise such accuracy. 

2- A novel Graphical Model based method for Portfolio Construction. Detecting trading 

opportunities at a single stock level is not enough to begin trading, capital needs to be 

allocated and risk needs to be managed through the construction of a Portfolio. Standard 

Portfolio techniques are not well suited to an environment in which at most times any 

particular asset is considered to be fairly priced. In addition standard Portfolio techniques are 

not well suited to a dynamic environment in which trades are only briefly held in anticipation 

of the correction of an anomaly. A novel method for Portfolio Construction under such 

conditions is presented. 

3- A study of the application of Online Learning for order entry timing. Order entry timing for 

Trade Execution has not been widely studied in the literature. Algorithmic trading methods 

commonly assume that trading orders would be executed at the daily closing price. An in-

depth study of the application of Online Learning techniques to determine more optimal 

timings for Market Order entry is presented. The study shows that it is not always optimal to 

trade at the market closing price. 

These three major contributions can be combined together into a complete trading strategy to show 

that the research carried out in this Thesis has a practical basis. Extensive back testing is carried out to 

show that the proposed methods could have been used to outperform a passive investment in an index. 

 

1.5 Thesis Outline 

The structure of this Thesis is as follows. 

Chapter 2 – Background: The Chapter begins with a brief overview of Machine Learning 

technologies where the emphasis is on those technologies which are relevant to this Thesis. The main 

focus of the Chapter is however to present an in-depth review of the current state of the art of Applied 

Machine Learning for Equity Trading with focus on the three facets of Trading Opportunity 

Detection, Portfolio Construction and Order Entry Timing. This in-depth review begins in the area of 

Trading Opportunity Detection and illustrates how attempts have been made to apply Machine 

Learning into this arena. A review of Portfolio Theory and the application of Machine Learning into 

that domain is then presented. Following this a review of Equity Order Book Trading Dynamics and 

Order Execution is presented and the current state of the art of intelligent order placement techniques 

is analysed. The aim of the Chapter is to illustrate that there is further room for improvement from 

current techniques in each of the three facets that are considered, in particular where the aim is to 

construct a complete Machine Learning based trading strategy. 
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Chapter 3 - A New Neural Network Framework For Profitable Long-Short Equity Trading. A 

novel method for detecting trading opportunities for single stocks is presented. Implementation is 

carried out in MATLAB and testing is conducted across a wide range of stocks listed in the USA to 

show the success of the method. 

Chapter 4 - A New Graphical Model Framework For Dynamic Equity Portfolio Construction. A 

novel method for Portfolio Construction is presented. Implementation is carried out in MATLAB and 

testing is conducted across a wide range of stocks listed in the USA to show that the proposed method 

could create Portfolios that would significantly outperform a passive investment in an Equity Index. 

Chapter 5 - A Study of the Application of Online Learning for Order Entry Timing. The Chapter 

shows how Online Learning techniques could be used to determine more optimal order entry timing 

for stock trading orders. Implementation is carried out in MATLAB and testing is conducted across a 

wide range of stocks listed in the USA. 

Chapter 6 - Assessment. The assessment provides a summary of the techniques and results that are 

introduced through the three experiments. 

Chapter 7 – Publications, Future Work and Conclusions. An overview of the Publications that 

have been derived from this Thesis is presented and a number of possible extensions for Future 

Research are also discussed. Finally, the Conclusions of this Thesis are stated. 
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Chapter 2 

Background 

The objective of this Chapter is to give an overview of the current state of the art of Machine Learning 

for Equity Trading as presented in the literature. The Chapter begins with a review of Machine 

Learning technologies. This is followed by an illustration of a complete trading strategy to 

demonstrate the interaction of the three facets of Trading Opportunity (Trend) Detection, Portfolio 

Construction and Order Entry Timing. This is then followed by a review of the current state of the art 

of each of these three facets. The aim of this Chapter is to illustrate that there is further room for 

improvement from current techniques, particularly where the goal is to create a complete integrated 

Machine Learning based trading strategy. 

 

2.1 An Overview of Machine Learning 

In this section an overview of Machine Learning technologies is presented. The field of Machine 

Learning is vast and evolving and a detailed presentation of the complete state of the art of Machine 

Learning technologies would be beyond the scope of this Thesis. For this reason just a brief overview 

is presented with a focus on those technologies which are to be employed in this Thesis. 

A commonly accepted definition of Machine Learning is that given by Mitchell [24]: "A computer 

program is said to learn from Experience (EXR) with respect to some class of Tasks (TSK) and 

Performance Measure (PER), if its performance at Tasks in TSK, as measured by PER, improves with 

Experience EXR". This definition will be used to motivate the discussion below. 

 

2.1.1 Regression and Classification: Neural Networks and Support Vector Machines 

The Experience (EXR) referred to in the definition above maybe a Supervised or an Unsupervised 

experience and thus learning may be categorised as either Supervised Learning or Unsupervised 

Learning. In the Supervised Learning approach the Experience (EXR) takes the form of presenting the 

Machine with a Training Set 𝑇 consisting of tuples of Input Data and the known associated Output. 

Consider a Training Set of 𝑁 Samples, the 𝑛th Training Sample 𝑇[𝑛] would take the form 

𝑇[𝑛] ∶= {[𝑥1[𝑛], 𝑥2[𝑛],… , 𝑥𝑑[𝑛]], [𝑦[𝑛]]} (2.1) 

 

where 𝑥𝑖[𝑛] is the value of the 𝑖th Input Feature with 𝑑 Input Features in total. The value 𝑦[𝑛] is 
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the known Output corresponding to the inputs as observed in the 𝑛th Training Sample 𝑇[𝑛]. Here 

the Equality Sign := is used loosely and is taken to refer to ‘consists of’. The Input Features do 

not have to be continuous, for example in defining a house some of the features may be 

numerical and discrete such as the number of bedrooms, other features may be continuous such 

as the distance to the nearest train station. It may also be the case that an Input Feature is non 

numerical for example the colour of the house or a Boolean such as the presence of a garage.  

Having completed the training Experience (EXR) the Task (TSK) is to then form a mapping from 

the Input Feature space 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] to the output space [𝑦] such that when the Machine is 

presented with an input data sample 𝑥[𝑚] = [𝑥1[𝑚], 𝑥2[𝑚],… , 𝑥𝑑[𝑚]] which is not part of the 

Training Set the Machine is able to form an estimate of the corresponding output �̂�[𝑚] where the 

quality of such estimate is determined to be optimal according to some Performance Measure 

(PER). The output may be continuous and numerical in which case the learning problem is 

referred to as a Regression Problem, alternatively the output may be discrete in which case the 

learning problem is referred to as a Classification Problem. The performance as quantified by 

Performance Measure (PER) would be a function of the number of Input Features 𝑑, the 

specification of such features and the design of the Machine itself. 

In order to more optimally design the Machine the available data set is commonly partitioned 

into a Training Set, a Validation Set and a Test Set. Where a number of Machine configurations 

are under analysis the Training Set can be used to form the training Experience (EXR) for each 

configuration. The Validation Set can then be used to choose amongst the configurations through 

an analysis of the relative Performances (PER) at the Task (TSK). The Training Set and 

Validation Set can be used repeatedly to iterate towards an optimal Machine configuration. 

Having achieved an optimal configuration the Test Set can be used as an independent data set to 

determine the true performance of the optimised Machine. It is important that the Test Set should 

not be used as part of the iterative design of the Machine, to do so would introduce overfitting. 

The partition of the data set into a Training Set, a Validation Set and a Test Set can be carried out 

on a contiguous basis where the first block of data is used as the Training Set, the second 

independent block is used as the Validation Set and the final block of data is used as a Test Set.  

Alternatively a method of Multiple Cross-Validation [25] could be used whereby the data set is 

multiply partitioned according to a number of alternate configurations where each configuration 

creates a Training Set, a Validation Set and a Test Set. The use of a cross-validation technique 

does allow an effective increase in the size of the data set. However where time-series data is 

being used, as is often the case in Quantitative Finance, it may be the case that sequential data 

points are not statistically independent and the use of a cross-validation technique would allow 

correlated, but practically as yet unforeseen, data to be introduced into a Training Set. 
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The discussion thus far has focused on Supervised Learning as in the case of Quantitative 

Finance the data set is typically such that the Training Set consists of both input data and the 

known associated output data. Where the output data is not known the data set is termed as 

Unlabelled and the learning problem is one of Unsupervised Learning. Examples of 

Unsupervised Learning problems include Image Segmentation [26] and the creation of 

Demographic Clusters in Retail Sales Data [27]. The Unsupervised Learning problem will not be 

considered further.  

A commonly employed technology for the Supervised Learning problem is the Feedforward 

Artificial Neural Network (ANN) [28,29]. The Neural Network aims to approximate a functional 

mapping between the Input Feature Space 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] to the Output Space [𝑦] through a 

series of interconnected neurons. The weights of the interconnections can be tuned as part of the 

Learning Task TSK. An example Feedforward Neural Network architecture is illustrated below.  

In this example architecture there in an Input Layer which can consider 𝑑 = 3 Input Features. Each 

input is connected to one of 𝑧 = 4 nodes (neurons) in a Hidden Layer. The Output of each 

neuron is a non-linear function of its inputs 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑=3], such that the output of the 𝑖th 

neuron is some non-linear ‘Neuron Function’ ℎ𝑖(𝑏, 𝑥1, 𝑥2, … , 𝑥𝑑=3), where 𝑏 = 1 is a bias term. 

The functional form of the functions ℎ𝑖(𝑏 = 1, 𝑥1, 𝑥2, … , 𝑥𝑑=3) ∀𝑖 ∈ {1, . . , 𝑧 = 4} is part of the 

design of the Neural Network architecture. In the simplest architecture the form of the Neuron  

 

 

 

Figure 2.1 – An Example Feedforward Artificial Neural Network (ANN) Architecture 
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Function may be restricted to polynomials of some degree, at the other extreme each function 

may itself be a weighted composition of other more complex functions.  

In the Output Layer a weighted combination of each output in the Hidden Layer is formed. A 

Neural Network can be employed as either a Predictor to be used in a Regression Problem or as 

a classifier to be used in a Classification Problem. In either problem the output �̂� would be of the 

form �̂� = 𝐾(∑ 𝑤𝑖ℎ𝑖(𝑏 = 1, 𝑥1, 𝑥2, … , 𝑥𝑑)
𝑖=𝑧
𝑖=1 ) where {𝑤1, 𝑤2, … , 𝑤𝑧} are the weights applied to the 

𝑧 outputs of the Hidden Layer. Here 𝐾 is an Activation Function, such as a Hyperbolic Tangent 

Function, used for normalisation such that −1 ≤ �̂� ≤ 1. In the case of a Classification Problem 

the output of the Activation Function is discretised to create a mapping to classes.  

The Machine Learning Task (TSK) is then one to determine the optimal, according to some 

Performance Measure (PER), weights 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑧} and functional forms ℎ𝑖(𝑏 =

1, 𝑥1, 𝑥2, … , 𝑥𝑑) ∀𝑖 ∈ {1, . . , 𝑧} based on the Training Set that forms the Experience (EXR). This 

Machine Learning Task (TSK) is a complex optimisation problem involving a search through a 

massive solution space. A common learning approach is to aim to minimise the Mean Square Error 

(MSE) between the Neural Network output �̂�[𝑛] and the expected output 𝑦[𝑛] across a Training Set 

of 𝑁 Training Samples, where each Training Sample is of the form specified in Equation 2.1. 

The process of Mean Square Error minimisation is commonly carried out by employing a type of 

Gradient Descent technique, this is known as The Backpropagation Algorithm for Training. 

Other approaches to the Learning Task (TSK) optimisation problem are based on Genetic 

Algorithms [30], Simulated Annealing [31] and Particle Swarm Optimisation [32]. 

An extension to the ANN architecture is the Radial Basis Function Neural Network (RBFNN). In the 

RBFNN Architecture [33] the non-linear ‘Neuron Function’ ℎ𝑖(𝑏, 𝑥1, 𝑥2, … , 𝑥𝑑) takes the form  

ℎ𝑖 = 𝑃(‖𝑥 − 𝑐𝑖‖2
2) (2.2) 

 

where 𝑥 = [𝑏 = 1, 𝑥1, 𝑥2, … , 𝑥𝑑] and 𝑐𝑖 are vectors of dimension 𝑑 + 1. The vector 𝑐𝑖 is the Centre 

Vector for the 𝑖th neuron and will be optimized over the Training Set as part of the Learning 

Task (TSK). The function P typically takes the form of an Exponential Function and ‖∙‖2
2 is the 

square of the Euclidean Distance between the vectors 𝑥 and 𝑐𝑖. 

A further extension to the Artificial Neural Network (ANN) framework is the Recurrent Neural 

Network (RNN) Architecture [34] in which the delayed outputs of the hidden layers are fed-back into 

the network along with the inputs. Such RNN architectures allow the network to exhibit a memory 

effect which can be useful for the processing of time series data. The example ANN architecture of 

Figure 2.1 has just a single hidden layer, in the case that there are multiple hidden layers the 
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architecture is termed a Deep Neural Network (DNN) [35]. The use of a DNN allows the modelling of 

a higher level of data abstraction as required for Deep Learning Problems [36]. However the DNN 

architecture can be prone to overfitting as the extra hidden layers allow the fitting of rare ‘noise like’ 

dependencies in the data. 

A competing technology to the Neural Network is the Support Vector Machine (SVM) [37]. 

Consider again an Input Feature space consisting of 𝑑 Input Features and a Training Set of 𝑁 

Training Samples with the 𝑛th Sample 𝑇[𝑛] taking the form specified in Equation 2.1. In a 

Classification Problem the outputs 𝑦[𝑛] ∀𝑛 ∈ {1, . . , 𝑁} for the 𝑁 Training Samples will be able to 

take one of 𝐶 discrete classes. It would then be possible to represent the Training Set as a 

collection of labelled points in a 𝑑 dimensional space with each point taking one of 𝐶 labels. The 

SVM methodology is based on a one-versus-many classification approach. For a particular 

desired class of label 𝑐 the SVM Learning Task (TSK) aims to create a separating Hyperplane in 

the 𝑑 dimensional space between those Training Samples for which the output 𝑦[𝑛] = 𝑐 and 

those Training Samples for which the output 𝑦[𝑛] ≠ 𝑐. For a Classification Problem with 𝐶 

classes there will be 𝐶 − 1 separating Hyperplanes created during the Learning Task (TSK). The 

Performance Measure (PER) for the creation of the 𝑐th Hyperplane will be the sum of (i)-the 

minimum distance between the Hyperplane and Training Samples for which 𝑦[𝑛] = 𝑐 and (ii)-the 

minimum distance between the Hyperplane and Training Samples for which 𝑦[𝑛] ≠ 𝑐. The SVM 

Task (TSK) will aim to maximise this measure (PER). The creation of such a Maximum Margin 

Hyperplane is illustrated below for the simplified case of a 𝑑 = 2 dimension feature space. 

 

 

Figure 2.2 – An Illustration of Separating Hyperplanes in a 𝑑 = 2 Dimension Feature Space 
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Two example separating Hyperplanes are shown in Figure 2.2. The Green Hyperplane does 

separate the data according to classes, however it is the Purple Maximum Margin Hyperplane 

which achieves the maximal separation by the measure PER described above. In general the 

dimension 𝑑 may be large. The solution of the Maximum Margin Hyperplane is a complex task 

and involves the formulation of a Primal and Dual task which leads to a set of Karush–Kuhn–

Tucker (KKT) conditions [38]. The solution of the KKT problem is often carried out using a 

numerical Gradient Descent type method or more efficiently by using the Sequential Minimal 

Optimization (SMO) Algorithm [39]. The optimal Maximum Margin Hyperplane, forms a linear 

separating boundary between the class 𝑐 and the other classes. In the more common case that a 

non-linear separating boundary is required a mapping can be created from the 𝑑 dimension 

feature space to a higher dimensional space by employing the so called Kernel Trick [40]. A 

linear separating boundary in the higher dimensional space would then be equivalent to a non-

linear boundary in the original 𝑑 dimension feature space. Following the training of an SVM, 

classification of an input data sample 𝑥[𝑚] = [𝑥1[𝑚], 𝑥2[𝑚],… , 𝑥𝑑[𝑚]] requires a simple 

determination of where 𝑥[𝑚] is located in reference to the set of 𝐶 − 1 separating Hyperplanes. 

Neural Networks and the Support Vector Machine (SVM) exist as competing technologies. Under 

comparison for the same datasets the SVM has been shown [41,42] to achieve slightly higher 

accuracies than typical Neural Networks. However, the SVM is a one-versus-many classifier and 

where the number of classes 𝐶 is large the optimisation may be computationally inefficient.  

 

2.1.2 Probabilistic Modelling: Graphical Models and Graph Theory 

Probabilistic Graphical Models (PGM) provides a convenient framework to compactly represent 

real world problems that are driven by uncertainty. The subject is vast and evolving and a 

complete overview would be beyond the scope of this Thesis. The summary presentation will 

focus on the two main classes of PGM which are Bayesian Networks and Markov Networks.  

Consider a Joint Probability Distribution 𝑃 that is defined over a set of 𝑑 Random Variables 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑑}. A Bayesian Network [43] would be a Directed Acyclic Graph (DAG) 

representation of the dependencies of the random variables. To motivate the presentation 

consider an example with is adapted from Murphy [44]. The 𝑑 = 4 random variables are (1) The 

Sky Was Cloudy, (2) It Was Raining, (3) The Sprinkler Was On and (4) The Ground Is Wet; in this 

modified example the Sprinkler is assumed to operate independently of the weather. A Bayesian 

Network can be used to represent the joint distribution 𝑃 as shown in Figure 2.3. The directed 

connections in the DAG show the influence of random variables upon each other. In the model in 

Figure 2.3 the random variable (2) It Was Raining is directly influenced by (1) The Sky Was 
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Figure 2.3 – An Example Bayesian Network with 𝑑 = 4 Random Variables 

 

Cloudy. The random variable (4) The Ground Is Wet is only indirectly influenced by (1) The Sky 

Was Cloudy. The random variable (3) The Sprinkler Was On is independent of (2) It Was 

Raining. Although intuitive logic would tell us that the random variable (2) It Was Raining is 

independent of the random variable (3) The Sprinkler Was On, this is not actually inferable from 

the DAG. The only inferable assumption is that the random variable (2) It Was Raining is 

conditionally independent of the random variable (3) The Sprinkler Was On given the random 

variable (1) The Sky Was Cloudy. The DAG is a convenient representation of the joint 

distribution which can be simplified to 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑃(𝑋4|𝑋2, 𝑋3)𝑃(𝑋2|𝑋1)𝑃(𝑋3)𝑃(𝑋1) 
(2.3) 

 

The Bayesian Network therefore provides a convenient graphical representation of the dependencies 

in the Joint Distribution 𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4). The Machine Learning Task (TSK) is then a twofold 

task to learn (1) The Structure of the Network and (2) The Distribution of the Conditional 

Random Variables. These two parts of the Learning Task (TSK) are connected since the structure 

of the network determines the interconnections of the random variables {𝑋1, 𝑋2, … , 𝑋𝑑} and then 

in turn which conditional distributions 𝑃(𝑋𝐴|𝑋𝐵) need to be learned. Simultaneously the 

optimisation of the network structure requires a-priori knowledge of the distributions. 

In the simplest case the network structure is specified by a human expert. In order to fully 

automatically learn the network structure a search strategy can be employed as part of the Task 

(TSK). An exhaustive search can be carried out by a method such as Markov Chain Monte Carlo 

[45], the Performance Measure (PER) to be maximized is the posterior probability of the 

structure given the Training Set 𝑇; such brute force optimisation is exponential in the number of 
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Random Variables 𝑑. An alternative more efficient approach [46] attempts to find a structure 

which maximises as a Performance Measure (PER) the Mutual Information between variables. 

Having determined a Network Structure it is then necessary to learn all of the conditional 

distributions that form the structure. In the example of Figure 2.3 the remaining part of the 

Learning Task (TSK) is to estimate the four distributions 𝑃(𝑋4|𝑋2, 𝑋3), 𝑃(𝑋2|𝑋1), 𝑃(𝑋3) and 

𝑃(𝑋1). It is common to limit the choice of distributions to be either discrete or to be a member of 

the Elliptical Family of Probability Distributions, this is in order to simplify the Learning Task (TSK). 

The Training Set 𝑇 can then be used as part of an Experience (EXR) to learn the parameters of the 

distributions, the Performance Measure (PER) to be maximized is the Likelihood. 

Having established the Graphical Model it is then possible to determine the probability of causal 

variables given evidence. For example to determine the probability that (3) The Sprinkler Was 

On given (4) The Ground is Wet. It is also possible to carry out inferences such as the estimation 

of the Most Probable Explanation (MPE) [43], 𝑎𝑟𝑔𝑚𝑎𝑥𝑋1,𝑋2,𝑋3,𝑋4  𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4).  

A Markov Network or Markov Chain [47] is a Graphical Model representation of a system 

which can exist in only a finite number of states. The system must obey the Markov Property 

such that what happens at the next timestamp depends only on the current state of the system 

and is independent of how the current state had arisen. At each discrete timestamp 𝑡 the system 

can probabilistically transition from its current state 𝑆[𝑡] to the state at the next timestamp 

𝑆[𝑡 + 1]. Consider as an example a system to model the position of a person in an apartment, the 

system can exist in only one of 𝑑 = 4 states such that the State Set is 𝑆[𝑡] ∈ {𝑠1, 𝑠2, … , 𝑠𝑑=4} ∀𝑡. 

In this example the states are (𝑠1) Person is in the Hall, (𝑠2) Person is in the Living Room, (𝑠3) 

Person is in the Bedroom and (𝑠4) Person is in the Bathroom. If it is assumed that each room is 

only connected to the Hall and that the person moves from room to connected room or stays in 

their current room with an equal probability then the model can be represented as in Figure 2.4. 

 

        

Figure 2.4 – An Example Markov Network with 𝑑 = 4 States 
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The Learning Task (TSK) is again a twofold task to learn (1) The Possible States of the Network 

and (2) The Transition Probabilities Between States. The structure of the network in terms of the 

set of possible states is typically much easier to learn for a Markov Network than for a Bayesian 

Network as the set of states and their interconnections can often be directly observed. The bulk 

of the Learning Task (TSK) is then the determination of the 𝑑 × 𝑑 dimensioned Transition Matrix 

ℙ of Transition Probabilities. The Probability 𝑃{𝐴,𝐵} corresponds to the conditional probability of 

the event that 𝑆[𝑡] = 𝑠𝐵 given that 𝑆[𝑡 − 1] = 𝑠𝐴 which can otherwise be written as  

𝑃{𝐴,𝐵} = 𝑃(𝑆[𝑡] =  𝑠𝐵|𝑆[𝑡 − 1] =  𝑠𝐴). It is commonly assumed that such probabilities are 

discreetly distributed or have a distribution that falls in the Elliptical Family. The Training Set 𝑇 

can be used as part of an Experience (EXR) to learn the parameters of the distributions, the 

Performance Measure (PER) to be maximized is the Likelihood. Having determined the structure 

of the network and the Transition Matrix ℙ it is then possible to determine the distribution of the 

long term equilibrium state of the system 𝑃(𝑆[∞]) as the Principle Eigenvector of ℙ. 

 

2.1.3 Online Learning 

The Supervised Learning problem considered in the case of a Neural Network or a Support 

Vector Machine is a Batch Learning problem. The learning Experience (EXR) involves the 

presentation of the complete Training Set 𝑇 of 𝑁 Training Samples as a Batch of Data such that 

the Learning Task (TSK) is an optimisation of a functional mapping between the Input Feature 

Space 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] to the Output Space [𝑦] across the Training Set 𝑇 of size 𝑁 Samples in a 

one shot fashion. In the case that a new Training Sample 𝑇[𝑁 + 1] becomes available the 

Learning Task (TSK) must be recompleted from the beginning over the expanded batch of size 

𝑁 + 1. This creates two potential problems; the first is the time of retraining and the second is 

the requirement to store the full Training Set. 

Consider an application where data arrives synchronously and a Machine Learning technology 

has been trained using the first 𝑁 pieces of data, as the Input Features of data sample 𝑁 + 1, 

𝑥[𝑁 + 1] = [𝑥1[𝑁 + 1], 𝑥2[𝑁 + 1], … , 𝑥𝑑[𝑁 + 1]] become available the Machine could be used to 

predict the associated output �̂�[𝑁 + 1]. When the true output 𝑦[𝑁 + 1] becomes available an 

extra Training Sample 𝑇[𝑁 + 1] ∶= {[𝑥1[𝑁 + 1], 𝑥2[𝑁 + 1], … , 𝑥𝑑[𝑁 + 1]], [𝑦[𝑁 + 1]]} can be 

used to improve upon the original functional mapping between the Input Feature Space 𝑥 =

[𝑥1, 𝑥2, … , 𝑥𝑑] to the Output Space [𝑦]. However, it may often be the case that there is 

insufficient time to complete a full retraining before the Input Features of data sample 𝑁 + 2 

become available and the next prediction or classification must take place.  Also it many 

applications it may not be possible to store the full dataset due to data storage limitations. 
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In an Online Learning [48] setting the optimised Predictor at timestamp 𝑁 is updated at 

timestamp 𝑁 + 1 using only knowledge of the state of the Predictor at timestamp 𝑁 and the 

newly available  Training Sample 𝑇[𝑁 + 1] ∶= {[𝑥1[𝑁 + 1], 𝑥2[𝑁 + 1], … , 𝑥𝑑[𝑁 + 1]], [𝑦[𝑁 + 1]]}. 

The original Training Set up to sample 𝑁 is no longer used although its characteristics are 

captured in the state of the Predictor that had been optimised at timestamp 𝑁.  

Approaches to Online Learning are generally categorised as either Statistical Learning Models 

or Adversarial Models. In the case of Statistical Learning Models it is assumed that the arriving 

data samples are Independently Identically Distributed (IID) and as such that The Environment 

itself is not aware of the existence of The Learner and is not attempting to adapt to the presence 

of The Learner. In the setting of Adversarial Models the Learning Task is considered as a game 

between two opponents, The Learner and The Environment, both opponents are able to adapt to 

the presence of the other and as such the arriving data samples will no longer be IID. 

In the case that a simple weighted mapping 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑑] exists, or is at least assumed to 

exist, between the Input Feature Space 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] and the Output Space [𝑦], the 

coefficients of the mapping can be estimated in a Batch Learning setting by employing the 

Linear Least Squares method [49], where the Performance Measure (PER) to be minimized is 

the Mean Square Error (MSE) between the Actual Outputs {𝑦} and Estimated Outputs {�̂�} across 

the Training Set of size 𝑁. The estimated weights of the mapping can be determined as  

𝑤 = (𝕏𝑇𝕏)−1𝕏𝑇𝑌 (2.4) 

 

where 𝕏 is an 𝑁 × 𝑑 matrix whose 𝑛th row is 𝑥[𝑛] = [𝑥1[𝑛], 𝑥2[𝑛], … , 𝑥𝑑[𝑛]] and 𝑌 is an 𝑁 × 1 

vector whose 𝑛th entry is 𝑦[𝑛]. Here 𝕏𝑇 is the Transpose of 𝕏 and 𝕏−1 is the Matrix Inverse of 

𝕏. This Batch Learning technique requires knowledge of the Full Training Set in the form of 𝕏 

and 𝑌. The Statistical Learning based Online Learning counterpart of the Linear Least Squares 

method is the Recursive Least Squares method which can also be shown [50] to the Minimize 

the Mean Square Error (MSE) as a performance measure (PER). Having initialized such that 

𝑤[0] = [
1

𝑑
,
1

𝑑
, … ,

1

𝑑
], the updated estimated weight vector 𝑤 [𝑁 + 1] at the timestamp 𝑁 + 1 is  

𝑤 [𝑁 + 1] = 𝑤 [𝑁] − 𝔾[𝑁 + 1]𝑥[𝑁](𝑥𝑇[𝑁]𝑤 [𝑁] − 𝑦[𝑁}) (2.5) 

 

where 𝔾[𝑁 + 1] is a 𝑑 × 𝑑 matrix updated such that  

𝔾[𝑁 + 1] = 𝔾[𝑁] −
𝔾[𝑁] 𝑥[𝑁 + 1]𝑥𝑇[𝑁 + 1]𝔾[𝑁]

1 + 𝑥𝑇[𝑁 + 1]𝔾[𝑁]𝑥[𝑁 + 1]
 (2.6) 
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Here 𝔾[0] is initialised as the 𝑑 dimensioned Identity Matrix. The Recursive Least Squares 

method is a commonly used Online Learning Technique. In the case that a richer mapping than a 

simple weighted combination of the Input Feature Space 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] to the Output Space 

[𝑦] is required, the Input Feature Space can be pre-mapped to a Higher Dimensional Functional 

Space 𝑓(𝑥) and the Linear Least Squares method or Recursive Least Squares method can be 

applied to determine weights which map from the new Higher Dimensional Functional Space 

𝑓(𝑥) to the Output Space [𝑦]. This mapping to a Higher Dimensional Functional Space 𝑓(𝑥) may 

employ the Kernel Trick [40] as is often used in the Support Vector Machine (SVM) setting. The 

design of both the Linear Least Squares method and the Recursive Least Squares method is 

based on Mean Square Error (MSE) Minimization and implicit to this is the assumption that the 

input data are Independently Identically Distributed (IID). 

In order to relax the IID assumption it is possible to turn to an Adversarial Model. The 

framework of the Adversarial Model is based on a number of Hypotheses which are otherwise 

called Experts. In order to motivate the presentation consider an example that is adapted from 

Blum [51]. The Learning Task (TSK) is to predict if it will rain today or not at some specific 

location, the Adversarial Learner has available the predictions of 𝑑 Experts, such that 𝑥[𝑁] =

[𝑥1[𝑁], 𝑥2[𝑁], … , 𝑥𝑑[𝑁]] is a vector of the predictions at timestamp 𝑁 and 𝑥𝑖[𝑁] ∈ {−1,1}∀𝑖, 𝑁. 

Here 𝑥𝑖[𝑁] = 1 if the 𝑖th Expert does predict rain at timestamp 𝑁 and 𝑥𝑖[𝑁] = −1 otherwise. The 

overall prediction of rain today �̂�[𝑁] is based on a weighted combination of the predictions of 

the 𝑑 Experts, such that  

�̂�[𝑁] = sgn(
𝑤𝑇[𝑁]𝑥[𝑁]

|𝑤[𝑁]|
) (2.7) 

 

where 𝑤[𝑁] = [𝑤1[𝑁], 𝑤2[𝑁], … ,𝑤𝑑[𝑁]] with 𝑤𝑖[𝑁] the weight applied to the prediction of the 

𝑖th Expert at timestamp 𝑁. Here sgn(. ) is the Sign Operator and takes the value of +1 if its 

operand is greater than or equal to zero and takes the value of −1 otherwise; in addition |𝑤[𝑁]| 

is the ℓ1-norm of 𝑤[𝑁] included for regularisation. At the end of timestamp 𝑁 the true value of 

𝑦[𝑁] will be known as it will be known if it did (𝑦[𝑁] = +1) or did not (𝑦[𝑁] = −1) rain. 

Following the revelation of the true value of 𝑦[𝑁] each of the Experts is able to then update their 

predictive models such that each 𝑥𝑖[𝑁 + 1] would be able to incorporate knowledge of 𝑦[𝑁] and 

also of the prediction of the Learner �̂�[𝑁]. It would typically be the case that each Expert would 

follow some form of Statistical Learning Model. It is in the update of the weight vector 𝑤[𝑁 +

1] that an Adversarial Model is considered. Adversarial Models often consider a Regret Function 

based on the differences between the Predicted Values from the Experts 

𝑥[𝑁] = [𝑥1[𝑁], 𝑥2[𝑁], … , 𝑥𝑑[𝑁]] and the True Value 𝑦[𝑁].  
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A simple Adversarial Model is Follow the Leader, where the Regret Function 𝑅𝑖[𝑁] assigned to 

the 𝑖th Expert following timestamp 𝑁 is based on the number of incorrect predictions, such that  

𝑅𝑖[𝑁]= ∑
1

2
abs(𝑥𝑖[𝑛] − 𝑦[𝑛])

𝑁

𝑛=1

= 𝑅𝑖[𝑁− 1] +
1

2
abs(𝑥𝑖[𝑁] − 𝑦[𝑁]) (2.8) 

 

where 𝑅𝑖[0] = 0 ∀𝑖. For the prediction at the next timestamp  𝑁 + 1 the weight vector 𝑤 [𝑁 +

1] = [𝑤1[ 𝑁 + 1], 𝑤2[ 𝑁 + 1], … ,𝑤𝑑[ 𝑁 + 1]] is such that 𝑤𝑖[𝑁 + 1] is set to zero for all Experts 

except for that Expert for which 𝑅𝑖[𝑁] had the lowest value for which 𝑤𝑖[𝑁 + 1] is set to one. At 

any timestamp Follow The Leader places one hundred percent confidence in the predictions of 

just a single Expert. 

An alternative method is The Weighted Majority Algorithm in which 𝑤[0] is initialised to a 

vector of all ones, at the end of each timestamp 𝑁 the elements of the weight vector 𝑤[ 𝑁 + 1] =

[𝑤1[ 𝑁 + 1], 𝑤2[ 𝑁 + 1], … ,𝑤𝑑[ 𝑁 + 1]] are updated such that 

𝑤𝑖[𝑁+ 1]=𝑤𝑖[𝑁]  × (1 −
1

2
× abs(𝑥𝑖[𝑁] − 𝑦[𝑁]))+

𝛽

2
×𝑤𝑖[𝑁]  × abs(𝑥𝑖[𝑁] − 𝑦[𝑁]) (2.9) 

 

where 𝛽 < 1 is a scaling Factor. The effect is to set 𝑤𝑖[𝑁 + 1] = 𝑤𝑖[𝑁] in the case that 𝑥𝑖[𝑁] was 

a correct prediction and to set 𝑤𝑖[𝑁 + 1] = 𝛽𝑤𝑖[𝑁] in the case that 𝑥𝑖[𝑁] was an incorrect 

prediction. The Weighted Majority Algorithm then places a greater belief in the predictions of 

those Experts that have been most correct in the past, but does still place some weight on the 

predictions of all of the Experts. The constant 𝛽 can be used to control the rate at which Experts 

are penalised for making incorrect predictions.  

 

2.2 An Overview of a Complete Trading Strategy 

The overall objective of this Thesis is to develop a complete Machine Learning based trading strategy. 

The illustration in Figure 2.5 of A Complete Trading Strategy and its Building Blocks provides an 

overview of the remainder of this Background Chapter to this Thesis.  

The detection of trading opportunities may be based upon either techniques of Fundamental Analysis 

or techniques of Technical Analysis. Fundamental Analysis and Technical Analysis approaches are 

reviewed in Section 2.3 of this Thesis. Following the detection of trading opportunities a combination 

of available opportunities needs to be selected to construct a trading Portfolio. An overview of 

Portfolio Construction Methods is presented in Section 2.4. Having decided upon a Portfolio trading 
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Figure 2.5 - A Complete Trading Strategy and its Building Blocks 

 

orders are then generated and these need to be executed, an overview of Market Order Book Structure 

and Trade Execution Methods is presented in Section 2.5. The overall objective of this Thesis is to 

develop a complete Machine Learning based trading strategy. Achieving this objective would require 

the interaction of the three building blocks identified in Figure 2.5.  

 

2.3 Trading Opportunity Detection 

In this section a review of the current state of the art of methods for the detection of trading 

opportunities is presented. The section begins with an overview of Fundamental and Technical 

Analysis techniques and a discussion of how they may be applied in a setting without Machine 

Learning. This is followed by a review of the current state of the art of the application of Machine 

Learning into these domains. 

 

2.3.1 Overview of Trading Opportunity Detection 

The Fundamental Analysis approach attempts to value a stock through the analysis of Microeconomic 

and Macroeconomic factors that are pertinent to that stock. Microeconomic factors may include 

information that has been extracted from the annual report of the company as well as information that 

has been extracted from the reports of competitor firms or from the reports of industry analysts. 

Macroeconomic factors may include measures of country specific data or global economic health as 

well as government policies. The Input Features of Fundamental Analysis may be quantitative factors 

such as Accounting Ratios or Gross Domestic Product (GDP) figures. The Input Features may also be 

qualitative such as a human analyst’s interpretation of the ability of senior management to transform a 

company. The role of the Fundamental Analyst is to process such fundamental data and to forecast a 
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target price for a particular stock over a time horizon, the target price would then be compared against 

the current market price and a decision to Buy or Sell the stock would then be made. 

Fundamental Analysis is based on a belief that an analyst is seeing the details ‘correctly’ and that 

others will see the same details equally ‘correctly’ at some point in the future, this is necessary in 

order for the market to bring the stock price into line with the analysts forecast. Even if a Fundamental 

Analyst is correct, the time horizon required for the stock price to move to where it should be can be 

long. The input data required for Fundamental Analysis is often difficult to obtain. Digitised 

accounting information from the financial reports of companies can now be obtained from a data 

provider such as CapitalIQ [52]. However, obtaining other more subjective data requires a great deal 

of effort and information resource and as such this type of subjective analysis is typically only carried 

out by large institutions who have either achieved economies of scale by managing large Portfolios or 

by firms who are able to sell their analysis in order to be able to recover their research costs. 

Accounting data may also be affected by quality issues such as accounting anomalies [53,54] and data 

revisions [55]. For all of these reasons many analysts instead prefer to focus on Technical Analysis. 

The field of Technical Analysis focusses on the prediction of the movements of security prices by 

searching for patterns in historical price charts and traded volume data. Technical Analysis is formally 

considered to be analysis that is based solely upon information that can be directly observed from the 

market. The types of direct Market Data used for Technical Analysis will typically be more accurate 

and less subject to data collection issues and revision than the data used for Fundamental Analysis. 

The core concept of Technical Analysis is that prices are determined by investor supply and demand 

for assets. Such supply and demand is driven in part by rational behaviour, for example by traders 

reacting to new information that may itself be processed in a Fundamental Analysis context. Supply 

and demand may also be driven by irrational behaviour, for example by traders following the herd and 

copying a popular trade with no other supporting reason to trade.  

It is the existence of such rational and irrational behaviour that forms the underlying reason for 

conducting Technical Analysis. The premise is that rational behaviour will be conducted by a number 

of participants and this would take a period of time sufficiently long to allow a trend to be spotted. At 

the same time detectable irrational behaviour will exist and this would also provide trading 

opportunities. In short Technical Analysis is based on the rationality of rational players and on the 

rationalisation of the irrationality of others. The underlying assumption of Technical Analysis is that 

whilst the causes of changes in supply and demand, or in rational and irrational behaviour, are 

difficult to determine, the actual shifts can be directly observed in market information.  

The causes of irrational trading behaviour and the effects in terms of deviations from the EMH have 

been well studied [56,57] in the context of behavioural finance. A typical example of irrational trading 

behaviour is the so called hot hand fallacy [58] whereby investors prefer to buy more of their well 
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performing (hot) stocks and to sell their (cold) losers, such behaviour would lead to the creation of a 

Momentum Anomaly as the price of a well performing stock is further increased by additional buying. 

Another common example of irrational trading behaviour is herding whereby traders simply follow 

the herd and copy a popular trade with no other supporting reason to trade. Herding behaviour would 

initially lead to the creation of a Momentum Anomaly, this would typically be followed in turn by an 

Overreaction Anomaly as buyers turn into sellers en-masse. The famous gamblers fallacy [59] is 

another common trading behaviour, here a trader irrationally holds out for a directional reversal in the 

face of a losing trade. Losing traders can only absorb losses up to a limit and all losing traders will 

eventually look to exit their positions. Losing traders often look to exit their trades around the same 

time thus spurring a Momentum Anomaly. From a Technical Analysis standpoint the exact causes of 

irrational trading behaviour are not of great importance, it is only necessary to understand and then 

detect the effects in terms of the creation of Momentum or Overreaction Trading Anomalies. 

Approaches to Technical Analysis 

A simplistic approach to technical trading may employ just a simple directional indicator. To 

demonstrate this, start by assuming that market price data has been regularly sampled with, for 

example for some stock with Ticker Symbol 𝑇𝐶𝐾, the stock closing price at the 𝑛th time sample 

being represented as 𝑆𝑇𝐶𝐾[𝑛]. The direction observed over the preceding interval of 𝐾 periods 

can then be defined as 

𝐷𝑇𝐶𝐾[𝑛] = sgn(𝑆𝑇𝐶𝐾[𝑛] − 𝑆𝑇𝐶𝐾[𝑛 − 𝐾]) (2.10) 

 

where sgn(. ) is the Sign Operator and takes the value of +1 if its operand is greater than or equal 

to zero and takes the value of −1 otherwise. A value of 𝐷𝑇𝐶𝐾[𝑛] = 1 then corresponds to the case 

that the stock is seen to be in an uptrend and the value of 𝐷𝑇𝐶𝐾[𝑛] = −1 corresponds to the case 

that the stock is seen to be in a downtrend. The indicator 𝐷𝑇𝐶𝐾[𝑛] provides only directional 

information. A simple Momentum Trading Strategy would then advocate buying (going long as 

it is termed) those stocks identified by Tickers for which 𝐷𝑇𝐶𝐾[𝑛] = 1 and selling (going short
1
 

as it is termed) those stocks identified by Tickers for which 𝐷𝑇𝐶𝐾[𝑛] = −1. A simple Contrarian 

Trading Strategy would trade in the opposite direction to a Momentum Strategy; that is to say 

that those stocks for which 𝐷𝑇𝐶𝐾[𝑛] = 1 would be sold and those stocks for which 𝐷𝑇𝐶𝐾[𝑛] = −1 

would be bought.  

                                                           
1
 A short trade involves selling an asset that is not owned. This is possible as many assets can be borrowed from 

an owner of that asset and then sold ‘short’. Later when the asset is repurchased by the short seller it can be 

returned to the lender. Such practice is common and is used to generate additional ‘lending’ revenues as a fee is 

paid from the borrower to the lender. 
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A study [60] of the profitability of Momentum and Contrarian Trading Strategies for stocks 

listed in the USA shows that over the majority of the time period for the years 1926 to 1989 

profits could have been achieved through following a Momentum Strategy, although at other 

times a Contrarian Strategy would have been profitable. However, it is the determination of 

when to apply a Momentum Strategy and when to apply a Contrarian Strategy that poses the real 

challenge. In addition it may be the case that the price movements of a particular stock are 

behaving efficiently and as such neither a Momentum nor a Contrarian Strategy would be 

expected to yield non-zero profits. Although placing trades in an efficient market would be 

expected to yield on average zero trading profit, trading under such conditions would still incur 

trading costs and should therefore be avoided. A single directional indicator provides only basic 

information and consequently other technical indicators have been developed. An exhaustive list of 

indicators would be beyond the scope of this Thesis, however a summary of some of the more 

common and interesting indicators is given below. The list includes many Technical Analysis 

indicators that have been later applied in a Machine Learning setting in the literature. 

Moving Averages – A simple 𝐾 point retrospective moving average of a stock price can be defined as 

𝑆�̅�𝐶𝐾,𝐾[𝑛] =
1

𝐾
∑ 𝑆𝑇𝐶𝐾[𝑛 − 𝑘]

𝐾−1

𝑘=0

 (2.11) 

 

A simple trading strategy [61] would advocate buying a stock that is trading above its 𝐾 = 200 day 

Moving Average and selling a stock otherwise. Such a strategy had shown success  prior to the 

mid-1990s but returns were seen to diminish over time and this may have been due to more and 

more traders following the same strategy. Other strategies may consider a combination of 

Moving Averages of different lengths and another common strategy [62] looks at the evolution 

of a number of Moving Averages and advocates placing a buy trade when all considered 

averages are moving upwards simultaneously.  

Price Oscillator – The Price Oscillator is defined by a ratio of Moving Averages, such as 

𝑂𝑇𝐶𝐾,𝐾,𝐿[𝑛] =
𝑆�̅�𝐶𝐾,𝐾[𝑛]

𝑆�̅�𝐶𝐾,𝐿[𝑛]
− 1 (2.12) 

 

where 𝐾 < 𝐿. The case that the shorter duration Moving Average is greater than the longer duration 

moving average would correspond to a scenario of upside Momentum and a Price Oscillator greater 

than zero. The case that the shorter duration moving average is lower than the longer duration moving 

average would correspond to a scenario of downside Momentum and a Price Oscillator less than zero. 

A typical Price Oscillator based strategy would advocate buying a stock when the Oscillator is greater 
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than some threshold and selling when the Oscillator is below some other threshold. At the core of the 

Price Oscillator method is the detection of Momentum Anomalies. 

Disparity Indicator – In a similar fashion to the Price Oscillator a Disparity Indicator measure would 

be defined as a ratio of the current stock price to a Moving Average, such as  

𝑄𝑇𝐶𝐾,𝐹[𝑛] =
𝑆𝑇𝐶𝐾[𝑛]

𝑆�̅�𝐶𝐾,𝐾[𝑛]
− 1 (2.13) 

 

As with the Price Oscillator a Positive Disparity would correspond to upside Momentum and a level 

above some threshold could be used to signal a buy trade. A Negative Disparity would correspond to 

downside Momentum and a level below some threshold could be used to signal a sell trade. The focus 

of trading strategies based upon the Disparity Indicator is also the detection of Momentum Anomalies. 

Fast Stochastic Indicator – The Stochastic Indicator [63] can be used as a measure of the position of 

the current stock price within the range of observed prices over the preceding 𝐾 trading days, such as  

𝑌𝑇𝐶𝐾,𝐾[𝑛] =
𝑆𝑇𝐶𝐾[𝑛] − 𝑆 ↓𝑇𝐶𝐾,𝐾 [𝑛]

𝑆 ↑𝑇𝐶𝐾,𝐾 [𝑛] − 𝑆 ↓𝑇𝐶𝐾,𝐾 [𝑛]
 (2.14) 

 

where 𝑆 ↓𝑇𝐶𝐾,𝐾 [𝑛] is the lowest price observed over a period of the 𝐾 trading days preceding 𝑛 

and 𝑆 ↑𝑇𝐶𝐾,𝐾 [𝑛] is the highest price observed over that period. A typical use of the Stochastic 

Indicator would employ the value 𝐾 = 14 and would signal a stock as Overbought in the case 

that 𝑌𝑇𝐶𝐾,𝐾[𝑛] > 0.80 and Oversold in the case that 𝑌𝑇𝐶𝐾,𝐾[𝑛] < 0.20, these values corresponding 

to the current stock price being in the upper and lower quintiles, respectively, of the recent 

range. Through an identification of overbought and oversold stocks, the Fast Stochastic Indicat or 

is in effect detecting the presence of Overreaction Anomalies.  

The Technical Analysis indicators presented above do not form an exhaustive list. The 

presentation has been confined to some common indicators and the indicators that have typically 

found later application within the Machine Learning literature. The purpose of each indicator is 

to give a measure of Momentum or Overreaction that could be used for the detection of 

Momentum Anomalies and Overreaction Anomalies. Each measure exploits the premise  that 

markets are not always efficient, so the EMH does not always hold, and therefore Momentum 

Anomalies or Overreaction Anomalies may exist. For each indicator a subjective threshold 

would be defined upon which a decision to trade would be based. The choice of which indicators 

to use under certain trading conditions would be also a subjective choice of the individual trader. 

A trader may use a combination of Technical Indicators in order to make a trading decision, 
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however in combining Technical Indicators an expert trader would be guided by economic 

rationality and a pure black box approach would typically be avoided.  

The core premise of Technical Analysis is that either prices move in trends or exhibit anomaly 

patterns that can be identified. Such trends and patterns are expected to repeat themselves over time 

and as such if the start of a trend or pattern can be identified then a profitable trading opportunity can 

be found. Fixed Technical Analysis systems assume that the same patterns will arise over and again 

and this is a clear departure from reality. The evolving economic climate affects the success of 

Technical Analysis. To maintain success a Technical Analysis based trading system needs to be 

adaptive to changing market conditions, hence there is room for the application of Machine Learning 

techniques. However, stock price movements are inherently non-linear and noisy and finding a 

trading edge, even with a toolbox of Machine Learning techniques is a great challenge.  

 

2.3.2 Machine Learning for Trading Opportunity Detection 

The early pioneering Machine based approaches to stock selection were based on Fundamental 

Analysis. The approaches attempted to apply Multiple Discriminant Analysis (MDA) methodologies 

[64] to fundamental Microeconomic and Macroeconomic data. The MDA approach classifies a stock 

into one of multiple groups (often Buy or Sell) and typically a Linear Discriminant Function (LDF) 

[65] is used to carry out the classification. The LDF approach is known to suffer from weaknesses as 

it places a strong assumption that Input Features follow a multivariate Normal Distribution and in 

addition LDF techniques are unable to create non-monotonic separating boundaries. Research [66] 

had shown that Neural Network methods were able to outperform MDA techniques in the prediction 

of bond ratings and this in turn spurred interest in the use of such methods for stock classification. 

An example [67] of a Neural Network approach to stock classification attempted to classify those 

stocks for which the share price would later rise based upon just 4 quantitative Microeconomic factors 

for each stock. The research showed that the Neural Network technique is able to outperform an MDA 

technique on both the Training Data and on isolated Testing Data. Other similar pieces of research 

[68,69] compared the use of Neural Networks and MDA techniques for the similar classification of 

those stocks for which the share price will later rise, but based upon subjectively quantised pieces of 

qualitative Microeconomic data such as the perceived quality of strategic plans and the new products 

offerings of a firm. Again it is seen that Neural Network methods are able to outperform MDA 

techniques. It is unsurprising that Neural Network methods would outperform MDA techniques when 

presented with the same data. Neural Networks place no assumptions of form of structure in their 

Input Features and also allow for more general functional forms for the mapping of Input Features to 
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output classifications. In short a Neural Network is a much less constrained form of classifier 

technology than an MDA approach and as such would be expected to perform better. 

As discussed in the previous section, the data required for Fundamental Analysis is often difficult to 

obtain and can be subject to data quality issues. For these reasons it is the application of Technical 

Analysis in a Machine Learning setting that has received the greater consideration. A number of 

different Technical Analysis based approaches have been presented and an exhaustive review of the 

complete literature would not be possible. Instead, a cross-section of the more interesting work is 

presented with details provided of representative examples for each type of approach.  

An early Machine Learning based approach to Technical Trading [70] attempted to apply a Back-

Propagation Type Neural Network to predict the timing at which a long (buying and then holding) 

stock position should be opened and when the position should subsequently be closed (stocks sold to 

zero the position). The system considered as an underlying the Tokyo Stock Exchange Prices Index 

(Bloomberg Code: TOPIX INDEX). The system used as input data a five day moving average of the 

Index Level (as in Equation 2.11) as well as using a five day moving average of the total traded 

volume. The system also took as inputs the 5 day moving average of the Dow Jones Industrial 

Average Index (Bloomberg Code: INDU INDEX) as well as the United States Dollar/Japanese Yen 

Currency Exchange Rate (Bloomberg Code: JPY CURNCY) and also unspecified interest rate data. 

The system output was a forecast of the index percentage price change over a subsequent one week 

period. A positive forecast was used to generate a Buy Signal and a negative forecast was used to 

generate a Sell Signal, although in this case the Sell Signal was only used to close any existing long 

positions. The system did not allow any short trading. Over a test period of 33 months, for the period 

between January 1987 to September 1989, the system if followed, would have produced a total return 

of 98%, this is compared to a return of 67% for a Buy and Hold Strategy of the TOPIX INDEX. 

Whilst the produced return is impressive it has only been achieved for a single test underlying and 

even then only for one short test period of time. A closer inspection of the results reveals that much of 

the proposed method over-performance, relative to the Buy and Hold Strategy for the benchmark 

index, can be attributed to the trading decisions made during just the 3 month period leading up to 

January 1988. It is possible to conclude that the results are just down to chance. 

The previous approach is limited to only holding long positions in the market. Another early Back-

Propagation Type Neural Network approach [71] looked to allow both long and short positions. The 

approach considered as an underlying Futures on the Standard and Poors 500 Index (Bloomberg 

Code: SPX INDEX). The main inputs to the Neural Network are vectors of historical moving average 

levels of SPX INDEX with several vectors of moving averages of different duration being used. In 

addition to moving averages the levels of a number of other unmentioned technical indicators were 

also used as input data. For the purpose of training, the subjective judgement of a human expert was 
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used to generate buy, null and sell signals based on a sample by sample visual analysis of thousands 

of sets of Training Data. Each Training Sample consisted of the moving averages and other 

unmentioned Technical Indicators observed at some point of time. The authors claim that such an 

‘expert’ trained system has advantages over using purely historical trade performance results as the 

system then has a more ‘real world’ basis. The system was painstakingly trained using around 9 years 

of historical data and then tested over a period of around 2 years of out of sample data. The testing 

with historical data from January 1989 to January 1991 generated just 24 real position opening trade 

signals which consisted of 12 buys and 12 sells. The author claims a total return of 660% over the test 

period, however the figure is misleading as it is based on a highly leveraged position. A closer 

inspection of the results would imply a real return of around 32% over the test period (equivalent to 

around 16% per annum) which still compares favourably with the return of around 20% for a buy and 

hold strategy applied to SPX INDEX over the same two year test period. The approach would not be 

considered for more industrial use due to the required role of an ‘expert’ analyst, the authors cite as an 

example that 3 hours of analyst time were required to generate trading decisions on just 2.5 months of 

Training Data. The use of subjective trading decisions also means that the generated results are not 

easily reproducible. 

Another approach [72] to the long and short trading of SPX INDEX futures considered the application 

of a Back-Propagation Type Neural Network to Input Feature data that was not dependent on the 

presence of a human ‘expert’. In this case the Neural Network Input Features were taken to be a 5 

point moving average of the futures closing price (as in Equation 2.11), with the 5 pre-average 

samples being taken at weekly intervals. The standard deviation of the 5 sample points around their 

mean was also used as another Input Feature. In addition Open Interest data for the futures at the end 

of the 5 point average period was also taken as an Input Feature. In this approach the Technical 

Analysis type indicators were supplemented by a Fundamental Analysis type Input Feature, in this 

case the growth rate of the Aggregate Supply of Money was used. The values of 4 consecutive months 

of such Input Features were used to generate a single Neural Network output data point, the output 

being a forecast of the 5 point moving average of the futures closing price over the following one 

month time period. For each Neural Network prediction the network was trained on just 15 Training 

Samples representing market data over a historical period of the 19 preceding months. The Neural 

Network output was then used to make a decision to either Buy or Sell futures depending on whether 

the forecast forward looking 5 point moving average futures price was, respectively, greater or less 

than the current price. In addition a numerical comparison of the similarity of the test Input Features 

to those Input Features in the 15 point Training Set was carried out and where sufficient similarities 

could not be found the Neural Network output decision was ignored and no trade was advocated. Over 

a test period of 75 months, representing 75 potential trading decisions, 41 decisions to trade were 

made and of these 75% predicted the correct direction. The authors claim an average annualised 
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return above 200%, however this is the return on a position that has been leveraged 20 times and in 

fact the actual real return would be closer to only 10% per annum. The proposed method is limited in 

that in relies on Open Interest data and Macroeconomic data which are only updated on a monthly 

basis and as such only one trading decision per month could be made. The use of a Back-Propagation 

Type Neural Network for the detection of trading opportunities for SPX INDEX futures has been 

considered further [73,74,75,76]. 

These early approaches to the application of Machine Learning to Technical Trading that have been 

highlighted thus far each have a common approach. In each case, a handful of Technical Indicators 

are selected and these are then used within a Neural Network framework to try and find opportunities 

to Buy or Sell some asset. In each case the decision for which Technical Indicators to use is generally 

not based on any sound economic rationale. It may even be the case that the decision was based on 

trial and error over some back Testing Data and if this were to be the case it could imply Overfitting, 

particularly as in each case only a single asset has been studied. These early approaches found varying 

degrees of success but the approaches were generally only tested over short periods of time.  

Other early approaches instead tried to fit a Discrete Time Stochastic Process model to the evolution 

of a stock price. An attempt [77] was made to fit a Linear Autoregressive Model to stock price 

returns, the aim being to model the expected next period return 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} as a function of 

previously observed returns, such that 

𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} = 𝑐 + 𝜖[𝑛 + 1] + ∑ 𝑤[𝑘]𝑅𝑇𝐶𝐾[𝑛 − 𝑘]

𝐾−1

𝑘=0

 (2.15) 

 

where 𝔼 {∙} is the Expectation Operator. Here 𝑐 is a constant intercept term, 𝑤[𝑘] is the weight 

applied to the retrospective stock return 𝑘 periods ago and 𝜖[𝑛 + 1] is an unbiased zero mean 

random noise term representing accumulated noise over the continuous time period (𝑛, 𝑛 + 1]. 

For clarity the stock price return at timestamp 𝑛 − 𝑘 is defined as 

𝑅𝑇𝐶𝐾[𝑛 − 𝑘] =
𝑆𝑇𝐶𝐾[𝑛 − 𝑘]

𝑆𝑇𝐶𝐾[𝑛 − 𝑘 − 1]
− 1 (2.16) 

 

where 𝑆𝑇𝐶𝐾[𝑛] has already been defined as the observed stock price at timestamp 𝑛. The 

Efficient Markets Hypothesis (EMH) would imply that 

𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]|𝔉[𝑛]} = 𝑐 (2.17) 

 

where 𝔼{𝑎|𝑏} is the conditional expectation of 𝑎 given 𝑏. The filtration 𝔉[𝑛] represents 
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knowledge of information. In the case of the Weak Form EMH, 𝔉[𝑛] would represent knowledge 

of price and volume market data. In the case of the Semi Strong Form EMH, 𝔉[𝑛] would 

represent knowledge of market data as well as knowledge of all publically known information. 

In the case of the Strong From EMH, 𝔉[𝑛] would represent the knowledge of market data as well 

as all publically and privately known information. The value 𝑐 would then represent a constant 

per period drift rate that would be proportional to the risk free interest rate plus some risk 

premium. A sufficient condition for the EMH to hold is 𝑤[𝑘] = 0 ∀𝑘.  

The published approach [77] attempts to fit linear weights in the single hidden layer of a Neural 

Network to create a mapping from 𝑅𝑇𝐶𝐾[𝑛 − 𝑘] ∀𝑘 ∈ {0, . . , 𝐾 − 1} to 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]}. The 

Neural Network is limited such that each of the 𝐾 nodes within the hidden layer is connected to 

only a single input node and as such the internal weights of the hidden layer would be equivalent 

to 𝑐 and  𝑤[𝑘] ∀𝑘 ∈ {0, . . , 𝐾 − 1} in Equation 2.15. The paper considered the stock price returns 

of International Business Machines (Bloomberg Code: IBM EQUITY) over a time period of two 

years. The paper concluded that the weights 𝑤[𝑘] ∀𝑘 ∈ {0, . . , 𝐾 − 1} fitted over some training 

interval were not useful for reliable prediction of 𝑅𝑇𝐶𝐾[𝑛 + 1] over some following test period. 

The restriction to linear weights was then relaxed such that 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} could be some non-

linear function of 𝑅𝑇𝐶𝐾[𝑛 − 𝑘] ∀𝑘 ∈ {0, . . , 𝐾 − 1}, and again the conclusion was made that the 

weights 𝑤[𝑘] ∀𝑘 ∈ {0, . . , 𝐾 − 1} fitted over some training interval were not useful for reliable 

prediction of 𝑅𝑇𝐶𝐾[𝑛 + 1] over some following test period. The paper concluded that 

autoregressive models cannot be easily fit, although only a single stock had been considered. 

Another attempt [78] at fitting an Autoregressive Model looked at including the difference and second 

difference of returns into the stochastic model framework, such that the predicted next period return 

𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} is modelled as 

𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]}

= 𝑐 + 𝜖[𝑛 + 1] + ∑𝑤[𝑘]𝑅𝑇𝐶𝐾[𝑛 − 𝑘]

𝐾−1

𝑘=0

+∑𝜃[𝑙]

𝐿−1

𝑙=0

(𝑅𝑇𝐶𝐾[𝑛 − 𝑙] − 𝑅𝑇𝐶𝐾[𝑛 − 𝑙 − 1])

+ ∑ 𝜑[ℎ]

𝐻−1

ℎ=0

(𝑅𝑇𝐶𝐾[𝑛 − ℎ] − 2𝑅𝑇𝐶𝐾[𝑛 − ℎ − 1] + 𝑅𝑇𝐶𝐾[𝑛 − ℎ − 2]) 

(2.18) 

 

where the weights 𝜃[𝑙]∀𝑙 ∈ {0, . . , 𝐿 − 1} and 𝜑[ℎ]∀ℎ ∈ {0, . . , 𝐻 − 1} are the weights applied to the 

first and second differences of the observed historical stock price returns respectively. A Neural 
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Network is again used to try to fit model weights over some training period of data so that a 

prediction for the next period return 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} can then be made. The paper considers as 

an underlying the Taiwan Stock Exchange Weighted Stock Index (Bloomberg Code: TWSE 

INDEX). The paper claims that a Neural Network trained using 4 years of Index closing price 

data can be used to predict not just the next day price return 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 1]} but also the return 

at 30 periods away 𝔼{𝑅𝑇𝐶𝐾[𝑛 + 30]} with an accuracy that is described as ‘quite good’. Closer 

inspection of the results shows that the predicted stock price 𝔼{𝑆𝑇𝐶𝐾[𝑛 + 1]} based on the 

estimated expectation 𝔼𝑅𝑇𝐶𝐾[𝑛 + 1] and the known value of 𝑆𝑇𝐶𝐾[𝑛] is not close to the actual 

realised value. Only a single test case is presented and in that case the estimate 𝔼{𝑆𝑇𝐶𝐾[𝑛 + 1]}  

is over 7% away from the actual realised value 𝑆𝑇𝐶𝐾[𝑛 + 1]. In the case of the estimate of 

𝔼{𝑆𝑇𝐶𝐾[𝑛 + 30]} the estimated value is over 12% away from the realised value 𝑆𝑇𝐶𝐾[𝑛 + 30]. 

These performances are not ‘quite good’ and a simple EMH compliant estimator of the form 

𝔼{𝑆𝑇𝐶𝐾[𝑛 + 1]} = (1 + 𝑐) × 𝑆𝑇𝐶𝐾[𝑛] would always have performed far better. Another 

unsuccessful attempt to use a Neural Network to fit the parameters of an Autoregressive Model 

has also been presented [79], in this case the authors look at forecasting currency returns.  

It should not be considered surprising that Autoregressive Model based approaches did not achieve 

success. As already discussed, research has shown that stock markets should be considered efficient 

‘on average’ and where anomalies do arise these would be short lived. An approach that attempts to 

fit a process based model over a long time period of data would, by construction, assume that the 

price process is ‘on average’ not efficient over such a long period of time and this would not be a 

reasonable starting assumption. Consequently in the more recent literature little attention has been 

given to such techniques.  

Earlier approaches, as discussed above, employed exclusively the use of Back Propagation Neural 

Networks as a technology for trade classification. The more recent alternate technology, the Support 

Vector Machine (SVM), has been shown to generally provide higher classification accuracy than a 

Back Propagation Neural Network where data is noisy and non-linear. The application of an SVM to 

the categorisation of potential trades as either buys or sells has been presented [80]. The approach 

uses as Input Features 12 Numerical Technical Analysis indicators which include The Price Oscillator 

(Equation 2.12), The Disparity Indicator (Equation 2.13), The Stochastic Indicator (Equation 2.14) 

and others. The research shows that a Support Vector Machine (SVM) trained using around 8 years of 

Numerical Technical Analysis Indicator data would outperform a Back Propagation Neural Network 

that is trained using the same data when both are tested on out of sample data. Performance is 

measured as the accuracy of the classification of potential one day holding trades as a Buy or a Sell, 

this is effectively the same as the accuracy of next day close to close directional prediction. The 

underlying considered is the Korea Composite Stock Price Index (Bloomberg Code: KOSPI INDEX) 
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and the test period represents around two years between December 1996 and December 1998 with the 

actual results being published in 2003. An optimised Support Vector Machine (SVM) showed a 

prediction accuracy of around 57.8% compared with an accuracy of 54.7% for an optimised Back 

Propagation Neural Network, the performance difference is not large and has been shown over only a 

single set of Test Data. The Back Propagation Neural Network is only one of many possible Neural 

Network architectures and it is possible that other architectures may have performed better. 

Although increases in computing power allow a greater number of Input Features to be used for either 

a Neural Network or an SVM there exists no rationale to suggest that increasing the breadth of Input 

Features would lead to an improved performance. Most human Technical Traders would have a 

preferred combination of a few Technical Indicators and may use, for example, some Technical 

Indicators to make an initial trading decision and other indicators to reinforce a decision. An 

experienced human expert would also look to base trading decisions on a rational premise and where 

a combination of Technical Indicators are used the choice of combination would typically be based on 

some prevailing economic factors. An approach that may be seen as throwing a lot of technical data at 

a black box would generally not be considered rational. Much of the later research then focussed 

towards the processing of Input Feature data and to Input Feature selection. The general motivations 

for Input Feature discretisation and feature selection are to increase prediction accuracy, to reduce 

computational complexity and also to reduce the risk of overfitting of the Training Data. 

General studies [81] have shown that the use of Input Feature discretisation techniques can reduce the 

effective dimensionality of the Input Feature space and that this in turn can lead to an increased 

accuracy of classification by Neural Networks. The aim is to reduce the dimensionality of the Input 

Feature space by transforming continuous value Input Features into discretised equivalents based on 

determined thresholds. An approach to Input Feature discretisation for a Neural Network for stock 

direction prediction has been presented [82]. The approach considers as Input Features the same 12 

Numerical Technical Analysis indicators used in [80], with each feature being discretised with 

between 1 and 5 possible categories based upon 4 variable boundaries. The case of an Input Feature 

being categorised to only a single possible level would correspond to that feature being effectively 

made redundant and as such the proposed technique can also potentially achieve feature selection. 

Genetic Algorithm (GA) techniques are used to find simultaneously the optimal feature discretisation 

boundaries as well the weights of the Neural Network connections over a training period of around 8 

years. The optimal solution is defined to be that which gives the highest directional prediction 

accuracy over the Training Data. Over a testing period of around two years with the underlying again 

being the Korea Composite Stock Price Index (Bloomberg Code: KOSPI INDEX) it is shown that the 

GA optimised Neural Network with Feature Discretisation would outperform a Back Propagation 

Neural Network with classification accuracies of 61.7% and 51.8% respectively. It should be noted 

that of the 12 Input Features none were determined to be redundant. It should also be noted that in a 
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separate test without feature discretisation it was shown that optimising the weights of the Neural 

Network connections by either GA or by Back Propagation produced similar levels of performance on 

the Test Data and as such it was concluded that it was the role of GA for feature discretisation that 

had produced the performance increase. 

Input Feature Selection is a general term used to describe processes that are used to select the subset 

of possible Input Features that are deemed most essential for classification. Input Feature Selection is 

in itself a widely researched subject in a general Machine Learning context and here only a brief 

overview of the subject will be presented. In summary Input Feature Selection techniques can be 

divided into two broad categories, these are the so called Filter Methods [83] and the Wrapper 

Methods [84]. Filter Methods estimate the relevance of an Input Feature without recourse to the 

output results of a Predictor, Filter Methods are generally based on statistical tests which consider 

some correlation type based measure between the value of a particular Input Feature and the 

classification within a Training Set. Those Input Features that are deemed to have the strongest 

statistical link to the division of classes within a Training Set are deemed the most essential for 

classification. Wrapper Methods, however, do consider the optimisation of the output values of a 

classifier, with the typical classifier being a Neural Network or an SVM. Wrapper Methods are 

generally based on some measure of the improvement of the quality of classification for a Training 

Set based on the introduction of a particular Input Feature. Whilst Wrapper Methods have been shown 

to be more effective at selecting an optimal feature subset than Filter Methods, the Wrapper Methods 

have a much higher degree of computational complexity. 

The application of Input Feature Selection techniques for Stock Price prediction has been considered 

simultaneously for both a Neural Network framework and an SVM framework [85]. The presented 

approach considers the initial application of a Filter Method to create a first subset of Input Features 

and the subsequent application of Wrapper Methods to determine a refined Input Feature subset. The 

approach considers 30 possible Input Features, with each Input Feature being the relative position of 

some asset (with 30 assets in total) within its recent trading range. The Input Feature assets considered 

include other stock indices including the Dow Jones Industrial Average (Bloomberg Code: INDU 

INDEX) and currencies as well as commodities. Test results are presented for the accuracy of the next 

day direction prediction of the NASDAQ Index (Bloomberg Code: CCMP INDEX). The test results 

show that for an SVM with an optimally selected subset of Input Features a next day directional 

prediction accuracy in excess of 85% could be achieved and an accuracy of over 70% could be 

achieved when using a Back Propagation Neural Network. Whilst the results appear impressive they 

are flawed. The test results have been shown as an average over a 5-fold holdout cross validation, the 

use of cross validation techniques would imply that training would have been carried out on 

temporally forward looking data that would be as-yet unseen in practice. In addition the Input 

Features are price levels that are normalised within the continuous range [0,1] with normalisation 
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requiring knowledge of the extreme values of the Input Feature range within the complete set of 

Training Data. The application of such normalisation with a 5-fold cross validation would then 

introduce information from the hold-out Testing Data to the Training Data. In addition it appears that 

the detection of the next day direction of the NASDAQ INDEX assumes knowledge of the next day 

level of each of the 30 possible Input Features and as such the method shows no real predictive power 

although the method could be used to confirm a contemporaneous relationship.  

Another attempt at the use of Wrapper Methods for Input Feature selection for stock market 

prediction has been presented [86]. In this approach a range of more traditional Technical Analysis 

Indicators form the potential Input Feature set. An optimised Input Feature subset is determined by 

Wrapper Methods to give the most accurate prediction of the next day level of the Shanghai 

Composite Index (Bloomberg Code: SHCOMP INDEX) over a Training Data set that spans just two 

months of market data. Testing result show the prediction of a forward level for each of the 10 

business days that follow the training period. The testing results do look impressive in terms of the 

absolute distance of the predicted future index level from the later realised level. However the 

practical application of such day by day future predicted index levels would almost certainly be to 

make directional trades and for the 10 business days for which testing results are presented the 

implied direction prediction would only have been correct for just 5 out of the 10 days considered. 

However, it would not be possible to draw any real conclusions with such a limited set of Test Data. 

A more thorough testing across more than one short realisation of data would have been useful in 

order to demonstrate the true effectiveness of the proposed method. 

The review of the current literature has shown that there is room for improvement from the current 

methods. Any method that does not rely upon throwing a large breadth of Technical Analysis 

indicator data at a Neural Network or an SVM but instead is based on just a few tractable indicators 

with a clear economic rationale would be preferred. In addition the real world effect of Transaction 

Costs should be considered. The focus of the literature has generally been towards maximising the 

accuracy of next day direction prediction and any new method should instead focus towards the 

generation of trading profits as the purpose of trading is generally to make money. 

 

2.4 Portfolio Construction 

In this section a review of the current state of the art of methods for Portfolio Construction is 

presented. Having determined a set of potential tradable assets, using for example one of the 

techniques discussed in the previous section, a combination of these assets needs to be selected to 

form a trading Portfolio. The weighted selection of assets into a diversified Portfolio is a complex 

optimisation problem which has been approached in both the Frequentist and Bayesian frameworks. 
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The field of ‘Modern Portfolio Theory’ traces its origins to 1952 and the Nobel Prize winning work 

[87] of Harry Markowitz. Prior to this work techniques of Portfolio Construction generally focussed 

towards a maximisation of Expected Return with no regard given to risk. The Markowitz Framework 

is a Frequentist Framework in which the benefits of diversification to risk can be quantified through 

the analysis of the Covariance of Assets. The famous Markowitz approach to Portfolio Construction 

has been well documented [88,89] and only a brief overview of the methods is presented herein.  

In the general Portfolio optimisation problem a situation in which there is 𝑁 ≥ 2 assets is 

considered, with one of these assets typically being a Risk Free Asset such as a holding in an 

overnight deposit or government bonds. In the Markowitz Framework the optimization problem 

is to find the asset allocation weights 𝑤𝑖 ∀𝑖 ∈ {1, . . , 𝑁} that either achieve the highest Expected 

Return for a required target level of risk or more commonly the weights which achieve the 

lowest level of Expected Risk for a given Return Objective. In the Markowitz Framework risk is 

characterized by the Variance of the Returns of the Portfolio and Markowitz type Portfolio 

Optimization is often termed Mean-Variance Optimization. The asset allocation weights must 

also be set such that a Budget Constraint ∑ 𝑤𝑖
𝑁
𝑖=1 = 1 is adhered to.  

The Markowitz Framework assumes that for each asset a forecast of Expected Return 𝔼{𝑅𝑖} ∀𝑖 ∈

{1, . . , 𝑁} is available as well as a forecast of the Variance of the Returns 𝕍{𝑅𝑖} ∀𝑖 ∈ {1, . . , 𝑁}. 

The framework also requires a fully specified Expectation of the Correlation Matrix 𝔼{ℙ} where 

ℙ is the 𝑁 × 𝑁 correlation matrix whose 𝑖𝑗𝑡ℎ element is the Correlation 𝜌𝑖𝑗  of the Returns between the 

𝑖𝑡ℎ and 𝑗𝑡ℎ asset. For clarity the Risk Free Asset will have a standard deviation of zero and correlation 

of zero with all other assets. Inherent to the Markowitz Framework is the assumption that the 

distribution of asset returns falls into the Elliptical Family of Probability Distributions, whose 

members include the Normal and Student-t Distributions, such that all Portfolios can be characterised 

completely by their location and scale. The optimisation problem can then be expressed 

mathematically as 

  𝕍{𝑅Π} =𝑤1,𝑤2,…,𝑤𝑁
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑𝑤𝑖

2𝕍{𝑅𝑖}

𝑁

𝑖=1

+∑ ∑ 2𝑤𝑖𝑤𝑗𝜌𝑖𝑗√𝕍{𝑅𝑖}𝕍{𝑅𝑗}

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝑤1,𝑤2,…,𝑤𝑁
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   (2.19) 

 

subject to 

𝔼{𝑅Π} = ∑ 𝑤𝑖𝔼{𝑅𝑖}
𝑁
𝑖=1 = 𝑅𝑇    and    ∑ 𝑤𝑖

𝑁
𝑖=1 = 1 

 

where Π is a weighted Portfolio of the 𝑁 assets and the Portfolio Variance and Expected Return 

are denoted by 𝕍{𝑅Π} and 𝔼{𝑅Π} respectively. The optimisation problem can then be seen as a 
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minimisation of Portfolio Variance to achieve some target Return Objective 𝑅𝑇 subject to a Budget 

Constraint that no more and no less than 100% of the available capital is invested into the 𝑁 

assets which include the Risk Free Asset. The format of Equation 2.19 demonstrates the effect of 

diversification whereby increasing the number of assets 𝑁 leads to a lowering of Portfolio 

Variance. The convex optimisation problem of Equation 2.19, subject to the stated equality 

constraints, can be solved analytically by the Lagrange Method [90].  

The solution of the optimisation problems will yield weights such that −∞ ≤ 𝑤𝑖 ≤ ∞  ∀𝑖 ∈

{1, . . , 𝑁} and hence both short selling and leverage could be introduced into the optimized 

Portfolio. An additional set of inequality constraints of the form  𝑤𝑖 ≥ 0 ∀𝑖 ∈ {1, . . , 𝑁} could be 

introduced to eliminate short selling and leverage. The extended optimization problem, subject 

to the two equality constraints and the new inequality constraints, would require formulation of a 

Karush–Kuhn–Tucker (KKT) system of equations [38] and a Numerical Non-Linear 

Programming Method [91] would be needed to find a solution. 

An alternative formulation of the optimization problem is as a Utility Maximization problem 

[92]. Here the objective is to find the asset allocation weights 𝑤𝑖∀𝑖 ∈ {1, . . , 𝑁} which maximize 

the Quadratic Utility of the Portfolio. The problem can be expressed mathematically as  

  𝔼{𝑅Π} −
𝜆

2
𝕍{𝑅Π} =𝑤1,𝑤2,…,𝑤𝑁

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑𝑤𝑖𝔼{𝑅𝑖}

𝑁

𝑖=1

−
𝜆

2
∙ (∑𝑤𝑖

2𝕍{𝑅𝑖}

𝑁

𝑖=1

+∑ ∑ 2𝑤𝑖𝑤𝑗𝜌𝑖𝑗√𝕍{𝑅𝑖}𝕍{𝑅𝑗}

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

)𝑤1,𝑤2,…,𝑤𝑁

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  (2.20) 

subject to 

∑ 𝑤𝑖
𝑁
𝑖=1 = 1    and    𝑤𝑖 ≥ 0 ∀𝑖 ∈ {1, . . , 𝑁}  

where 𝜆 is a subjective input parameter termed “The Degree of Risk Aversion” and is used to control 

the degree of maximisation of Expected Portfolio Return against the minimisation of Portfolio 

Variance. The solution of such a problem again requires the use of numerical optimisation techniques.  

Alternative formulations for the Objective Function are to Maximise the Sharpe Ratio [93], such that 

the Optimisation Problem can be specified as 

  
𝔼{𝑅Π} − 𝑟

√𝕍{𝑅Π}
=𝑤1,𝑤2,…,𝑤𝑁

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  
∑ 𝑤𝑖𝔼{𝑅𝑖}
𝑁
𝑖=1 − 𝑟

√(∑ 𝑤𝑖
2𝕍{𝑅𝑖}

𝑁
𝑖=1 + ∑ ∑ 2𝑤𝑖𝑤𝑗𝜌𝑖𝑗√𝕍{𝑅𝑖}𝕍{𝑅𝑗}

𝑁
𝑗=𝑖+1

𝑁
𝑖=1 )

𝑤1,𝑤2,…,𝑤𝑁

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  
(2.21) 

subject to 

∑ 𝑤𝑖
𝑁
𝑖=1 = 1    and    𝑤𝑖 ≥ 0 ∀𝑖 ∈ {1, . . , 𝑁}  

where 𝑟 is the risk free rate. The Optimisation Problem is to then to Maximise the Risk Weighted 

Excess Return of the Portfolio, where Excess Return is defined with respect to the risk free rate. In the 
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case that the risk free rate is zero (𝑟 = 0) the optimisation problem would correspond to a 

Maximisation of the Information Ratio. Other approaches are to maximise the Treynor Ratio [92] or 

to minimize the probability that the Expected Portfolio Return will fall below some target 𝑅𝑇 [94]. 

The Mean-Variance optimisation problem, in any of the formats discussed above, requires as 

inputs 𝑁 estimates of Expected Return 𝔼{𝑅𝑖} ∀𝑖 ∈ {1, . . , 𝑁}, 𝑁 estimates of Variance 𝕍{𝑅𝑖} ∀𝑖 ∈

{1, . . , 𝑁} and 
𝑁∙(𝑁−1)

2
 estimates of Correlation. The computational complexity of the optimisation 

problem then scales at a quadratic rate, 𝑂(𝑁2), and hence does not allow efficient computations 

in the case that 𝑁 is large. The computational solution of such optimisation problems is not 

however the biggest challenge. The main issue lies with parameter estimation. Given a period of 

data, statistical parameter estimation may appear to be a trivial computational task; however, 

financial data is inherently unstable as markets move over cycles of uptrend to downtrend.  

To demonstrate issues of parameter estimation consider the case of a large market capitalisation 

stock such as Apple (Bloomberg Code: AAPL EQUITY) and another large capitalisation s tock 

such as Citigroup (Bloomberg Code: C EQUITY). The rolling 260 business day return of each of 

the two stocks is shown in Figure 2.6 below with the realised volatility of each of the two stocks 

being shown in Figure 2.7. The realised correlation level of the return of the two stocks is shown 

in Figure 2.8. From these three figures the issue of unstable estimated parameters can be clearly 

seen. It has generally been observed that whilst correlation levels can be relatively stable over 

periods of historical data, estimates of expected stock returns and variances tend to be highly 

unreliable. It has been shown [95] through empirical analysis that an accurate estimation of the 

asset returns is more important than an accurate estimation of variance or correlat ion for the 

numerical solution of the Mean-Variance optimisation problem. The Portfolio effects of unstable  

 

Figure 2.6 - Rolling 260 Business Day Historical Return for Two Example Stocks  
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Figure 2.7 – Rolling 260 Business Day Realized Volatility for Two Example Stocks 

  

Figure 2.8 – Rolling 260 Business Day Realized Correlation for Two Example Stocks  

  

Figure 2.9 - Percentage of Portfolio Invested into One Stock with Mean-Variance Optimization 
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parameters is demonstrated in Figure 2.9, here the percentage of the Portfolio that is invested 

into Apple is shown on a day by day basis. Figure 2.9 is generated for a daily Sharpe Ratio 

(Equation 2.21) re-optimisation of a three asset Portfolio with the assets being Apple, Citigroup 

and a Risk Free Asset which is earning zero interest. Portfolio optimisation based on unstable 

parameters that are determined in a Frequentist Framework is clearly problematic. A continual 

rebalancing of the Portfolio, as shown in Figure 2.9, would lead to a high level of Transaction 

Costs and would also not give an investor confidence. 

The issue of the accurate estimation of Expected Return of an asset had initially been addressed 

through the Capital Asset Pricing Model (CAPM) whereby the Expected Return of the 𝑖𝑡ℎ asset 

𝔼{𝑅𝑖} ∀𝑖 ∈ {1, . . , 𝑁} is linked linearly to the Expected Return of a Reference Asset 𝔼{𝑅𝑀} which 

is typically a Market Index. The CAPM is a single parameter model and the single coefficient 

𝛽𝑖∀𝑖 ∈ {1, . . , 𝑁} is typically estimated through an Ordinary Least Squares (OLS) regression 

based on historical data. It can be shown [11] that the OLS solution of the Parameter 𝛽𝑖 is 

𝛽𝑖 = 𝜌𝑖𝑀 .
𝕍{𝑅𝑖}

𝕍{𝑅𝑀}
, where 𝕍{𝑅𝑀} is the Variance of the Market Index and 𝜌𝑖𝑀 is the correlation of the 

returns of the Market Index with the 𝑖𝑡ℎ asset. The issue of the estimation of the Expected Return 

of the 𝑖𝑡ℎ asset 𝔼{𝑅𝑖} ∀𝑖 ∈ {1, . . , 𝑁} then becomes an issue of the estimation of the Expected 

Return 𝔼{𝑅𝑀} of a single market index and the estimation of Variance and Correlation levels 

which are in any case needed for the Mean-Variance Portfolio Optimization problem.  Although 

the CAPM model is widely used, empirical evidence [96,97] has shown that the model is 

simplistic and generally achieves poor performance. Multifactor models whereby 𝔼{𝑅𝑖} ∀𝑖 ∈

{1, . . , 𝑁} is modelled as a linear function of several factors have also received consideration in 

the literature [98], the factors may include the Expectation of the Return of the Market Index 

𝔼{𝑅𝑀} as well as other factors such as Interest Rates and the GDP. However, studies [99] have 

shown that multifactor models offer little performance improvement over the CAPM model . 

Historical data approaches to Parameter Estimation are based on purely historic data and do not 

allow an incorporation of other data sources. In a predictive trading framework, using for 

example one of the Neural Network methods discussed above, additional information in terms of 

an estimate of the next period Expected Return may be available. Such additional information 

could be used to adjust an initial forecast based upon historical data. The Black-Litterman Model 

[100] is a Bayesian Framework which allows an initial forecast of Expected Return to be 

updated based on later observed data. The Black-Litterman approach can be summarized in 

terms of Bayes formula  

𝑃(𝐸|𝐼) =
𝑃(𝐼|𝐸)

𝑃(𝐼)
𝑃(𝐸) (2.22) 
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where 𝑃(𝐸) is the prior joint probability distribution of the Expected Excess Returns of the 𝑁 assets 

where Excess is with respect to a Risk Free Asset with return 𝑟. In the Black-Litterman model it is 

assumed that 𝑃(𝐸) follows a Multivariate Normal Distribution where the prior Means and 

Covariances of the Expected Excess Returns can be based upon historical data. It is more typical for 

the prior Means to be implied from a backward solution of the Utility Function (Equation 2.20) under 

the assumption that the initial asset allocation weights 𝑤𝑖∀𝑖 ∈ {1, . . , 𝑁} are based upon the relative 

asset weights in a Market Portfolio, this is to imply that the starting assumption is that The 

Efficient Markets Hypothesis (EMH) holds and that the optimal starting Portfolio is the Market 

Portfolio. The prior Covariance Matrix used to model the distribution of the Expected Excess 

Returns 𝑃(𝐸) is typically based upon a scalar multiple of the Covariance Matrix of the Historical 

Excess Returns where the subjective Scaling Factor Level is typically between 0.01 and 0.05. Within 

the Black-Litterman Framework a joint Normal Distribution 𝑃(𝐼) of ‘views’ on the 𝑁 assets can be 

incorporated, such a distribution is parameterized in terms of the Mean Views and Confidence of 

Views. The Mean Views used to form 𝑃(𝐼) may be based upon a Neural Network method such as 

those discussed in the previous subsection. The formation of a vector of the confidence of the views 

introduces another parameter estimation issue into the optimisation problem. 

The Black-Litterman framework is based upon joint Normal Distributions. However, empirical 

evidence has suggested that asset price returns are not Normally Distributed and that excess kurtosis 

exists. It has been suggested [101] that excess kurtosis is created as an effect of volatility clustering 

whereby large price changes tend to be followed by large price changes, of either positive or negative 

sign, and smaller price changes tend to be followed by similar small price changes. This is to suggest 

that price returns are generated by a mixture of Normal Distributions and the resulting distribution 

then has a kurtosis that is greater than three [102]. It is this idea of a mixture of Normal Distributions 

that has led to the consideration of the Student-t distribution, the Generalised Hyperbolic Distribution 

and the Variance-Gamma distribution for the modelling of asset price returns. Methods for improved 

estimates of the Variance of the Returns 𝕍{𝑅𝑖} ∀𝑖 ∈ {1, . . , 𝑁} have also been proposed. Such 

methods include the use of Autoregressive ARCH Models [102]. 

This review of the current literature has shown that there is room for improvement from the current 

methods for Portfolio Construction. Standard Portfolio Construction techniques in the Mean-Variance 

optimisation framework have been shown to be highly sensitive to the estimated values of input 

parameters. It has been shown that the estimation of such input parameters in a simplistic Frequentist 

Framework leads to unstable estimates which in turn generally give unstable Portfolios. Later research 

then focussed to address the issues of parameter estimation and adaptive Bayesian methods such as 

The Black-Litterman method had received some attention. This Bayesian approach is however seen to 

be limited in that it places a strong distributional assumption upon the form of data.  
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In a trading strategy where trading decisions are based upon a Neural Network output, such as one of 

the methods illustrated in the previous section, it may not be reasonable to assume that the returns of a 

single asset are well modelled by a particular distribution. As such, any new method that is 

particularly geared towards Portfolio Construction in an environment where trading opportunities are 

detected by a Neural Network method should ideally be free of distribution assumptions and should 

also simultaneously address issues caused by parameter instability. 

 

2.5 Order Entry Timing: Market Order Book and Order Execution 

In this section a review of the current state of the art of methods for Market Order Book modelling 

and Order Execution techniques is presented. Having determined a set of potential tradable assets and 

their weights in a Portfolio all that remains is to execute trades and form the actual monetised 

Portfolio. Stocks are commonly traded over electronic exchanges using a Continuous Double Auction 

Based Limit Order Book and in this section a number of state of the art techniques of modelling such 

an Order Book are presented. The Chapter aims to shows that whilst such techniques are well suited 

to Electronic Market Making they are not well suited to Order Execution where there is a requirement 

for one hundred percent order completion. 

An example Double Auction Based Limit Order Book for General Electric (Bloomberg Code: GE 

EQUITY) from multiple trading venues is shown below in Figure 2.10. The Limit Order Book 

consists of a Queue of Buyers (Bid Side Queue) who have placed limit orders to Buy shares of GE up 

to specified price limits. In addition there is a Queue of Sellers (Offer Side Queue) who have placed 

limit orders to Sell shares of GE down to specified price limits. 

 

Figure 2.10 – Example Double Auction Based Limit Order Book for General Electric 
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The Bid Side Queue 𝐵[𝑡] at a discrete timestamp 𝑡 can be represented by a 𝑘 dimensional vector of 

tuples where the 𝑖th entry is {𝑄−𝑖, 𝑞−𝑖}, where the subscript −𝑖 refers to this being the 𝑖th tick on the 

left side (Bid Side) of the order book, 𝑄−𝑖 is the price at this 𝑖th tick and 𝑞−𝑖 is the quantity available 

at this tick. The Bid Side Queue can then be represented as  

𝐵[𝑡] = [{𝑄−1, 𝑞−1}, {𝑄−2, 𝑞−2},… , {𝑄−(𝑘−1), 𝑞−(𝑘−1)}, {𝑄−𝑘, 𝑞−𝑘}] (2.23) 

 

The Offer Side Queue 𝐴[𝑡] at a discrete timestamp 𝑡 can also be represented by a 𝑘 dimensional 

vector of tuples where the 𝑖th entry is {𝑄𝑖, 𝑞𝑖}, where the subscript 𝑖 refers to this being the 𝑖th tick on 

the right side (Offer or Ask Side) of the order book, 𝑄𝑖 is the price at this 𝑖th tick and 𝑞𝑖 is the 

quantity available at this tick. The Offer (Ask) Side Queue can then be represented as  

𝐴[𝑡] = [{𝑄1, 𝑞1}, {𝑄2, 𝑞2},… , {𝑄𝑘−1, 𝑞𝑘−1}, {𝑄𝑘, 𝑞𝑘}] (2.24) 

 

The Bid Side Queue for the Example Order Book shown in Figure 2.10 can be represented as  

𝐵[𝑡] = [{30.00,73780}, {29.99,40250}, {29.98,34000}, {29.97,30660}, {29.96,25000}… ] (2.25) 

 

The Offer Side Queue for the Example Order Book shown in Figure 2.10 can be represented as   

𝐴[𝑡] = [{30.01,28000}, {30.02,34000}, {30.03,39000}, {30.04,37000}, {30.05,49000}… ] (2.26) 

 

General Electric has shares available at the five nearest ticks on both sides of the order book. The 

order book for Cimarex Energy (Bloomberg Code: XEC EQUITY) is shown below.  

 

Figure 2.11 – Example Double Auction Based Limit Order Book for Cimarex Energy 
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From Figure 2.11 it can be seen that there is a gap between the Best Bid (92.11) and the Best Offer 

(92.56). The Bid Side Queue for the Example Order Book shown in Figure 2.11 can be represented as   

𝐵[𝑡] = [… {92.11,2000}, {92.10,1000}, {92.09,0}, {92.08,0}, {92.07,0}… ] (2.27) 

 

The Offer Side Queue for the Example Order Book shown in Figure 2.11 can be represented as   

𝐴[𝑡] = [… {92.56,20000}, {92.55,0}, {92.54,0}, {92.53,0}, {92.52,0}… ] (2.28) 

 

In the case of Cimarex Energy the order book (considering just the first few ticks as above) is sparse 

in the sense that there is zero tradable volume available at many ticks of the order book. 

A trader wishing to execute an order has two choices; they can place a Market Order which will 

execute the order at the best possible level. For example a Market Order to Buy 50000 shares of GE 

based on the order book in Figure 2.10 will result in 28000 shares being purchased at the best offer 

price of 30.01 and the remaining 22000 shares will be purchased at the next best offer of 30.02, the 

average execution price would then be 30.014. Alternatively a trader may place a limit order. For 

example a Limit Order to Buy 50000 shares of GE at 30.01 based on the order book in Figure 2.8 will 

result in 28000 shares being purchased at a price of 30.01, the remaining 22000 shares would then be 

queued on the Bid Side of the order book at a price of 30.01, the resulting order book assuming no 

other changes would then be such that   

𝐵[𝑡] = [{30.01,22000}, {30.00,73780}, {29.99,40250}, {29.98,34000}, {29.97,30660},… ] (2.29) 

𝐴[𝑡] = [{30.02,34000}, {30.03,39000}, {30.04,37000}, {30.05,49000}… ] (2.30) 

 

In the example above the limit order to Buy was placed at the level of the Best Offer, this does not 

have to be case. It is possible for a patient trader to place a Buy order at some level lower down the 

order book. However, common sense would suggest that the probability of execution is inversely 

proportional to the initial distance of the order limit and the centre level of the order book. A trader 

may wish to know the probability of an order that is placed at a certain limit price being executed or 

they may wish to decide between placing a Limit Order or an order to execute at the current best bid 

or offer (a Market Order). The answer to such questions is commonly determined by reference to a 

model of the Market Order Book. 

Simpler approaches [103,104] to the Modelling of the Limit Order Book assume that Market Orders 

(to trade at Best Bid or Best Offer) and Limit Orders at each available order book price are driven by 

Independent Poisson Processes where the arriving order size is a fixed number of shares. At the same 

time Order Cancellation processes that remove orders from the various limit steps of the Order Book 

also arrive at times driven by Independent Poisson Processes. This is to say that in Equation 2.23 and 
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Equation 2.24 each of the 𝑞𝑖 in {𝑄𝑖, 𝑞𝑖} ∀𝑖 ∈ {−𝑘,−𝑘 − 1,… ,−1,1,… , 𝑘 − 1, 𝑘} are incremented and 

decremented in fixed sized steps with the times of such increments or decrements being driven by 

Independent Poisson Processes. The Poisson Processes arrival rates may be set to be decreasing 

functions of the absolute distance |𝑖| of a limit price from the centre of the order book to capture the 

empirical observation that orders are generally placed closer to the centre of the order book. Such 

models can be represented by a set of 2𝑘 Independent Markov Networks and the Learning Task (TSK) 

then focusses on estimating the Transition Probabilities within each of the Independent Markov 

Networks. The estimation of Transition Probabilities is typically carried out in a Frequentist setting 

using observed market data over some historic period of time. After calibration these models can be 

used under simulation to show a number of conclusions which may appear as obvious. For example, it 

can be shown that the probability of execution is inversely proportional to the distance of the order 

price from the centre of the order book and also that the probability of order cancellation is directly 

proportional to the distance of the order price from the centre of the order book. It can also be shown 

[105] that the order book as represented by Equation 2.23 and Equation 2.24 will converge to a 

Stationary Probability Distribution of orders around a static central order book price. 

The assumption of Independent Markov Networks is a clear departure from reality as it can be 

empirically observed that increasing quantities at those ticks closer to the centre of the order book will 

lead to an increased probability of Market Orders being placed and a decreased probability of order 

cancellation. The independence assumption has been relaxed in a later approach [106] where the 

Markov Transition Probabilities for order placement and cancellation are faded as the size of queued 

orders increases. The model can again be shown over time to converge to a Stationary Probability 

Distribution of orders around a static central price. Market Order Book models such as these are not 

well suited to modelling incomplete order books such as that shown above for Cimarex Energy.  

It has been shown [107] that Market Order Books are open to manipulation as orders are placed and 

withdrawn by traders who do so to create the appearance of stock price activity; as such the order 

book which is being modelled may not be representative of the real tradable order book. Empirical 

evidence [108] also shows that Market Order Book models often do not support the true behaviour of 

order books. It has also been shown [109] that placing limit orders effectively provides free 

optionality to the market and should therefore be avoided. In addition the only way to ensure one 

hundred percent order completion is by placing Market Orders rather than by placing limit orders 

which may never be executed.  

The focus of Market Order Book methods should then be towards determining the optimal timing to 

place a Market Order and for this there is room for the incorporation of adaptive methods such as 

Online Learning in order to have algorithms that adapt quickly to changing market conditions.  
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2.6 Summary 

In this Chapter the three facets of Trading Opportunity Detection, Portfolio Construction and Order 

Entry Timing have been reviewed in turn. 

A number of attempts have been made to apply Neural Networks and Support Vector Machines to the 

task of Trading Opportunity Detection at the level of a single asset. The approaches have varied over 

time in terms of the optimisation of the Machine Learning technology that has been employed, 

however the core theme has remained constant. This core theme is to throw a number of Technical 

Analysis indicators at a Machine Learning technology in an attempt to find reproducible market 

behaviour that can later be exploited for profit. The success of such techniques as shown in the 

published literature has been underwhelming and there has been little to show that such techniques 

could give sustained performance across a range of market conditions. Methods that form the current 

state of the art are not grounded upon economic rationality and the focus is generally on the accuracy 

of next day direction prediction and not upon the maximisation of trading profits. In Chapter 3 an 

alternative Neural Network approach to Trading Opportunity Detection is presented, the method is 

based on economic rationality and profit maximisation and it is shown that a sustained positive 

performance can be maintained across a range of market conditions. 

The current state of the art of techniques for Portfolio Construction is still grounded in the Mean-

Variance optimisation framework of Harry Markowitz. It has been shown that Portfolio Optimisation 

in this framework is particularly sensitive to the quality of the estimation of the underlying statistical 

parameters and recent research has focussed towards addressing the estimation issue. The estimation 

of statistical parameters has been considered through Frequentist techniques and also through 

Bayesian techniques such as the Black-Litterman Model. These methods all make the assumption 

that Asset Returns have a distribution that falls into the Elliptical Family and as such are not 

well suited for the construction of Portfolios that are based upon assets selected because they are 

believed to have a distribution of returns which exhibit excess Kurtosis. Mean-Variance based 

techniques are also not well suited to the construction of a dynamic Portfolio in which assets are 

only held for a short period of time. In Chapter 4 a novel Bayesian Graphical Model Framework 

for Dynamic Portfolio Construction is presented. 

Methods for Order Entry Timing are currently based upon simulation models of the Market Order 

Book and the consideration of Limit Orders and Market Orders. However research has shown that 

Market Order Book models often lack accuracy. Where it is the case that one hundred percent order 

completion is required a method for the timing of the placement of Market Orders is required. In 

Chapter 5 it is shown how Online Learning techniques can be used to determine a more optimal 

timing for the placement of Market Orders into the Trading Book. 
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Chapter 3 

A New Neural Network Framework For Profitable Long-

Short Equity Trading 

In this Chapter the development of a novel framework for detecting trading opportunities for single 

stocks is presented. The Chapter begins with an Introduction to highlight the motivation behind the 

development of the framework. The Introduction is followed by the presentation of a novel method for 

detecting trading opportunities that does not rely on any advanced Machine Learning based 

technologies. The first application of a Neural Network approach is then presented and this is 

followed in turn by an improved Neural Network approach. As is common with Neural Network 

frameworks there are a number of subjective variable parameters and a risk based approach to 

optimise these parameters is then presented. Back testing results are presented to demonstrate the 

performance of the proposed framework. The Chapter ends with a summary. 

 

3.1 Introduction 

In the previous Chapter a number of Machine Learning based methods for detecting trading 

opportunities were presented from the wider literature. These methods typically rely on the use of 

several Technical Analysis indicators with little consideration being given to the relevance of the 

input data. The approach too often is to throw a lot of input data at either a Neural Network or a 

Support Vector Machine and to allow the classifier to find structure within the Input Features, 

otherwise optimisation techniques are used to choose amongst the available Technical Analysis 

Indicators. Such approaches have little real world basis, a successful human expert trader would not 

place real money at risk without a sound rational basis to trade. The method presented in this Chapter 

uses a novel framework of just two Technical Analysis indicators and the development of the method 

shows that a tractable basis is maintained throughout. This is important as an approach that is based 

upon a sound economic rationale is an approach that would be expected to have longevity. 

Current methods are mainly geared either towards estimating the future direction of price movement 

over some time period or in estimating the future price level itself. The aim is typically to make a 

decision to either Buy or Sell some stock or index and the number of generated trades could be large 

with many methods making one Buy or Sell type trading decision per day. Studies of the Efficient 

Markets Hypothesis (EMH) have shown that markets should be considered efficient on the average 

with Momentum and Overreaction anomalies being possible. This would imply that at most times an 

asset should be considered fairly priced and as such no trade should be placed. The novel method 
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presented in this Chapter follows from this logic and indeed rather than searching for Buy and Sell 

opportunities the method instead searches directly for Momentum and Overreaction Anomalies. 

Methods that form the current state of the art typically also ignore the presence of Transaction Costs 

and these would deteriorate performance with a particularly substantial negative effect in the case of 

methods that advocate trading on a daily basis. The novel method presented herein takes into 

consideration the effect of Transaction Costs. In addition current methods are typically optimised to 

maximise the probability of successful directional estimation. The novel method presented in this 

Chapter is instead optimised to maximise the Risk Weighted Return. It is not uncommon for 

successful expert traders to use a model with a directional accuracy prediction of less than 50% and in 

the same vain the focus of the presented methods is not to maximise such accuracy. It is Return that 

matters as this would translate to the generation of profits and more explicitly it is Risk Weighted 

Return that should be optimised as achieving high returns should not require taking a disproportionate 

amount of risk. Implementation of the methods is carried out in MATLAB and testing is conducted 

across a wide range of stocks listed in the USA. 

 

3.2 A Novel Method for Trend Detection Without Machine Learning 

In this section a novel method for Trend Detection that does not require the application of 

advanced Machine Learning methods is presented. This section is important as the method 

developed here is later applied within a Neural Network framework. Too often the techniques 

presented in the literature utilise a selection of Technical Indicators with no explanation of the 

reasoning behind the choice of indicators, this section serves to explain the economic basis of 

the Input Features that will be applied later within a Machine Learning framework. 

At the core of the method is the direct detection of Momentum and Overreaction Anomalies. 

Rather than using a wide selection of Technical Analysis indicators, a compact representation of 

the market trend over some time period can be achieved through just two metrics, a Short Term 

Efficiency Level and an Average Efficiency Level. The restriction to two metrics allows easy 

visualization of the trade frontiers and allows a tractable basis to be maintained. The Efficiency 

Indicator is similar to that from Kaufman [110] and is otherwise termed The Generalised Fractal 

Efficiency. Start by assuming that market data has been regularly sampled with, for some stock 

with Ticker Symbol 𝑇𝐶𝐾, the stock closing price at the 𝑛th time sample being represented as 

𝑆𝑇𝐶𝐾[𝑛]. The Short Term Efficiency Level 𝛾𝑇𝐶𝐾[𝑛] at timestamp 𝑛 can then be defined as 

𝛾𝑇𝐶𝐾[𝑛] =
|𝑆𝑇𝐶𝐾[𝑛] − 𝑆𝑇𝐶𝐾[𝑛 − 𝐾]|

∑ |𝑆𝑇𝐶𝐾[𝑛 − 𝑘] − 𝑆𝑇𝐶𝐾[𝑛 − 𝑘 − 1]|𝐾−1
𝑘=0

 (3.1) 
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Where |. | is the Absolute Value Operator. In summary the Short Term Efficiency Level 

calculation looks back from timestamp 𝑛 over a window of 𝐾 observations and provides the ratio 

of the absolute end to end stock price change to the sum of the absolute day to day changes over 

that window. The efficiency metric would give a level between 0 and 1, where 1 would 

correspond to the case where the movement from 𝑆𝑇𝐶𝐾[𝑛 − 𝐾] to 𝑆𝑇𝐶𝐾[𝑛] had occurred 

monotonically, hence the change occurred with complete efficiency. An inefficient move would  

give a Short Term Efficiency Level closer to zero with zero corresponding to the case that 

𝑆𝑇𝐶𝐾[𝑛] = 𝑆𝑇𝐶𝐾[𝑛 − 𝐾] such that there was no end to end price change with intermediate day to 

day price changes still being possible. The Short Term Efficiency Level can also be viewed as a 

Signal to Noise ratio, with the numerator representing the Holding Period Return (Signal) and 

the Denominator representing the Signal Plus Noise experienced during the Holding Period. 

Illustrative examples of a period of low Short Term Efficiency and a period of high Short Term 

Efficiency are presented in Figure 3.1 and Figure 3.2, respectively. Both Figures are based on 

Daily Closing Price Data for McDonalds (Bloomberg Code: MCD EQUITY) and 𝐾 = 10. The 

Short Term Efficiency Level can also be seen to give a measure of trend, a level close to 1 (as in 

Figure 3.2) symbolizing a near straight line movement and hence a strong trend and a level  close 

to zero (as in Figure 3.1) symbolizing day to day movement within a period of 𝐾 observations 

but with little end to end movement, hence little or no trend. In practice the value for 𝐾 could be 

determined through a back testing process and 𝐾 could be made stock dependent and adaptive. 

For simplicity the value 𝐾 = 10 is initially taken for all stocks with the value for  𝐾 later being 

made subject to optimisation. As well as having interest in the Short Term Efficiency Level 

(trend level), the evolution of the trend would also be expected to contain 

  

 

Figure 3.1 – Illustrative Period of Low Short Term Efficiency (𝛾𝑀𝐶𝐷 = 0.05, with 𝐾 = 10) 
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Figure 3.2 – Illustrative Period of High Short Term Efficiency (𝛾𝑀𝐶𝐷 = 1.00, with 𝐾 = 10) 

 

useful information, particularly where the aim is to identify Overreaction Anomalies and 

Momentum Anomalies. The evolution of the trend could be observed through an Efficiency 

Vector which could be defined as 

�⃗�𝑇𝐶𝐾[𝑛] = [𝛾𝑇𝐶𝐾[𝑛], 𝛾𝑇𝐶𝐾[𝑛 − 1], … , 𝛾𝑇𝐶𝐾[𝑛 − 𝐿]] (3.2) 

 

Such a vector would keep track of the Short Term Efficiency Levels over the current and 𝐿 

preceding timestamps. In the interest of model compactness it is instead proposed to consider 

only an Average Efficiency Level which is defined 

�̅�𝑇𝐶𝐾[𝑛] =
1

𝐿 + 1
∑𝛾𝑇𝐶𝐾[𝑛 − 𝑙]

𝐿

𝑙=0

 (3.3) 

 

The Average Efficiency Level is used as a proxy for the average trend over a preceding period of 

𝐿 timestamps. The value for 𝐿 could also be determined through a back testing process and 𝐿 

could also be made stock dependent and adaptive. For simplicity the value 𝐿 = 20 is initially 

taken for all stocks with the value for 𝐿 later being made subject to optimisation. A framework 

restricted to just two Input Features, the Short Term Efficiency Level and the Average Efficiency 

Level, may appear simplistic. However, such a framework is sufficient to achieve profitable 

trading results. A framework based upon these two indicators also maintains tractability. The 

economic meaning of the two indicators is clear, the Short Term Efficiency Level represents the 

stock price trend over the most recent 𝐾 observations and the Average Efficiency Level 

represents the average trend looking back a further 𝐿 observations. Any established relationships 
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between the two indicators would be a relationship between the recent trend and the longer  dated 

trend of the stock price. 

In order to generate a Training Set the Profit and Loss (P&L) of a trade entered to follow the 

recent Short Term Trend Direction of a stock can be considered. The Short Term Trend Direction 

𝐷𝑇𝐶𝐾[𝑛] observed at timestamp 𝑛 has been defined in Equation (2.10) and is restated below 

𝐷𝑇𝐶𝐾[𝑛] = sgn(𝑆𝑇𝐶𝐾[𝑛] − 𝑆𝑇𝐶𝐾[𝑛 − 𝐾]) (3.4) 

 

where sgn(. ) is the Sign Operator and takes the value of +1 if its operand is greater than or equal 

to zero and takes the value of −1 otherwise. A value of 𝐷𝑇𝐶𝐾[𝑛] = 1 then corresponds to the case 

that the stock is seen to be in a recent uptrend and the value of 𝐷𝑇𝐶𝐾[𝑛] = −1 corresponds to the 

case that the stock is seen to be in a recent downtrend. The indicator 𝐷𝑇𝐶𝐾[𝑛] provides only 

directional information, the Short Term Efficiency Level 𝛾𝑇𝐶𝐾[𝑛] provides a measure of the 

strength of the trend. It should be noted that the two indicators 𝐷𝑇𝐶𝐾[𝑛] and 𝛾𝑇𝐶𝐾[𝑛] are defined 

over the same interval of 𝐾 observations. A Training Set can be generated such that the 𝑛th 

Training Sample is {{𝛾𝑇𝐶𝐾[𝑛], �̅�𝑇𝐶𝐾[𝑛]}, 𝑃𝑇𝐶𝐾[𝑛]}, where 𝛾𝑇𝐶𝐾[𝑛] and �̅�𝑇𝐶𝐾[𝑛] are the Short Term 

Efficiency Level and Average Efficiencies Levels as defined above, and 𝑃𝑇𝐶𝐾[𝑛] is the trade 

P&L for placing a trade in the same direction as 𝐷𝑇𝐶𝐾[𝑛]. The trade P&L 𝑃𝑇𝐶𝐾[𝑛] is defined as 

𝑃𝑇𝐶𝐾[𝑛] = 𝐷𝑇𝐶𝐾[𝑛] ∙
(𝑆𝑇𝐶𝐾[𝑗] − 𝑆𝑇𝐶𝐾[𝑛])

𝑆𝑇𝐶𝐾[𝑛]
 (3.5) 

 

and represents the Holding Period Return from a holding to timestamp 𝑗 > 𝑛 for a trade initiated 

at timestamp 𝑛 with direction 𝐷𝑇𝐶𝐾[𝑛]. The determination of the value of 𝑗 is discussed below. It 

should be noted that the direction of the trade 𝐷𝑇𝐶𝐾[𝑛] is the direction of the observed stock 

price movement over the preceding 𝐾 time intervals and as such the value 𝑃𝑇𝐶𝐾[𝑛] is the P&L of 

placing a trade that assumes that the recently realised direction will persist.  This is to say that 

𝑃𝑇𝐶𝐾[𝑛] is the P&L of placing a trade that assumes a Momentum Based Trading Strategy.  

A back testing method could then be used to identify potential historic trading opportunities based on 

the averaged realised P&L for trades entered under certain observed conditions of the Short Term 

Efficiency Level 𝛾𝑇𝐶𝐾[𝑛] and the Average Efficiency Level �̅�𝑇𝐶𝐾[𝑛]. An illustrative proposed 

back testing method is as follows. Values of 𝐾 and 𝐿 are fixed to 10 and 20 respectively. At each 

observation 𝑛 a trade is entered into by following the recent direction 𝐷𝑇𝐶𝐾[𝑛], the trade is closed at 

the earliest timestamp 𝑗 with (𝑗 > 𝑛) that one or more of the following conditions is found to hold (i) 

𝛾𝑇𝐶𝐾[𝑗] < (𝛾𝑇𝐶𝐾[𝑛] − 𝛿𝑇𝐶𝐾[𝑛]) or (ii) �̅�𝑇𝐶𝐾[𝑗] < (�̅�𝑇𝐶𝐾[𝑛] − 𝛿�̅�𝐶𝐾[𝑛]) or (iii) 𝑗 = 𝑛 + 𝐽𝑇𝐶𝐾[𝑛]. The 



61 
 

first condition corresponds to the case that the Short Term Efficiency Level has dropped below some 

threshold 𝛿𝑇𝐶𝐾[𝑛] of within the Short Term Efficiency Level at the timestamp 𝑛 of trade initiation. 

The second condition corresponds to the case that the Average Efficiency Level has dropped below 

some threshold 𝛿�̅�𝐶𝐾[𝑛] of within the Average Efficiency Level at the timestamp 𝑛 of trade initiation. 

The final condition corresponds to the case that a trade is closed out after 𝐽𝑇𝐶𝐾[𝑛] days if it has not 

already been closed out, such a condition is included as a safety catch to break out of trades after 

some maximum time. For the purpose of illustrative back testing the following levels are used 

𝛿𝑇𝐶𝐾[𝑛] = 0 ∀𝑇𝐶𝐾, 𝑛 and 𝛿�̅�𝐶𝐾[𝑛] = 0 ∀𝑇𝐶𝐾, 𝑛 and 𝐽𝑇𝐶𝐾[𝑛] = 3 ∀𝑇𝐶𝐾, 𝑛. Following back testing, 

potential future trading opportunities can then be identified. The trading premise is that stocks can be 

separated into the following four broad categories. 

Stocks That Show Overreaction Anomalies – For example, for JP Morgan Chase Bank (Bloomberg 

Code: JPM EQUITY), a back test from April 2003 to April 2010 reveals that where the Average 

Efficiency Level is less than a threshold of 0.50 (�̅�𝐽𝑃𝑀[𝑛] < 0.50), but the Short Term Efficiency 

Level is greater than or equal to a threshold of 0.50 (𝛾𝐽𝑃𝑀[𝑛] ≥ 0.50), on average trading profits 

could have been made by betting against the direction 𝐷𝐽𝑃𝑀[𝑛]. This is to say that under such 

conditions of �̅�𝐽𝑃𝑀[𝑛] and 𝛾𝐽𝑃𝑀[𝑛] a short trade should have been placed when 𝐷𝐽𝑃𝑀[𝑛] = 1 and a 

long trade should have been placed otherwise. The combination {�̅�𝐽𝑃𝑀[𝑛] < 0.50, 𝛾𝐽𝑃𝑀[𝑛] ≥ 0.50} 

corresponds to the case of a relatively weak average trend as shown by the Average Efficiency Level 

with a strong short term trend as shown by the Short Term Efficiency Level. In such a case the short 

term trend has typically been seen as transient and would be expected to reverse, this reversal then 

represents the existence of a probable Overreaction Anomaly and this is a trading opportunity. In 

summary for an overreacting stock like JP Morgan Chase Bank it is seen that Overreaction Anomalies 

can be identified under some conditions of the Short Term Efficiency Level and the Average 

Efficiency Level, a reversal of the recent short term direction of the stock would then be expected. 

Stocks That Show Momentum Anomalies – For example, for United Healthcare (Bloomberg Code: 

UNH EQUITY), a back test from April 2003 to April 2010 reveals that where the Average Efficiency 

Level is greater than or equal to a threshold of 0.50 (�̅�𝑈𝑁𝐻[𝑛] ≥ 0.50), but the Short Term Efficiency 

Level is less than a threshold of 0.75 (𝛾𝑈𝑁𝐻[𝑛] < 0.75), on average trading profits could have been 

made by following the direction 𝐷𝑈𝑁𝐻[𝑛]. This is to say that under such conditions of �̅�𝑈𝑁𝐻[𝑛] and 

𝛾𝑈𝑁𝐻[𝑛] a long trade should be placed when 𝐷𝑈𝑁𝐻[𝑛] = 1 and a short trade should be placed 

otherwise. The conditions {�̅�𝑈𝑁𝐻[𝑛] ≥ 0.50, 𝛾𝑈𝑁𝐻[𝑛] < 0.75} correspond to a large fraction of the 

range of possible values of the Short Term Efficiency Level 𝛾𝑈𝑁𝐻[𝑛], and as such it appears that the 

value of the Average Efficiency Level �̅�𝑈𝑁𝐻[𝑛] is the dominating factor. Such conditions then seem to 

imply that for UNH, if there is a strong Average Efficiency Level then the direction 𝐷𝑈𝑁𝐻[𝑛] would 

be expected to sustain and as such the presence of a Momentum Anomaly can be identified. 
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Stocks That Show Both Overreaction and Momentum Anomalies – For other stocks it is possible to 

identify a region in the {�̅�𝑇𝐶𝐾[𝑛], 𝛾𝑇𝐶𝐾[𝑛]} plane where a back test would reveal the existence of 

Overreaction Anomalies and also to identify a second region where a back test would reveal the 

existence of Momentum Anomalies. For example, for Exxon Mobil (Bloomberg Code: XOM 

EQUITY), it can be seen from a back test from April 2003 to April 2010 that regions can be isolated 

in the {�̅�𝑋𝑂𝑀[𝑛], 𝛾𝑋𝑂𝑀[𝑛]} plane where Overreaction and Momentum Anomalies can be identified. 

Not Opportunistic – Other stocks, for example Johnson and Johnson (Bloomberg Code: JNJ 

EQUITY) do not reveal any trading opportunities for a back test from April 2003 to April 2010. 

The back test results can be summarised by identifying regions in which anomalies arise for trades 

which are placed with entry Efficiency Thresholds {𝛾𝑇𝐶𝐾[𝑛], �̅�𝑇𝐶𝐾[𝑛]} above particular levels. 

Illustrative results are shown in Figures 3.3 to 3.6, respectively, for the four stocks discussed above JP 

Morgan (Bloomberg Code: JPM EQUITY), United Healthcare (Bloomberg Code: UNH EQUITY), 

Exxon Mobil (Bloomberg Code: XOM EQUITY) and Johnson and Johnson (Bloomberg Code: JNJ 

EQUITY). In each figure regions where on average profits in excess of 30 bps (0.30%) per trade 

could have been made by following the direction 𝐷𝑇𝐶𝐾[𝑛] have been highlighted in red and regions 

where on average losses in excess of 30 bps per trade could have been made by following the 

direction 𝐷𝑇𝐶𝐾[𝑛] have been highlighted in blue. It should be noted that on average profits in excess 

of 30 bps could have been made by betting against the direction 𝐷𝑇𝐶𝐾[𝑛] for the regions highlighted 

in blue. The blue regions then represent conditions under which Overreaction Anomalies can be 

identified and the red regions represent conditions under which Momentum Anomalies can be 

identified. The threshold of 30 bps is for the purpose of illustration. In the figures a zero return has 

been substituted in any regions where less than 5 trades occurred, this is to remove outlier effects. 

 

Figure 3.3 – Historical Conditions for Anomalies for JPM between April 03 and April 10 
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Figure 3.4 – Historical Conditions for Anomalies for UNH between April 03 and April 10 

 

Figure 3.5 – Historical Conditions for Anomalies for XOM between April 03 and April 10 

 

Figure 3.6 – Historical Conditions for Anomalies for JNJ between April 03 and April 10 
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Having identified historical trading opportunities for each individual stock (as for example in Figures 

3.3 to 3.6), it is now possible to define a simple trading strategy at an individual stock level. For each 

stock a chart of average trend following P&L for trades entered when the Short Term Efficiency 

Level 𝛾𝑇𝐶𝐾[𝑛] and Average Efficiency Level �̅�𝑇𝐶𝐾[𝑛] are above some thresholds could be constructed 

(similar to Figures 3.3 to 3.6). Regions where the average trade P&L is above some threshold (30 bps 

for example) would be identified as regions where Momentum Anomalies have been identified and as 

such in future trend following (Momentum) trades should be placed under the corresponding 

conditions. Regions where the average trade P&L is below some level (-0.30% in the examples 

above) are identified as regions where Overreaction Anomalies have been identified and as such in 

future Reversion Trades should be placed under the corresponding conditions. To illustrate the 

profitability of such an approach the case where trade regions are constructed based on back Test Data 

from April-2003 to April-2010 is considered. The stock universe is the top 20 constituents (ordered 

descending by weight) of the Dow Jones Industrial Average (Ticker INDU INDEX). This stock 

universe is chosen as it consists of large market capitalisation stocks that could be easily traded. Such 

stocks can also be cheaply borrowed for short selling and sufficiently long closing price histories can 

be easily sourced. Having identified potentially profitable trading regions for each stock from a back 

test the same regions can then be applied to test for forward generated Profit and Loss (P&L).  

The test for P&L considers the time period from April-2010 to April-2013 using trading regions fixed 

from the back test using data up to April-2010. For each stock an index is constructed to start at 100 

on 09-April-2010. If on a post training trading day 𝑚 a suitable trading opportunity is found, where 

suitable is determined according to the generated chart for each stock, then a trade is placed. In each 

case the trade is held until the earliest of (i) 𝛾𝑇𝐶𝐾[𝑗] < 𝛾𝑇𝐶𝐾[𝑚] or (ii) �̅�𝑇𝐶𝐾[𝑗] < �̅�𝑇𝐶𝐾[𝑚] or (iii) 

𝑗 = 𝑚 + 3. For each trade the invested amount is the current value of the constructed index. If for a 

particular stock it is the case that a trade is already active then no other trade will be entered. Table 

3.1 presents for each stock the end value of its index over the 3 year testing period. Table 3.1 also 

provides information for the total number of days that are spent in live trades for each stock from a 

possible 750 business days. The table also provides the number of long and short trades for each 

stock. The final row of the table provides the Average Statistics amongst the 20 stocks and it can be 

seen that on average only 98 out of 750 possible days are spent in live trade, a proportion of around 

only 13%. This is to say that at most times, for any particular stock, the framework does not deem the 

environment to be sufficiently conducive for trade entry. This is in keeping with a hypothesis that at 

most times stocks should be considered as efficiently priced and hence as such anomalies rarely 

occur. The average return over three years per stock is only 4.42% and this may appear to be low, but 

it should be viewed against a backdrop of only being in active trade around 13% of the time, higher 

returns on investment would be achieved at a Portfolio Level by selecting trading opportunities 

amongst those from a wider universe of stocks.  
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Stock Name Ticker Start 

Index 

End 

Index 

Trade 

Days 

Long 

Trades 

Short 

Trades 

1 IBM IBM 100.00 107.49 73 36 19 

2 Chevron CVX 100.00 99.86 76 14 39 

3 3M MMM 100.00 99.99 16 5 9 

4 McDonalds MCD 100.00 119.72 97 24 52 

5 Untd Tech. UTX 100.00 95.77 100 19 42 

6 Exxon XOM 100.00 107.19 15 7 5 

7 Boeing BA 100.00 111.89 58 20 29 

8 Caterpillar CAT 100.00 96.22 130 37 51 

9 Travellers TRV 100.00 103.14 156 25 79 

10 J&J JNJ 100.00 100.00 0 0 0 

11 P&G PG 100.00 96.15 143 38 60 

12 Walmart WMT 100.00 102.43 36 3 19 

13 Home Dep. HD 100.00 92.79 198 34 99 

14 Am. Exp. AXP 100.00 119.97 311 80 136 

15 Untd. Hlth. UNH 100.00 112.00 43 26 6 

16 Disney DIS 100.00 107.70 61 18 23 

17 Verizon VZ 100.00 97.89 158 32 70 

18 Dupont DD 100.00 110.80 26 10 10 

19 JP Morgan JPM 100.00 111.82 191 48 81 

20 Merck MRK 100.00 95.66 64 10 41 

Average   100.00 104.42 97.6 24.3 43.5 

 

Table 3.1- Application of an Introductory Framework to Large Market Capitalisation Stocks 

 

Thus far an introductory framework for identifying Overreaction and Momentum Anomalies has been 

presented. The framework is in itself novel and should be recognised as an original contribution to the 

field of Technical Analysis. The framework employs the Efficiency Indicator first proposed by 

Kaufman [110]. Kaufman proposed the use of a single Short Term Efficiency Indicator for trend 

following, his method advocates a trading strategy whereby a direction 𝐷𝑇𝐶𝐾[𝑛] following trade is 

placed if the Short Term Efficiency Indicator is high (and so the short term trend is strong) and the 

trade is closed when the Short Term Efficiency Indicator begins to weaken. The original Kaufman 

approach was geared only towards the use of a single indicator to detect Momentum Anomalies. The 

original Kaufman approach does not consider the use of a combination of a Short Term and an 

Average Efficiency Level, it also does not consider the detection of Overreaction Anomalies. 

The framework that has been presented has a rational economic basis. At the core of the method is the 

direct detection of Momentum and Overreaction Anomalies which have been shown to arise through 

the behavioural inefficiencies of market participants. As long as such inefficiencies persist the method 

would be expected to function. The framework does, however, need to be made adaptive to changing 

market conditions as it would not be reasonable to expect the same anomalies to persist over time. To 

have an adaptive framework would require the application of Machine Learning techniques. 
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3.3 First Neural Network Approach for Trend Detection 

As a first step towards the introduction of Machine Learning techniques the replication of the 

approach of the previous sub-section within a Neural Network framework is presented. In the 

previous sub-section a Training Set was formed from Training Samples of the form 

{{𝛾𝑇𝐶𝐾[𝑛], �̅�𝑇𝐶𝐾[𝑛]}, 𝑃𝑇𝐶𝐾[𝑛]}. The Training Set was used to form regions with threshold values 

of 𝛾𝑇𝐶𝐾[𝑛]  and �̅�𝑇𝐶𝐾[𝑛]  above which the average P&L for a direction 𝐷𝑇𝐶𝐾[𝑛] following trade 

was greater than 0.30%, such regions imply the probable detection of Momentum Anomalies. In 

addition, regions with threshold values of 𝛾𝑇𝐶𝐾[𝑛] and �̅�𝑇𝐶𝐾[𝑛] above which the average P&L of 

a direction following trade was less than -0.30% were also identified, such regions 

corresponding to the probable detection of Overreaction Anomalies. The formation of threshold 

regions of the Short Term Efficiency Level and the Average Efficiency Level would not provide 

data of a form that would be useful for direct decision inference by a Neural Network. Instead it 

is proposed that a Training Set consisting of Training Samples of the form 

{{𝛾𝑇𝐶𝐾[𝑛], �̅�𝑇𝐶𝐾[𝑛]}, 𝐶𝑇𝐶𝐾[𝑛]} should be used for Neural Network training. Here the Categorised 

Trade P&L 𝐶𝑇𝐶𝐾[𝑛] is defined as in Table 3.2. The Categorised Trade P&L 𝐶𝑇𝐶𝐾[𝑛] is based 

upon a categorisation threshold 𝜔𝑇𝐶𝐾[𝑛] that can be stock and time dependent. 

The categorised trade P&L is based upon the P&L 𝑃𝑇𝐶𝐾[𝑛] for a trade entered at timestamp 

𝑛 that follows the Short Term Trend Direction 𝐷𝑇𝐶𝐾[𝑛]. The trade is exited at timestamp 𝑗 > 𝑛 

when the earliest of three exit criteria is satisfied (i) 𝛾𝑇𝐶𝐾[𝑗] < (𝛾𝑇𝐶𝐾[𝑛] − 𝛿𝑇𝐶𝐾[𝑛]) or (ii) 

�̅�𝑇𝐶𝐾[𝑗] < (�̅�𝑇𝐶𝐾[𝑛] − 𝛿�̅�𝐶𝐾[𝑛]) or (iii) 𝑗 = 𝑛 + 𝐽𝑇𝐶𝐾[𝑛]. The first condition corresponds to the case 

that the Short Term Efficiency Level has dropped below some threshold 𝛿𝑇𝐶𝐾[𝑛] of within the Short 

Term Efficiency Level at the timestamp 𝑛 of trade initiation. The second condition corresponds to the 

case that the Average Efficiency Level has dropped below some threshold 𝛿�̅�𝐶𝐾[𝑛] of within the 

Average Efficiency Level at the timestamp 𝑛 of trade initiation. The final condition corresponds to the 

case that a trade is closed out after 𝐽𝑇𝐶𝐾[𝑛] days if it has not already been closed out, such a condition 

is included as a safety catch to break out of trades after some maximum time. 

The categorised trade P&L 𝐶𝑇𝐶𝐾[𝑚] will the eventual trading decision at some post training 

timestamp 𝑚 based on the then prevailing Short Term Efficiency Level 𝛾𝑇𝐶𝐾[𝑚]  and Average  

 

Category 𝑪𝑻𝑪𝑲[𝒏] Condition 

-1 𝑃𝑇𝐶𝐾[𝑛] ≤ −𝜔𝑇𝐶𝐾[𝑛] 
0 −𝜔𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ 𝜔𝑇𝐶𝐾[𝑛] 
1 𝑃𝑇𝐶𝐾[𝑛] > 𝜔𝑇𝐶𝐾[𝑛] 

 

Table 3.2 - Proposed Trade Categorisation Scheme for a First Application of a Neural Network 



67 
 

Efficiency Level �̅�𝑇𝐶𝐾[𝑚]. An observed level of 𝐶𝑇𝐶𝐾[𝑚] = 1 would suggest that a Momentum 

Trade should be placed by following the direction 𝐷𝑇𝐶𝐾[𝑚], this is to say that a long trade 

should be placed if 𝐷𝑇𝐶𝐾[𝑚] = 1 and a short trade should be placed otherwise. An observed 

level of 𝐶𝑇𝐶𝐾[𝑚] = −1 would suggest that an Overreaction Trade should be placed by betting 

against the direction 𝐷𝑇𝐶𝐾[𝑚], this is to say that a short trade should be placed if 𝐷𝑇𝐶𝐾[𝑚] = 1 

and a long trade should be placed otherwise. An observed level of 𝐶𝑇𝐶𝐾[𝑚] = 0 would suggest 

that no trade should be placed as the particular stock is determined to be efficiently priced under 

current conditions. It is the existence of the category 𝐶𝑇𝐶𝐾[𝑚] = 0 that makes the proposed 

approach different to methods in the wider literature which typically look to determine only Buy 

and Sell opportunities, hence ignoring that the price process may be in a state of efficiency. 

The category 𝐶𝑇𝐶𝐾[𝑚] would be obtained from the Neural Network output 𝑊𝑇𝐶𝐾[𝑚] as 

𝐶𝑇𝐶𝐾[𝑚] = 𝑚𝑎𝑥 (−1,𝑚𝑖𝑛(1, 𝑟𝑜𝑢𝑛𝑑(𝑊𝑇𝐶𝐾[𝑚]))) (3.6) 

 

where 𝑊𝑇𝐶𝐾[𝑚] is the trained Neural Network output given the post training input 

{𝛾𝑇𝐶𝐾[𝑚], �̅�𝑇𝐶𝐾[𝑚]} and 𝑟𝑜𝑢𝑛𝑑(. ) is the Round to Nearest Integer Operator.  

Given only two Input Features, a 𝑇 = 20 Neuron Radial Basis Function Neural Network 

(RBFNN) is deemed to be sufficient for this Classification Problem. Here 𝑇 is a parameter used 

to define the number of Neurons within the Neural Network structure and the value for 𝑇 is later 

made subject to optimisation. A Radial Basis Function Neural Network is chosen due to the 

ability of such architectures to make accurate classifications even in the presence of noise. Since 

the Input Feature space is limited to just two dimensions, straight forward visualization of the 

Training Set is possible. In Figure 3.7 a Training Set of 750 Training Samples for McDonalds 

(Bloomberg Code: MCD EQUITY) is shown, the Training Samples are generated for the period 

between May 2009 and May 2012 with parameters as in Table 3.3. 

 

 

Parameter Brief Description Fixed Value 

𝐾 Observations for Short Term Efficiency Level 10 

𝐿 Averaging Points for Average Efficiency Level 20 

𝛿𝑀𝐶𝐷[𝑛] Short Term Efficiency Level Exit Threshold 0.00 ∀𝑛 

𝛿�̅�𝐶𝐷[𝑛] Average Efficiency Level Exit Threshold 0.00 ∀𝑛 

𝐽𝑀𝐶𝐷[𝑛] Maximum Trade Holding Time 3 ∀𝑛 

𝜔𝑀𝐶𝐷[𝑛] Trade Categorisation Threshold 0.30% ∀𝑛 

𝑇 Number of Neurons in RBFNN Structure 20 

 

Table 3.3 - Parameters for McDonalds Used to Create Training Samples Depicted in Figure 3.7 
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Figure 3.7 – A Training Set for MCD Generated for May 09 to May 12 

 

Figure 3.8 – Output of the RBFNN Trained Using the Data in Figure 3.7 

 

The Training Set is noisy as expected. In Figure 3.8 the outputs generated by a RBFNN trained 

with this Training Set are shown across discretely sampled intervals of the two Input Feature 

space {𝛾𝑀𝐶𝐷[𝑚], �̅�𝑀𝐶𝐷[𝑚]}. From Figure 3.8 it can be seen that in regions of the feature space 

where little Training Data was available the RBFNN has made inferences of an expected 

negative P&L for a trade that would follow the Short Term Trend Direction 𝐷𝑀𝐶𝐷[𝑛]. It is 

unsurprising that the RBFNN output would be somewhat random in such regions given the 

limited span of the Training Data. The issue of Neural Network inference in regions of the Input 

Feature space for which little or no Training Data is available is addressed in the next section. 

This first step Neural Network framework is tested across a universe of 100 stocks. To form a 

testing universe the current 500 constituents of the Standard and Poors 500 Index (Bloomberg 
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Code: SPX INDEX) are taken and ordered by descending market capitalisation. Any stocks for 

which 10 years of daily closing price information is not available are removed. For example 

Google (Bloomberg Code: GOOG EQUITY) which was listed on 19
th

 August 2004 is removed 

from consideration. The remaining universe consists of 447 stocks. To form an initial sub-

universe a stratified sample of the 447 stocks is formed by selecting every 4
th

 stock, such that 

the 4
th

, 8
th

, .. , 400
th

 largest stocks are taken. A stratified sample is taken to give a sub-universe 

that encompasses a large range of stocks with different market capitalisations, using a stratified 

cross section would eliminate any potential sample selection bias  that may occur for example if 

the top or bottom 100 stocks are selected. For reference the first stock in the universe of 447 

stocks is Apple (Bloomberg Code: AAPL EQUITY) with a market capitalisation, as at 03 June 

2013, of 423 Billion USD and the last is Advanced Micro Devices (Bloomberg Code: AMD 

EQUITY) with a market capitalisation of under 3 Billion USD. This initial 447 stock universe, 

and any sub-universes, then represent groups of liquid stocks that can be easily traded. Market 

data for these stocks can be easily sourced. The isolation of 100 stocks creates  in sample and out 

of sample data. Such a partition allows strategy development to be carried out on the in sample 

data and final testing on the remaining out of sample data. 

In addition, in order to eliminate any potential time period bias issues it is important to evaluate 

performance across a wide time span that would encompass a range of market conditions. 

General consensus amongst Financial Engineers is that a method should be tested across a time 

period that is sufficiently long to encompass at least one bull market, one bear market and some 

significant periods of sideways movement. For testing of this first Neural Network structure a 

period of around 10 years spanning from May 2003 to April 2013 is considered. Such a time 

period encompasses a wide range of market conditions including the 2008 Global Financial 

Crisis [111], for reference the VIX ‘Investor Fear Gauge’ [112] over the test period was in the 

range from 10.4 to 59.9, illustrating a wide market volatility range. Closing price data has been 

sourced from Bloomberg and has been back adjusted for stock splits and dividends.  

For each stock the Neural Network is retrained every 𝑀 = 250 business days (a period of around 

1 calendar year) using data for the preceding 𝑁 = 750 business days (a period of around 3 

calendar years). Such a division of the available data would give 7 non-overlapping sets of test 

results. The variables 𝑀 and 𝑁 are used, respectively, to define the number of timestamps before 

retraining and the number of Training Samples within a Training Set, these will later be made 

subject to optimisation. Test results are summarized in Table 3.4. A brief description of the 

contents of the rows of Table 3.4 is as given below. 

Num. Trades – Is the Total Number of Trades generated across the 100 stocks divided by 100. 

This then gives the average number of trades generated for each stock within each Test Set.  
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Measure Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 Test Set 6 Test Set 7 

Training Start  29/05/03 25/05/04 23/05/05 19/05/06 18/05/07 15/05/08 13/05/09 

Training End 19/05/06 18/05/07 15/05/08 13/05/09 11/05/10 06/05/11 03/05/12 

Testing Start 22/05/06 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 

Testing End 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 06/05/13 

Num. Trades  9.0 6.4 5.6 13.1 10.4 7.1 13.1 
% Profitable  50.6% 51.6% 53.8% 51.9% 55.0% 55.7% 52.5% 
Total P&L 0.6% -0.8% 4.5% 0.1% 1.6% 1.9% 0.1% 

P&L Per Trade 0.06% -0.10% 0.64% 0.01% 0.14% 0.24% 0.01% 
Trade Days 15.3 11.8 10.4 20.3 16.0 11.3 21.2 

Average Days 1.5 1.5 1.5 1.4 1.4 1.4 1.4 
 

Table 3.4 - Average Performance Figures for a First Application of a Neural Network 

 

% Profitable – Is the Total Number of Profitable Trades generated across the 100 stocks divided 

by the Total Number of Trades generated across the 100 stocks. This then gives the proportion of 

profitable trades across all stocks considered together.  

Total P&L – Is the Total P&L generated by all the trades across the 100 stocks divided by the 

number of stocks for which a non-zero number of trades occurred. This is then the Average Total 

P&L per stock for those stocks for which some trades had occurred. 

P&L Per Trade - Is the Total P&L generated by all the trades across the 100 stocks divided by 

the Total Number of Trades generated across the 100 stocks. This is then the Average P&L per 

trade across all stocks considered together. 

Trade Days – Is the Total Days spent in trade by all the trades across the 100 stocks divided by 

the number of stocks for which a non-zero number of trades occurred. This is then the Average 

Number of Days spent in trades for each stock for which some trades had occurred. 

Average Days – Is the Total Days spent in trade by all the trades across the 100 stocks divided 

by the Total Number of Trades generated across the 100 stocks. This is then the Average duration 

per trade across all stocks considered together. 

From Table 3.4 it can be seen that on average there are under 65 trades placed per single stock 

from a possible 1750 trades per name over the 7 year test period. The average trade duration is 

around 1.5 days and therefore on average, for each single stock, there is no investment being 

made around 95% of the time. This illustrates a difference between the proposed framework and 

many of the methods presented in the literature which look to predict the next day direction and 

to follow that. The presented framework looks only to trade when conditions are deemed 

suitable and as such very few trading opportunities are identified per single stock. At this stage a 

foundation has been established, in the next section a number of improvements are developed. 
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3.4 Improved Neural Network Approach for Trend Detection 

In order to improve performance it is proposed to move to a scheme where the Categorised 

Trade P&L 𝐶𝑇𝐶𝐾[𝑛] is as in Table 3.5 below. As in the previous subsection, the categorised trade 

P&L that would be used to form a Training Sample {{𝛾𝑇𝐶𝐾[𝑛], �̅�𝑇𝐶𝐾[𝑛]}, 𝐶𝑇𝐶𝐾[𝑛]}  is the P&L for 

a trade entered at timestamp 𝑛 that follows the Direction 𝐷𝑇𝐶𝐾[𝑛]. As was previously the case, 

the trade is exited at timestamp 𝑗 > 𝑛 when the earliest of three exit criteria is satisfied (i) 

𝛾𝑇𝐶𝐾[𝑗] < (𝛾𝑇𝐶𝐾[𝑛] − 𝛿𝑇𝐶𝐾[𝑛]) or (ii) �̅�𝑇𝐶𝐾[𝑗] < (�̅�𝑇𝐶𝐾[𝑛] − 𝛿�̅�𝐶𝐾[𝑛]) or (iii) 𝑗 = (𝑛 + 𝐽𝑇𝐶𝐾[𝑛]). 

Each trade is categorised into one of nine categories which are defined by two parameters 

𝜔𝑇𝐶𝐾[𝑛] and 𝜒𝑇𝐶𝐾[𝑛], the first parameter defines category zero and the new parameter 𝜒𝑇𝐶𝐾[𝑛] is 

used to define the additional categories. 

The categorised trade P&L 𝐶𝑇𝐶𝐾[𝑚] will the trading decision at some post training timestamp 𝑚 

based on the prevailing Short Term Efficiency Level 𝛾𝑇𝐶𝐾[𝑚]  and Average Efficiency Level 

�̅�𝑇𝐶𝐾[𝑚]. The category 𝐶𝑇𝐶𝐾[𝑚] would be obtained from the Neural Network output 𝑊𝑇𝐶𝐾[𝑚] as 

𝐶𝑇𝐶𝐾[𝑚] = 𝑚𝑎𝑥 (−1,𝑚𝑖𝑛(1,0.25 × 𝑟𝑜𝑢𝑛𝑑(4 ×𝑊𝑇𝐶𝐾[𝑚]))) (3.7) 

 

where 𝑊𝑇𝐶𝐾[𝑚] is the trained Neural Network output given the post training Input Feature set 

{𝛾𝑇𝐶𝐾[𝑚], �̅�𝑇𝐶𝐾[𝑚]} and 𝑟𝑜𝑢𝑛𝑑(. ) is the round to nearest integer operator. The motivation for the 

categorization in Table 3.4 is to establish an expected P&L range under which no trades would 

be placed (category zero) and to establish a set of expected positive and negative P&L ranges 

which can be used to determine if the Short Term Trend Direction should be followed or 

countered. Having a wider range of values introduces a number of advantages.  

 

 

Category 𝑪𝑻𝑪𝑲[𝒏] Condition 

-1.00 𝑃𝑇𝐶𝐾[𝑛] ≤ −𝜔𝑇𝐶𝐾[𝑛] − 3 × 𝜒𝑇𝐶𝐾[𝑛] 
-0.75 −𝜔𝑇𝐶𝐾[𝑛] − 3 × 𝜒𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ −𝜔𝑇𝐶𝐾[𝑛] − 2 × 𝜒𝑇𝐶𝐾[𝑛] 
-0.50 −𝜔𝑇𝐶𝐾[𝑛] − 2 × 𝜒𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ −𝜔𝑇𝐶𝐾[𝑛] − 𝜒𝑇𝐶𝐾[𝑛] 
-0.25 −𝜔𝑇𝐶𝐾[𝑛] − 𝜒𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ −𝜔𝑇𝐶𝐾[𝑛] 
0.00 −𝜔𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ 𝜔𝑇𝐶𝐾[𝑛] 
0.25  𝜔𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ 𝜔𝑇𝐶𝐾[𝑛] + 𝜒𝑇𝐶𝐾[𝑛] 
0.50 𝜔𝑇𝐶𝐾[𝑛] + 𝜒𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ 𝜔𝑇𝐶𝐾[𝑛] + 2 × 𝜒𝑇𝐶𝐾[𝑛] 
0.75 𝜔𝑇𝐶𝐾[𝑛] + 2 × 𝜒𝑇𝐶𝐾[𝑛] < 𝑃𝑇𝐶𝐾[𝑛] ≤ 𝜔𝑇𝐶𝐾[𝑛] + 3 × 𝜒𝑇𝐶𝐾[𝑛] 
1.00 𝑃𝑇𝐶𝐾[𝑛] > 𝜔𝑇𝐶𝐾[𝑛] + 3 × 𝜒𝑇𝐶𝐾[𝑛] 

 

Table 3.5- Proposed Trade Categorisation Scheme for a Second Application of a Neural Network 
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The first and most significant advantage of an extended categorisation is that the terminal 

categories of {−1} and {1} can now be used to categorise outliers or price shocks in the Training 

Set. Such price shocks correspond to unusually large positive or negative P&L that had occurred 

for a handful of Training Samples in the Training Set. The treatment of price shocks is an 

important practical consideration that is typically overlooked in the development of trading strategies. 

A trading strategy that has been somehow optimally fitted over Training Data because of the presence 

of price shocks should not be expected to later perform well in reality. Price shocks are unpredictable 

and fitting to such shocks may be considered a form of overfitting. It should be noted that the 

approach taken here has not removed price shocks from the data but has rather categorised them 

correctly as shocks, the difference may appear subtle but it is important. The complete removal of 

price shocks from data could be dangerous, an example is that of Long Term Capital Management 

(LTCM) who had developed trading strategies with the removal of price shocks [113], their basis for 

removal was that they deemed such shocks to be unrealistic. The eventual collapse of LTCM caused 

losses that exceeded 4 Billion USD. Again it should be highlighted that the classification process 

taken herein has not removed price shocks but has categorised them as outliers. The second advantage 

of an extended classification is that it allows for the more intelligent allocation of assets at a Portfolio 

level. Given a fixed pool of investment cash, such a categorisation could allow the later selection of 

potential opportunities that have the highest expected P&L.  

The development thus far has focussed on the use of a Radial Basis Function Neural Network 

(RBFNN) as a classification tool. However such a Neural Network structure could also be used as a 

prediction tool. For example the RBFNN could be used to predict the expected stock price at some 

point in the future. However if such a prediction type approach were taken, there would still need to 

be some post prediction classification to create a no-trade (zero) category and to create categories for 

outliers. It has therefore been decided to take a classification approach as the creation of zero trade 

and outlier categories can then be integrated directly into the Neural Network structure. 

In Figure 3.9 a Training Set of 750 Training Samples for McDonalds (Bloomberg Code: MCD 

EQUITY) is shown, the Training Samples are again generated on the daily closes between May 

2009 and May 2012 with parameter values fixed as in Table 3.6. In Figure 3.10 the outputs 

generated by a 𝑇 = 20 Neuron RBFNN trained with this data are shown across discretely 

sampled intervals of the range of possible values of the two Input Feature Space 

{𝛾𝑀𝐶𝐷[𝑚], �̅�𝑀𝐶𝐷[𝑚]}. Again the issue of random inferences in regions where little or no Training 

Data was available can be seen. It may be argued that this issue can be ignored. If a large 

Training Set is devoid of Training Samples that fall in some region of feature space, it may then 

be expected, in practice, to confront such regions of feature space with a low probability and 

therefore the Neural Network inferences may not be statistically considered so important. 
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Parameter Brief Description Fixed Value 

𝐾 Observations for Short Term Efficiency Level 10 

𝐿 Averaging Points for Average Efficiency Level 20 

𝛿𝑀𝐶𝐷[𝑛] Short Term Efficiency Level Exit Threshold 0.00 ∀𝑛 

𝛿�̅�𝐶𝐷[𝑛] Average Efficiency Level Exit Threshold 0.00 ∀𝑛 

𝐽𝑀𝐶𝐷[𝑛] Maximum Trade Holding Time 3 ∀𝑛 

𝜔𝑀𝐶𝐷[𝑛] Trade Categorisation Threshold 0.30% ∀𝑛 

𝜒𝑀𝐶𝐷[𝑛] Second Trade Categorisation Threshold 0.60% ∀𝑛 
𝑇 Number of Neurons in RBFNN Structure 20 

 

Table 3.6 - Parameters for McDonalds Used to Create Training Samples Depicted in Figure 3.9 

 

 

Figure 3.9 – Re-Categorised Training Set for MCD Generated for May 09 to May 12 

 

Figure 3.10 – Output of the RBFNN After Training Using Re-Categorised Training Data 
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A novel form of heuristic data regularisation that can help with the issue of random inferences is 

to append to the Training Set a subset of biasing Training Samples that bias the Neural Network 

output towards the category that makes the decision for no trade (category zero). This process 

will be termed Zero Appending. An example of such a Zero Appended Training Set is shown in 

Figure 3.11 where zero category Training Samples have been regularly placed in the feature 

space. In Figure 3.12 the outputs generated by a Neural Network trained on this Zero Appended 

data are shown across discretely sampled intervals of the Input Feature space 

{𝛾𝑀𝐶𝐷[𝑚], �̅�𝑀𝐶𝐷[𝑚]}. The Neural Network output shown in Figure 3.12 is not entirely clean, 

however this is considered reasonable given the noisiness of the input data.  In practice the 

procedure of zero biasing a Training Set will lead the Neural Network away from making a 

decision to trade. In principle it is preferred to miss potentially profitable trades than to 

overtrade. A missed opportunity for any particular stock would allow trading on other stocks. 

 

Figure 3.11 – Zero Appended Neural Network Training Set for MCD 

 

Figure 3.12 – Output of the RBFNN After Training Using the Zero Appended Data 
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Given the noisiness of the input data it can be the case that the decision boundaries are 

somewhat subject to small changes in the Training Set. In order to remove such sensitivities it is 

proposed that a method of Neural Network Output Smoothing should be applied. In the case of 

the two dimensional feature space considered thus far, a simple polling can be applied by only 

accepting a unanimous decision from 9 equally spaced points in a square around the test feature 

vector {𝛾𝑇𝐶𝐾[𝑚], �̅�𝑇𝐶𝐾[𝑚]}. If the Input Feature space were to be extended to 𝐿 dimensions, for 

example by the consideration of a complete Efficiency Vector �⃗�𝑇𝐶𝐾[𝑚] as in Equation 3.2, then 

either a majority decision, a unanimous decision or a Monte Carlo integration average of the 

Neural Network output in the 𝐿 dimensional sphere around the vector �⃗�𝑇𝐶𝐾[𝑚] could be applied. 

This process of Output Smoothing can be seen as a second form of heuristic regularisation.  

The testing results of Table 3.4 have been regenerated in Table 3.7 below after the inclusion of 

the 9 category trade classification scheme and Zero Biasing along with Output Smoothing. From 

Table 3.7 it can be seen that there has been a general improvement in both the percentage of 

profitable trades and in the Average P&L per Trade. The results shown in Table 3.7 show that 

trades generated by the proposed method are generally profitable. In the case of Test Set 1, for 

example, the Average Total P&L for each stock for which more than zero trades were generated is 

around 2.0% and the Average such stock spent around 21.5 days in live trade. If it were then the case 

that such an average stock could be found at each possible trading opportunity then assuming 250 

trading days per year a total of 250 21.5⁄ = 11.6 such average stocks could be invested into over 

the one year period giving a total P&L of 11.6 × 2.0% = 23.3% which is a respectable figure for 

a single year trading P&L. Such a figure shall be termed a Full Participation P&L and the 

corresponding figure for each Test Set has been included in Table 3.7.  

 

Measure Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 Test Set 6 Test Set 7 

Training Start 29/05/03 25/05/04 23/05/05 19/05/06 18/05/07 15/05/08 13/05/09 

Training End 19/05/06 18/05/07 15/05/08 13/05/09 11/05/10 06/05/11 03/05/12 

Testing Start 22/05/06 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 

Testing End 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 06/05/13 

Num. Trades 9.7 6.8 11.1 24.5 28.2 17.1 17.0 

% Profitable 54.8% 54.7% 57.5% 54.7% 56.1% 57.2% 53.3% 

Total P&L 2.0% 1.8% 10.9% 0.9% 6.0% 3.8% -0.7% 

P&L Per Trade 0.14% 0.16% 0.71% 0.04% 0.19% 0.20% -0.03% 
Trade Days 21.5 16.8 23.0 39.6 47.1 28.2 31.8 

Average Days 1.5 1.5 1.5 1.5 1.5 1.5 1.6 
Full Part. P&L 23.3% 26.8% 118.5% 5.7% 31.8% 33.7% -5.5% 

 

Table 3.7 - Average Performance Figures for a Second Application of a Neural Network 
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3.5 Optimising Neural Network Trend Detection  

The approach thus far has established a Neural Network framework that has been shown to be 

profitable on average across a universe of 100 stocks and over an extensive time period that spans 7 

years and includes a wide range of market conditions. A number of parameters within the framework 

have been selected manually and these parameters could be optimised to improve system 

performance. A summary of the parameters that are open to optimisation is given in Table 3.8 below. 

From Table 3.8 it can be seen that some of the parameters have been kept fixed whilst the range for 

optimisation has been defined for other parameters. The value of the Number of Observations for the 

Short Term Efficiency Level will be fixed at 10 (𝐾 = 𝐾𝑇𝐶𝐾[𝑛] = 10∀𝑇𝐶𝐾, 𝑛) as the value of 𝐾 will 

be used to define the strategy. This is to say that the optimisation of a strategy of type 𝐾𝑇𝐶𝐾[𝑛] =

10∀ 𝑇𝐶𝐾, 𝑛 is considered. The number of samples between retraining has also been fixed to 250 

days (𝑀𝑇𝐶𝐾[𝑛] = 250 ∀𝑇𝐶𝐾, 𝑛), in practice the time between retraining would be dependent 

upon the availability of computational resources and upon changes in market conditions. A fixed 

value of 𝑀𝑇𝐶𝐾[𝑛] = 250 ∀𝑇𝐶𝐾, 𝑛 however allows the available data to be broken into sets of 

sequential one year Test Data and this allows a straightforward representation of testing results. 

All other parameters are open to optimisation and the possible ranges are as specified in Table 

3.8, the use of optimisation bounds will aid the convergence of any optimisation technique.  

In optimising parameters a measure of system performance must be chosen. In the wider literature the 

common measure of system performance that is employed is the percentage accuracy of the prediction 

of next day stock price direction (% Profitable in Table 3.7). However, it is not uncommon for 

successful technical expert traders to employ a model that has a directional prediction accuracy of less 

than 50%. Directional prediction is not in itself useful, the purpose of trading is to generate profits and 

a more useful measure to optimise may be either the P&L per Trade or the P&L per Stock. 

 

Parameter Comment 

𝐾𝑇𝐶𝐾[𝑛] Observations for Short Term Efficiency Level. Will keep fixed at 10 to define strategy 

𝐿𝑇𝐶𝐾[𝑛] Averaging Points for Average Efficiency Level. Can be optimized in range [5,50] 

𝛿𝑇𝐶𝐾[𝑛] Short Term Efficiency Level Exit Threshold. Can be optimized in range [0,0.30] 

𝛿�̅�𝐶𝐾[𝑛] Average Efficiency Level Exit Threshold. Can be optimized in range [0,0.30] 

𝐽𝑇𝐶𝐾[𝑛] Maximum Trade Holding Time Days. Can be optimized in range [1,10] 

𝜔𝑇𝐶𝐾[𝑛] Trade Categorisation Threshold. Can be optimized in range [0.10%,1.00%] 

𝜒𝑇𝐶𝐾[𝑛] Second Trade Categorisation Threshold. Can be optimized in range [0.10%,2.00%] 

𝑇𝑇𝐶𝐾[𝑛] Number of Neurons in RBFNN Structure. Can be optimized in the range [4,40] 

𝑁𝑇𝐶𝐾[𝑛] Length of Training Window. Can be optimized in the range [50,1000] 

𝑀𝑇𝐶𝐾[𝑛] Samples between retraining. Will keep fixed at 250 for annual retraining 

 

Table 3.8 - Summary of Parameters that are Open to Optimisation 
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Optimisation to maximise P&L however may lead to a combination of system parameters that is 

geared towards high risk trading and this would be undesirable. Profitability should always be seen in 

a risk context and therefore it is instead proposed that the P&L to Risk ratio should be optimised. A 

P&L to Risk measure that can be defined is the Annualised Information Ratio over a period (𝑚1,𝑚2] 

Ι𝑇𝐶𝐾(𝑚1,𝑚2] =
P𝑇𝐶𝐾(𝑚1,𝑚2] × 250/ND𝑇𝐶𝐾(𝑚1,𝑚2]

√(SD𝑇𝐶𝐾(𝑚1,𝑚2])
2 × 250/ND𝑇𝐶𝐾(𝑚1,𝑚2]

 (3.8) 

 

where P𝑇𝐶𝐾(𝑚1,𝑚2] is the Total Percentage P&L for all trades generated on the stock with 

Ticker 𝑇𝐶𝐾 over the time period (𝑚1,𝑚2], SD𝑇𝐶𝐾(𝑚1,𝑚2] is the standard deviation of the 

Percentage P&L for trades over the same time period and ND𝑇𝐶𝐾(𝑚1,𝑚2] is the Total Number of 

Days spent in active trade over the time period (𝑚1, 𝑚2]. The factor 250/ND𝑇𝐶𝐾(𝑚1,𝑚2] is 

applied as an Annualisation Factor under the assumption of 250 trading days per annum. It 

should be noted that the Annualisation Factor adjustment is applied to the Square of the Standard 

Deviation of the P&L (the variance) under the assumption of additive variances with the 

assumption of a zero covariance between the P&L of successive trades for stock 𝑇𝐶𝐾. The 

application of an Annualisation Factor to give an Annualised Information Ratio would allow a like 

for like comparison of performance for trading strategies that consider time periods of different 

duration. The numerator of Ι𝑇𝐶𝐾(𝑚1,𝑚2] can be seen as akin to the Annual Full Participation 

P&L and the denominator of Ι𝑇𝐶𝐾(𝑚1,𝑚2] can be seen as equivalent to an Annual Full 

Participation Volatility.  

The measure Ι𝑇𝐶𝐾(𝑚1,𝑚2] may be adjusted to include Transaction Costs, a real world effect that 

is largely ignored in the academic literature and that has not been considered thus far. The 

Annual Full Participation Volatility may also be floored to prevent Ι𝑇𝐶𝐾(𝑚1,𝑚2] from blowing 

up under low volatility conditions; a suitable level for such a floor would be 3%. In addition the 

Annualisation Factor may be capped to prevent an optimisation that finds just a few profitable 

trades and as such this would help to prevent an optimisation that is based on just outliers. A 

suitable Annulisation Factor Cap would be 10 and this would be equivalent to an optimisation 

based on an assumption that a particular stock would spend at least 25 days in active trade.  The 

Modified Annualised Information Ratio can then be defined as 

Ι̇𝑇𝐶𝐾(𝑚1,𝑚2] =
(P𝑇𝐶𝐾(𝑚1,𝑚2] − 𝑡𝑇𝐶𝐾 × NT𝑇𝐶𝐾(𝑚1,𝑚2]) × min (10,250/ND𝑇𝐶𝐾(𝑚1,𝑚2])

𝑚𝑎𝑥(0.03,√(SD𝑇𝐶𝐾(𝑚1,𝑚2])
2 ×min (10,250/ND𝑇𝐶𝐾(𝑚1,𝑚2]))

 (3.9) 

 

where NT𝑇𝐶𝐾(𝑚1,𝑚2] is the Number of Trades generated for stock 𝑇𝐶𝐾 over the time period 

(𝑚1,𝑚2] and 𝑡𝑇𝐶𝐾 is the Transaction Cost per Trade for trades generated on stock 𝑇𝐶𝐾. It should 
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be noted that the format of the Transaction Cost per Trade is as a percentage of the Stock Price 

at the time of trade initiation and as such is akin to the type of Transaction Cost that would be 

faced by an institutional investor. 

Standard off the shelf optimisation tools often aim to minimise rather than maximise a  Cost 

Function and as such it is instead proposed to minimise the following Cost Function 

Ψ𝑇𝐶𝐾(𝑚1, 𝑚2] = 𝑙𝑛 (
1

max (0.1, Ι̇𝑇𝐶𝐾(𝑚1, 𝑚2])
) (3.10) 

 

where 𝑙𝑛(. ) is the Natural Logarithm Operator. The presence of the floor of 0.1 applied to the Modified 

Annualised Information Ratio has the effect of giving a value of 𝑙𝑛(10) ≈ 2.30 for the Cost Function 

Ψ𝑇𝐶𝐾(𝑚1,𝑚2] in the case that Ι̇𝑇𝐶𝐾(𝑚1,𝑚2] takes on either a negative or very small positive 

value. The mapping from the Modified Annualised Information Ratio Ι̇𝑇𝐶𝐾(𝑚1,𝑚2] to the 

proposed Cost Function Ψ𝑇𝐶𝐾(𝑚1,𝑚2] can be viewed in Figure 3.13 below. From Figure 3.13 

the effect of the floor of 0.1 can be seen in that any negative values for the Modified Annualised 

Information Ratio have been mapped to a fixed positive value. The role of the Natural Logarithm 

Operator is to prevent the suppression of negative troughs that occur at high positive levels of 

the Modified Annualised Information Ratio. The purpose of these two modifications to the Cost 

Function is to help to provide a cleaner global minimum for an optimisation algorithm to locate.  

At this stage a Cost Function of a form that is suitable for optimisation has been established. 

Optimisation may be considered on a stock by stock basis such that a set of parameters o f the 

types shown in Table 3.7 could be found for each individual stock. However financial data is  

 

  

Figure 3.13 – Mapping to Proposed Cost Function 
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inherently noisy and a direct global parameter optimization for an individual stock would find a 

global minimum to the proposed Cost Function that is heavily affected by noise. A method to 

deal with this noise is to exploit The Law of Large Numbers and attempt to average away noise 

and instead find initially the parameters that minimise the average of the proposed Cost Function 

across a larger Portfolio of stocks. Simulated Annealing can be applied as a global parameter 

optimisation technique. The universe of stocks considered for optimisation is the same 100 

stocks that have been used to generate the results in Table 3.7. It is proposed that Test Set 2 is 

used as an Optimisation Data Set, this is to say that values for the parameters in Table 3.8 should 

be optimised to give a global minimum in the average of the proposed Cost Function over Test 

Set 2 (21/05/07 to 16/05/08). Test Set 2 is chosen rather than Test Set 1 to provide an additional 

set of possible training points for the optimisation of the Length of the Training Window. The 

optimised values for the variable parameters are then as shown in Table 3.9 below under the 

assumption of a Transaction Cost Level of 𝑡𝑇𝐶𝐾[𝑚] = 0.04% ∀ 𝑇𝐶𝐾,𝑚 

Having established parameter values that are based upon an average of the proposed Cost 

Function, more optimised values for each individual stock can then be found. However, rather 

than optimise on a stock by stock basis, it is proposed to instead establish a relationship between 

the optimal value of each parameter and the realised volatility of the individual stock. 

Establishing such a relationship has advantages. The first advantage is that such a relationship 

will help to deal with the effects of noise upon the optimal values that are found for a particular 

individual stock, this effect is discussed in detail later. The second advantage is that once a 

relationship has been established then parameter values can be found for other stocks without the 

need for intensive optimisation. The third advantage is that by establishing a relationship to 

realised volatility parameters can be made time variable.  

 

Parameter Optimized Value 

𝐾𝐴𝑉𝐺 10 (Fixed Initially) 

𝐿𝐴𝑉𝐺 34 

𝛿𝐴𝑉𝐺  0.13 

𝛿�̅�𝑉𝐺  0.00 

𝐽𝐴𝑉𝐺 6 

𝜔𝐴𝑉𝐺 0.45% 

𝜒𝐴𝑉𝐺 1.18% 

𝑇𝐴𝑉𝐺 29 

𝑁𝐴𝑉𝐺  500 

𝑀𝐴𝑉𝐺 250 (Fixed Initially) 

 

Table 3.9 - Optimized Values for Parameters Based on Average of the Cost Function 
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The proposed method is now to find the parameter values that give the global minimum of the 

proposed Cost Function on a stock by stock basis. To help alleviate the issue of the creation of 

global minima because of noise, each parameter value will only be allowed to vary within a 

range of 20% of the optimised values in Table 3.9. The value of The Length of the Training 

Window will be held fixed such that 𝑁𝑇𝐶𝐾[𝑛] = 𝑁𝐴𝑉𝐺 = 500 ∀ 𝑇𝐶𝐾, 𝑛. The optimised parameter 

values for each individual stock can then be plotted against the realised volatility of that stock 

over the optimisation time period and a linear regression can be used to establish a linear 

relationship between the parameter value and the realised volatility. Examples of such a linear 

relationship are shown in Figure 3.14 and Figure 3.15 for The Short Term Efficiency Level Exit 

Threshold 𝛿𝑇𝐶𝐾 and The Trade Categorisation Threshold 𝜔𝑇𝐶𝐾 respectively. 

 

 

Figure 3.14 – Optimized Values of the Short Term Efficiency Level Exit Threshold 𝛿𝑇𝐶𝐾 

`  

Figure 3.15 – Optimized Values of the Trade Categorization Threshold 𝜔𝑇𝐶𝐾 
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It should be noted that in Figure 3.14 and Figure 3.15 only points for which the optimised value 

of the proposed Cost Function is less than zero have been plotted and for all parameters the 

linear regression fit would only be based on such points, the purpose for this is to prevent poorly 

optimised or unsuccessfully optimised data points from adversely affecting the regression. From 

Figure 3.14 and Figure 3.15 the wide distribution of points around the linear regression lines can 

be clearly seen, such a distribution illustrates the influence of noise in determining the optimal 

parameter values. The use of a regression fit has an effect of averaging such noise across a 

universe of stocks. It may then be seen that a parameter value taken from the regression 

(average) line have a more rational basis for use than the actual optimised value for any 

particular stock. The trend of increasing parameter values with increasing stock volatility does 

make intuitive sense. Increasing volatility would correspond to an increasing standard deviation 

of the stock price returns over any time period and a wider distribution of returns. A wider 

distribution of returns would correspond to the requirement of larger classification boundaries 

corresponding to a larger value of 𝜔𝑇𝐶𝐾. A wider distribution of returns would also correspond to 

larger stock price movements being required for the end of any detected Overreaction Anomaly or 

Momentum Anomaly to occur and this would correspond to a larger value of 𝛿𝑇𝐶𝐾. 

Thus far all optimisation has been carried out using only Test Set 2 as an Optimisation Data Set. 

The established relationships between parameter values and realised volatility would allow 

suitable parameter values to be determined for use in proceeding Data Sets without the need for 

computationally intensive optimisations, since the historical realised volatility of any stock can 

be easily determined. The established relationships would also allow suitable parameter values 

to be determined for stocks that are not part of the Optimisation Data Set.  The success of the 

proposed method is demonstrated in the next section.  

 

3.6 Testing The Proposed Method 

In this section testing results are presented to show the performance of the proposed novel 

Neural Network framework. The chosen measure for performance is the Average Annualised 

Information Ratio (Equation 3.8) across an initial Testing Stock Universe of the same 100 stocks 

used to generate the results shown in Table 3.7. Performance will be tested across Test Set 2 to 

Test Set 7 as shown in Table 3.7. The Annualised Information Ratio is equivalent to the ratio of 

Annual Full Participation P&L to Annual Full Participation Volatility and the average of The 

Annualised Information Ratio then represents the average risk weighted performance that could 

be achieved under the assumption that such average trading opportunities could be found at each 

instance in time. The assumption that such average trading opportunities could be found at each 

point in time is a reasonable one when the underlying universe of stocks is large.  Testing results 
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are shown in Table 3.10 and are inclusive of Transaction Costs 𝑡𝑇𝐶𝐾[𝑚] = 0.04% ∀ 𝑇𝐶𝐾,𝑚 per 

trade. It should be noted that only those stocks for which a non-zero number of trades were 

generated in any particular test set have been included in the computation of averages. 

As a benchmark for performance the Average Annualised Information Ratio of a passive investment 

into SPX INDEX is also presented for each Test Set in Table 3.8. From the results in can be seen that 

the proposed framework has achieved a higher Information Ratio than the SPX INDEX over 4 of the 

6 data Test Sets. From the proposed framework Test Set 2 had been used for parameter optimisation 

and as such may now not be considered a valid data test set. Considering then just the five last data 

test sets (Test Set 3 to Test Set 7 inclusive) it can be seen that the proposed framework has achieved 

an average Information Ratio of 1.359 compared to 0.633 for SPX INDEX, this represents a risk 

weighted performance improvement of around 115%. 

It should be noted that the risk weighted performance as represented by the Average Annualised 

Information Ratio is a measure based upon effectively selecting at any point in time a single stock that 

has a risk weighted performance equivalent to the Average Annualised Information Ratio. However if 

at any point in time several such stocks are combined into a Portfolio then the expected Annualised 

Information Ratio of such a Portfolio would be higher than for a single stock alone and as such 

through the creation of Portfolios higher Risk Weighted Returns can be achieved. The creation of 

trading Portfolios forms the subject matter of the next Chapter of this Thesis. 

As a validation check a second set of 100 stocks is now considered. The original stock sub-universe 

consisted of the 4
th

, 8
th

, 12
th

, .. , 400
th

 largest stocks taken from a universe of 447 out of 500 of 

the current constituents of SPX INDEX. A second stock sub-universe is formed from the 3
rd

, 7
th

, 

11
th

, .. , 399
th

 largest stocks taken from the same universe of 447 out of 500 of the current 

constituents of SPX INDEX. There are no overlapping stocks between the two sub-universes. 

The regenerated performance results are shown in Table 3.11 for this second stock sub-universe. 

The results of Table 3.11 have been produced without any additional parametric optimisation 

since the regression fitted straight lines produced using Test Set 2 of the original 

stock sub-universe can now be used for this second stock sub-universe. A comparison of the 

 

Measure Test Set 2 Test Set 3 Test Set 4 Test Set 5 Test Set 6 Test Set 7 

Testing Start 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 

Testing End 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 06/05/13 

Avg. Ann. Inf. Ratio 2.060 1.529 1.427 1.280 1.954 0.604 

SPX Inf. Ratio -0.330 -0.827 1.749 0.912 0.073 1.258 

 

Table 3.10 - Average Performance Figures for an Optimized Neural Network Framework 
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Measure Test Set 2 Test Set 3 Test Set 4 Test Set 5 Test Set 6 Test Set 7 

Testing Start 21/05/07 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 

Testing End 16/05/08 14/05/09 12/05/10 09/05/11 04/05/12 06/05/13 

Avg. Ann. Inf. Ratio 0.737 1.115 1.192 1.755 2.120 1.177 

SPX Inf. Ratio -0.330 -0.827 1.749 0.912 0.073 1.258 

 

Table 3.11 - Average Performance Figures for a Second Set of Stocks 

 

results of Table 3.11 with those of Table 3.10 shows that there has been no performance 

degradation in moving to an independent stock sub-universe and this should provide comfort 

that the original parametric optimisation approach has not introduced overfitting. 

 

3.7 Summary 

In this Chapter a novel framework for Trading Opportunity (trend) Detection has been presented. 

The framework is built directly upon the detection of Overreaction and Momentum anomalies  

under the premise that at most times any particular stock should be seen as efficiently priced. 

The detection of Overreaction and Momentum anomalies is based on a novel combination of just 

two Technical Analysis metrics, the Short Term Efficiency Indicator and the Average Efficienc y 

Indicator. As a starting point it has been shown that these two metrics could be used to create a 

profitable trading strategy without the application of any advanced Machine Learning 

techniques. This is an important step as it shows that the eventual development of any Neural 

Network based trading strategy would have an economically rational underlying foundation.  

It was then shown that the two Efficiency Indicator metrics could be applied as Input Features to 

a Neural Network based system for the detection of trading anomalies, although with limited 

initial success. The first step has been to try and simply throw data at the Neural Network and it 

is clear that there needed to be some further element of system design. Following this the Neural 

Network method has been improved through the introduction of an expanded trade classification 

scheme that would allow for the classification of Outliers in the data. Two novel heuristic 

regularisation methods have also been presented. The first heuristic regularisation method is 

termed Zero Appending and involves placing artificial biasing data points into a Training Set to 

deal with the issue that a Training Set will typically not span the complete Feature Space. The 

second heuristic regularisation method is termed Neural Network Output Smoothing and 

provides a method to deal with noise in Neural Network output for any of piece of Test Data.  

A novel method for parametric optimisation has also been presented. The optimisation technique 

involves an initial global search for optimal parameters across a universe of stocks. Optimal 
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parameters on a stock by stock basis are then determined by allowing some constrained 

movement from the globally optimal parameters. However, it is a regression of these individual 

stock parameters as a function of realised volatility that eventually leads to the true optimised 

parameters. Such a method allows for the smoothing of noise and also introduces computational 

efficiency as the optimised parameters for any stock that is not part of the optimisation dataset 

can be estimated with just knowledge of the recent realised volatility of that stock.  Through 

testing results it has been shown that the parametric optimisation technique has not introduced 

overfitting. Testing results have been presented across a wide universe of stocks and across a 

wide range of market conditions. The overall Neural Network framework has been shown to 

have been successful throughout, even with the inclusion of Transaction Costs. 

The detection of trading opportunities is not in itself sufficient to begin trading. The detected 

trading opportunities need to be combined together to form a Portfolio. The choice and 

weighting of trading opportunities into a trading Portfolio is an interesting challenge. Standard 

Portfolio Construction techniques are not well suited for the creation of Portfolios that are based 

upon the expectation of the reversal of short term trading anomalies. In the next Chapter a novel 

method for Portfolio Construction under such conditions is presented.  
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Chapter 4 

A New Graphical Model Framework For Dynamic Equity 

Portfolio Construction 

In this Chapter the development of a novel framework for Portfolio Construction under dynamic 

environments is presented. The Chapter begins with an Introduction to highlight the motivation 

behind the development of the framework. The introduction is followed by the establishment of a 

performance benchmark through a simple approach to Portfolio Construction with application to the 

Neural Network framework of the previous Chapter. The application of standard Mean-Variance 

techniques for Portfolio Construction is then considered and it is shown that such methods are not 

suited to the Neural Network framework. A novel method for Portfolio Construction is then presented 

and a novel Genetic Algorithm optimisation technique is also introduced. Back testing results are 

presented to demonstrate the performance of the framework. The Chapter ends with a summary. 

 

4.1 Introduction 

In the previous Chapter a technique for finding long and short trading opportunities based on a search 

for Momentum and Overreaction anomalies has been presented. It has been shown through the results 

presented in Table 3.10 and Table 3.11 that the proposed technique has been able to consistently find 

profitable trading opportunities over a test period of 6 years. The results presented in Table 3.10 and 

Table 3.11 consider an average stock drawn from each of two test universes of 100 stocks. In Figure 

4.1 and Figure 4.2, overleaf, the Cumulative Distribution Function (CDF) of the number of Buy and 

Sell signals generated on each day for the same stock universe used to generate Table 3.10 is 

presented. From Figure 4.1 and Figure 4.2 it can be seen that with a probability of around 60% on any 

given trading day there will be more than one Buy and Sell signal generated from the novel Neural 

Network framework of the previous Chapter. This then presents a Portfolio Construction problem. 

Given a fixed pool of investment cash, how should that cash be allocated amongst the two or more 

stocks to form an optimised Portfolio?  

In Chapter 2 a number of techniques of Portfolio Construction have been presented from the wider 

literature. Such Portfolio Construction techniques are typically based upon Mean-Variance 

optimisation and it has been discussed in Chapter 2 that such techniques place an assumption that the 

distribution of asset returns falls into the Elliptical Family of probability distributions, whose 

members include the Normal and Student-t Distributions. In addition it has been shown in Chapter 2, 

through an empirical example, that the Portfolio weights generated by Mean-Variance Portfolio 
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Figure 4.1 – CDF of Number of Buy Trades Generated per Day for a First Sample of 100 Stocks 

 

Figure 4.2 – CDF of Number of Sell Trades Generated per Day for a First Sample of 100 Stocks  

 

 

techniques are highly sensitive to the values of the input parameters used. In addition Mean-Variance 

Portfolio construction techniques are generally intended to be used for the creation of long term stable 

Portfolios. The current problem of interest is for a much more dynamic trading environment. In the 

current case of interest Portfolios are being created for a holding period of just one day and for such 

cases Mean-Variance optimisation may not be well suited. 

In this Chapter a novel method for Portfolio Construction that is specifically designed for dynamic 

trading environments is presented. The method places no distributional assumptions upon the returns 

of each of the assets used to form the Portfolio and it will be shown that the method is not unstably 

sensitive to the values of the input parameter used. In the next subsection a simple benchmark against 
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which the new proposed method can be tested is presented. This is followed by an analysis of Mean-

Variance optimisation and its application to trading signals generated by the Neural Network 

framework of the previous Chapter. In the subsections that follow a new proposed method is 

introduced and then enhanced. Extensive back testing is conducted to show that the proposed method 

would have outperformed the established benchmark across a wide universe of stocks. 

 

4.2 Simple Approach to Portfolio Construction, Beating the Index 

As a motivation for this Thesis it had been stated that most human analysts fail to consistently beat the 

performance of benchmark Equity Indices. This created a motivation to conduct research to explore 

the application of Machine Learning. In the previous Chapter a technique for finding long and short 

trading opportunities based on a search for Momentum and Overreaction anomalies has been 

presented. It has been shown that the proposed technique has been able to consistently find profitable 

trading opportunities over a test period of 6 years. Two example test universes of 100 stocks have 

been considered in the previous Chapter and it has been shown that typically more than one Buy or 

Sell trading signal is generated per day from the potential 100 trading signals. 

Consider the case of a Long Only Portfolio which will only Buy into stocks. A suitable industry 

standard benchmark for such a Portfolio is the Standard and Poors 500 Index (Bloomberg Code: SPX 

INDEX). A simple technique that could be applied to the Neural Network framework of the previous 

Chapter would be to divide the available capital equally amongst those stocks which are signalling 

Buy trades on any day. The results of the application of such a Portfolio Construction technique to the 

two test universes of 100 stocks, as considered in Chapter 3, are shown in Figure 4.3 and Figure 4.4. 

 

 

Figure 4.3 – Portfolio Levels Against Benchmarks for a First Sample of 100 Stocks  
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Figure 4.4 – Portfolio Levels Against Benchmarks for a Second Sample of 100 Stocks  

 

Each of the Figures is based on an investment of 100 USD in April 2006 with investment on each 

subsequent trading day of 100 USD plus any accumulated profits and losses since April 2006. The 

‘Proposed’ Portfolio is that based upon the Neural Network framework of the previous Chapter with 

an equal division of Portfolio assets into those stocks that Signal a Buy trade on any particular trading 

day. In each Figure the SPX INDEX benchmark is shown alongside a second benchmark which is an 

Equally Weighted Basket of the universe of 100 stocks formed in April 2006 with no subsequent 

rebalancing of the basket. From the two figures it can be seen that for two example cases the proposed 

method has been able to form a Portfolio that is capable of consistently beating the benchmark SPX 

INDEX. Therefore for two example cases it has been shown that a Machine Learning based method 

has been able to achieve something that the average human analyst could not.  

At this stage a Portfolio Construction benchmark has been established in the form of an equal division 

of funds amongst the signalled Buy trades from the Neural Network framework of the previous 

Chapter. Throughout the rest of this Chapter a novel method for Portfolio Construction will be 

developed and it will be shown that such a novel method is able to outperform this recently 

established benchmark across a wider universe of stocks. 

 

4.3 Application of Current Portfolio Methods, Room For Improvement 

The issue of Portfolio optimisation has received much attention in the literature with the standard 

methods being based on Mean-Variance optimisation. For a universe of 𝑁 stocks such techniques 

require as inputs 𝑁 estimates of Expected Return, 𝑁 estimates of Variance and 
𝑁∙(𝑁−1)

2
 estimates of 
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Correlation. Estimates of such parameters are typically based upon historical data. The premise 

of the Neural Network framework of interest is that the framework is able to detect the existence 

of Momentum or Overreaction anomalies. If a Mean-Variance Portfolio Construction technique 

were to be employed the natural question that arises is whether parameter estimates should be 

based upon the entire available duration of historical data or just upon those in-situ data points at 

which a trading signal (anomaly) has been generated by the Neural Network framework. Using 

all available historical data would give more data points upon which to base historical estimates 

and therefore it might be expected that this would lead to higher quality parameter estimates . 

However the underlying premise is the detection of anomalies and as such for any given  stock 

the distribution of returns for those in-situ time periods at which an anomaly has been detected 

would be expected to be different to the distribution of returns over the complete set of historical 

data. Indeed, given that the problem at hand is the formation of a Portfolio of stocks for which 

anomalies have been detected there then seems to be a compelling argument to base parameter 

estimates only upon such in-situ historical data.  

However, the use of only in-situ historical data introduces an additional problem. Table 4.1 

shows the number of Buy trade signals generated over a six year period for a subset of stock 

pairs from the same universe of 100 stocks used to generate Figure 4.3. The leading diagonal 

show the number of trades generated for each single stock from a possible 1500 trades and the 

off-diagonal entries show the number of trades generated for particular stock pairs.  The use of 

Mean-Variance optimisation techniques requires a full specification of the 
𝑁∙(𝑁−1)

2
 pairs of a 

Correlation Matrix of the returns of 𝑁 assets. However, as can be seen from Table 4.1, for many stock 

pairs the number of coincidental in-situ trades that occur at the same time for any two stocks is very 

low and in some cases this number is zero. Over the complete set of historical data the average 

number of times that any specific pair of stocks have signalled Buy trades on the same day is 3.50 

 

 

Table 4.1 – Number of Trades Generated for a Subset of Stock Pairs over a Six Year Period 

STOCK 91 92 93 94 95 96 97 98 99 100

91 103 4 3 17 8 26 32 6 5 12

92 44 2 2 0 13 3 7 1 4

93 18 5 1 4 5 10 3 2

94 64 8 17 20 6 4 3

95 28 11 9 3 3 1

96 186 28 10 24 14

97 124 11 12 16

98 41 7 0

99 82 9

100 86
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times out of 1500 possible opportunities. For some stock pairs more frequent coincidental Buy trade 

signals can be observed, such as for the pair of Stock 96 and Stock 97 where 28 coincidental trade 

signals were observed over a six year period. This in-situ data limitation then creates an issue for 

Correlation estimation based upon only in-situ historical data. The correlation issue aside, even the 

estimation of the Mean Return and Variance would be problematic if only in-situ data were to be 

used, this can be observed for the case of stock 93 where only 18 Buy trades are signalled in six years. 

Another issue with the use of Mean-Variance optimisation based Portfolio Construction for the 

problem at hand is the assumption that the distribution of asset returns falls into the Elliptical Family 

of probability distributions. The premise of the Neural Network method is the detection of profitable 

trading anomalies which implies that the distribution of the returns of in-situ trades should have an 

asymmetrically fatter right tail, thus implying excess kurtosis and as such the distribution cannot be 

completely characterised by just its location and scale. The Elliptical Family assumption is then not a 

sound starting point for Portfolio Construction in this case. To illustrate this consider Figure 4.5 in 

which a QQ-plot is shown for the Variance Normalised long only generated trades from a universe of 

100 stocks. In Figure 4.6 a QQ-plot is shown for the Variance Normalised set of all trades (in and out 

of situ) for the same universe of 100 stocks. From Figure 4.5 it can be seen that the returns of the long 

only trades generated by the proposed Neural Network framework have both a fatter right tail and 

fatter left tail than suggested by a Normal Distribution. However it can also be seen that the 

distribution is asymmetric with the right tail being fatter than the left tail indicating the presence of 

excess kurtosis as would be expected since the Neural Network framework has been shown to be able 

to detect profitable trading opportunities.  

 

 

Figure 4.5 – QQ-Plot of 1 Day Returns for Long Trades Generated Across 100 Stocks 
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Figure 4.6 – QQ-Plot of 1 Day Returns for All Returns Generated Across 100 Stocks  

 

The results of Figure 4.5 provide further support against the use of a Portfolio Construction technique 

which assumes that the distribution of returns falls into the Elliptical Family. For comparison a QQ-

plot for all of the one-day returns, considering both in and out of situ data, is presented in Figure 4.6. 

From Figure 4.6 it can be seen that for all returns considered together there is both a fatter right and 

left tail than implied by a Normal Distribution, however there is little visual presence of excess 

kurtosis. The returns as shown in Figure 4.6 could perhaps be captured by a Student-t distribution.  

To further demonstrate the issues consider the application of Mean-Variance based optimisation to 

just a two stock Portfolio of Stock 96 and Stock 97. The case where parameters are estimated based 

on all available data is considered in Figures 4.7 to 4.10 below.  

 

Figure 4.7 – Rolling Annualised One Business Day Historical Return for Example Stocks  
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Figure 4.8 – Rolling Annualised Volatility for Example Stocks 

 

Figure 4.9 – Rolling 260 Business Day Realized Correlation for Two Example Stocks  

 

Figure 4.10 – Percentage Allocation to Example Stocks Based on Sharpe Ratio Optimization  
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From these figures the instability of the estimated Mean Return (Figure 4.7), Annualised Volatility 

(Figure 4.8) and Correlation (Figure 4.9) can be clearly seen, parameters are based on rolling 260 

business day windows. The weights of the Sharpe Ratio optimised Portfolio at some of the points 

where both Stock 96 and Stock 97 have coincidentally signalled Buy trades are shown in Figure 4.10. 

From Figure 4.10 the instability in the optimised weights can be clearly seen, Sharpe Ratio Portfolio 

optimisation is implying a 100% investment in one or other of the two assets with the choice flipping 

in just a short period of time. There are clear stability issues with Mean-Variance optimisation. 

The case where parameters are estimated based on only in-situ data is considered in Figures 4.11 to 

4.14. From these figures the continued instability of the estimated Mean Return (Figure 4.11), 

Annualised Volatility (Figure 4.12) and Correlation (Figure 4.13) can be clearly seen, parameter 

estimates are based on all available in-situ historical data up to the estimation date. The weights of the 

Sharpe Ratio optimised Portfolio at some of the 28 points where both Stock 96 and Stock 97 have 

coincidentally signalled Buy trades are shown in Figure 4.14. From Figure 4.14 the continued 

instability in the optimised weights can be clearly seen, Sharpe Ratio Portfolio optimisation is 

implying a close to 100% investment in one of the two assets. The allocation makes intuitive sense 

since Stock 97 has a higher historical return and lower historical volatility than Stock 96 based on the 

estimation method that is employed. Although it is clear that such an allocation may arise in a Mean-

Variance based framework, there would be some expected value to diversification and it appears that 

this value is lost in the optimisation. An alternative to Mean-Variance optimisation is clearly needed. 

 

 

Figure 4.11 – Rolling Annualised In-Situ One Business Day Returns for Example Stocks 
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Figure 4.12 – Rolling Annualised In-Situ Volatility for Example Stocks 

 

Figure 4.13 – Rolling In-Situ Realized Correlation for Two Example Stocks 

 

Figure 4.14 – Percentage Allocation to Example Stocks Based on Sharpe Ratio Optimization  
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4.4 A Novel Method for Portfolio Construction 

In this section a novel method for Portfolio Construction is presented. The method overcomes the 

limitations of Mean-Variance based Portfolio Construction techniques. The method places no strong 

requirements that the distributions of asset returns fall into any special family of distributions. The 

method is also designed to be used in environments where little data is available in order to form 

parameter estimates and as such the method is well suited to the formation of Portfolios based on 

trading signals from the Neural Network framework.  

The inspiration for the method is The Google Page Rank algorithm and a brief overview of this is 

presented first. A simplified Markov Chain model of the internet based on the existence of just 4 web 

pages, each of which has some search keyword in the text body, is shown in Figure 4.15 below. In this 

model there is a hypothetical web user bouncing around between the different pages. The user may be 

in one of 4 states {S1,S2,S3,S4} where one of the four pages is being viewed. A discrete time 

framework is considered and the probability distribution of the viewing location of the user at 

timestamp 𝑚 can be given as 

𝑄[𝑚] = [𝑄1[𝑚],𝑄2[𝑚],𝑄3[𝑚], 𝑄4[𝑚]]
𝑇
 (4.1) 

 

where 𝑄1[𝑚], 𝑄2[𝑚],𝑄3[𝑚], 𝑄4[𝑚] are the probabilities that the user is in state S1, S2, S3 and 

S4 respectively at timestamp 𝑚. Since 𝑄[𝑚] represents a distribution it must be the case that 

 

 

Figure 4.15 – A Simplified Model of the Internet with Just 4 Web Pages 
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𝑄𝑇[𝑚] = 1 (4.2) 

 

where   is a Column Vector of Ones of the same length as 𝑄[𝑚], this is so say that the sum of the 

elements of 𝑄[𝑚] must be one. At each timestamp the user is able to transition from their current 

page to any of the other four pages or to stay on the current page. The probability of transition from a 

Page A to another Page B is specified as 𝑃{𝐴,𝐵} and the complete set of transition probabilities is given 

by the Transition Matrix 

ℙ = 

[
 
 
 
𝑃{1,1} 𝑃{2,1} 𝑃{3,1} 𝑃{4,1}
𝑃{1,2} 𝑃{2,2} 𝑃{3,2} 𝑃{4,2}
𝑃{1,3} 𝑃{2,3} 𝑃{3,3} 𝑃{4,3}
𝑃{1,4} 𝑃{2,4} 𝑃{3,4} 𝑃{4,4}]

 
 
 

 (4.3) 

 

It is a requirement that each of the columns of ℙ must sum to one since from any Page A the user 

must transition to one of the 4 pages that make up this hypothetical internet. Given the distribution 

𝑄[𝑚], the distribution of the viewing location at the next time 𝑚 + 1 can then be calculated as  

𝑄[𝑚 + 1] = ℙ𝑄[𝑚] (4.4) 

 

Here it is assumed that the Markov property holds such that the probability distribution at timestamp 

𝑚 + 1 is directly dependent only upon the state of the system at timestamp 𝑚 and is not 

influenced by how the state at timestamp 𝑚 had arisen. The Markov property states that the past 

and the future are conditionally independent given the present.  Over the long run the Markov 

Chain would be expected to converge to a stationary distribution 𝑄[∞] such that  

𝑄[∞] = ℙ𝑄[∞] (4.5) 

 

Equation 4.5 can be viewed as an Eigenvalue-Eigenvector problem. The stationary distribution can be 

shown [114] to exist and be unique under the condition of strictly positive ℙ𝛼 for some 𝛼 > 0. The 

Markov Chain is non-reducible and hence the value of 𝑄[∞] is not obtainable by simple inspection. 

However the solution 𝑄[∞] can be found as the principle Eigenvector of ℙ, the computational 

solution of which is of order 𝑂(𝑁3) with 𝑁 being the dimension of ℙ. Alternatively an approximate 

solution to 𝑄[∞] can be found by initialising some 𝑄[0] and then ‘running the chain’ to some 

subjective degree of convergence. 

In a simplified version of the Google Page Rank algorithm the entries of ℙ are based upon the 

assumption that at the next timestamp a user will move from their present page to any of the 

connected pages with an equal probability, self-transitions have a probability of zero. Therefore the 



97 
 

Transition Matrix is based on the presence or absence of links. An additional teleportation matrix is 

also used so that with some small probability a user will move from a page to any other random page. 

An initialised vector 𝑄[0] is used and the chain is run to convergence to give an estimated 𝑄[∞]. 

The entries of 𝑄[∞] give the probabilities that the user will converge to certain web pages in a 

steady state distribution and this can be used to Rank the pages in a keyword search. The original 

Google Page Rank algorithm [115] incorporated further complexity beyond this simple presentation.  

Now back to the problem at hand, how to form an optimised Portfolio for those stocks that are 

signalling Buy trades at any instant in time. As an analogy to the Page Rank problem, consider an 

investor who divides $1 of funds amongst 𝑁 assets and moves the funds between assets according 

to some Transition Scores. Funds are moved until a steady state distribution of the $1 amongst 

the 𝑁 assets has been achieved. This situation could be well modelled by a Markov Chain, 

however there are two complications. The first complication is that in a simple universe that 

consists of just Stock A and Stock B there is a correlation between the returns of the stocks and 

as such a simple two state model will not capture important information present in the joint 

distribution of the returns of the two stocks. The second complication is in how to determine the 

Transition Scores, the situation is no longer as simple as counting outgoing web links.  

To address the first complication the concept of a ‘Bridge Portfolio’ is introduced. A Bridge 

Portfolio for Stock A and Stock B would be a Portfolio consisting of $0.50 invested into each of 

the two stocks. If the statistics of the Bridge Portfolio can be captured then the joint statistics of 

Stock A and Stock B would be captured. The chain can be formed such that transitions of funds 

between Stock A and Stock B occur only through the Bridge Portfolio. For a general universe of 

𝑁 stocks there would be a requirement for ∑ 𝑛𝑁
𝑛=1  states in the Markov chain, this is in order to 

allow the inclusion of all 
𝑁∙(𝑁−1)

2
 Bridge Portfolios in order to incorporate all possible stock pairs.  

Even a modest case of 𝑁 = 20 stocks signalling Buy trades the dimensionality of the Transition 

Matrix ℙ would be 210 × 210. However, if the chain can be constructed such that a Bridge 

Portfolio is only considered for adjacent stocks in the list then the resulting chain could be 

simplified. Consider a case of 𝑁 = 4 stocks, the complete Markov Chain with Bridge Portfolios 

that consider each possible stock pair is as shown in Figure 4.16, there are 10 states and 34 

possible transitions. A simplified Markov Chain model with a Bridge Portfolio only between 

adjacent stocks is as shown in Figure 4.17, there are only 8 states and 24 possible transitions. 

Each state {A,B} in Figure 4.16 and Figure 4.17 corresponds to a $0.50 investment into each of Stock 

A and Stock B. Such that {S1,S1} is a $1 investment in Stock 1 and {S1,S2} is a $0.50 investment in 

each of Stock 1 and Stock 2. The model is such that funds can only flow from a stock to another 

through a Bridge Portfolio. 
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Figure 4.16 – A Complete Markov Chain Model for Portfolio Construction with 4 Stocks 

 

The Transition Matrix of the simplified chain in Figure 4.17 can be specified as 

ℙ =  

[
 
 
 
 
 
 
 
 
𝑃{11,11} 𝑃{12,11} 0 0 0 0 0 𝑃{14,11}
𝑃{11,12} 𝑃{12,12} 𝑃{22,12} 0 0 0 0 0

0 𝑃{12,22} 𝑃{22,22} 𝑃{23,22} 0 0 0 0

0 0 𝑃{22,23} 𝑃{23,23} 𝑃{33,23} 0 0 0

0 0 0 𝑃{23,33} 𝑃{33,33} 𝑃{34,33} 0 0

0 0 0 0 𝑃{33,34} 𝑃{34,34} 𝑃{44,34} 0

0 0 0 0 0 𝑃{34,44} 𝑃{44,44} 𝑃{14,44}
𝑃{11,14} 0 0 0 0 0 𝑃{44,14} 𝑃{14,14}]

 
 
 
 
 
 
 
 

 (4.6) 
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Figure 4.17 – A Simplified Markov Chain Model for Portfolio Construction with 4 Stocks 

 

The chain can be further simplified by removing the connection between {S1,S1} and {S1,S4} giving 

a chain which remains irreducible as is it still possible to indirectly move from any state to any other 

state. The resulting Transition Matrix can be then be simplified to  
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ℙ =  

[
 
 
 
 
 
 
 
 
𝑃{11,11} 𝑃{12,11} 0 0 0 0 0 0

𝑃{11,12} 𝑃{12,12} 𝑃{22,12} 0 0 0 0 0

0 𝑃{12,22} 𝑃{22,22} 𝑃{23,22} 0 0 0 0

0 0 𝑃{22,23} 𝑃{23,23} 𝑃{33,23} 0 0 0

0 0 0 𝑃{23,33} 𝑃{33,33} 𝑃{34,33} 0 0

0 0 0 0 𝑃{33,34} 𝑃{34,34} 𝑃{44,34} 0

0 0 0 0 0 𝑃{34,44} 𝑃{44,44} 𝑃{14,44}
0 0 0 0 0 0 𝑃{44,14} 𝑃{14,14}]

 
 
 
 
 
 
 
 

 (4.7) 

 

The format of the Matrix in Equation 4.7 is as a Tri-diagonal matrix, this is to say that it has nonzero 

elements only on the main diagonal, as well as on the first diagonal below and the first diagonal above 

the main diagonal. A property of such a matrix is that a Tri-diagonal Matrix Algorithm can be used to 

solve the Eigen-System with just 𝑂(𝑁) operations. Such a Tri-diagonal matrix can also be stored 

compactly in an 𝑁 × 3 format. Having now formed a structure that is compact in representation 

and that would capture the joint statistics between a pair of stocks, the issue of how to score a 

transition between two states can be addressed. 

It is preferred to take an approach that places no distributional assumptions on the underlying 

data. A frequency table of the discretised returns of each two stock Portfolio represented by a 

state {A,B} can be initialised and each such frequency table can be updated based on in-situ trades for 

the two stocks as they arise. Each frequency table is based on 51 buckets with the 𝑗𝑡ℎ bucket 

corresponding to a single period return 𝑅𝑗 in the range 

−5%+ (𝑗 − 1) × 0.2% < 𝑅𝑗 ≤ −5%+ 𝑗 × 0.2% (4.8) 

 

As such each bucket represents the occurrence of a single period return in a range of 0.20% (20 

basis points) and the buckets cover the closed range (−5.00%, 5.00%]. To allow for single 

period returns outside of this range the leftmost bucket (bucket 1) is modified to the range 

(−∞,−4.80%] and the rightmost bucket (bucket 51) is modified to the range (4.80%,∞). Each 

frequency table can be initialised according to some prior belief of the distribution of returns if 

such a belief is available. A simple alternative is to employ a ‘Laplace Estimator’ approach and 

to initialise with a count of 1 in each bucket, it is this approach that will be employed. 

Following initialisation, each frequency table is updated as coincidental in-situ trades arise for 

the pair of stocks representing the state {A,B}. For a state {A,A} which represents only a single 

stock A, the frequency table is updated each time an in-situ trade arises for Stock A. A frequency 

table can be easily converted to a discrete distribution by simply dividing the frequency count in 

each bucket by the total sum of frequency counts in all buckets. The formation of example 
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distributions for Stock 96 (distribution in state {96,96}), Stock 97 (distribution in state {97,97}) 

and the Bridge Portfolio of Stock 96 and Stock 97 (distribution in state {96,97}) are shown 

below in Figure 4.18. The figure shows the discrete empirical distributions that are formed at 

three different time points over a six year period. 

The first row of images in Figure 4.18 shows the initialised distributions for the two stocks and for the 

connecting ‘Bridge Portfolio’. In the second row of images the evolved distributions are shown as at 

the final time point prior to the occurrence of a coincidental trade for Stock 96 and Stock 97, this is to 

say that whilst Buy trades have been generated on each of the two stocks there have been no such 

signals occurring at the same time for both stocks. The final row of images of Figure 4.18 shows the 

distributions for the two stocks and for the ‘Bridge Portfolio’ at the end of the six year period. 

 

   

Initialised Distribution of Returns for 

Stock 96 (State {96,96}) 

Initialised Distribution of Returns for 

Stock 97 (State {97,97}) 

Initialised Distribution of Returns for a 

Bridge Portfolio (State {96,97}) 

   

   

Developing Distribution of Returns for 

Stock 96 (State {96,96}) 

Developing Distribution of Returns for 

Stock 97 (State {97,97}) 

Developing Distribution of Returns for a 

Bridge Portfolio (State {96,97}) 

   

   

Final Distribution of Returns for Stock 

96 (State {96,96}) 

Final Distribution of Returns for Stock 

97 (State {97,97}) 

Final Distribution of Returns for a 

Bridge Portfolio (State {96,97}) 

Figure 4.18 – Evolving Distributions for Two Example Stocks 
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At any given time the distributions that have been evolved up to that time can be used to score 

transitions in the Graphical Model. A distribution can be converted to a Transition Score based upon a 

number of possible criteria, for example the Expected Return or the ratio of Expected Return to 

Standard Deviation could be determined from a distribution and either of these could be used as a 

score. Such metrics would pose issues for the creation of a Long Only trading Portfolio as the score 

would not be strictly positive, this could in turn lead to negative stock weights in a Portfolio. Such an 

issue could be overcome by flooring the score at zero. However, a simpler and more robust scoring 

method is to use the probability of a stock return being greater than some threshold. Such a method 

would always guarantee a positive score and has a tractable economic basis. By moving trading funds 

in the direction of positive returns this should help to achieve a Portfolio with a positive return, 

additionally it should be expected to reduce Portfolio volatility as funds are continually being pushed 

to that part of the joint distribution that has a positive return. 

The transition scoring method then is to score transitions into a state {A,B} with the probability 𝑃{𝐴𝐵} 

that the Bridge Portfolio of Stock A and Stock B has a return greater than a subjective threshold 𝑇, 

this will be specified as 𝑃{𝐴𝐵} > 𝑇 . The resulting Transition Matrix is then 

 

ℙ = 

[
 
 
 
 
 
 
 
 
 
𝑃{11} > 𝑇 𝑃{11} > 𝑇 0 0 0 0 0 0

𝑃{12} > 𝑇 𝑃{12} > 𝑇 𝑃{12} > 𝑇 0 0 0 0 0

0 𝑃{22} > 𝑇 𝑃{22} > 𝑇 𝑃{22} > 𝑇 0 0 0 0

0 0 𝑃{23} > 𝑇 𝑃{23} > 𝑇 𝑃{23} > 𝑇 0 0 0

0 0 0 𝑃{33} > 𝑇 𝑃{33} > 𝑇 𝑃{33} > 𝑇 0 0

0 0 0 0 𝑃{34} > 𝑇 𝑃{34} > 𝑇 𝑃{34} > 𝑇 0

0 0 0 0 0 𝑃{44} > 𝑇 𝑃{44} > 𝑇 𝑃{44} > 𝑇

0 0 0 0 0 0 𝑃{41} > 𝑇 𝑃{41} > 𝑇]
 
 
 
 
 
 
 
 
 

 

(4.9) 

 

The columns of this matrix will not sum to one. The odd numbered rows of the Transition Matrix 

would correspond to a transition of funds into a particular single stock and the even numbered rows 

would correspond to a transition of funds into a Bridge Portfolio. Given one unit of investable money 

this could be initially distributed in some chosen away amongst those 𝑁 stocks which are signalling 

Buy trades. The initial distribution of funds would then be a vector of length 2𝑁 as follows  

𝑄[0] = [𝑄11[0], 𝑄12[0], 𝑄22[0], 𝑄23[0], … , 𝑄𝑁𝑁[0], 𝑄𝑁1[0]]
𝑇
 (4.10) 

 

where 𝑄𝐴𝐴
[0] is the initial allocation of funds to Stock A and 𝑄𝐴𝐵

[0] = 0 ∀ 𝐴 ≠ 𝐵. It would be 

the case that 𝑄[0]𝑇 = 1 such that the sum of the elements of 𝑄[0] is 1. The Transition Matrix 

can then be used to move funds amongst the 𝑁 stocks and 𝑁 Bridge Portfolios such that  
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𝑄[1] =
ℙ𝑄[0]

‖ℙ𝑄[0]‖ 
 (4.11) 

 

Where ‖∙‖2 is the Euclidean Norm Operator. The term ‖ℙ𝑄[0]‖  is required for Normalization since 

the columns of ℙ no longer sum to one but the distribution of funds represented by 𝑄[1] must be 

such that 𝑄𝑇[1] = 1 as the total invested funds must always remain as $1. The result in Equation 

4.11 is then an updated distribution of the initial $1 of funds between the 𝑁 stocks and 𝑁 Bridge 

Portfolios. Of interest is the long term equilibrium distribution of funds 𝑄[∞] and this can be 

determined to be the normalised principle Eigenvector of ℙ. An alternative approach to determine 

𝑄[∞] is to simply run the chain to convergence. Having determined an Equilibrium distribution 

of funds 𝑄[∞] between the 𝑁 stocks and 𝑁 Bridge Portfolios all that remains is to reallocate the 

funds in each Bridge Portfolio equally amongst those two stocks in the Bridge Portfolio.  

In practice running the chain to convergence is seen to give an Equilibrium Portfolio within a 

reasonable number of iterations. An example convergence diagram for a situation with 5 stocks 

and 5 Bridge Portfolios is shown in Figure 4.19 below. The convergence of the Portfolio after 

reallocation of the proceeds of the Bridge Portfolios is shown in Figure 4.20. The choice of a 

Transition based on the probability of a positive single period return also leads to Portfolio 

stability over adjacent time periods. Consider again the case of just two available stocks, Stock 

96 and Stock 97, the allocation achieved by the proposed method over the same time points as in 

Figure 4.14 is shown in Figure 4.21. There is clear stability of the Portfolio and this should be 

expected as the created single stock and Bridge Portfolio distributions do not vary drastically 

with each arriving in-situ data point. The proposed method has achieved diversification amongst 

the two stocks as it is no longer the case of a near 100% allocation into just one stock. 

 

Figure 4.19 – Convergence of the Distribution of Funds Amongst 5 Stocks and Bridge Portfolios 
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Figure 4.20 – Convergence of the Distribution of Funds after Bridge Portfolio Reallocation 

 

Figure 4.21 – Percentage Allocation to Two Example Stocks Based on Proposed Method  

 

4.5 Improving the Method with Chain Optimisation 

In the proposed method a Graphical Model is formed based on states which represent Equally 

Weighted Portfolios of pairs of stocks {𝐴, 𝐵}. If 𝐴 = 𝐵 the state would represent a Single Stock and in 

the case that 𝐴 ≠ 𝐵 the state would represent a Bridge Portfolio.  At each timestamp funds are 

transitioned from a particular stock into either the same stock or into a maximum of two possible 

Bridge Portfolios that contain that particular stock. Funds are transitioned continually between 

stocks and Bridge Portfolios until a steady state distribution of funds has been reached. 

In the case that 𝑁 stocks have signalled Buy trades there are 𝑁 – Factorial (𝑁!) numbers of ways 

of ordering the stocks before forming the Graphical Model. For example the 𝑁 stocks may be 
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Figure 4.22 – An Example Graphical Model Ordering 

 

 

 

Figure 4.23 – An Alternative Graphical Model Ordering 

 

 

kept in order such that the Graphical Model would be of the format of Figure 4.22. Alternatively, 

the 𝑁 stocks could be arranged in some random order, resulting for example in a chain of the 

format of Figure 4.23. 

There is clearly scope for the use of optimisation techniques to find the most optimally ordered 

chain. The issue of chain ordering can be seen as an equivalent issue of determining which 

‘Bridge Portfolios’ should be used. In the case of 𝑁 stocks it must be the case that the set of 𝑁 

states {{11}, {22},… , {𝑁𝑁}} would feature in the chain. However, the choice of which 𝑁 Bridge 

Portfolios to feature would be a free choice subject to each of the 𝑁 stocks featuring in exactly 

two Bridge Portfolios. It would make intuitive sense to form the most ‘confident chain’, this 

would be the chain for which the most information is known about the connecting Bridge 

Portfolios. A suitable metric then would be to order the stocks such that the total sum of the 

number of data points in the resulting frequency tables of the constructed Bridge Portfolios 

would be maximised.  

The optimisation problem is then akin to a ‘Reverse Travelling Salesman Problem’. In the 

classical Travelling Salesman Problem (TSP) an efficient salesman must start his journey in a 

particular city (City A for example) and then visit each of a total of 𝑁 cities before returning 

home to City A. The salesman being efficient wishes to complete his journey by covering the 

lowest possible total distance and without visiting any particular city more than one time.  The 

problem is known to be NP-Hard (Non-Deterministic Polynomial Time Hard).  

In the case of the Portfolio Optimisation Graphical Model problem of interest the number of data 

points in the frequency table of a particular Bridge Portfolio {AB} of interest can be seen as 

analogous to the distance between the stocks {A and B} when these stocks are thought of as 

cities (City A and City B). The ordering of stocks in the Graphical Model can then be seen as a 
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‘Reverse Travelling Salesman Problem’, in this case the salesman wishes to collect Air Miles by 

visiting a total of 𝑁 cities before returning home. The Air Mile collecting salesman then wishes 

to complete his journey by covering the maximum possible total distance without visiting any 

particular city more than one time. The problem remains NP-Hard. 

There are known algorithms for finding exact solutions to the Travelling Salesman Problem and 

these could perhaps be modified for the Reverse Travelling Salesman Problem of interest. 

However in the case of the TSP it is known that Genetic Algorithm (GA) based optimisation 

techniques can be used to find probably good solutions, although such solutions cannot be 

proven to be optimal. Since for the application of interest it is not necessary to find the exact 

optimal solution a GA based optimisation technique can be used.  

The GA approach employed is to form initially a set of 100 random orderings of those 𝑁 stocks 

which are signalling Buy Trades on any particular trading day. At each iteration the set of 100 

orderings is subdivided randomly into 25 subsets of 4 orderings. Within each subset the best of 

the 4 orderings is selected and then mutated through a set of random flips, swaps and slides to 

give three new mutated orderings which when combined with the original best ordering gives a 

new subset of 4 orderings. The recombination of these 25 sets of 4 orderings then creates a new 

more optimised set of 100 orderings which can be used at the next iteration. The algorithm is run 

until the best ordering at successive iterations has been observed to stabilise, such a stabilised 

ordering is then used in the formation of the Graphical Model for Portfolio Optimisation.  

 

 

Figure 4.24 – Convergence of Proposed GA Method for a Universe of 20 Stocks  
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Figure 4.25 – Convergence of Proposed GA Method for a Universe of 99 Stocks  

 

The proposed GA based technique converges to a stabilised chain ordering within a reasonable 

number of iterations. An example chain convergence for the case of 𝑁 = 20 stocks signalling 

Buy trades at a particular instance in time is shown in Figure 4.24. Another example chain 

convergence for the case of 𝑁 = 99 stocks signalling Buy trades at a particular instance in time 

is shown in Figure 4.25. In the next section exhaustive simulations are shown to demonstrate the 

proposed Portfolio Construction technique and in particular the improvement that can be gained 

through the use of the proposed Optimisation technique for the ordering of stocks.  

 

4.6 Testing the Proposed Method 

In this section Monte Carlo type simulations are used to test the proposed method. To form a 

testing universe the 500 constituents of the Standard and Poors 500 Index (Bloomberg Code: 

SPX INDEX) as of May 2006 are taken and ordered by descending market capitalisation. 

Simulations are carried out by selecting at random stocks from the complete universe of 500 

stocks. For a first test, sub-universes of 100 stocks are created by choosing stocks at random 

from the complete set of 500 stocks. For each sub-universe the Neural Network based Trading 

Opportunity detection method of the previous Chapter is applied and this is followed by the 

application of the Portfolio Construction Method developed in this Chapter. At each instance in 

time a Portfolio is only created for those of the 100 stocks that are signalling a Buy trade at that 

particular time based on the method proposed in Chapter 3. The Empirical CDF of the Terminal 

Value based on an initial investment of 100 USD over a seven year time period from May 2006 

to April 2013 is shown in Figure 4.26. The generated CDF is based on 1024 Monte Carlo 
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Figure 4.26 – Empirical CDF of MC Simulation Results for Sub-Universes of 100 Stocks 

 

Figure 4.27 – Empirical CDF of MC Simulation Results for Sub-Universes of 200 Stocks 

 

Figure 4.28 – Empirical CDF of MC Simulation Results for Sub-Universes of 300 Stocks 
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Figure 4.29 – Empirical CDF of MC Simulation Results for Sub-Universes of 400 Stocks 

 

simulations. Likewise, Monte Carlo Simulation results for sub-universes of 200, 300 and 400 

stocks are shown in Figure 4.28, Figure 4.29 and Figure 4.30. From the it can be clearly seen 

that the proposed method offers an improvement over an Equally Weighed approach to Portfolio 

Construction, with a particularly marked improvement following the application of the GA based 

Chain Optimisation technique. The scale of improvement can be seen to increase with an 

increasing sub-universe size. This effect is rationalised by the fact that increasing the sub-

universe size increases the probability that more than one stock would be signalling a Buy trade 

at any particular instance in time. As such there would be an increase in the probability that a 

non-trivial multi-stock Portfolio can be optimised. The results are further summarised in Table 

4.2 below where the Average Terminal value as of April 2013 based on an initial investment of 

100 Dollars in May 2006 is shown for each of the different sub-universe sizes. In the case of a 

sub-universe of 400 stocks it would be expected that an initial investment of 100 USD could be 

grown to over 670 USD over a seven year period, this would represent a highly respected rate of 

return. The use of a GA optimised chain gives an average performance increase of over 17% 

compared to an Equally Weighed Portfolio; this is a highly respectable improvement. 

 

Number of Stocks Equally Weighted Random Chain Optimized Chain 

100 369.44 379.74 398.54 

200 445.00  455.39 499.73 

300 519.63 526.95 600.41 

400 575.10     578.34 674.88 

 

Table 4.2 - Average Terminal Values for Different Sub-Universe Sizes 
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4.7 Summary 

In this Chapter a novel method for Portfolio Construction for application to the novel Neural 

Network Framework of the previous Chapter has been presented. It had initially been shown that 

an Equally Weighed Portfolio of those stocks which are signalling Buy Trade Opportunities 

using the Neural Network Framework could outperform the benchmark SPX INDEX over a 

significant period of time. The outperformance of a benchmark Equity Index was stated as a 

motivation for this Thesis; however, there would always be further room for improvement by moving 

beyond the Equally Weighted Portfolio. 

The need for a new method for Portfolio Construction has been motivated through an analysis of 

the short comings of current Mean-Variance based methods for Portfolio Construction when they 

are applied to the Neural Network Framework. It has been shown that the returns of trades 

generated by the Neural Network Framework are not well categorised by a distribution that falls 

into the Elliptical Family due to the presence of a Fat Right Tail.  As such an underlying 

assumption of Mean-Variance based Portfolio methods has been violated. The need for a new 

method has been further reinforced through the fact that coincidental in-situ trades for a pair of 

stocks as generated by the Neural Network Framework occur rarely and hence the formation of 

historic statistics as required for a Mean-Variance technique would be difficult. 

The novel method presented in this Chapter overcomes the limitations of Mean-Variance based 

Portfolio Construction techniques. The method places no strong requirement that the 

distributions of asset returns fall into any special family of distributions, as such the method is 

well suited to application with algorithms which select stocks exhibiting excess kurtosis in their 

distribution of returns. The method is well suited to be used in environments where little data is 

available to form parameter estimates. The novel method is based on a Graphical Model 

Framework which has been shown to be computationally efficient to run to convergence. In 

addition a Genetic Algorithm based optimisation technique has been shown to be effective in 

optimising the Graphical Model and in dealing with data sparseness. 

A back testing method based on a Monte Carlo selection of random stock universes of the 

constituents of the Standard and Poors 500 Index (Bloomberg Code: SPX INDEX) has shown 

that with the proposed method a significant improvement in performance beyond that which can 

be achieved through an equally weighted Long Only Portfolio of those stocks which are 

signalling a Buy Trade opportunity is possible. The performance is beyond that of the 

benchmark SPX INDEX and hence it has been shown that though the application of Machine 

Learning it has been possible to achieve something beyond the performance of the average 

Active Equity Portfolio Manager. 
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Chapter 5 

A Study Of The Application Of Online Learning For Order 

Entry Timing 

In this Chapter a study of the Application of Online Machine Learning Techniques for Order Entry 

Timing is presented. The Chapter begins with an Introduction to highlight the motivation behind the 

study. The introduction is followed by the presentation of a framework of the problem to which the 

application of Online Learning is to be considered. The step by step development of a number of 

Online Learning approaches is then presented. Back testing results are then presented to demonstrate 

the performance of the developed Online Learning approaches. The Chapter ends with a summary. 

 

5.1 Introduction 

In Chapter 3 a novel technique for finding Long and Short trading opportunities based on a search for 

Momentum and Overreaction anomalies has been presented. It has been shown that the proposed 

technique has been able to consistently find profitable trading opportunities over a test period of 6 

years. In Chapter 4 a novel technique to form a weighted Portfolio of those stocks which are 

signalling trading opportunities using the technique developed in Chapter 3 has been presented. It has 

been shown that a weighted stock Portfolio based on the technique developed in Chapter 4 is able to 

outperform an equally weighted Portfolio by a significant margin. Having decided upon which stocks 

to trade and their weights in a Portfolio all that remains is to trade and form the monetised Portfolio. 

Systematic Trading Strategies often assume close to close trading, this is to say that stocks can only 

be bought or sold at the official closing print of each trading day. Indeed, the presentation of the novel 

methods in both Chapter 3 and Chapter 4 is based on daily close price data. The main reasons for this 

restriction is that Daily Close Price data is easy to source and in addition most trading strategies that 

are considered for academic purpose are not intended to be actually used in practice and as such the 

last step of how and when to execute trades is often overlooked. As will be shown in this Chapter 

there is extra margin to be realised by determining a more optimal time to place execution orders into 

the market than at the closing price or closing auction. 

A number of methods to model the dynamics of the Double Auction Based Limit Order Book have 

been presented in the literature and some of these have been reviewed in Chapter 2. Such models are 

typically calibrated to market behaviour statistics over a long period of time and they fail to capture 

any micro-trends in the real order book in the time period just prior to execution. In addition in the 

case of the methods developed in Chapter 3 and Chapter 4 it is assumed that there will be 100% 

complete order execution and for this Market Orders are required rather than Limit Orders. Where it is 
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the case that Market Orders are to be placed the issue is one of decision timing, at each instant in time 

a decision should be made of whether to trade or to wait and in making such a decision it is really the 

behaviour of the order book in the most recent time period that is relevant. The calibration of a 

Double Auction Based Limit Order Book Model is a computationally intensive task and there simply 

would not be sufficient time to recalibrate around any observed trends in the order book that are 

evolving in the seconds preceding the decision of whether to trade now or to wait. 

To help solve the problem there is available a toolbox of techniques of Online Machine Learning. In 

the next section a more formalised framework of the problem at hand is presented, the section 

presents the problem alongside the constraints that exist to find a solution. This is followed by the 

presentation of the step by step development of a number of Online Machine Learning techniques for 

Market Order Entry Timing, the techniques are analysed and compared against each other. In the 

section that follows back test results are presented to demonstrate the performance of the approaches 

across a large set of data. The Chapter ends with a summary.  

 

5.2 Framework for the Order Execution Problem 

In order to develop a framework for the Order Execution Problem consider Figure 5.1 below. 

The Figure shows the evolution of the Best Bid Price for Verizon (Bloomberg Code: VZ 

EQUITY) with samples taken at 15 second intervals for the 30 minute period prior to the closing 

print of 3
rd

 March 2016. There are 4 points per one minute period with the final 120 points, 

corresponding to the final 30 minutes of the normal trading session, being shown in green. The 

24 point (6 minute) moving average of the Best Bid Price is shown as a Red Line. Verizon is a 

highly liquid stock and the Best Ask Price was always 1 Cent (0.01 USD) above the Best Bid.  

 

Figure 5.1 – Evolution of the Best Bid Price for Verizon 
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Consider now that the novel methods presented in Chapter 3 and Chapter 4 are modified such 

that they are based on close to close data with the exception that for the current trading day the 

stock prices at some period prior to the close are used as proxies for the closing prices of the 

current trading day. This would then allow the weighted Portfolio of those stocks for which are a 

trading opportunity has been detected to be formed prior to the closing print. If for example the 

weighted Portfolio of stocks could be formed 30 minutes prior to the closing print and Verizon 

was a stock which has been selected to be sold then a situation as depicted in Figure 5.1 would 

arise. Verizon could then be sold at any of the green points, corresponding to the final 30 

minutes of the trading session, the decision of whether to trade or not would need to be made 

rapidly on a time point by time point basis. The trading decision can look back over the 

preceding time interval. For example at the first green point (at time step 241) it is possible to 

look back over the preceding 240 time points. At the first green point it can clearly be seen that 

the 20 point moving average is an uptrend and hence by this metric it may be determined to be 

advantageous not to sell Verizon at time point 241 but to wait and re-evaluate at time step 242. 

To illustrate the use of a Moving Average as a directional Predictor consider the case that the 

Best Bid Price for some stock with Ticker Symbol 𝑇𝐶𝐾 at timestamp 𝑛 is defined as 𝐵𝑇𝐶𝐾[𝑛], 

the simple 𝐾 point retrospective moving average of the Best Bid Price can then be defined as 

�̅�𝑇𝐶𝐾,𝐾[𝑛] =
1

𝐾
∑ 𝐵𝑇𝐶𝐾[𝑛 − 𝑘]

𝐾−1

𝑘=0

 (5.1) 

 

A Stock Order Book can be determined to be in a short term uptrend in the case that the Moving 

Average is determined to be increasing over some period of 𝐿 timestamps. This is to say that the 

short term Direction can be defined to be 𝐷𝑇𝐶𝐾[𝑛] = 1 in the case that 

𝐷𝑇𝐶𝐾[𝑛] = 1 if �̅�𝑇𝐶𝐾,𝐾[𝑛] ≥ �̅�𝑇𝐶𝐾,𝐾[𝑛 − 𝐿]  (5.2) 

 

and 𝐷𝑇𝐶𝐾[𝑛] = −1 otherwise. In the case that 𝐷𝑇𝐶𝐾[𝑛] = 1 then it might be predicted that the 

Expected Best Bid Price at the next timestamp 𝑛 + 1 will be greater than the current Best Bid 

Price. This can be expressed as 

𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} > 𝐵𝑇𝐶𝐾[𝑛] if 𝐷𝑇𝐶𝐾[𝑛] = 1 (5.3) 

 

and 𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} < 𝐵𝑇𝐶𝐾[𝑛] otherwise. Here 𝔼 {∙} is the Expectation Operator. 
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Consider again the Best Bid Price path as shown in Figure 5.1. At each timestamp 𝑛 the Moving 

Average can be used to predict if the Best Bid Price will in expectation be higher 𝔼{𝐵𝑇𝐶𝐾[𝑛 +

1]} > 𝐵𝑇𝐶𝐾[𝑛] or will in expectation be lower 𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} < 𝐵𝑇𝐶𝐾[𝑛] at the next timestamp 

𝑛 + 1. The predictions as made at each timestamp 𝑛 are shown below as Blue points in Figure 

5.2. In Figure 5.2 a value of +1 is used to symbolise the case that 𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} > 𝐵𝑇𝐶𝐾[𝑛] and 

a value of -1 is used to symbolise the case that 𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} < 𝐵𝑇𝐶𝐾[𝑛]. The actual changes in 

the Best Bid price at the next timestamp are shown in Red. It can be seen that in most cases the 

Best Bid Price does not change from timestamp 𝑛 to the next timestamp 𝑛 + 1. The parameters 

used to generate Figure 5.2 are 𝐾 = 24 and 𝐿 = 1. 

A visual inspection of Figure 5.2 does appear to show that where a Change in the Best Bid Price 

did occur that change, as symbolised by a Red Cross at +1 or -1, does appear to coincide well 

with a prediction based on the change in the Simple Moving Average. In the case that a 

prediction is made and at the next timestamp 𝑛 + 1 the Best Bid Price did not change, then that 

prediction cannot be deemed to be incorrect, there is no loss sustained and the Predictor can 

simply try again at zero cost to make a prediction for timestamp 𝑛 + 2.  

As a starting point the Performance Measure PER to be optimised is to Minimise the number of 

incorrect predictions quantified such that the prediction 𝔼{𝐵𝑇𝐶𝐾[𝑛 + 1]} < 𝐵𝑇𝐶𝐾[𝑛] is deemed to 

be incorrect if and only if 𝐵𝑇𝐶𝐾[𝑛 + 1] > 𝐵𝑇𝐶𝐾[𝑛] and likewise for the prediction 𝔼{𝐵𝑇𝐶𝐾[𝑛 +

1]} < 𝐵𝑇𝐶𝐾[𝑛]. This can be stated more formally in the language of Statistical Hypothesis 

Testing, here Predictors are extended to include the notion of Equality and the Operator 𝔼 {∙} is 

dropped. In the case of a prediction that at the next timestamp 𝐵𝑇𝐶𝐾[𝑛 + 1] ≥ 𝐵𝑇𝐶𝐾[𝑛] 

 

 

Figure 5.2 – Best Bid Price Predictions Based on a Simple Moving Average Predictor 
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Hypothesis[𝑛 + 1] (𝐻[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] ≥ 𝐵𝑇𝐶𝐾[𝑛] 

Null Hypothesis (𝐻0[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] < 𝐵𝑇𝐶𝐾[𝑛] 

(5.4) 

 

In the case of a prediction that at the next timestamp 𝐵𝑇𝐶𝐾[𝑛 + 1] ≤ 𝐵𝑇𝐶𝐾[𝑛] 

Hypothesis[𝑛 + 1] (𝐻[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] ≤ 𝐵𝑇𝐶𝐾[𝑛] 

Null Hypothesis (𝐻0[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] > 𝐵𝑇𝐶𝐾[𝑛] 

(5.5) 

 

In each case the aim is to minimize the occurrence of Type-I Errors, these are errors where the 

Null Hypothesis is rejected when it is in fact true. Given a single Predictor, such as the Moving 

Average Based Predictor, the Predictor can use information up to timestamp 𝑛 to then select one 

of the two Hypothesis above (Equation 5.4 or Equation 5.5) regarding the state of the Best Bid at 

timestamp 𝑛 + 1. The single Predictor can learn from its mistakes and may update some internal 

parameters based on the occurrence of Type-I Errors. For example in the case of the Simple 

Moving Average Based Estimator both the Duration of the Average 𝐾 and the Delay 𝐿 are open 

to optimisation and such optimisation may be based upon the occurrence of Type-I Errors. 

In a strictly defined Online Machine Learning framework a Predictor can only be updated at the 

end of timestamp 𝑛 based on the current state of the Predictor and upon knowledge of the true 

state of 𝐵𝑇𝐶𝐾[𝑛]. That constraint will be relaxed here and a Predictor would be allowed as long 

as its state can be comfortably updated in the period between predictions which in the current 

setting is five seconds. This will eliminate Predictors which are based on Neural Networks, 

Support Vector Machines and Graphical Models. However, simple Predictors such as those based 

on Moving Averages or High and Low ranges will be permitted. It is in the weighted selection of 

these Predictors that a strict Online Machine Learning framework will be developed. 

A framework based upon fifteen second tick data enters into the realm of High Frequency 

Trading, however the current problem at hand is distinct from what would typically be 

considered as High Frequency Trading. In the traditional High Frequency Trading setting Limit 

Orders are placed in a Market Making capacity and the aim is to close any executed trades 

within a short interval of the original trade being placed and to then try and capture the Bid -

Offer spread. For the problem at hand the aim is to determine a more optimal time for placing 

Market Orders and this is based on a timestamp by timestamp decision of whether to a place a 

Market Order at the current timestamp or to wait one more timestamp and to then re-evaluate. 

The techniques analysed herein may later find application in a more traditional High Frequency 

Trading setting and this may form the subject of later research. 
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5.3 Online Learning Approaches for Order Execution  

In the previous section it has been shown that a Simple Moving Average Indicator can be used as 

a Predictor to determine if the Best Bid Price 𝐵𝑇𝐶𝐾[𝑛 + 1] for some stock with Ticker Symbol 

𝑇𝐶𝐾 at timestamp 𝑛 + 1 will be higher or lower than the Best Bid Price at the current timestamp 

𝐵𝑇𝐶𝐾[𝑛]. As was shown, such a Predictor can then be used to determine if a Market Order should 

be placed at the current timestamp or if it is advantageous to wait one timestamp and then re-

evaluate. Although the example that was presented was not thoroughly analysed it should still 

serve as motivation enough to show that there is scope to find a more optimal timing for placing 

Market Orders than simply trading at the closing print. The limitations in terms of updating the 

state of a single Predictor in a short interval of time were also discussed, given such a time 

constraint there will also be limitations in terms of the Predictive abilities of a single Predictor.   

It would then seem sensible to look to combine the abilities of Multiple Predictors through an 

Online Learning Approach. In an Online Learning Approach based on an Adversarial Model  

each such Predictor would be termed an Expert and the Online Learning Approach would then 

look to dynamically select amongst these so called Experts or to make a Prediction based on a 

dynamically weighted combination of the Predictions of the Experts.  In this section the step by 

step development of a number of Adversarial Online Learning Approaches to the issue of Order 

Execution Timing are presented. The starting point is an attempt to minimize the number of 

incorrect predictions of the direction of the order book at the next timestamp, it is shown that 

such an optimisation does not necessarily lead to profit maximisation or loss minimization and 

following from this the optimisation then turns to attempt to maximise the probability of trading 

profits. The step by step development of a number of Online Learning Based methods of trading 

profit maximisation is then presented and the methods are compared and contrasted.  

As a starting point the sample Best Bid Path of Figure 5.1 is considered again in a simple 

Adversarial Online Learning Model framework. Here the Online Learning based Predictor has 

available the predictions of two so called Experts. The first Expert will be called Expert-A and 

will Hypothesise that the Best Bid Price at the next timestamp will always be greater than or 

equal to the Best Bid Price at the current timestamp. Expert-A is then such that  

HypothesisA[𝑛 + 1] (𝐻𝐴[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] ≥ 𝐵𝑇𝐶𝐾[𝑛] 

Null HypothesisA[𝑛 + 1] (𝐻0,𝐴[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] < 𝐵𝑇𝐶𝐾[𝑛] 

(5.6) 

 

The second Expert will be called Expert-B and will Hypothesise that the Best Bid Price at the 

next timestamp will always be less than or equal to the current Best Bid Price, such that  
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HypothesisB[𝑛 + 1] (𝐻𝐵[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] ≤ 𝐵𝑇𝐶𝐾[𝑛] 

Null HypothesisB[𝑛 + 1] (𝐻0,𝐵[𝑛 + 1]): 𝐵𝑇𝐶𝐾[𝑛 + 1] > 𝐵𝑇𝐶𝐾[𝑛] 

(5.7) 

 

 

In Figure 5.3 the sample Best Bid Price path of Verizon (Bloomberg Code: VZ EQUITY) is 

considered once again. The timestamp by timestamp Best Bid Price Levels are shown in Green 

alongside the Type-I Errors of Expert-A as Blue Points and the Type-I Errors of Expert-B as Red 

Points. It can be seen that there is a significant occurrence of Type-I errors by each Expert. From 

Figure 5.3 it can be seen that the occurrences of Type-I Errors by each of Expert-A and Expert-B 

often occur in sequences. A Type-I Error by either Predictor is likely to be followed by another 

Type-I error by the same Predictor.  

The aim is to develop an Online Machine Learning Framework which may make its own 

predictions based on the predictions of the two Experts (Expert-A and Expert-B). The aim is to 

make a decision of whether or not to trade at timestamp 𝑛 based on the prediction of the state of 

the Best Bid Price at timestamp 𝑛 + 1. A simple Online Machine Learning Selection Scheme is 

to select for each timestamp 𝑛 + 1 the Predictor which had made the correct prediction at 

timestamp 𝑛. Such a selection scheme is possible as at timestamp 𝑛 the state of the Best Bid 

Price at that timestamp has been revealed. In the case that both Predictors had been correct at 

timestamp 𝑛 (signifying no change in the Best Bid Price since 𝑛 − 1) then the selection will be 

based on which Predictor had been correct at timestamp 𝑛 − 1 and then if necessary by looking 

back at timestamp 𝑛 − 2 and so on. In a strictly defined Online Machine Learning framework the 

Online Predictor will only have available for predictions for timestamp 𝑛 + 1 and the following  

 

Figure 5.3 – Sample Prediction Errors for Two Expert Predictors 
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(i) The predictions for timestamp 𝑛 of the two Experts, 𝐻𝐴[𝑛] and 𝐻𝐵[𝑛], with 

knowledge of which prediction was correct through knowledge of 𝐵𝑇𝐶𝐾[𝑛] and 

𝐵𝑇𝐶𝐾[𝑛 − 1]. These would be predictions made at timestamp 𝑛 − 1 with knowledge 

of the correctness of such predictions being revealed at timestamp 𝑛. 

(ii) The state of the Online Learning Predictor at timestamp 𝑛, with knowledge of 

whether or not the Predictor was correct at 𝑛 for its decision made at 𝑛 − 1. 

(iii) The predictions for timestamp 𝑛 + 1 of the two Experts, 𝐻𝐴[𝑛 + 1] and 𝐻𝐵[𝑛 + 1]. 

These are forward looking predictions for 𝑛 + 1 formed at 𝑛. 

 

To make this simple selection scheme fit into the Online Machine Learning Framework consider 

that the Hypotheses of the two Experts can be placed in a Hypothesis Vector such that 

𝐻[𝑛 + 1] = [𝐻𝐴[𝑛 + 1], 𝐻𝐵[𝑛 + 1]]
𝑇
  (5.8) 

 

and 𝐻𝐴[𝑛 + 1] = 1 ∀𝑛 since Hypothesis𝐴[𝑛 + 1] is that the Best Bid Price 𝐵𝑇𝐶𝐾[𝑛 + 1] will 

always be greater than or equal to 𝐵𝑇𝐶𝐾[𝑛], Likewise 𝐻𝐵[𝑛 + 1] = −1 ∀𝑛. As such in this case 

𝐻[𝑛 + 1] = [+1,−1]𝑇 ∀𝑛. The prediction 𝑃𝑇𝐶𝐾[𝑛 + 1]  of the Online Machine Learning 

framework for timestamp 𝑛 + 1 will be formed at timestamp 𝑛 as a weighted combination of the 

predictions of the Experts such that  

𝑃𝑇𝐶𝐾[𝑛 + 1] = 𝑤𝑇[𝑛 + 1]𝐻[𝑛 + 1]  (5.9) 

 

where 𝑤[𝑛 + 1] = [𝑤𝐴[𝑛 + 1], 𝑤𝐵[𝑛 + 1]]
𝑇

 and 𝑤𝐴[𝑛 + 1] is the weight applied to the prediction 

of Expert-A and 𝑤𝐵[𝑛 + 1] is the weight applied to the prediction of Expert-B. As the Online 

Machine Learning framework under consideration is a framework based on Expert selection it 

will be the case that 𝑤𝐵[𝑛 + 1] = 1 − 𝑤𝐴[𝑛 + 1] and 𝑤𝐴[𝑛 + 1] ∈ {0,1} ∀𝑛 is such that 

𝑤𝐴[𝑛 + 1] = 𝑤𝐴[𝑛] ∙ 𝛿(𝐵𝑇𝐶𝐾[𝑛] − 𝐵𝑇𝐶𝐾[𝑛 − 1]) 

+
1

2
(1 − 𝛿(𝐵𝑇𝐶𝐾[𝑛] − 𝐵𝑇𝐶𝐾[𝑛 − 1])) ∙ (1 + sgn(𝐵𝑇𝐶𝐾[𝑛] − 𝐵𝑇𝐶𝐾[𝑛 − 1])) 

(5.10) 

 

where sgn(. ) is the Sign Operator and takes the value of +1 if its operand is greater than or equal 

to zero and takes the value of −1 otherwise. Here 𝛿(. ) is a Dirac-like function and takes a value 

of +1 if its operand is zero and takes a value of zero otherwise.  The format of Equation 5.10 is 

such that 𝑤𝐴[𝑛 + 1] = 𝑤𝐴[𝑛] if 𝐵𝑇𝐶𝐾[𝑛] = 𝐵𝑇𝐶𝐾[𝑛 − 1], this means that the selection of the Best 
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Expert is not updated if there had been no change in the Best Bid Price between timestamp 𝑛 − 1 

and timestamp 𝑛. In addition 𝑤𝐴[𝑛 + 1] = 1 if 𝐵𝑇𝐶𝐾[𝑛] > 𝐵𝑇𝐶𝐾[𝑛 − 1] and 𝑤𝐴[𝑛 + 1] = 0 if 

𝐵𝑇𝐶𝐾[𝑛] < 𝐵𝑇𝐶𝐾[𝑛 − 1]. In all cases 𝑤𝐵[𝑛 + 1] = 1 − 𝑤𝐴[𝑛 + 1]. The prediction 𝑃𝑇𝐶𝐾[𝑛 + 1] can 

then be formed in accordance with Equation 5.10. 

Consider again the sample Best Bid Price Path for Verizon. The Expert selections of the Online 

Machine Learning framework are shown in Figure 5.4. At each timestamp a level of +1 is used 

to signify the selection of Expert-A and a value of -1 is used to signify the selection of Expert-B. 

From Figure 5.4 it can be seen that the Online Machine Learning based predictor is able to 

identify clusters of up movement and down movement in the Best Bid Price Path. 

 

 

Figure 5.4 – Sample Predictions for an Online Learning Predictor 

 

Figure 5.5 – Sample Prediction Errors for an Online Learning Predictor 
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The occurrence of Type-I Errors by the Online Learning Predictor is shown in Figure 5.5. From 

the Figure it can be seen that there is a reduction in the number of Type-I Errors compared to 

that made individually by Expert-A and Expert-B. The current method effectively looks to 

follow a short term trend based on the direction of the Best Bid Price over the one timestamp 

interval between timestamp 𝑛 − 1 and timestamp 𝑛. The performance measure that is based on 

the occurrence of Type-I Errors is effectively a measure of the probability of an incorrect 

prediction in the direction of the Best Bid Price over an interval of one timestamp.  In practice 

however it is the probability of a trading profit that is important.  

Thus far a method of following the short term trend based on the direction of the Best Bid Price 

over the one timestamp interval between timestamp 𝑛 − 1 and timestamp 𝑛 has been considered. 

At each timestamp 𝑛 a potential sell trade can be placed at the then Best Bid Price 𝐵𝑇𝐶𝐾[𝑛] or a 

decision can be made to wait for some number 𝑗 ≥ 0 of timestamps. The profit or loss of the 

final trading decision that begins at timestamp 𝑛 can then be expressed as 

𝑄𝑇𝐶𝐾[𝑛] = 𝐵𝑇𝐶𝐾[𝑛] − 𝐵𝑇𝐶𝐾[𝑛 + 𝑗]  (5.11) 

 

 

The sample Best Bid Price path of Figure 5.5 is again considered in Figure 5.6, the timestamps 

at which a profitable sell trade is eventually determined are shown as Blue points and the 

timestamps at which a loss making sell trade is eventually determined are shown as Red points. 

From Figure 5.6 it can be seen that the Online Machine Learning Framework that has been 

developed so far is unable to find many profitable trading opportunities over the sample Best 

Bid Price path and a lot of losses are incurred.  

 

Figure 5.6 – Profitable and Loss Making Trades for an Online Learning Predictor 
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A closer analysis of Figure 5.6 shows that the ratio of loss making trades to profitable trades is 

over 2 to 1. The issue arises as at timestamp 𝑛 the current strategy is to trade at the current Best 

Bid Price 𝐵𝑇𝐶𝐾[𝑛] if the Best Bid Price path is or has most recently been in a downtrend or to 

wait if the current Best Bid Price path is or has most recently been in an uptrend. In the case that 

the Online Machine Learning framework determines that it is optimal to wait, the Online 

Machine Learning framework would advocate to continue waiting until such timestamp 

𝐵𝑇𝐶𝐾[𝑛 + 𝑗] that the Best Bid Price first enters into a downtrend. As a consequence any sell trade 

that is not entered into at the price 𝐵𝑇𝐶𝐾[𝑛] is highly likely to be eventually entered into at a 

price which is less than 𝐵𝑇𝐶𝐾[𝑛] and hence a loss would be incurred. 

To further analyse the issue the complete Best Bid Price path for Verizon (Bloomberg Code: VZ 

EQUITY) for the complete trading day is considered. The complete Best Bid Path gives over 

1400 timestamps. The current method which effectively looks to follow a short term trend based 

on the direction of the Best Bid Price over the one timestamp interval between timestamp 𝑛 − 1 

and timestamp 𝑛 is again considered. In Figure 5.7, the timestamps at which a profitable sell 

trade is eventually determined are shown as Blue points and the timestamps at which a loss 

making sell trade is eventually determined are shown as Red points. Again, from Figure 5.7 it 

can be seen that the Online Machine Learning Framework that has been developed so far is 

unable to find many profitable trading opportunities over the sample Best Bid Price path. The 

ratio of loss making trades to profitable trades is again seen to be over 2 to 1. To emphasise the 

issue consider Table 5.1 where the number of profitable, loss making and neutral trades are 

shown for a total of 8 stocks based on the sampled Best Bid Price paths on 3
rd

 March 2016. It 

can clearly be seen that a method based on directional prediction does not lead to profits.  

 

Figure 5.7 – Profitable and Loss Making Trades for an Online Learning Predictor (Long Path) 
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Stock Name Ticker Loss Making Neutral Profitable 

1 Verizon VZ 497 702 240 

2 Caterpillar CAT 408 732 299 

3 Chevron CVX 430 760 249 

4 Coca Cola KO 476 741 222 

5 Dupont DD 449 747 243 

6 Exxon XOM 411 796 232 

7 IBM IBM 458 752 229 

8 McDonalds MCD 474 752 213 

Average   450.4 747.8 240.9 

 

Table 5.1 - Application of an Online Learning Framework to Sample Stocks 

 

To move forward an alternative Performance Measure (PER) to the number of Type-I Errors in the 

directional prediction at the next time stamp is needed. The focus needs to be directly upon 

determining when it would and would not be profitable to trade. Consider again the case that a 

sell trade can be entered into at timestamp 𝑛 by selling at the Best Bid Price 𝐵𝑇𝐶𝐾[𝑛]; the Online 

Machine Learning Framework should again decide to either trade at timestamp 𝑛 or to wait until 

timestamp 𝑛 + 1 and re-evaluate. The decision to wait should however be on the basis that a 

more profitable opportunity may in expectation be found within this decide or wait framework at 

timestamp  𝑛 + 1 and not on a belief that the Best Bid Price will be higher at timestamp 𝑛 + 1.  

To move forward consider that the Online Machine Learning Framework developed above itself 

becomes an Expert which shall be termed Expert-C. Expert-C makes a directional prediction 

based on the direction of the Best Bid Price over the one timestamp interval from timestamp 

𝑛 − 1 to timestamp 𝑛. The results in Table 5.1 would suggest that a simple strategy would be to 

counter the decisions of Expert C and to trade at the Best Bid Price 𝐵𝑇𝐶𝐾[𝑛] when Expert-C 

makes a decision to wait and to wait when Expert C suggests to trade at 𝐵𝑇𝐶𝐾[𝑛]. The results of 

such a strategy are shown in Table 5.2. 

 

Stock Name Ticker Loss Making Neutral Profitable 

1 Verizon VZ 198 879 362 

2 Caterpillar CAT 190 805 444 

3 Chevron CVX 204 767 468 

4 Coca Cola KO 178 896 365 

5 Dupont DD 170 811 458 

6 Exxon XOM 246 779 414 

7 IBM IBM 223 749 467 

8 McDonalds MCD 215 811 413 

Average   203.0 812.1 423.9 

 

Table 5.2 - Application of Countering an Online Learning Framework to Sample Stocks 



123 
 

The countering strategy appears to show promise in that it is able to find significantly more profitable 

Sell Order execution opportunities than loss making Sell Order execution opportunities. However, this 

Experiment is a study of the application of Online Learning and it would not be sufficient to simply 

accept a countering strategy. The countering strategy will however be used to motivate the first 

proposed Online Machine Learning Framework. In this first framework a selection technique will be 

used at each timestamp 𝑛 to choose between two Experts 

- Expert-C makes a directional prediction based on following the direction of the Best Bid 

Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-C will predict an up-move 

in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid 

Price was upwards. Expert-C will predict a down-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

 

- Expert-D makes a directional prediction based on countering the direction of the Best 

Bid Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-D will predict a down-

move in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best 

Bid Price was upwards. Expert-D will predict an up-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

 

The performance of Expert-C over a sample universe of 8 stocks would be as shown in Table 5.1 

and the performance of Expert-D over the same sample universe of 8 stocks would be as shown 

in Table 5.2. The first proposed Online Machine Learning Framework is as follows  

 

 

First Proposed Online Machine Learning Framework: At each timestamp 𝑛 select either 

Expert-C or Expert-D based on which had achieved a profitable decision at timestamp 𝑛 − 1. In 

case both Experts had not achieved a profitable decision at timestamp 𝑛 − 1 the selection is 

based on the profitability of the Experts at timestamp 𝑛 − 2 and so on.  

 

 

The selection requirement of this First Proposed Online Machine Learning Framework would 

require the formulation of an intermediate weight vector 𝑤[𝑛 + 1] = [𝑤𝐶[𝑛 + 1], 𝑤𝐷[𝑛 + 1]]
𝑇

 

where 𝑤𝐶[𝑛 + 1] ∈ {1,0}∀𝑛 is the weight applied to the prediction of Expert-C and 𝑤𝐷[𝑛 + 1] =

1 − 𝑤𝐶[𝑛 + 1] is the weight applied to the prediction of Expert-D. The update of the weight  

𝑤𝐶[𝑛 + 1] will follow a Recursive Equation similar to Equation 5.10.  
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For clarity if a decision is made to follow Expert-C at some timestamp 𝑛 − 1 the profit or loss of 

that decision will be determined according to Equation 5.11 and as such the profit or loss will 

not be determined until some number of timestamps 𝑗 ≥ 0 following the decision at timestamp 

𝑛 − 1. If it is the case that 𝑗 > 1 then the profit or loss of the decision of Expert-C will not be 

known at timestamp 𝑛 and therefore cannot be used to influence the selection decision of an 

Online Learning Predictor at timestamp 𝑛. The same reasoning will apply to Expert-D. 

The sample Best Bid Price path of Verizon (Bloomberg Code: VZ EQUITY) is again considered. 

The Expert selection decisions of this First Proposed Online Learning Predictor are shown in 

Figure 5.8. The Profit or Loss of the decisions of the Predictor are as shown in Figure 5.9.  

 

Figure 5.8 – Expert Selection Decisions of the First Proposed Online Learning Predictor 

 

Figure 5.9 – Profit or Loss of the Decisions of the First Proposed Online Learning Predictor 

0 50 100 150 200 250 300 350
51.65

51.7

51.75

51.8

51.85

51.9

Tick

B
id

 P
ri
c
e

 

 

Actual Bid

Expert-C

Expert-D

0 50 100 150 200 250 300 350
51.65

51.7

51.75

51.8

51.85

51.9

Tick

B
id

 P
ri
c
e

 

 

Actual Bid

Profitable

Loss Making



125 
 

Stock Name Ticker Loss Making Neutral Profitable 

1 Verizon VZ 170 982 286 

2 Caterpillar CAT 202 881 355 

3 Chevron CVX 213 821 404 

4 Coca Cola KO 111 1022 305 

5 Dupont DD 172 888 378 

6 Exxon XOM 251 849 338 

7 IBM IBM 242 825 371 

8 McDonalds MCD 185 901 352 

Average   193.3 896.1 348.6 

 

Table 5.3 - Application of a First Proposed Online Learning Framework to Sample Stocks 

 

From Figure 5.8 it can be seen that Expert-D is the most commonly chosen Expert; this is not 

surprising as the results of Table 5.2 would suggest that Expert-D is the most profitable Expert. 

Further analysis is shown in Table 5.3 where the results of Table 5.2 are reproduced to show the 

performance of the First Proposed Online Machine Learning Framework across a test universe of 

8 stocks. From Table 5.3 it can be seen that this First Proposed Online Machine Learning 

Framework is able to find more profitable trading opportunities than loss making opportunities 

and as such by a simple measure of profitability the framework does appear to work.  

This First Proposed Online Machine Learning Framework is based on the Follow the Leader 

technique where the Leader is followed based on performance over a one timestamp interval.  To 

extend the method the Follow the Leader method may be considered again where the Leader is 

determined to be that expert who has generated the most profitable trades over some longer 

interval of 𝐿 timestamps.  

 

 

Second Proposed Online Machine Learning Framework:  At each timestamp 𝑛 select either 

Expert-C or Expert-D based on which had achieved the most profitable decisions over the 

preceding 𝐿 timestamps. In case both Experts had achieved the same profitability at timestamp 𝑛 

the decision will be based on profitability at timestamp 𝑛 − 1, then timestamp 𝑛 − 2 and so on.  

 

 

The First Proposed Online Machine Learning Framework is then a special case of the Second 

Proposed Online Machine Learning Framework with 𝐿 = 1. The performance results for this 

Second Proposed Online Machine Learning Framework are shown in Tables 5.4 to 5.6 on the 

next page for increasing values of 𝐿.  
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Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 170 982 286 62.7% 88.0% 

2 Caterpillar CAT 202 881 355 63.7% 84.0% 

3 Chevron CVX 213 821 404 65.5% 84.6% 

4 Coca Cola KO 111 1022 305 73.3% 85.7% 

5 Dupont DD 172 888 378 68.7% 83.7% 

6 Exxon XOM 251 849 338 57.4% 83.5% 

7 IBM IBM 242 825 371 60.5% 86.2% 

8 McDonalds MCD 185 901 352 65.5% 83.2% 

Average   193.3 896.1 348.6 64.7% 84.9% 

 

Table 5.4 - Application of a Second Proposed Online Learning Framework 𝐿 = 1 

 

Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 215 923 281 56.7% 78.1% 

2 Caterpillar CAT 250 756 413 62.3% 70.5% 

3 Chevron CVX 252 729 438 63.5% 77.5% 

4 Coca Cola KO 184 926 309 62.7% 77.0% 

5 Dupont DD 212 831 376 63.9% 73.3% 

6 Exxon XOM 263 813 343 56.6% 74.2% 

7 IBM IBM 283 757 379 57.3% 76.7% 

8 McDonalds MCD 272 818 329 54.7% 72.0% 

Average   241.4 819.1 358.5 59.7% 74.9% 

 

Table 5.5 - Application of a Second Proposed Online Learning Framework 𝐿 = 20 

 

Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 247 717 275 52.7% 67.5% 

2 Caterpillar CAT 205 658 376 64.7% 78.8% 

3 Chevron CVX 199 643 397 66.6% 89.3% 

4 Coca Cola KO 160 873 206 56.3% 76.8% 

5 Dupont DD 165 695 379 69.7% 92.9% 

6 Exxon XOM 216 690 333 60.7% 85.5% 

7 IBM IBM 200 652 387 65.9% 87.3% 

8 McDonalds MCD 179 712 348 66.0% 99.9% 

Average   196.4 705.0 337.6 62.8% 84.7% 

 

Table 5.6 - Application of a Second Proposed Online Learning Framework 𝐿 = 200 

 

From Table 5.4 it can indeed be seen that the performance in the case that 𝐿 = 1 is identical to 

that from the First Proposed Online Machine Learning Framework. An analysis of Tables 5.4 to 

5.6 would show that as 𝐿 is increased there is an initial deterioration in performance as signalled 

by a decrease in the percentage of profitable trades in moving from 𝐿 = 1 to 𝐿 = 20. However 
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this initial deterioration in performance does eventually give over to increasing performance 

once again as 𝐿 is further increased from 𝐿 = 20 to 𝐿 = 200. At 𝐿 = 1 there is an initial strong 

preference to choose Expert-D, this preference decays away as 𝐿 is increased towards 𝐿 = 20, 

but the preference is again recovered as 𝐿 moves towards 𝐿 = 200. 

The results of Tables 5.4 to 5.6 do suggest that the optimal value of 𝐿 is 𝐿 = 1. This is an 

interesting and highly meaningful result. The result would suggest that most information 

regarding the state of the Market Order Book in the near future is captured in the most recent 

historical behaviour of the Market Order Book. It is the near term behaviour that is most 

important. This conclusion would add further support to the premise that models of the dynamics 

of the Double Auction Based Limit Order Book which require calibration over long term statistics 

may not be well suited to determine the optimal time to place Market Orders. 

The results of Table 5.4 to 5.6 also shed light on the behaviour of Market Order Book in a short time 

interval. The results suggest that the optimal strategy would be to counter the direction of the Market 

Order Book over a short interval of time. This would suggest that that over such a short interval of 

time there might exist a pattern of Market Order Book oscillation where the Best Bid Price is toggling 

up and down. This would be the case, for example, if the Market Order Book were static but there 

were interspersed Market Orders to Buy and Market Orders to Sell which were hitting the Order 

Book. Such Buy and Sell orders would cause the Best Bid Price to toggle up and toggle down. The 

Second Online Machine Learning Framework with 𝐿 = 1 would then be capturing the existence of 

such Buy and Sell orders and would be prosing a strategy to trade around such orders.  

The Second Proposed Online Machine Learning Framework is based on the Method of Follow 

the Leader over various intervals of 𝐿 timestamps. In this case the performance is based on the 

number of correct predictions where correct is defined to be profitable.  In this framework there 

is no specific penalisation of incorrect predictions. An alternative Online Machine Learning 

Framework would be that based upon the Weighted Majority Algorithm which has been shown 

in Equation 2.9. In the standard Weighted Majority Algorithm a Weight Vector is specified as  

𝑤[𝑛 + 1] = [𝑤1[𝑛 + 1], 𝑤2[𝑛 + 1], … ,𝑤𝑑[𝑛 + 1]]
𝑇

 (5.12) 

 

where there are 𝑑 Experts in total and 𝑤𝑎[𝑛 + 1] is the weight assigned at timestamp 𝑛 to the 

forward looking prediction for timestamp 𝑛 + 1 of Expert 𝑎. At timestamp 0 the Weight Vector  

𝑤[0] is initialised as a vector of ones. At each successive timestamp 𝑤𝑎[𝑛 + 1] = 𝑤𝑎[𝑛] if 

Expert-a had made a correct prediction at timestamp 𝑛 and 𝑤𝑎[𝑛 + 1] = 𝛽𝑤𝑎[𝑛] with 𝛽 < 1 in 

the case that Expert-a had made an incorrect prediction at timestamp 𝑛. The effect is to penalise 

each expert by some Factor 𝛽 in the case that it makes an incorrect prediction. 
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Here an extension of the Weighted Majority Algorithm is considered. At each successive 

timestamp 𝑤𝑎[𝑛 + 1] = 𝛽𝑤𝑎[𝑛] if Expert-a had made a correct prediction at timestamp 𝑛 and 

𝑤𝑎[𝑛 + 1] = (
1

𝛽
)𝑤𝑎[𝑛] with 𝛽 > 1 in the case that Expert-a had made an incorrect prediction at 

timestamp 𝑛. The effect is to reward each expert by some Factor 𝛽 in the case that it makes a 

correct prediction and to penalise each expert by some Factor 1/𝛽 in the case that it makes an 

incorrect prediction. The Extended Weighted Majority Algorithm is initialised such that the 

Weight Vector  𝑤[0] is initialised as a vector of ones. Once again Expert-C and Expert-D as 

defined above are considered in a Third Proposed Online Machine Learning Framework  

 

 

Third Proposed Online Machine Learning Framework: At each timestamp 𝑛 adjust the 

forward looking weights 𝑤𝐶[𝑛] and 𝑤𝐷[𝑛] of Expert-C and Expert-D respectively based on 

whether or not they had achieved a profitable trading decision for timestamp 𝑛 (such decision 

being made prior to timestamp 𝑛). In the case of Expert-C 𝑤𝐶[𝑛 + 1] = 𝛽𝑤𝐶[𝑛] if Expert-C had 

made a profitable decision, 𝑤𝐶[𝑛 + 1] = (
1

𝛽
)𝑤𝐶[𝑛] if Expert-C had made a loss making decision 

and 𝑤𝐶[𝑛 + 1] = 𝑤𝐶[𝑛] if the decision had been profit neutral. The update logic applied to 

Expert-D is the same as that applied to Expert-C.  

 

 

 

The Factor 𝛽 can be used to control the rate at which a bad performing Expert is penalised. For 

example in the case that 𝛽 = 1.10 an incorrect prediction would reduce the weight of an Expert 

by around 9%, two successive incorrect predictions would reduce the weight by around 17% and 

three successive incorrect predictions would reduce the weight by around 25%. In the case that 

𝛽 = 1.50 an incorrect prediction would reduce the weight of an Expert by around 33%, two 

successive incorrect predictions would reduce the weight by around 56% and three successive 

incorrect predictions would reduce the weight by over 70%. Unlike in the case of the Second 

Proposed Online Machine Learning Framework there is no value of 𝛽 which would reduce this 

Third Proposed Online Machine Learning Framework to mimic the behaviour of the First 

Proposed Online Machine Learning Framework.  

The performance results for this Third Proposed Online Machine Learning Framework are 

shown in Tables 5.7 to 5.9 for increasing values of 𝛽. The results shed further light on the 

behaviour of the Best Bid Price in the Market Order Book and how to optimally trade the Market 

Order Book when it comes to placing Market Orders. 
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Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 199 871 360 64.4% 99.9% 

2 Caterpillar CAT 272 724 434 61.5% 62.9% 

3 Chevron CVX 204 759 467 69.6% 100.0% 

4 Coca Cola KO 178 888 364 67.2% 100.0% 

5 Dupont DD 173 809 448 72.1% 89.6% 

6 Exxon XOM 249 768 413 62.4% 99.7% 

7 IBM IBM 234 734 462 66.4% 98.9% 

8 McDonalds MCD 212 808 410 65.9% 100.0% 

Average   215.1 795.1 419.8 66.2% 93.9% 

 

Table 5.7 - Application of a Third Proposed Online Learning Framework 𝛽 = 1.10 

 

Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 194 868 358 64.9% 100.0% 

2 Caterpillar CAT 271 722 427 61.2% 63.3% 

3 Chevron CVX 202 754 464 69.7% 100.0% 

4 Coca Cola KO 178 883 359 66.9% 100.0% 

5 Dupont DD 170 808 442 72.2% 90.2% 

6 Exxon XOM 244 765 411 62.7% 100.0% 

7 IBM IBM 227 731 462 67.1% 99.4% 

8 McDonalds MCD 211 803 406 65.8% 100.0% 

Average   212.1 791.8 416.1 66.3% 94.1% 

 

Table 5.8 - Application of a Third Proposed Online Learning Framework 𝛽 = 1.20 

 

Stock Name Ticker Losing Neutral Profitable %Profitable %Expert D 

1 Verizon VZ 186 854 350 65.3% 100.0% 

2 Caterpillar CAT 264 718 408 60.7% 65.0% 

3 Chevron CVX 197 741 452 69.6% 100.0% 

4 Coca Cola KO 165 873 352 68.1% 100.0% 

5 Dupont DD 163 785 442 73.1% 92.2% 

6 Exxon XOM 233 756 401 63.2% 100.0% 

7 IBM IBM 221 711 458 67.5% 100.0% 

8 McDonalds MCD 200 793 397 66.5% 100.0% 

Average   203.6 778.9 407.5 66.8% 94.6% 

 

Table 5.9 - Application of a Third Proposed Online Learning Framework 𝛽 = 1.50 

 

The results of Table 5.7 to 5.9 suggest that the performance of the Third Proposed Online 

Machine Learning Framework is similar for different values of the Factor 𝛽. It can also be seen 

that the Third Proposed Online Machine Learning Framework is able to outperform the Second 

Proposed Online Machine Learning Framework over the sample test set of 8 stocks. From Table 
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5.7 to 5.9 it does appear that there is a general preference of Expert-D as it can be seen that for 

many stocks the proportion of time that Expert-D is chosen is close to or equal to 100%. 

However one clear exception is the second Stock (Caterpillar, Bloomberg Code CAT US 

EQUITY) where it appears that Expert-C is quote often chosen as the preferred Expert. This also 

sheds some light on the behaviour of the Best Bid Price in the Market Order Book.  

Where there is a strong preference for Expert-D the optimal strategy would be to counter the direction 

of the Market Order Book over a short interval of time. This would again suggest that that over such a 

short interval of time there exists a pattern of Market Order Book oscillation where the Best Bid Price 

is toggling up and down and it would again be the case that the Third Proposed Online Machine 

Learning Framework is suggesting a strategy to profitably trade around this oscillating order book. In 

the case of Caterpillar it appears that there are also strong directional trends that can be identified in 

the order book and as such there is an occasional preference for Expert-C. It is clear that the Third 

Proposed Online Machine Learning Framework had been more successful than the Second Proposed 

Online Machine Learning Framework in detecting an Order Book that is either oscillating or showing 

trends and this is illustrated by the fact that the Third Framework is more profitable than the Second. 

In the next section Test Results over a wider universe of stocks are used to analyse the proposed 

Online Machine Learning Frameworks. 

 

5.4 Testing the Proposed Methods 

In the previous section the development of three Online Machine Learning Frameworks for the 

determination of the optimal timing at which to place Market Orders into the Double Auction 

Based Limit Order Book was presented. These frameworks were based on Adversarial Models of 

Online Machine Learning. The frameworks considered just two underlying Experts: 

 

- Expert-C makes a directional prediction based on following the direction of the Best Bid 

Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-C will predict an up-move 

in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid 

Price was upwards. Expert-C will predict a down-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

 

- Expert-D makes a directional prediction based on countering the direction of the Best 

Bid Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-D will predict a down-

move in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best 
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Bid Price was upwards. Expert-D will predict an up-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

Of the three Online Machine Learning Frameworks that were presented it was shown that the First 

Framework is simply a special case of the Second Framework. The analysis in this section therefore 

focusses on just two of the three frameworks 

- Framework-2: Based on the Follow the Leader Technique. At each timestamp 𝑛 select either 

Expert-C or Expert-D based on which had achieved the most profitable decisions over the 

preceding 𝐿 timestamps. In case both Experts had achieved the same profitability at 

timestamp 𝑛 the decision will be based on profitability at timestamp 𝑛 − 1, then timestamp 

𝑛 − 2 and so on. 

 

- Framework-3: Based on an Extended Weighted Majority Algorithm. At each timestamp 𝑛 

adjust the forward looking weights 𝑤𝐶[𝑛] and 𝑤𝐷[𝑛] of Expert-C and Expert-D 

respectively based on whether or not they had achieved a profitable trading decision for 

timestamp 𝑛 (such decision being made prior to timestamp 𝑛). In the case of Expert-C 

𝑤𝐶[𝑛 + 1] = 𝛽𝑤𝐶[𝑛] if Expert-C had made a profitable decision, 𝑤𝐶[𝑛 + 1] = (
1

𝛽
)𝑤𝐶[𝑛] 

if Expert-C had made a loss making decision and 𝑤𝐶[𝑛 + 1] = 𝑤𝐶[𝑛] if the decision had 

been profit neutral. The update logic applied to Expert-D is the same as that applied to 

Expert-C. 

 

An extended universe of 32 stocks is considered for the trading date of 29
th
 April 2016. The 

performance of Framework-2 is illustrated in Figure 5.10 and Figure 5.11. In Figure 5.10 the average 

Percentage of Profitable Trades is shown for various values of the Window Length 𝐿 across the 

universe of 32 stocks. For each stock the performance is taken over 1440 timestamps representing the 

sampled Best Bid Price of the Market Order Book at 15 second intervals over the trading session of 6 

hours. In Figure 5.11 the average Percentage of Timestamps for Which Expert-D is Chosen is shown 

for various values of the Window Length 𝐿 across the universe of 32 stocks. 

From Figure 5.10 it can again be seen that there is an initial deterioration of performance as the 

Window Length 𝐿 is increased and this is later followed by an increase in performance as the 

Window Length 𝐿 is further increased. From Figure 5.10 it can be seen that there is an initial 

preference for Expert-D which gives way to a preference for Expert-C as the Window Length 𝐿 

is increased, further increases in the Window Length 𝐿 then give over again to an increased 

preference for Expert-D. 
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Figure 5.10 - Average Percentage of Profitable Trades for the Window Length 𝐿 

 

 

Figure 5.11 - Average Percentage for Which Expert-D is Chosen for the Window Length 𝐿 

 

From Figure 5.10 and Figure 5.11 it can again be determined that much of the information 

regarding the state of the Market Order Book in the near future is captured in the most recent 

historical behaviour of the Market Order Book, this is concluded because the performance for 

𝐿 = 1 is close to the maximal performance that can be achieved for various values of 𝐿. At the 

same time the absolute maximal performance is achieved for a high value of 𝐿 and performance 

is seen to be increasing with Window Length 𝐿 increasing further. The later observation coupled 

with an increased preference for Expert-D would suggest that over the longer term the Best Bid 

Price of the Market Order Book may show an oscillatory behaviour ticking up and down. 
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The performance of Framework-3 is illustrated in Figure 5.12, Figure 5.13 and Figure 5.14. In Figure 

5.12 the average Percentage of Profitable Trades is shown for various values of the Factor 𝛽 across 

the universe of 32 stocks. For each stock the performance is again taken over 1440 timestamps 

representing the sampled Best Bid Price of the Market Order Book at 15 second intervals over the 

trading session of 6 hours. In Figure 5.13 the average Percentage of Timestamps for Which Expert-D 

is Chosen is shown for various values of the Factor 𝛽 across the universe of 32 stocks. In Figure 5.14 

a Histogram Plot is used to show the Distribution of the Percentage of Timestamps for Which Expert-

D is Chosen across the 32 stocks for a value of 𝛽 = 1.10. 

 

 

Figure 5.12 - Average Percentage of Profitable Trades for the Factor 𝛽 

 

Figure 5.13 - Average Percentage for Which Expert-D is Chosen for the Factor 𝛽 
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Figure 5.14 - Distribution of the Percentage of Time for Which Expert-D is Chosen 𝛽 = 1.10 

 

 

From Figure 5.12 it can be seen that there is an increase in performance as the Factor 𝛽 is increased 

and from Figure 5.13 it can be seen that there is an increased preference for Expert-D as the 

Factor 𝛽 is increased. An analysis of the results of these figures in isolation would suggest that 

that over the longer term the Best Bid Price of the Market Order Book may show an oscillatory 

behaviour ticking up and down. To put this effect into detail , where there is a strong preference for 

Expert-D the optimal strategy would be to counter the direction of the Market Order Book over a 

short interval of time. This would then suggest that that over such a short interval of time there exists 

a pattern of Market Order Book oscillation where the Best Bid Price is toggling up and down and it 

would be the case that Framework-C is suggesting a strategy to profitably trade around this oscillating 

order book. The conclusion is interesting and sheds some light on the behaviour of the Best Bid Price 

of the Market Order Book. 

This conclusion has however been reached by a consideration of the average behaviour of the stocks 

over a universe of 32 stocks. In Figure 5.14 the stock by stock behaviour can be seen for an example 

Factor of 𝛽 = 1.10. From Figure 5.14 it can be seen that although there may be a preference for 

Expert-D on average, there is one stock for which there is a clear preference for Expert-C and 

other stocks for which Expert-D is preferred at most timestamps but Expert-C is preferred at 

other timestamps. The conclusion then is that at most time the Best Bid Price may exhibit some 

form of oscillatory behaviour but at other times there will be clearly identifiable trends in the 

Best Bid Price of the Market Order Book. A comparison of the results in Figure 5.12 and Figure 

5.10 would suggest the Framework-3 is able to achieve a greater degree of profitability than 

Framework-2 and as such Framework-3 should be chosen as the preferred Framework.  
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5.5 Summary 

In this Chapter the development of three Online Machine Learning Frameworks for the 

determination of the optimal timing at which to place Market Orders into the Double Auction 

Based Limit Order Book have been presented. These frameworks were based on Adversarial Models 

of Online Learning and both techniques of Follow the Leader and The Weighted Majority 

Algorithm have been considered. The techniques considered just two underlying Experts  

 

- Expert-C makes a directional prediction based on following the direction of the Best Bid 

Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-C will predict an up-move 

in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid 

Price was upwards. Expert-C will predict a down-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

 

- Expert-D makes a directional prediction based on countering the direction of the Best 

Bid Price over the one timestamp interval from 𝑛 − 1 to 𝑛. Expert-D will predict a down-

move in the Best Bid Price between timestamp 𝑛 and 𝑛 + 1 if the last change in the Best 

Bid Price was upwards. Expert-D will predict an up-move in the Best Bid Price between 

timestamp 𝑛 and 𝑛 + 1 if the last change in the Best Bid Price was downwards. 

 

The framework based on just two experts allowed a number of conclusions to be drawn about 

the behaviour of the Best Bid Price in the Double Auction Based Limit Order Book. The first 

conclusion was that much of the information regarding the state of the Market Order Book in the 

near future is captured in the most recent historical behaviour of the Market Order Book. The 

second conclusion was that for the average stock it would most often be optimal to follow 

Expert-D and to bet against the recent short term trend of the Market Order Book, this would 

suggest that over a short interval of time there exists a pattern of Market Order Book oscillation 

where the Best Bid Price is toggling up and down and it would be the case that following Expert-D 

would provide a profitable strategy to trade around the oscillating order book. The third conclusion 

was that using a method based upon The Weighted Majority Algorithm it would be the case that 

stocks can be identified for which Expert-C is the preferred expert for some significant amount 

of time and as such there could be identified periods of directional trend for the Best Bid Price. 

The methods developed in this Chapter would allow additional profitability to be achieved beyond 

that from the novel methods which have been developed in Chapter 3 and Chapter 4. The methods 

developed in this Chapter would allow easy integration with the methods of the previous Chapters. 
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Chapter 6 

Assessment 

In this Chapter an Assessment of each of the three experiments is presented. This Chapter aims to 

summarise the key points of each experiment. The Assessment begins with an Introduction which is 

followed by a presentation of the key points of each experiment in turn.   

 

6.1 Introduction 

In Chapter 1 it was stated that in the period from 2010 to 2015 the vast majority of US Stock Funds 

based on Active Management had failed to beat the broad Market Indices and such underperformance 

was also seen over previous years. The fact that ‘Beating the Index’ had proven tough, at least for the 

average human analyst, had served as the starting motivation of this Thesis. The overall objective was 

to show that a Machine could do better. An overview of a complete trading strategy was presented in 

Figure 2.5 and the three building blocks of such a strategy were identified. These three building 

blocks are Trend Detection, Portfolio Construction and finally Order Entry Timing. This Thesis aimed 

to develop original methods to approach these three building blocks in a commercially practical 

manor whilst making contributions to the Academic Literature. The Thesis aimed to create building 

blocks that could be connected to form a complete trading strategy. 

The first experiment focussed on finding short term trading opportunities at the level of an individual 

single stock. A novel Neural Network based method for detecting trading opportunities based on 

betting with or against a recent short term trend was presented. The approach taken was a departure 

from the bulk of the literature where the focus has generally been on next day direction prediction. 

The second experiment considered the issue of Portfolio Construction. A Graphical Model framework 

for Portfolio Construction under conditions where trades are only held for short periods of time was 

presented. The work is important as standard Portfolio Construction techniques are not well suited to 

highly dynamic Portfolios. The third experiment considered the issue of Order Execution and how to 

optimally time the entry of trading orders into the market. The experiment demonstrated how Online 

Learning techniques could be used to determine more optimal timing for Market Order Entry. This 

work is important as order timing for Trade Execution has not been widely studied in the literature.  

The approach taken in developing the original techniques in this Thesis has been to avoid data mining. 

The techniques aimed to build upon over a decades experience as a Quantitative Analyst and as a 

Trader and to always stay grounded in economic rationality. In the sections that follow each of the 

three experiments is assessed it turn. The key points of each experiment are summarised, the original 

contributions are highlighted and the testing results are discussed. 



137 
 

6.2 Assessment Of A New Neural Network Method For Profitable Long Short 

Equity Trading  

The first building block of a Complete Trading Strategy was identified as Trading Opportunity or 

Trend Detection. In the Introduction to this Thesis it was reasoned through a discussion of the 

Efficient Markets Hypothesis that trading opportunities could be found through the detection of 

Momentum Anomalies and Overreaction Anomalies in price series data. With this as motivation a 

novel Neural Network based method for detecting such trading opportunities through a direct search 

for Momentum and Overreaction Anomalies was then presented in Chapter 3.  

In the Background Chapter of this Thesis an overview of the current state of the art of methods for 

Trading Opportunity detection was presented. A number of methods for trading opportunity detection 

which centred on Fundamental Analysis and Technical Analysis were presented and the limitations of 

such methods in finding trading opportunities under changing market conditions were discussed. 

These limitations provided the motivation for the consideration of Machine Learning Techniques. The 

review of the current state of the art then proceeded to investigate current methods for the application 

of Machine Learning towards trading opportunity detection. A number of methods based on Multiple 

Discriminant Analysis (MDA), Neural Networks and Support Vector Machines (SVM) were 

presented and common to these methods was the use of a number of Technical Analysis indicators, 

such indicators being used without any economic rationale. The theme was commonly to throw a lot 

of Technical Analysis data at a Machine Learning technology and to leave that technology to try and 

discern patterns in the data, the results were unsurprisingly underwhelming. The use of Input Feature 

Selection techniques, including those based on Wrapper Methods and Filter Methods, was also 

considered. Although such methods do lead to effective data dimension reduction, these methods were 

not shown to lead to a significant improvement in performance. The overall conclusion was that 

current methods simply lack economic rationality and there is no reason why they should work. 

In Chapter 3 a novel framework for Trading Opportunity (trend) Detection has been presented. 

The stating point of the framework considered just a combination of two technical analysis 

indicators and showed how these indicators could be used for the detection of Overreaction and 

Momentum anomalies without the employment of any Machine Learning technology.  The core 

of the method was to accept that at most times the market for a particular stock would be 

efficient and as such the focus should not be to predict next day direction but to attempt to find 

anomalies. This laid down an economic rationale upon which to move forward. An initial 

attempt was then made to apply Machine Learning to this starting framework and it was shown 

over a small testing universe that little success could be achieved. A second attempt at the 

application of a Neural Network which addressed a number of issues was then presented.  
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The second attempt introduced a classification scheme for detected trading opportunities that 

allowed for the classification of Outliers, this is an important consideration that is typically 

overlooked in the development of Neural Network based trading strategies as considered in the 

Academic Literature. Without a scheme for the treatment of outliers a Neural Network method 

may be prone to overfitting. A method of Heuristic Regularisation was also introduced to deal 

with the fact that a typically available Training Set would not span the full Input Feature Space; 

the regularisation method termed Zero Appending introduced regularly spaced artefacts into the 

Training Set which biased the Neural Network away from making a decision to trade. A second 

form of Heuristic Regularisation termed Neural Network Output Smoothing was also introduced; 

this Regularisation provided a method to deal with noisy output predictions being produced by 

the Neural Network by effectively integrating around a small region around the Input Feature 

Space corresponding to a piece of Test Data. 

Within the developed Neural Network framework there were a number of parameters for which 

the values had initially been heuristically selected. A method of Neural Network Parameter 

optimisation was then introduced. The method attempted to link the optimal value of a parameter 

to the Realised Volatility of the underlying stock over some preceding time period. The 

optimisation technique would then allow optimal parameters for any new stock to be efficiently 

estimated without recourse to any computationally intensive optimisation techniques simply 

based on the Realised Volatility of such a new stock over the time period prior to the use of the 

Neural Network based method. 

To test the developed techniques an initial Test Set consisting of 100 large cap stocks listed in 

the United States was considered. The time period considered spanned over six years and 

encompassed a range of market conditions including the 2008 Global Financial Crisis. The 

developed method was shown to achieve sustained profitability over the test period and to show 

a significant outperformance of the benchmark Standard and Poors 500 Index (Bloomberg Code: 

SPX INDEX). A part of the initial data set of 100 stocks was used for Neural Network Parameter 

Optimisation. A second Test Set of 100 stocks was then considered with the application of the 

optimised Neural Network parameters from the initial Test Set of 100 stocks. The average 

performance over the second Test Set of stocks was similar to that from the original Test Set of 

stocks and this was used to demonstrate the successful performance of the proposed Neural 

Network Parameter Optimisation Technique. 

This First Experiment then showed the development of the first building block of a Complete 

Trading System. The building block would allow for the successful detection of profitable 

trading opportunities. The problem then is how to optimally combine such trading opportunities 

into a Portfolio and this would form the basis of the Second Experiment.  
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6.3 Assessment Of A New Graphical Model Framework For Dynamic Equity 

Portfolio Construction  

The second building block of a Complete Trading Strategy was identified as Portfolio Construction. 

Having determined a set of tradable assets using a method such as that proposed in the First 

Experiment of this Thesis the problem then is how to optimally combine such assets into a Weighted 

Portfolio. An optimally weighted set of potentially profitable trading opportunities would allow a 

maximisation of profitability and a potential reduction in risk, both of which are important. With this 

as motivation a novel Graphical Model Framework for Portfolio Construction in a Dynamic 

Environment in which stocks are only held for a period of days has been developed in the Second 

Experiment of this Thesis. 

In the Background Chapter of this Thesis an overview of the current state of the art of methods for 

Stock Portfolio Construction was presented. The current state of the art is still largely centred on 

Markowitz Style methods based upon Mean-Variance optimisation. Such Mean-Variance 

Optimisation Techniques pose three major limitations each of which was considered in the 

development of the Novel Method of Portfolio Construction that forms the Second Experiment. 

The First Limitation is that Mean-Variance based techniques assume that stock returns fall into the 

Elliptical Family of Probability Distributions. Although the Elliptical Family does include the Normal 

and Student-t Distributions, it does not include any form of distribution which exhibits excess 

Kurtosis. Any successful Neural Network based method for detecting trading opportunities would by 

construction create a distribution of returns with a Fat Right Tail and hence there would be Excess 

Kurtosis. It was shown in the Second Experiment that although typical stock returns may be well 

characterised by a Normal Distribution it is the case that the returns of those stocks which have been 

signalled by the Novel Neural Network method developed in the First Experiment do indeed exhibit a 

Fatter Right Tail. A Stock Portfolio construction technique which does not place any assumption upon 

the distribution of returns is then needed. 

The Second Limitation is that Mean-Variance based techniques require a full specification of the 

Returns, Variances and Correlations of the 𝑁 Assets which are to be combined into a Portfolio. In 

the Background Section of this Thesis it was shown that for even an example case of just 𝑁 = 2 

Assets it is very difficult to estimate stable values for the underlying parameters. In the case of 

the Neural Network based method that was developed in First Experiment it was determined that 

any particular stock would at most times be efficiently priced and as such the number of 

coincidental trades for any particular pair of stocks would be low and could even be zero over 

some historical period of time. As such the determination of a complete set of Returns, Variances 

and Correlations of the 𝑁 Assets which are to be combined into a Portfolio is no longer possible. 
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A Stock Portfolio construction technique which does not require the complete set of Returns, 

Variances and Correlations of the 𝑁 Assets would then be preferred. 

The Third Limitation is that Mean-Variance based techniques require an inversion of the Correlation 

Matrix of Returns and as such the optimisation problem has a computational complexity which scales 

at a Quadratic Rate, 𝑂(𝑁2), and hence does this does not allow efficient computations in the 

case that 𝑁 is large. A Stock Portfolio construction technique which has a computational complexity 

which scales at a Linear Rate, 𝑂(𝑁), would then be preferred. 

In the Second Experiment a Stock Portfolio Construction technique that had been inspired by the 

Google Page Rank Algorithm was presented. In the Google Page Rank Algorithm the internet is 

represented as a Graphical Model and transitions between the nodes are used to represent an internet 

surfer moving between pages of the internet. As an analogy the nodes of the Graphical Model could 

be used to represent stocks in a Portfolio and the transitions between nodes represent the movement of 

funds between those stocks in the Portfolio. To capture the joint statistics of a pair of stocks the 

concept of a Bridge Portfolio was introduced and funds could only be moved between any pair of 

stocks via an equally weighted Bridge Portfolio of that pair of stocks. The Transition Score for the 

movement of funds was based upon the probability of a return being greater than a Threshold  𝑇 and 

as such this Transition Score aimed to achieve simultaneously a high level of return and a low level of 

variance. The Transition Score was based upon Historical Returns and placed no Distributional 

Assumptions, as such the First Limitation of Mean-Variance based techniques was overcome. 

In the proposed Graphical Model framework each stock is connected to only two other stocks and this 

reduces the amount of required statistical data. A novel Genetic Algorithm method based on The 

Travelling Salesman Problem was introduced to allow an optimal ordering of the 𝑁 stocks. The 

optimal ordering was determined to be that for which the most information was known. The resulting 

reduction in the amount of required statistical data overcomes the Second Limitation of Mean-

Variance based techniques. Once the optimal Graphical Model had been setup the solution of the 

weights of the stocks in a Portfolio could be determined at a Linear Rate, 𝑂(𝑁), through the use of a 

Tri-diagonal Matrix Algorithm or alternatively by ‘Running the Chain to Convergence’. A solution 

that scales at a Linear Rate then overcomes the Third Limitation of Mean-Variance based techniques. 

Monte Carlo type simulations of universes of up to 400 stocks were used to show the success of the 

proposed method at forming Portfolios of those stocks that are signalling Buy Opportunities using the 

techniques developed in the First Experiment. It was shown that a significant performance 

achievement over a benchmark Equally Weighted Portfolio could be achieved. Having formed an 

optimised Portfolio the next step is to optimally time the Execution of Trading Orders into the Market 

Order Book and this forms the basis of the Third Experiment of this Thesis. 
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6.4 Assessment Of A Study Of The Application Of Online Learning For Order 

Entry Timing 

The third building block of a Complete Trading Strategy was identified as Order Entry Timing. 

Having determined a set of tradable assets using a method such as that proposed in the First 

Experiment of this Thesis and then having determined the weights of such assets in a Portfolio using a 

method such as that proposed in the Second Experiment of this Thesis, the final step is to execute 

orders into the Market Order Book. Systematic Trading Strategies often assume close to close trading, 

this is to say that stocks can only be bought or sold at the official closing print of each trading day. 

The main reason for this restriction is that Daily Close Price data is easy to source. However if a more 

optimal time for placing trading orders than the official closing print could be determined this would 

allow extra profitability to be achieved. With this as motivation a Study of the Application of Online 

Learning for Order Entry Timing was carried out as a Third Experiment of this Thesis. 

In the Background Chapter of this Thesis a number of methods to model the dynamics of the Double 

Auction Based Limit Order Book had been presented. Such models are typically calibrated to market 

behaviour statistics over a long period of time and they fail to capture any micro-trends in the real 

order book in the time period just prior to execution. In addition in the case of the methods developed 

in the first two experiments it is assumed that there will be 100% complete order execution and for 

this Market Orders are required rather than Limit Orders. Where it is the case that Market Orders are 

to be placed the issue is one of decision timing, at each instant in time a decision should be made of 

whether to trade or to wait and in making such a decision it is really the behaviour of the order book 

in the most recent time period that is relevant. In addition, the calibration of a Double Auction Based 

Limit Order Book Model is a computationally intensive task and there simply would not be sufficient 

time to recalibrate around any observed trends in the order book that are evolving in the seconds 

preceding the decision of whether to trade now or to wait. 

Given the limitations of Double Auction Based Limit Order Book Models there is a clear motivation 

to consider the application of Online Learning techniques for the determination of an optimal time at 

which to place Market Orders into the Order Book. The study focussed upon Adversarial Models of 

Online Machine Learning, such models are based upon a Selection or a Weighed Combination of 

a number of Hypotheses which are otherwise called Experts. The initial starting point of the Third 

Experiment was to consider a simple framework of just two Experts that were termed Expert-A and 

Expert-B. In this framework Expert-A would predict that the Best Bid Price at the next timestamp 

would be higher than the current Best Bid Price and Expert-B would predict that the Best Bid Price at 

the next timestamp would be lower than the current Best Bid Price. Using the Follow the Leader 

method of Online Machine Learning the framework could be used with some success to determine the 

direction of the Best Bid Price over a one timestamp interval. However, it was shown that successful 
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directional prediction did not necessarily later translate to finding profitable trading opportunities. 

Since it is profitability that matters the study then turned from Direction Prediction to a Maximisation 

of Trading Profits. 

The second stage of the study also considered just two Experts which were termed Expert-C and 

Expert-D. The hypothesis of Expert-C was that it was optimal to follow the recent short term 

trend of the Best Bid Price and the hypothesis of Expert-D was that it was optimal to counter the 

recent short term trend of the Best Bid Price. These two Experts were initially considered in a 

framework based on Follow the Leader with various values of the Window Length 𝐿. Testing 

results across a universe of stocks revealed that much of the information regarding the state of 

the Market Order Book in the near future is captured in the most recent historical behaviour of 

the Market Order Book, this was concluded because the performance for Window Length 𝐿 = 1 

was close to the maximal performance that could be achieved for various values of 𝐿. The 

conclusion is important as it adds further support to the premise that  models of the dynamics of 

the Double Auction Based Limit Order Book which require calibration over long term statistics may 

not be well suited to determine the optimal time to place Market Orders. 

The study then moved to consider a variant of The Weighted Majority Algorithm whereby a weighted 

combination of the predictions of the two Experts is taken, the weights being determined by the 

number of recent correct and incorrect predictions by the two Experts. This part of the study revealed 

that there is on average a general preference for Expert-D, this is a highly significant result. The 

results suggest that the optimal strategy would be to counter the direction of the Market Order Book 

over a short interval of time. This would then suggest that that over such a short interval of time there 

may exist a pattern of Market Order Book oscillation where the Best Bid Price is toggling up and 

down. This would be the case, for example, if the Market Order Book were static but there were 

interspersed Market Orders to Buy and Market Orders to Sell which were hitting the Order Book. 

Such Buy and Sell orders would cause the Best Bid Price to toggle up and toggle down. Although 

there was a general preference of Expert-D there were some stocks which showed a preference for 

Expert-C at least some of the time. Where there is a preference of Expert-C this would signify 

identifiable trends in the Best Bid Price of the Market Order Book.  

The results of the Third Experiment show that it is possible to find extra profitability by t rading 

at some time point other than the official closing print of each day. The techniques of the third 

experiment could be easily incorporated with those of the first two experiments and as such the 

three experiments could be combined to form a complete trading strategy. The results of the 

three experiments show that such a trading strategy would be able to outperform benchmark 

Equity Indices over a significant period of time and as such the overall objective of this Thesis 

has been achieved.   
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Chapter 7 

Publications, Future Work and Conclusions  

This Chapter forms the closing of this Thesis. The Chapter begins with an Introduction which is 

followed by a brief summary of the Publications linked to this Thesis. This is followed by a discussion 

of some topics for possible Further Publications and Future Work and then by the Conclusions. 

 

7.1 Introduction 

In Chapter 1 it was stated that in the period from 2010 to 2015 the vast majority of US Stock Funds 

based on Active Management had failed to beat the broad Market Indices and such underperformance 

was also seen over previous years. The fact that ‘Beating the Index’ had proven tough, at least for the 

average human analyst, had served as the starting motivation of this Thesis. The overall objective was 

to show that a Machine could do better.  

An overview of a complete trading strategy was presented in Figure 2.5 and the three building blocks 

of such a strategy were identified. These three building blocks were identified as Trend Detection, 

Portfolio Construction and finally Order Entry Timing. This Thesis aimed to develop original 

methods to approach these three building blocks in a commercially practical manor whilst making 

contributions to the Academic Literature. The Thesis aimed to create building blocks that could be 

connected to form a complete trading strategy. 

The details of the original methods that could be employed for each of the three building blocks were 

discussed in the form of three experiments the details of which were presented in Chapters 3 to 5 and 

then summarised in Chapter 6. The results presented in these Chapters showed that it was possible to 

achieve the outperformance of a benchmark Equity Index over a period spanning 6 years, this period 

included a range of trading conditions and incorporated the 2008 Global Financial Crisis. The 

research included real world effects such as the presence of outliers and the existence of Transaction 

Costs. The results showed that the research had been carried out in a commercially practical manor. 

It was also an aim that any research carried out should make contributions to the Academic Literature. 

To this end the content of this Thesis has formed the basis of three publications that appear in the 

proceedings of world renowned conferences in the fields of Computer Science and Neural Networks. 

In the next section details of these three publications are given. These publications represent a subset 

of the possible contributions to the Academic Literature which could be made from this Thesis. In the 

section that follows details of further possible publications and possible future avenues for research 

are given. In the final section of this Chapter the Conclusions of this Thesis are presented. 
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7.2 Overview of Published Work 

The contents of this Thesis have formed the basis of three publications that appear in the proceedings 

of world renowned conferences in the fields of Computer Science and Neural Networks. These 

publications are 

 

[Publicaton-1] Sethi, M; Treleaven, P; Del Bano Rollin, S (2014). "A New Neural Network 

Framework for Profitable Long-Short Equity Trading", Proceedings of the 2014 IEEE 

International Conference on Computatonal Science and Computational Intelligence (CSCI 

2014). Vol. 1. Pages 472-475. 

In this First Publication the methods of Experiment 1 (Chapter 3) are used to show how a 

profitable Long-Short Portfolio of stocks listed in the United States of America could have been 

formed to achieve the outperformance of a Benchmark Hedge Fund Index.  

 

[Publicaton-2] Sethi, M; Treleaven, P; Del Bano Rollin, S (2014). "Beating the S&P 500 Index—

A Successful Neural Network Approach", Proceedings of the 2014 IEEE Joint International 

Conference on Neural Networks (IJCNN 2014). Vol. 1. Pages 3074-3077. 

In this Second Publication the methods of Experiment 1 (Chapter 3) are used to show how a 

profitable Long Only Portfolio of stocks listed in the United States of America could have been 

formed to achieve the outperformance of the Benchmark Standard and Poors 500 Index. 

 

[Publicaton-3] Sethi, M; Treleaven, P (2015). "A Graphical Model Framework for Stock Portfolio 

Construction with Application to a Neural Network Based Trading Strategy", Proceedings of the 

2015 IEEE Joint International Conference on Neural Networks (IJCNN 2015). Vol. 1. Pages 1-8. 

In this Third Publication the methods of Experiment 2 (Chapter 4) are used to show how 

weighted Portfolios that are formed by the Graphical Model Framework developed as part of 

Experiment-2 could be used to achieve the outperformance of equally weighed Portfolios when 

applied to stocks that have been selected by the Neural Network framework of Experiment 1.  

 

These publications have added into the current state of the art that forms the Academic 

Literature. There is room for further publications and in the section that follows details of further 

possible publications and possible future avenues for research are given. 
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7.3 Proposals for Further Publications and Future Research 

In Chapter 3 a Novel Method for the optimisation of Neural Network parameters has been presented 

and this method has not yet appeared in publication. The Study of the Application of Online Learning 

for Order Entry Timing that formed the basis of Chapter 5 has also not yet appeared in publication. 

The study showed some interesting results surrounding the behaviour of the Best Bid Price in the 

Market Order Book and these results and the conclusions that they lead to could form the basis of a 

number of potential publications. 

The techniques presented in Chapter 4 were shown to be successful for the creation of a Long Only 

trading Portfolio where stocks had been selected because they were signalling a trading opportunity 

according to the methods developed in Chapter 3. The techniques could also be applied for the 

creation of a Short Only trading Portfolio. Should it be the case that a Long-Short trading Portfolio 

were to be desired the Graphical Model framework could be used to create independent Long Only 

and Short Only Portfolios. However, of particular interest may be co-optimised Portfolios where the 

weights of the Stocks in the Long Only Portfolio are influenced by the weights of the stocks in the 

Short Only Portfolio and vice-versa. This Co-Optimisation Problem may form an interesting basis for 

future research; one possible approach may be to consider the Short Only Portfolio as a single asset 

within the Long Only Graphical Model and vice-versa and to then attempt to iteratively optimise each 

Graphical Model in turn until some convergence could be reached.  

The techniques presented in Chapter 4 may also be of general interest to the Asset Management 

Community as they offer an alternative to Mean-Variance techniques when simply applied to stocks 

in general outside of any Neural Network framework. A potential piece of research may consider the 

development of an Overlay Strategy whereby the Graphical Model framework is used to determine 

small tweaks within the composition of the Standard and Poors 500 Index (Bloomberg Code: SPX 

INDEX) that could be used to achieve an increase in performance over the benchmark whilst still 

maintaining the general characteristics of the benchmark. Such an overlay strategy would fit well 

around the mandate of many Asset Managers who have their performance linked to the benchmark 

Standard and Poors 500 Index. 

The Study that formed the Basis of Chapter 5 considered only the optimal timing at which to place 

Market Orders. The study may be extended to consider High Frequency Trading. In the traditional 

High Frequency Trading setting Limit Orders are placed in a Market Making capacity  and the 

aim is to close any executed trades within a short interval of the original trade being placed and 

to then try and capture the Bid-Offer spread. By extending the study of Chapter 5 to consider 

Limit Orders as well as Market Orders it would be possible to take a step towards the 

development of techniques for High Frequency Trading. 
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7.4 Conclusions  

The overall objective of this Thesis was to show that a Machine could do better than the average 

Human Analyst and achieve the consistent outperformance of a benchmark Equity Index over some 

significant period of time. The approach was to break down a complete Trading Strategy into three 

building blocks; these building blocks were identified as Trend Detection, Portfolio Construction and 

finally Order Entry Timing. This Thesis aimed to develop original methods to approach these three 

building blocks in a commercially practical manor whilst making contributions to the Academic 

Literature. These original methods formed the basis of three experiments 

 

Experiment-1: A New Neural Network Framework For Profitable Long-Short Equity Trading. 

The first experiment focussed on finding short term trading opportunities at the level of an individual 

single stock. A novel Neural Network method for detecting trading opportunities based on betting 

with or against a recent short term trend was presented.  

Experiment-2: A New Graphical Model Framework For Dynamic Equity Portfolio 

Construction. The second experiment considered the issue of Portfolio Construction. A Graphical 

Model framework for Portfolio Construction under conditions where trades are only held for short 

periods of time was presented.  

Experiment-3: A Study of the Application of Online Learning for Order Entry Timing. The third 

experiment considered the issue of Order Execution and how to optimally time the entry of trading 

orders into the market. The experiment demonstrated how Online Learning techniques could be used 

to determine more optimal timing for Market Order Entry. 

 

Experiment-2 built upon the methods developed in Experiment-1. The results shown in Experiment-2 

demonstrated that Long Only Portfolios could be formed that were able to achieve a significant 

outperformance of the benchmark Standard and Poors 500 Index (Bloomberg Code: SPX INDEX) 

over a six year period that included the 2008 Global Financial Crisis. The results of Experiment-2 

were generated on the basis of close to close trading. In Experiment-3 it was shown how additional 

profits could be generated by trading at a more optimally selected time than the closing print of each 

trading day. The techniques within the Thesis were developed in a commercially practical manner and 

effects such as Outliers and Transaction Costs were considered. At the same time the research that 

was conducted was of a form that could find place in the Academic Literature and to this end the 

contents of this Thesis were published into the proceedings of a number of conferences. A number of 

avenues for Future Research have also been identified.  
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