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Abstract 

We combined two existing biomass datasets (input maps) into a pan-tropical biomass map at 1 km 

resolution using an unprecedented reference dataset and a data fusion approach, achieving lower 

errors than the input maps and almost unbiased estimates at the continental scale. A variety of field 

observations and locally-calibrated high-resolution biomass maps - not used by the input maps - 

were harmonized and upscaled to the map resolution, providing 15,969 biomass estimates at 1 km 

resolution (reference dataset). The input maps were integrated using a data fusion approach based 

on bias removal and weighted linear averaging that incorporates and spatializes the biomass 

patterns indicated by the reference data. The method was applied independently in areas (strata) 

with homogeneous error patterns of the input maps, which were estimated from the reference data 

and additional covariates. The fused map showed biomass stocks for the tropics 15% and 19% 

lower than the two input maps, and a different spatial pattern. Compared to the input maps, the 

fused map shows higher biomass density in the dense forest areas in the Congo basin, West Africa 

Eastern Amazon and South-East Asia, and lower values in Central America and in most dry 

vegetation areas of Africa. The validation exercise, based on 3,619 estimates from the reference 
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dataset not used in the fusion process, showed that the fused map had a RMSE 8 – 74% lower than 

that of the input maps and, most importantly, nearly unbiased estimates (mean bias 4 Mg dry mass 

ha-1 vs. 21 and 28 Mg ha-1 for the input maps). The fusion method can be applied at any scale 

including the policy-relevant national level, where it can provide improved biomass estimates by 

integrating existing regional biomass maps as input maps and additional, country-specific reference 

datasets. 

 

Keywords: aboveground biomass, carbon cycle, forest plots, tropical forest, forest inventory, 

REDD+, satellite mapping, remote sensing,  

 

Introduction 

Recently, considerable efforts have been made to better quantify the amounts and spatial 

distribution of aboveground biomass, a key parameter for estimating carbon emissions and 

removals due to land-use change, and related impacts on climate (Baccini et al., 2012; Harris et al., 

2012; Houghton et al., 2012; Saatchi et al. 2011; Mitchard et al. 2014). Particular attention has been 

given to the tropical regions, where uncertainties are higher (Ziegler et al., 2012; Grace et al., 2014). 

In addition to ground observations acquired by research networks or for forest inventory purposes, 

several biomass maps have been recently produced at different scales, using a variety of empirical 

modelling approaches based on remote sensing data calibrated by field observations (e.g., Goetz et 

al., 2011; Birdsey et al., 2013). Biomass maps at moderate resolution have been produced for the 

entire tropical belt by integrating various satellite observations (Saatchi et al., 2011; Baccini et al., 

2012), while higher resolution datasets have been produced at local or national level using medium-

high resolution satellite data (e.g., Avitabile et al., 2012; Cartus et al., 2014), sometimes in 

combination with airborne Light Detection and Ranging (LiDAR) data (Asner et al., 2012a, 2012b, 

2013, 2014a). The various datasets often have different purposes: research plots provide a detailed 

and accurate estimation of biomass (and other ecological parameters or processes) at the local level, 

forest inventory networks using a sampling approach to obtain statistics of biomass stocks (or 

growing stock volume) per forest type at the sub-national or national level, while high-resolution 

biomass maps can provide detailed and spatially explicit estimates of biomass density to assist 

natural resource management, and large scale datasets depict biomass distribution for global-scale 

carbon accounting and modelling.  
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In the context of the United Nations mechanism for Reducing Emissions from Deforestation and 

forest Degradation (REDD+), emission estimates obtained from spatially explicit biomass datasets 

may be favoured compared to those based on mean values derived from plot networks. This 

preference stems from the fact that plot networks are not designed to represent land cover change 

events, which usually do not occur randomly and may affect forests with biomass density 

systematically different from the mean value (Baccini and Asner, 2013). With very few tropical 

countries having national biomass maps or reliable statistics on forest carbon stocks, regional maps 

may provide advantages compared to the use of default mean values (e.g., IPCC (2006) Tier 1 

values) to assess emissions from deforestation, if their accuracy is reasonable and their estimates are 

not affected by systematic errors (Avitabile et al., 2011). However, these conditions are difficult to 

assess since proper validation of regional biomass maps remains problematic, given their large area 

coverage and large mapping unit (Mitchard et al., 2013), while ground observations are only 

available for a limited number of small sample areas. 

 

The comparison of two recent pan-tropical biomass maps (Saatchi et al., 2011; Baccini et al., 2012) 

reveals substantial differences between the two products (Mitchard et al., 2013). Further 

comparison with ground observations and high-resolution maps in the Amazon basin indicated 

substantially different biomass patterns at regional scales (Mitchard et al., 2014; Baccini and Asner, 

2013, Hills et al., 2013). Such comparisons have stimulated a debate over the use and capabilities of 

different types of biomass products (Saatchi et al., 2014; Langner et al., 2014) and have highlighted 

both the importance and sometimes the lack of integration of different datasets. On one hand, the 

two pan-tropical maps are consistent in terms of methodology because both use the same primary 

data source (GLAS LiDAR) alongside a similar modelling approach to upscale the LiDAR data to 

larger scales. Moreover, they have the advantage of being calibrated using hundreds of thousands of 

biomass estimates derived from height metrics computed by a spaceborne LiDAR sensor distributed 

over the tropics. However, such maps are based on remotely sensed variables that do not directly 

measure biomass, but are sensitive to canopy cover and canopy height parameters that do not fully 

capture the biomass variability of complex tropical forests. Furthermore, both products assume 

global or continental allometric relationships in which biomass varies only with stand height, and 

further errors are introduced by upscaling the calibration data to the coarser satellite data. On the 

other hand, ground plots use allometric equations to estimate biomass at individual tree level using 

directly measurable parameters such as diameter, height and species identity (hence wood density). 

However, they have limited coverage, are not error-free, and compiling various datasets over large 

areas is made more complex due to differing sampling strategies (e.g., stratification (or not) of 
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landscapes, plot size, minimum diameter of trees measured). Considering the rapid increase of 

biomass observations at different scales and the different capabilities and limitations of the various 

datasets, it is becoming more and more important to identify strategies that are capable of making 

best use of existing information and optimally integrate various data sources for improved large 

area biomass assessment (e.g., see Willcock et al. 2012).  

 

In the present study, we compiled existing ground observations and high-resolution biomass maps 

to obtain a reference dataset of high quality aboveground biomass data for the tropical region, 

including both plot data and high-resoltion biomass maps (objective 1). This reference dataset was 

used to assess the two pan-tropical biomass maps (objective 2) and to combine them in a fused map 

that optimally integrates the two maps, based on the method presented by Ge et al. (2014) (objective 

3). Lastly, the fused map was compared to known biomass patterns and stocks across the tropics 

(objective 4).  

 

Overall, the approach consisted of pre-processing, screening and harmonizing the Saatchi and 

Baccini maps (called ‘input maps’), the high-resolution biomass maps (called ‘reference maps’) and 

the field plots (called ‘reference plots’; ‘reference dataset’ refers to the maps and plots combined) to 

a common spatial resolution and geospatial reference system (Figure 1). The input maps were 

combined using bias removal and weighted linear averaging (‘fusion’). The fusion model was 

applied independently in areas representing different error patterns of the input maps (called ‘error 

strata’), which were estimated from the reference data and additional covariates (called ‘covariate 

maps’). The reference dataset included only a subset of the reference maps (i.e., the cells with 

highest confidence) and if a stratum was lacking reference data (‘reference data gaps’), additional 

data were extracted from the reference maps (‘consolidation’). The fused map was validated using 

independent data and its uncertainty quantified using model parameters. In this study, the term 

biomass refers to aboveground live woody biomass and is reported in units of Mg dry mass ha-1. 
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Figure 1: methodology flowchart 

 

Data & Methods 

Input maps 

The input maps used for this study were the two pan-tropical datasets published by Saatchi et al. 

(2011) and Baccini et al. (2012), hereafter referred to as the Saatchi and Baccini maps individually, 

or collectively as input maps. The Baccini map was provided in MODIS sinusoidal projection with 

a spatial resolution of 463 m while the Saatchi map is in a geographic projection (WGS-84) at 

0.00833 degrees (c. 1 km) pixel size. The two datasets were harmonized by first projecting the 

Baccini map to the coordinate system of the Saatchi map using the Geospatial Data Abstraction 

Library (www.gdal.org) and then aggregating to match its spatial resolution and grid. Spatial 

aggregation was performed by computing the mean value of the pixels whose centre was located 
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within each 1 km cell of the Saatchi map. Resampling was then undertaken using the nearest 

neighbor method.  

 

Reference dataset 

The reference dataset comprised individual tree-based field data and high-resolution biomass maps. 

The field data included biomass estimates derived from field measurement of tree parameters and 

allometric equations. The biomass maps included high-resolution (≤ 100 m) datasets derived from 

satellite data using empirical models calibrated and validated using local ground observations and, 

in some cases, airborne LiDAR measurements (Table S7 – S10). Given the variability of procedures 

used to acquire and produce the various datasets, they were first screened according to a set of 

quality criteria to select only the most reliable biomass estimates, and then pre-processed to be 

harmonized with the pan-tropical biomass maps in terms of spatial resolution and variable observed. 

Field and map datasets providing aboveground carbon density were converted to biomass units 

using the same coefficients used for their original conversion from biomass to carbon. The sources 

of the reference data are listed in table S7 and S9. 

 

Data screening and pre-processing 

Reference field data  

The reference field data included ground observations in forest inventory plots, for which accurate 

geolocation and biomass estimates were available. The pre-processing of the data consisted of a 2-

step screening and a harmonization procedure. A preliminary screening selected only the ground 

data that estimated aboveground biomass of all living trees with diameter at breast height ≥ 5-10 cm, 

and acquired on or after the year 2000. The taxonomic identities of trees  strongly indicate wood 

density and hence stand-level biomass (e.g., Baker et al., 2004; Mitchard et al. 2014).  Plots were 

therefore only selected if tree biomass was estimated using at least tree diameter and wood density 

as input parameters, and plot coordinates were measured using a GPS. All datasets not conforming 

to these requirements or not providing clear information on the biomass pool measured, the tree 

parameters measured in the field, the allometric model applied, the year of measurement and the 

plot geolocation and extent were excluded. Next, the plot data were projected to the geographic 

reference system WGS-84 and harmonized with the input maps by averaging the biomass values 

located within the same 1 km pixel. The field plots not fully located within one pixel were attributed 

to the map cell where the majority of the plot area (i.e., the plot centroid) was located.  
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Lastly, the representativeness of the plot over the 1km pixels was considered, and the ground data 

were further screened to discard plots not representative of the map cells in terms of biomass 

density. More specifically, since the two input maps are not aligned and therefore their pixels do not 

correspond to the same geographic area, the plot representativeness was assessed on the area of both 

pixels (identified before the map resampling). The representativeness was evaluated on the basis of 

the homogeneity of the tree cover and crown size within the pixel, and it was assessed using visual 

interpretation of high-resolution images provided on the Google Earth platform. If the tree cover 

and tree crowns were not homogeneous over at least 90% of the pixel area, the plots located within 

the pixel were discarded. More details on the selection procedure are provided in the Supplementary 

Information. 

 

Reference biomass maps 

The reference biomass maps consisted of high quality local or national maps published in the 

scientific literature. Maps providing biomass estimates grouped in classes (e.g., Willcock et al., 

2012) were not used since the class values represent the mean biomass over large areas, usually 

spanning multiple strata used in the present study (see ‘Stratification approach’). The reference 

biomass maps were first pre-processed to match the input maps through re-projection, aggregation 

and resampling using the same procedures described for the pre-processing of the Baccini map. 

Then, only the cells with largest confidence (i.e., lowest uncertainty) were selected from the maps. 

Since uncertainty maps were usually not available, and considering that the reference maps were 

based on empirical models, the map cells with greatest confidence were assumed to be those in 

correspondence of the training data (field plots and/or LiDAR data). When the locations of the 

training data were not available, random pixels were extracted from the maps. In order to compile a 

reference database that was representative of the area of interest and well balanced among the 

various input datasets (as defined in ‘Consolidation of the reference dataset’), the amount of 

reference data extracted from the biomass maps was proportional to their area and not greater than 

the amount of samples provided by the field datasets representing a similar area. In the case where 

maps with extensive training areas provided a disproportionate number of reference pixels, a further 

screening selected only the areas underpinned by the largest amount of training data.  

 

Selected reference data 
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The biomass reference dataset compiled for this study consists of 15,969 1-km reference pixels, 

distributed as follows: 953 in Africa, 449 in South America, 9,167 in Central America, 400 in Asia 

and 5,000 in Australia (Fig. 2, Table 1). The reference data were relatively uniformly distributed 

among the strata (Table S5) but their amount varied considerably by continent. The average amount 

of reference data per stratum ranged from 50 (Asia) to 1,144 (Central America) reference pixels and 

their variability (computed as standard deviation relative to the mean) ranged from 25% (South 

America) to 57% (Central America). The uneven distribution of reference data across the continents 

is mostly caused by the availability of ground observations: in order to have a balanced reference 

dataset for each stratum, the reference data extracted from biomass maps were limited to the 

(smaller) amount of direct field observations. When biomass maps were the only source of data this 

constrain was not occurring and larger datasets could be derived from the maps (i.e., Central 

America, Australia). Ad example, all pixels (4,263) in correspondence of the training data could be 

selected from the biomass map of Mexico while only 13% of the 1,167 pixels with training data 

could be selected from the biomass map of Uganda to maintain comparability with smaller 

reference datasets available in Africa.  

 

The reference data were selected from 18 ground datasets providing 1,591 research field 

observations and 5,036 forest inventory plots, and from 9 high resolution biomass maps calibrated 

by field observations and, in four cases, airborne LiDAR data. The field plots used for the 

calibration of the maps are not included in this section because they were only used to select the 

reference pixels from the maps. The visual screening of the field plots removed 35% of the input 

data (from 6,627 to 4,283) and their aggregation to 1 km resolution further removed 70% of the 

reference units derived from field plots (from 4,283 to 1,274), while 10,741 reference pixels were 

extracted from the high-resolution biomass maps. The criteria used to select the reference pixels for 

each map are reported in Table S3. The consolidation procedure added 3,954 reference data to the 

final reference dataset that consisted of 15,969 units (Table S2). In particular, ground observations 

were mostly discarded in areas characterized by fragmented or heterogeneous vegetation cover and 

high biomass spatial variability. In such contexts, reference data were often acquired from the 

biomass maps. The reference dataset was compared to the input maps, revealing substantial linear 

correlation (ranging from 0.60 to 0.77) between the errors of the Saatchi and Baccini maps and 

RMSE values in the same order of magnitude for all continents, ranging from 96 to 124 Mg ha-1, 

with the exception of Australia (45 Mg ha-1) (Table S4).  
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Figure 2: Biomass reference dataset for the tropics and spatial coverage of the two input maps 

 

Table 1: Number of reference data (plots and 1-km pixels) selected after the screening, upscaling and 

consolidating procedures, per continent. The reference data selected for each individual dataset are reported in 

Table S2. The field plots underpinning the reference biomass maps are not included. 

Continent 
Available Selected Consolidated 

Plots Plots Pixels Pixels 

Africa 2,281 1,976 953 953 

S. America 648 474 449 449 

C. America - - 5,260 9,167 

Asia 3,698 1,833 353 400 

Australia - - 5,000 5,000 

Total TROPICS 6,627 4,283 12,015 16,969 

 

Modelling approach 

The fusion model 

The integration of the two input maps was performed with a fusion model based on the concept 

presented by Ge et al. (2014) and further developed for this study. The fusion model consists of bias 

removal and weighted linear averaging of the input maps to produce an output with greater 

accuracy than each of the input maps. The reference biomass dataset described above was used to 

calibrate the model and to assess the accuracy of the input and fused maps. A specific model was 

developed for each stratum (see ‘Stratification approach’). 
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Following Ge et al. (2014), the p input maps for locations sD, where D is the geographical domain 

of interest common to the input maps, were combined using a weighted linear average:  

(1) 
1

( ) ( ) ( ( ) ( ))


  
p

i i ii
f s w s z s v s  

where f is the fused map, the wi(s) are weights, zi  the estimate of the i-th input map and vi(s) is the 

bias estimate. The bias term was computed as the average difference between the input map and the 

reference data. The weights were obtained from a statistical model that assumes the map estimates 

zi to be the sum of the true biomass bi with a bias term vi and a random noise term i with zero mean 

for each location sD. We further assumed that the i of the input maps are jointly normally 

distributed with variance-covariance matrix C(s). Differently from Ge et al. (2014), C(s) was 

estimated using a robust covariance estimator as implemented by the ‘robust’ package in R (Wang 

et al., 2014), which uses the Stahel-Donoho estimator for strata with fewer than 5,000 observations 

and the Fast Minimum Covariance Determinant estimator for larger strata. Under these assumptions, 

the variance of the estimation error of the fused map f(s) is minimized by calculating the weights 

w(s) as Searle (1971. p. 89):  

(2)  
1

1 1( ) ( ) ( )


  1 C 1 1 C
T T Tw s s s  

where 1=[1, ..., 1]T is the p-dimensional unit vector and where T means transpose. Larger weights 

were assigned to the map with lower error variance. The fusion model assured that the variance of 

the error in the fused map was smaller than that of the input maps (Bates and Granger, 1969), 

especially if the errors associated with these maps were not strongly positively correlated and their 

error variances were close to the smallest error variance. The fusion model can be applied to any 

number of input maps. Where there is only one input map, the model estimates and removes its bias 

and the weights are set equal to 1.  

 

The model parameters 

The fusion model computed a set of bias and weight parameters for each stratum and continent on 

the basis of the respective reference data, and used these for the linear weighted combination of the 

input maps (Table S5). Since the stratification approach grouped together data with similar error 

patterns (see ‘Stratification approach’), the biases varied considerably among the strata and could 

reach values up to ±200 Mg ha-1. However, considering the area of the strata, the biases of both 
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input maps were smaller than ± 45 Mg ha-1 for at least 50% of the area of all continents and smaller 

than ±100 Mg ha-1 for 81% - 98% of the area of all continents.  

 

 

Stratification approach 

Error modelling 

Preliminary comparison of the reference data with the input maps showed that the error variances 

and biases of the input maps were not spatially homogeneous but varied considerably in different 

regions. Since the fusion model is based on bias removal and weighted combination of the input 

maps, the more homogeneous the error characteristics in the input maps are, the better they can be 

reduced by the model. For this reason, the stratification approach aimed at identifying areas with 

homogeneous error structure (hereafter named ‘error strata’) in both input maps. A first 

stratification was done by geographic location (namely Central America, South America, Africa, 

Asia and Australia) to reflect the regional allometric relationships between biomass and tree 

diameter and height (Feldpausch et al., 2011, 2012). Then, the error strata were identified for each 

continent, using a two-step process. Firstly, the error maps of the Saatchi and Baccini maps were 

predicted separately on the basis of their biomass estimates and land cover, tree cover and tree 

height parameters by using a Random Forest model (Breiman, 2001), calibrated on the basis of the 

reference dataset. Secondly, the error maps of the Saatchi and Baccini datasets were clustered using 

the K-Means approach. Eight clusters (hence, eight error strata) was considered as a sensible trade-

off between homogeneity of the errors of the input maps and number of reference observations 

available per stratum (Fig. S1). The performance of this approach was assessed on the basis of the 

root mean square error (RMSE) of the models that predicted the errors of the input maps. Since the 

ensemble modelling approach used in this study (Random Forest) includes a certain level of 

randomness, the model performance was computed as an average of 100 model runs (Fig. S2, Fig. 

S3). The RMSE computed on the Out-Of-Bag data (i.e., data not used for training) of the Random 

Forest models for the Baccini extent ranged between 22.8 ± 0.3 Mg ha-1 for Central America to 83.7 

± 2.5 Mg ha-1 in Africa, with the two models (one for each input map) achieving similar accuracies 

in each continent (Fig. S2, Fig. S3). In most cases the main predictors of the errors of the input 

maps were the biomass values of the maps themselves, followed by tree cover and tree height, while 

land cover was always the least important predictor (Table S1). Further details on error modelling 

and processing of the input data are provided in the Supplementary Information. 
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The stratification map identifies eight strata for each continent with homogeneous error patterns in 

the input maps (Fig. S4). The use of a stratification based on the errors of the input maps was 

compared with a stratification based on an alternative variable, such as land cover (used by Ge et al., 

2014), tree cover or tree height. Each of these variables was aggregated into eight classes to 

maintain comparability with the number of clusters used in the error strata, and each stratification 

map was used to develop a specific fused map. The performance of alternative stratification 

approaches was assessed by validating the respective fused maps. The results (Fig. S5) 

demonstrated that the stratification based on error modelling and clustering (i.e., the error strata) 

produced a fused map with higher accuracy than that of the maps based on other stratification 

approaches, and therefore was used in this study.  

 

Consolidation of the reference dataset 

Considering that the parameters of the fusion model (i.e. weight and bias) are sensitive to the 

characteristics of the reference data, each stratum requires that calibration data are relatively well-

balanced between the various reference datasets. Specifically, if a stratum contains few calibration 

data, the model becomes more sensitive to outliers, while if a reference dataset is much larger than 

the others, the model is more strongly determined by the dominant dataset. For these reasons, where 

the reference dataset was under-represented or un-balanced, it was consolidated by additional 

reference data taken from the reference biomass maps, if available. The reference data were 

considered insufficient if a stratum had less than half of the average reference data per stratum, and 

were considered un-balanced if a single dataset provided more than 75% of the reference data of the 

whole stratum and it was not representative of more than 75% of its area. In such cases, additional 

reference data were randomly extracted from the reference biomass maps that did not provide more 

than 75% of the reference data. The amount of data to be extracted from each map was computed in 

a way to obtain a reference dataset with an average number of reference data per stratum and not 

dominated by a single dataset. If necessary, additional training data representing areas with no 

biomass (e.g., bare soil) were included, using visual analysis of Google Earth images to identify 

locations without vegetation. 

 

Post-processing 

Predictions outside the coverage of the Baccini map 

The Baccini map covers the tropical belt between 23.4 degree north latitude and 23.4 degree south 

latitude while the Saatchi map presents a larger latitudinal coverage (Fig. 2). The fusion model was 
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firstly applied to the area common to both input maps (Baccini extent) and then extended to the area 

where only the Saatchi map is available. In the latter area, the model focused only on removing the 

bias of the Saatchi map using the values estimated for the Baccini extent. The model predictions for 

the Saatchi extent were mosaicked to those for the Baccini extent using a smoothing function 

(inverse distance weight) on an overlapping area of 1 degree within the Baccini extent between the 

two maps. The resulting fused map was projected to an equal area reference system (MODIS 

Sinusoidal) before computing the total biomass stocks for each continent, which were obtained by 

summing the products of the biomass density of each pixel with their area. Water bodies were 

masked over the whole study area using the ESA CCI Water Bodies map (ESA, 2014).  

 

Assessing biomass in intact and non-intact forest 

The biomass estimates of the fused and input maps in forest areas were further investigated 

regarding their distribution in ecozones and between intact and non-intact landscapes. Forest areas 

were defined as areas dominated by tree cover according to the GLC2000 map (classes 1-10 in the 

global legend of GLC2000). Ecozones were defined according to the Global Ecological Zone (GEZ) 

map for the year 2000 (FAO, 2000). The intact landscapes were defined according to the Intact 

Forest Landscape (IFL) map for the year 2000 (Potapov et al., 2008). On the basis of these datasets 

the mean forest biomass density of the fused and input maps were computed for intact and non-

intact landscapes for each continent and major ecozone. To reduce the impact of spatial 

inaccuracies in the maps only ecozones with intact forest areas larger than 1,000 km2 were 

considered. The mean biomass density of intact and non-intact forests per continent was computed 

as the area-weighted mean of the contributing ecozones. 

 

Validation and uncertainty 

Validation was performed by randomly splitting the reference data into a calibration set (70% of the 

data) and a validation set (remaining 30%). The ‘final’ fused map presented in Fig. 3 used 100% of 

the reference data and for validation purposes a ‘test’ fused map was produced using only the 

calibration data and its estimates, as well as those of the input maps, were compared with the 

validation data. To maintain full independence, validation data were not used for any step related to 

the development of the fused map, including production of the stratification map. To account for 

any potential impacts of the random selection of validation data, the procedure was repeated 100 

times, computing each time a new random selection of the calibration and validation datasets. This 

procedure allowed computing the mean RMSE and assessing its standard deviation for each map. 
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The uncertainty of the fused map was computed with respect to model uncertainty, not including the 

error sources in the input data (see ‘Discussion’). The model uncertainty consisted of the expected 

variance of the error of the fused map (which is assumed bias-free) and was derived for each 

stratum from C(s). The error variance was converted to an uncertainty map by reclassifying the 

stratification map.  

 

Results 

Biomass map 

The fusion model produced a biomass map at 1 km resolution for the tropical region, with an extent 

equal to that of the Saatchi map (Fig. 3). In terms of aboveground stocks, the fused map gave 

biomass estimates lower than both input maps at continental level. The total stock was 451 Pg dry 

mass, 17% lower than the estimate of the Saatchi map (545 Pg) for the same extent. Considering the 

same common area (Baccini extent), the fused map estimate was 360 Pg, 13% and 21% lower than 

the Saatchi (413 Pg) and Baccini (457 Pg) estimates, respectively (Table S6). 

 

Moreover, the fused map presented spatial patterns substantially different from both input maps 

(Fig. 4): the biomass estimates were higher than both input maps in the dense forest areas in the 

Congo basin, in West Africa, in the north-eastern part of the Amazon basin (Guyana shield) and in 

South-East Asia, and lower in Central America and in most dry vegetation areas of Africa. In the 

central part of the Amazon basin the fused map showed lower estimates than the Baccini map and 

higher estimates than the Saatchi map, while in the southern part of the Amazon basin these 

differences were inversed. Similar trends emerged when comparing the maps separately for intact 

and non-intact forest ecozones (Supporting Information). In addition, the average difference 

between intact and non-intact forests was larger than that derived from the input maps in Africa, 

Asia and Australia, similar or slightly larger in South America, and smaller in Central America (Fig. 

S7).  

 

The fused map records the highest biomass density (> 400 Mg ha-1) in the Guyana shield, in the 

Central and Western part of the Congo basin and in the intact forest areas of Borneo and Papua New 

Guinea. The analysis of the distribution of forest biomass in intact and non-intact ecozones showed 

that, according to the fused map, the mean biomass density was greatest in intact African (360 Mg 

ha-1) and Asian (328 Mg ha-1) forests, followed by intact forests in South America (262 Mg ha-1), 
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Asia (202 Mg ha-1), Australia (162 Mg ha-1) and Central America (135 Mg ha-1) (Fig. S7). Biomass 

in non-intact forests was much lower in all regions (Africa, 76 Mg ha-1; South America, 136 Mg ha-

1; Asia, 196 Mg ha-1; Australia, 90 Mg ha-1; and Central America, 46 Mg ha-1). 

 

 

Figure 3: Fused map, representing the distribution of live woody aboveground biomass (AGB) for all land cover 

types at 1 km resolution for the tropical region. 
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Figure 4: Difference maps obtained by subtracting the fused map from the Saatchi map (top) and the Baccini 

map (bottom). 

 

Validation 

The validation exercise showed that the fused map achieved a lower RMSE (a decrease of 8 – 74%) 

and bias (a decrease of 90 – 153%) than the input maps for all continents (Fig. 5). While the RMSE 

of the fused map was consistently lower than that of the input maps but still substantial (87 – 98 Mg 

ha-1) in the largest continents (Africa, South America and Asia), the mean error (bias) of the fused 

map was almost null in most cases. Moreover, in the three main continents the bias of the input 

maps tended to vary with biomass, with overestimation at low values and underestimation at high 

values, while the errors of the fused map were more consistently distributed (Fig. 6). When 

computing the error statistics as average of the regional validation results weighted by the 

respective area coverage, the mean bias (in absolute terms) for the fused, Saatchi and Baccini maps 

was 5, 21 and 28 Mg ha-1 and the mean RMSE was 89, 104 and 112 Mg ha-1, respectively (Fig. 5). 

The accuracy of the input maps was computed using the validation dataset (30% of the reference 

dataset) to be consistent with the accuracy of the fused map. The accuracy of the input maps was 
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also computed using all reference data and the results (Table S4) were similar to those based on the 

validation dataset. 

 

 

Figure 5: RMSE (left) and bias (right) of the fused and input maps (in Mg ha-1) per continent obtained using 

independent reference data not used for model development. The error bars indicate one standard deviation of 

the 100 simulations. Numbers reported in brackets indicate the number of reference observations used for each 

continent. 

 

 

Figure 6: scatterplots of the validation reference data (x-axis) and predictions (y-axis) of the input maps (left 

plots) and fused map (right plots) by continent.  
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Uncertainty map 

The uncertainty of the model predictions at 1 km resolution indicated that the standard deviation of 

the error of the fused map for each stratum was in the range 11 - 78 Mg ha-1, with largest 

uncertainties in areas with largest biomass estimates (Congo basin and Eastern Amazon basin). 

When computed in relative terms (as percentage of the biomass estimate) the model uncertainties 

presented opposite patterns, with uncertainties larger than the estimates (> 100%) in low biomass 

areas (< 20 Mg ha-1 on average) of Africa, South America and Central America, while high biomass 

forests (> 210 Mg ha-1 on average) had uncertainties lower than 25% (Fig. 7). The uncertainty 

measure derived from C(s) is computed only when two or more input maps are available. Hence it 

could not be calculated for Australia because the model for this continent was based on only one 

input map (Saatchi map). 

 

 

Figure 7: Uncertainty of the fused map, in absolute values (top) and relative to the biomass estimates (bottom), 

representing one standard deviation of the error of the fused map.  
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Discussion 

Biomass patterns and stocks emerging from the reference data 

The biomass map produced with the fusion approach is largely driven by the reference dataset and 

essentially the method is aimed at spatializing the biomass patterns indicated by the reference data 

using the support of the input maps. For this reason, great care was taken in the pre-processing of 

the reference data, which included a two-step quality screening based on metadata analysis and 

visual interpretation, and their consolidation after stratification. As a result, the reference dataset 

provides an unprecedented compilation of biomass estimates at 1 km resolution for the tropical 

region, covering a wide range of vegetation types, biomass ranges and ecological regions across the 

tropics. It includes the most comprehensive and accurate tropical field plot networks and high 

quality maps calibrated with airborne LiDAR, which provide more accurate estimates compared to 

those obtained from other sensors (Zolkos et al., 2013). The main trends present in the fused map 

emerged from the combination of different and independent reference datasets and are in agreement 

with the estimates derived from long-term research plot networks (Malhi et al., 2006; Phillips et al. 

2009; Lewis et al. 2009; Slik et al., 2010, 2013; Lewis et al., 2013) and high-resolution maps (Asner 

et al., 2012a, 2012b, 2013, 2014a). Specifically, the biomass patterns in South America represent 

spatial trends described by research plot networks in the dense intact and non-intact forests in the 

Amazon basin, forest inventory plots collected in the dense forests of Guyana and samples extracted 

from biomass maps for Colombia and Peru representing a wide range of vegetation types, from arid 

grasslands to humid forests. Similarly, biomass patterns depicted in Africa were derived from a 

combination of various research plots in dense undisturbed forest (Gabon, Cameroon, Democratic 

Republic of Congo, Ghana, Liberia), inventory plots in forest concessions (Democratic Republic of 

Congo), biomass maps in woodland and savannah ecosystems (Uganda, Mozambique) and research 

plots and maps in montane forests (Ethiopia, Madagascar). Most vegetation types in Central 

America, Asia and Australia were also well-represented by the extensive forest inventory plots 

(Indonesia, Vietnam and Laos) and high-resolution maps (Mexico, Panama, Australia).  

 

In spite of the extensive coverage, the current database is far from being representative of the 

biomass variability across the tropics. As a consequence, the model estimates are expected to be 

less accurate in contexts not adequately represented. In the case of the fusion approach, this 

corresponds to the areas where the input maps present error patterns different than those identified 

in areas with reference data: in such areas the model parameters used to correct the input maps (bias 

and weight) may not adequately reflect the errors of the input maps and hence cannot optimally 
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correct them. In particular, deciduous vegetation and heavily disturbed forest of Africa and South 

America, and large parts of Asia were lacking quality reference data. Moreover, even though plot 

data were spatially distributed over the central Amazon and the Congo basin, large extents of these 

two main blocks of tropical forest have never been measured (cf. maps in Mitchard et al. 2014; 

Lewis et al. 2013). Considering the evidence of significant local differences in forest structure and 

biomass density within the same forest ecosystems (Kearsley et al., 2013), additional data are 

needed to strengthen the confidence of the fused map as well as that of any other biomass map 

covering the tropical region. Moreover, a dedicated gap analysis to assess the main regions lacking 

biomass reference data and identify priority areas for new field sampling and LiDAR campaigns 

would be very valuable for future improved biomass mapping. 

 

Regarding the biomass stocks, a previous study showed that despite their often very strong local 

differences the two input maps tended to provide similar estimates of total stocks at national and 

biome scales and presented an overall net difference of 10% for the pan-tropics (Mitchard et al., 

2013). However, such convergence is mostly due to compensation of contrasting estimates when 

averaging over large areas. The larger differences with the estimates of the present study (13% and 

21%) suggest an overestimation of the total stocks by the input maps. This is in agreement with the 

results of two previous studies that, on the basis of reference maps obtained by field-calibrated 

airborne LiDAR data, identified an overestimation of 23% - 42% of total stocks in the Saatchi and 

Baccini maps in the Colombian Amazon (Mitchard et al., 2013) and a mean overestimation of about 

100 Mg ha-1 for the Baccini map in the Colombian and Peruvian Amazon (Baccini and Asner, 

2013).  

 

In general, the biomass density values of the fused map were calibrated and therefore in agreement 

with the existing estimates obtained from plot networks and high resolution maps. The comparison 

of mean biomass values in intact and non-intact forests stratified by ecozone provided further 

information on the differences among the maps. The mean biomass values of the fused map in non-

intact forests were mostly lower than those of the input maps, suggesting that in disturbed forests 

the biomass estimates derived from stand height parameters retrieved by spaceborne LiDAR (as in 

the input maps) tend to be higher compared to those based on tree parameters or very high 

resolution airborne LiDAR measurements (as in the fused map and reference data). This difference 

occurred especially in Africa, Asia and Central America while it was less evident in South America 

and Australia. By contrast, the differences among the maps for intact forests varied by continent, 

with the fused map having, on average, higher mean biomass values in Africa, Asia and Australia, 
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lower values in Central America, and variable trends within South America, reflecting the different 

allometric relationships used by the various datasets in different continents. 

 

As mentioned above, a larger amount of reference data, ideally acquired based on a clear statistical 

sampling design, instead of an opportunistic one, will be required to confirm such conclusions. 

While dense sampling of tropical forests using field observations is often impractical, new 

approaches combining sufficient ground observations of individual trees at calibration plots with 

airborne LiDAR measurements for larger sampling transects would allow a major increase in the 

quantity of calibration data. In combination with wall-to-wall medium resolution satellite data (e.g., 

Landsat) these may be capable of achieving high accuracy over large areas (10% - 20% uncertainty 

at 1-ha scale) while being cost-effective (e.g., Asner et al. 2014b; Asner et al., 2013). In addition, 

new technologies, such as terrestrial LiDAR scanning, allows for better estimates at ground level 

(Calders et al., 2015), reducing considerably the uncertainties of field estimates based on 

generalized allometric equations without employing destructive sampling. Nevertheless, such 

techniques benefit from extensive and precise measurements of tree identity in order to determine 

wood density patterns, since floristic composition influences biomass at multiple scales (e.g., the 

strong pan-Amazon gradient in wood density shown by ter Steege et al., 2006), and cannot account 

for variations in hollow stems and rottenness (Nogueira et al., 2006). 

 

Additional error sources  

Apart from the uncertainty of the fusion model described above (see ‘Uncertainty’), three other 

sources of error were identified and assessed in the present approach: i) errors in the reference 

dataset; ii) errors due to temporal mismatch between the reference data and the input maps; iii) 

errors in the stratification map.  

 

Errors in the reference dataset 

The reference dataset is not error-free but it inherits the errors present in the field data and local 

maps and introduces additional uncertainties during the pre-processing of the data by resampling 

the maps and by upscaling the plot data to 1 km resolution. In particular, while the geolocation error 

of the original datasets was considered relatively small (< 50 m) since plot coordinates were 

collected using GPS measurements and the biomass maps were based on satellite data with accurate 

geolocation (i.e., Landsat, ALOS, MODIS), larger errors (up to 500 m, half a pixel) could have 

been introduced with the resampling of the 1 km input maps. All these error sources were 
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minimized by selecting only the datasets that fulfilled certain quality criteria and by further 

screening them by visual analysis of high-resolution images available on the Google Earth platform, 

discarding the data not representative of the respective map pixels. In case of reference data that 

clearly did not match with the high-resolution images and/or with the input maps (e.g., reporting no 

biomass in dense forest areas or high biomass on bare land), the data were considered as an error in 

the reference dataset, a geolocation error in the plots or maps, or it was assumed that a land change 

process occurred between the plot measurement and the image acquisition time (see next paragraph).   

 

Errors due to temporal mismatch 

The temporal difference of input and reference data introduced some uncertainty in the fusion 

model. The input maps refer to the years 2000 - 2001 (Saatchi) and 2007 - 2008 (Baccini) while the 

reference data mostly spanned the period 2000 – 2013. Therefore, the differences between the input 

maps and the reference data may also be due to a temporal mismatch of the datasets. However, 

changes due to deforestation were most likely excluded during the visual selection of the reference 

data, when high-resolution images showed clear land changes (e.g., bare land or agriculture) in 

areas where the input maps provided biomass estimates relative to forest areas (or vice-versa, 

depending on the timing of acquisition of the datasets). However, changes due to forest regrowth 

and forest degradation events that did not affect the forest canopy could not be considered with the 

visual analysis and may have affected the mismatch observed between the reference data and the 

input maps (< |56 - 78| Mg ha-1 for 50% of the cases of the Saatchi and Baccini maps, respectively). 

The mismatch was in the range of biomass changes due to regrowth (1 - 13 Mg ha-1 year-1) (IPCC, 

2003) or low-intensity degradation (14 - 100 Mg ha-1, or 3-15% of total stock) (Pearson et al., 2014; 

Asner et al., 2010). On the other hand, considering the area affected by degradation (about 20% in 

the humid tropics) (Asner et al., 2009), the temporal mismatch was considered responsible only for 

a limited part of the large differences observed between the reference data and the input maps. 

Small additional offsets may also be caused by the documented secular changes in biomass density 

within intact tropical forests, which has been increasing by 0.2 – 0.5% per year (Phillips et al. 1998, 

Chave et al. 2008, Phillips and Lewis 2014). It should also be noted that the reference data were 

used to optimally integrate the input maps, and in the case of a temporal difference the fused map 

was also ‘actualized’ to the state of the vegetation when the reference data were acquired. Therefore 

the fused map cannot be attributed to a specific year and it represents the first decade of the 2000’s. 

 

Errors in the stratification map 
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The errors in the stratification map (i.e., related to the prediction of the errors of the input maps) 

were still substantial in some areas and affected the fused map in two ways. First, the reference data 

that were erroneously attributed to a certain stratum introduced ‘noise’ in the estimation of the 

model parameters (bias and weight), but the impact of these ‘outliers’ was largely reduced by the 

use of a robust covariance estimator. Second, erroneous predictions of the strata caused the use of 

incorrect model parameters in the combination of the input maps. The latter is considered to be the 

main source of error of the fused map and indicates that the method can achieve improved results if 

the errors of the input maps can be predicted more accurately. However, additional analysis showed 

that, on average, fused maps based on alternative stratification approaches achieved lower accuracy 

than the map based on an error stratification approach (Fig. S5). Therefore, this approach was 

preferred over a stratification based on an individual biophysical variable (e.g., tree cover, tree 

height, land cover or ecozone). 

 

Application of the method at national scale 

The fusion method presented in this study allows for the optimal integration of any number of input 

maps to match the patterns indicated by the reference data. However, the accuracy of the fused map 

depends on the availability of reference data representative of the error patterns of the input maps. 

While the current reference database does not represent adequately all error strata for the tropical 

region, and the model estimates are expected to have lower confidence in under-represented areas, 

the proposed method may be applied locally and provide improved biomass estimates where 

additional reference data are available. For example, the fusion method may be applied at national 

level using existing forest inventory data, research plots and local maps that cover only part of the 

country to calibrate global or regional maps, which provide national coverage but may not be 

tailored to the country context. Such country-calibrated biomass maps may be used to support 

natural resource management and national reporting under the REDD+ mechanism, especially for 

countries that have limited capacities to map biomass from remote sensing data (Romijn et al. 2012). 

Considering the increasing number of global or regional biomass datasets based on different data 

and methodologies expected in the coming years, and that likely there will not be a single ‘best 

map’ but rather the accuracy of each will vary spatially, the fusion approach may allow to optimally 

combine and adjust available datasets to local biomass patterns identified by reference data. 
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Appendix S1 

Supplementary methods and results 

 

Stratification approach 

Error modelling 

The stratification approach implemented in this study aimed to identify areas with homogeneous 

error structure in both input maps. The error maps of the Saatchi and Baccini maps were first 

predicted separately and then combined in eight error strata per continent using a clustering 

approach. Since the biomass estimates of the input maps were mostly based on optical and LiDAR 

data that are sensitive to tree cover and tree height, it was assumed that their uncertainties were 

related to the spatial variability of these parameters. In addition, the errors of the input maps 

resulted to be linearly correlated with the respective biomass estimates. For these reasons, the 

biomass maps themselves as well as global datasets of land cover, tree cover and tree height were 

used to predict the map errors using a Random Forest model (Breiman, 2001), calibrated on the 

basis of the reference dataset. Then, the error maps of the Saatchi and Baccini datasets were 

clustered using the K-Means approach. The number of clusters was determined as a trade-off 

between homogeneity of the errors of the input maps (quantified as variance (sum of squares) 

within groups of the error maps) and number of reference observations available per stratum. Eight 

clusters was considered as a sensible compromise between these two parameters, with a larger 

number of clusters providing only a marginal increase in homogeneity but leading to a small 

number of reference data in some strata (Fig. S1). The resulting stratification map presented missing 

values where the predictors presented no data, i.e. areas without coverage of the Baccini map, or for 

classes of the categorical predictor (i.e., land cover) without reference data. The missing values 

were estimated using an additional Random Forest model that predicted the strata (instead of the 

errors of the input maps) based on 10,000 randomly selected training data. These ‘secondary’ 

training data were extracted from the stratification map and included only the predictors without 

missing values (i.e., Saatchi map, tree cover and tree height). The performance of this approach was 

assessed on the basis of the RMSE of the models that predicted the errors of the input maps, and on 

the error rate of the models that predicted the strata for the areas with missing values (Fig. S2, Fig. 

S3). The performance statistics were computed as an average of 100 model repetitions to account 

for a certain level of randomness inherent in the ensemble modelling approach used in this study 

(Random Forest). The importance of the predictor variables was assessed on the basis of the total 

increase in node purities (measured by residual sum of squares) from splitting on the variable, 
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averaged over all trees (Liaw and Wiener, 2002) (Table S1). According to this variable, the main 

predictors of the errors of the input maps were in most cases the biomass values of the maps 

themselves, followed by tree cover and tree height, while land cover was always the least important 

predictor. 

 

 

Figure S1: Relation between the number of clusters (x axis), the average number of reference data per cluster 

(red line) and their homogeneity (within groups sum of square) (black line) when the error maps of the Saatchi 

and Baccini datasets are clustered using the K-Means approach. 
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Figure S2: Performance of the models that predicted the error of the input maps (RMSE) and of the models that 

predicted the strata for the areas not covered by the Baccini map (Error rate). Error statistics are computed as 

mean of 100 random model repetitions, with the error bars indicating 1 standard deviation. 

 

 

Figure S3: Comparison of predicted errors on the Out-Of-Bag data (i.e., data not used for training the model) 

with observed errors of the Random Forest models that estimated the errors of the input maps. 

 

Table S1: Importance of the variables used to predict the errors of the input maps by the Random Forest models. 

The importance is represented by the increase in node purity (x 1000). The variables are the biomass of Saatchi 
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map (“AGB Saatchi”), biomass of the Baccini map (“AGB Baccini”), forest height (“Height”), tree cover (“VCF”) 

and land cover according to the ESA CCI map (“CCI”). 

 Africa S. America C. America Asia Australia 

 Saatchi Baccini Saatchi Baccini Saatchi Baccini Saatchi Baccini Saatchi 

AGB Saatchi 2,607 2,963 1,321 839 14,684 963 1,293 618 1,536 

AGB Baccini 2,365 2,737 839 923 1,832 6,219 890 766 - 

VCF 2,346 3,223 1,170 1,237 2,469 3,071 614 534 4,971 

Height 1,629 1,710 784 748 3,320 1,990 586 537 949 

CCI 471 937 22 12 433 239 164 104 1,702 

 

Pre-processing of covariate maps 

The maps used to predict the error strata were obtained as follows. The land cover information was 

derived from the ESA CCI 2005 Land Cover map (ESA, 2014) by first reclassifying it into eight 

classes representing the main vegetation types (Evergreen forest, Deciduous forest, Woodland, 

Mosaic Vegetation, Shrubland, Grassland, Cropland, Other land) and then resampling it from its 

original resolution (330 m) to the resolution of the Saatchi map (1 km) on the basis of the majority 

criterion. The tree cover value was obtained from the annual MODIS VCF tree cover composites at 

250m for the years 2000 – 2010 (DiMiceli et al., 2011). The eleven annual datasets were averaged 

to a mean decadal composite, spatially aggregated to 1 km resolution and warped to the geographic 

projection and grid of the Saatchi map (WGS-84). Tree height was directly derived from the Global 

3D Vegetation Height map at 1km resolution (Simard et al., 2011). Additional potential land cover 

and ecosystem predictors, namely the GLC2000 map (Mayaux et al., 2004), the Synmap map (Jung 

et al., 2006) and the Global Ecological Zone (GEZ) map (FAO, 2000), were tested but discarded 

after preliminary analysis because they did not provide additional explanatory power to the error 

models. All maps were resampled to match the grid of the Saatchi map using the nearest neighbor 

method.  

 

Stratification map and alternative approaches 

The stratification map obtained with the approach described above identified eight strata depicting 

homogeneous error patterns of the input maps for each continent (Central America, South America, 

Africa, Asia and Australia). The map, reported in Figure S4, was used to identify the parameters 

(bias and weights) of the fusion model.  
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Alternative stratification approaches using individual datasets to predict the errors of the input maps, 

namely land cover, tree cover or tree height, were tested and their performance assessed by 

validating the respective fused maps. The fused maps based on each stratification map were trained 

using a calibration dataset (random selection of 70% of the reference data) and compared with the 

validation dataset (remaining 30% of the reference data) to compute the respective RMSE. To 

account for any potential impacts of the random selection of validation data, the procedure was 

repeated 100 times, computing each time a new random selection of the calibration and validation 

datasets. This procedure allowed to compute the mean RMSE and assess its standard deviation for 

each map. 

 

 

Figure S4: Stratification map, depicting eight strata per continent with homogeneous error patterns of the input 

maps. 
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Figure S5: Performance of all stratification approaches, computed as RMSE of the respective fused maps 

assessed using independent reference data. The “Model” stratification refers to the approach used in this study 

(“Error strata”). The alternative stratification approaches consist of individual datasets used to predict the 

errors of the input maps, i.e., forest height (“HEI”), tree cover (“VCF”), land cover according to the GLC2000 

map (“GLC”) and land cover according to the ESA CCI map (“CCI”). 

 

Reference dataset 

Visual selection of the reference field data  

After the preliminary selection of field plots based on metadata information (tree parameters 

measured in the field, allometric model applied, year of measurement, plot geolocation and extent), 

the ground data were further screened to discard the plots not representative of the biomass density 

within the 1 km cells of the input maps. Considering that the two input maps are not aligned and 

therefore their pixels do not correspond to the same geographic area, the plots needed to be 

representative of the area of both pixels identified before their resampling. For this reason, the plot 

representativeness was assessed on the area obtained by merging the pixel extent of the Saatchi map 

with the corresponding pixel extent of the Baccini map after its aggregation to 1 km but before its 

resampling. The representativeness was assessed by means of visual interpretation of high 

resolution images provided on the Google Earth platform, discarding the plots located in pixels with 
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heterogeneous tree cover and tree crowns. Pixels were considered heterogeneous if more than 10% 

of the area presented forest structure different than that of the majority of the area (i.e., pixels 

needed to be homogeneous for at least 90% of their area). Moreover, if the sum of the area of all 

plots located within a pixel was smaller than 0.1 ha, these plots were removed because the area 

measured on the ground was considered insufficient to represent 1km pixels even in homogeneous 

contexts. Even though biomass may still vary substantially within an area having similar forest 

structure, using the texture and context information assessed through visual interpretation allowed 

for higher confidence than assessing pixel homogeneity using fixed thresholds of tree cover and 

texture variability automatically derived from coarser resolution images (i.e., MODIS or Landsat). 

Examples of plots selected or discarded through the visual analysis of Google Earth images are 

provided in Fig. S6. 

 

 

Figure S6: visual selection of the field plots. Plots are discarded if not representative of the biomass density in the 

1 km2 area of the input maps. The yellow and red polygons represent the area of the corresponding pixels of the 

Saatchi and Baccini maps and the blue circles represent the extent of the field plots, superimposed on the Google 

Earth images. The right plots were selected (tree cover and texture are homogeneous) and the left plot was 

discarded (heterogeneous pixels). FIGURE TO BE ENHANCED: plot area is not visible 

 

The pan-tropical reference dataset 

The reference data selected after the screening, upscaling and consolidating procedure, for each 

individual dataset are reported in Table S2. The field plots underpinning the reference biomass 

maps are not included among the “Available plots” to avoid double-counting, since the respective 

reference data are already considered as “Selected pixels”. Table S3 indicates the main type of 

training data used by the high resolution biomass maps and the criteria used to select the 1-km 
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reference pixels for this study. A complete description of the metadata and the literature reference 

of the ground reference data and reference biomass maps are provided in Table S7 – S10. 

 

Table S2: Number of reference data (plots and 1-km pixels) selected after the screening, upscaling and 

consolidating procedure, for each individual dataset. 

ID Continent Type Country/Region Available Selected Consolidated 

Plots Plots Pixels Pixels 

AFR1 Africa Plots DRC 1,157 1,067 227 227 

AFR2 Africa Plots Sierra Leone 609 576 162 162 

AFR3 Africa Plots Tropical Africa 260 175(a) 161 161 

AFR4 Africa Plots Ethiopia 119 60 42 42 

AFR5 Africa Plots Ghana 74 65 12 12 

AFR6 Africa Plots Tanzania 42 23 9 9 

AFR7 Africa Plots DRC 20 10 9 9 

AFR8 Africa Map Uganda   223 223 

AFR9 Africa Map Madagascar  60 60 

AFR10 Africa Map Mozambique  38 38 

AFR11 Africa Map Cameroon  10 10 

TOTAL AFRICA 2,281 1,976 953 953 

SAM1 S. America Plots Amazon basin 413 287(b) 221 221 

SAM2 S. America Plots Brazil 124 101 48 48 

SAM3 S. America Plots Guyana 111 86 30 30 

SAM4 S. America Map Peru   100 100 

SAM5 S. America Map Colombia   50 50 

TOTAL S. AMERICA 648 474 449 449 

CAM1 C. America Map Mexico   4,263 6,072 

CAM2 C. America Map Panama   997 3,095 

TOTAL C. AMERICA 0 0 5,260 9,167 

ASI1 Asia Plots Vietnam 3,197 1,547 101 101 

ASI2 Asia Plots Laos 122 68 65 65 

ASI3 Asia Plots Sabah 104 74 53 53 

ASI4 Asia Plots Indonesia 82 39 36 36 

ASI5 Asia Plots SE Asia 132 77 77 77 

ASI6 Asia Plots Indonesia 25 17 11 11 
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ASI7 Asia Plots SE Asia 25 4 4 4 

ASI8 Asia Plots Indonesia 11 7 6 6 

ASI9 Asia Map Asia   0 47(c) 

TOTAL ASIA 3,698 1,833 353 400 

AUS1 Australia Map Australia   5,000 5,000 

TOTAL AUSTRALIA 0 0 5,000 5,000 

TOTAL TROPICS 6,627 4,283 12,015 15,969 

 

(a) 22 plots (DOU, OVG, EKO, LOP-01, CVL, GBO) were removed because they were used by Saatchi et al. (2011) to 

calibrate the LiDAR/biomass relationships, and therefore highly correlated with the map values. 

 (b) 264 plots measured for the last time after the year 2000 were selected. In addition, 23 plots measured from 1990 in 

undisturbed forests were included because the visual analysis of high-resolution images did not indicate any sign of 

disturbance. 

(c) Additional training data representing areas with no biomass (e.g., bare soil) were included only for Asia, where 47 

pixels were selected using visual analysis of Google Earth images. 

 

Table S3: Type of calibration data used by the high resolution biomass maps (identified by the “ID”) and criteria 

used to select the 1-km reference pixels for this study (“Selected pixels”). 

 ID Calibration data Selected pixels 

AFR8 Field plots  Pixels with plots representative of >40% of pixel area 

AFR9 Airborne LiDAR Random pixels in an amount proportional to other datasets 

AFR10 Field plots All pixels with plots 

AFR11 Field plots All pixels with plots 

SAM4 Airborne LiDAR Random pixels in an amount proportional to other datasets 

SAM5 Airborne LiDAR Random pixels in an amount proportional to other datasets 

CAM2 Field plots Pixels with available plots 

CAM3 Airborne LiDAR Random pixels in an amount proportional to the map area 

AUS1 Field plots Random pixels in an amount proportional to other continents 

 

The reference dataset described above was used to assess the errors of the input maps (RMSE) and 

the linear correlation (r) of the errors for each continent (Table S4). 

 

Table S4: Linear correlation of the errors (r) and RMSE of the input maps computed using the complete 

reference dataset, per continent. 

  Africa S. America C. America Asia Australia 
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  Saatchi Baccini Saatchi Baccini Saatchi Baccini Saatchi Baccini Saatchi 

r 0.77 0.72 0.61 0.65 0.60 0.75 0.64 0.72 0.69 

RMSE 105 116 104 96 97 101 124 103 45 

 

 

The fusion model 

The biases and weights computed by the fusion model per stratum and continent are reported in 

Table S5, along with the number of reference data and relative area of each stratum (in percentage). 

 

Table S5: Bias values and weights applied to the input maps, number of reference data and percentage relative 

area per stratum and continent 

 Bias Weight Ref. data (N) Area 

Strata Saatchi Baccini Saatchi Baccini   

AFRICA 

1 -11 -55 0.29 0.71 111 13% 

2 -26 -17 0.57 0.43 123 21% 

3 113 203 0.54 0.46 163 1% 

4 200 146 0.00 1.00 77 2% 

5 77 -51 0.93 0.07 66 3% 

6 -91 -49 0.07 0.93 146 7% 

7 -56 -87 0.45 0.55 89 8% 

8 -7 16 0.60 0.40 178 45% 

ASIA 

1 -42 -22 0.75 0.25 83 69% 

2 82 52 0.00 1.00 19 2% 

3 43 116 0.45 0.55 26 2% 

4 174 190 0.00 1.00 38 2% 

5 -186 -74 0.84 0.16 74 2% 

6 -125 -117 0.43 0.57 61 2% 

7 11 -31 1.00 0.00 55 14% 

8 -77 20 1.00 0.00 44 6% 

CENTRAL AMERICA 

1 -16 -67 0.43 0.57 1574 20% 

2 -12 -112 0.34 0.66 1155 7% 

3 -119 -80 0.62 0.38 1511 6% 

4 -76 -163 0.53 0.47 748 2% 

5 -204 -101 0.45 0.55 617 3% 

6 -63 -74 0.65 0.35 2402 9% 

7 -14 -27 0.38 0.62 637 51% 

8 -178 -178 0.33 0.67 506 1% 



38 

 

SOUTH AMERICA 

1 -37 -112 0.38 0.62 72 6% 

2 27 5 0.84 0.16 43 10% 

3 -18 -44 0.96 0.04 37 56% 

4 38 -64 0.39 0.61 51 7% 

5 161 139 0.17 0.83 79 3% 

6 -102 -79 0.75 0.25 59 4% 

7 -23 3 0.33 0.67 48 10% 

8 124 40 0.97 0.03 60 5% 

AUSTRALIA 

1 -21 NA 1.00 0.00 847 16% 

2 -37 NA 1.00 0.00 449 6% 

3 79 NA 1.00 0.00 411 2% 

4 2 NA 1.00 0.00 859 29% 

5 141 NA 1.00 0.00 220 2% 

6 41 NA 1.00 0.00 564 4% 

7 -11 NA 1.00 0.00 1145 35% 

8 16 NA 1.00 0.00 505 6% 

 

Biomass map 

Biomass stocks of the fused and input maps 

The total biomass stocks (Pg) of all land cover types per continent and biomass map are reported in 

Table S6. For comparability among the three maps (Saatchi, Baccini and fused map), the stocks are 

computed for the extent of the Baccini map while the values in brackets represent the stocks relative 

to the larger extent of the Saatchi map.  The values reported for the Saatchi map are higher than 

those published by Saatchi et al. (2011) because the latter refer only to areas with tree canopy 

cover >10%.  

 

Table S6: Total biomass stocks (Pg) of all land cover types per continent and biomass map. The values refer to 

the extent of the Baccini map while the values in brackets represent the stocks relative to the larger extent of the 

Saatchi map.   

 Africa S. America C. America Asia Australia Total 

Baccini 129 216 18 93  - 457 

Saatchi 113 (117) 178 (196) 15 (20) 107 (192) (21) 413 (545) 

Fused 96 (97) 179 (191) 7 (9) 78 (134) (19) 360 (451) 
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Comparison of forest biomass in intact and non-intact landscapes 

The biomass values per continent for intact and non-intact forests were computed as the area-

weighted mean of the contributing ecozones (see related section in “Data and Methods”). In Africa 

the fused map presented higher mean biomass values than the Saatchi and Baccini maps in intact 

forests (+86 and +65 Mg ha-1, respectively) and lower values in non-intact forests (-15 and -36 Mg 

ha-1, respectively), in Asia and in Central America the fused map was consistently lower than the 

input maps in both intact (between -74 and -125 Mg ha-1) and non-intact forests (between -51 and -

65 Mg ha-1), in South America the fused map was similar to the Saatchi map in both intact and non-

intact forests (+20 and +3 Mg ha-1, respectively) and lower than the Baccini map (-18 and -28 Mg 

ha-1, respectively), and in Australia the fused map was higher than the Saatchi map in both intact 

and non-intact forests (+72 and +30 Mg ha-1, respectively). As expected, intact forests had 

consistently higher mean biomass than non-intact forest in all continents and major ecozones. When 

considering the average difference between intact and non-intact forests, this was larger in the fused 

map than in the Saatchi and Baccini maps in Africa (236, 143 and 154 Mg ha-1 respectively), 

similar or slightly larger in South America (78, 63 and 79 Mg ha-1 respectively), and smaller in 

Central America (58, 74 and 86 Mg ha-1 respectively) and Asia (39, 59 and 55 Mg ha-1 respectively). 
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Figure S7: Mean biomass density of the fused and input maps in intact (I) and non-intact (NI) forests stratified 

by continent and ecozone. Only ecozones with intact forest larger than 1,000 km2 are reported  
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Table S7: Metadata of the ground reference datasets (part 1)  

ID Continent Country / Region Location Extent Vegetation type(s) Year(s) N. 

plots 

Area - 

Range (ha) 

Area - Mean 

(ha) 

Min. DBH 

(cm) 

Reference 

AFR1 Africa DRC Lukenie Local Forest (concession) NA 1157 0.5 0.5 10 Hirsch et al., 2013 

AFR2 Africa Sierra Leone Gola Forest Local Forest 2005-2007 609 0.125 0.125 10 Lindsell and Klop, 2013 

AFR3 Africa Tropical Africa Tropical Africa Regional Forest (Intact) 1970s - 2013 260 0.2 - 10 1.2 10 Lewis et al., 2013 

AFR4 Africa Ethiopia Kafa Local Forest - Woodland 2011-2013 119 0.126 0.126 5 De Vries et al., 2012 

AFR5 Africa Ghana Ankasa Local Forest 2012 34 0.05 0.05 10 Laurin et al., 2013 

AFR5 Africa Ghana Bia Boin, Dadieso Local Forest 2012-2013 40 0.16 0.16 5 Pirotti et al., 2014 

AFR6 Africa Tanzania Eastern Arc Mountain Local Forest 2007-10 42 0.08 - 1 0.66 10 Lopez-Gonzalez et al., 2009, 2011 

AFR7 Africa DRC Yangambi Local Forest (Intact) NA 20  1  1 10 Kearsley et al., 2013 

SAM1 S. America Amazon Amazon Regional Forest 1956 - 2013 413 0.25 - 9 1 10 Mitchard et al., 2013; Lopez-
Gonzalez et al., 2014 

SAM2 S. America Brazil Brazil National Forest 2009 - 2013 124 0.16 - 1 0.42 5 - 10 Embrapa, 2014 

SAM3 S. America Guyana Guyana Local Forest 2010 - 2011 111     5 NA 

CAM1 C. America Mexico Mexico National Forest 2004-2008 4136     7.5 de Jong, 2013 

ASI1a Asia Vietnam Quang Nam Province Forest 2007-2009 3035 0.05 0.05 6 Avitabile et al., 2014 

ASI1b Asia Vietnam Quang Nam Province Forest 2011-2012 162 0.01 - 0.126 0.08 5 Avitabile et al., 2014 

ASI2 Asia Laos Xe Pian Local Forest 2011-2012 122 0.1 - 0.126 0.11 5 WWF and OBf, 2013 

ASI3 Asia Indonesia Sabah Local Forest (concession) 2005 - 2008  104 0.5 - 1.5 1 10 Morel et al., 2011 

ASI4 Asia Indonesia Riau province Local Forest 2009-2010 82 0.015 0.015 5 Wijaya et al., 2015 

ASI5 Asia Asia India, China, Indonesia Local Forest (Intact) circa-2010 132 0.25 - 20 1.5 10 Slik et al., 2013, 2014 

ASI6 Asia Malaysia, Indonesia Sarawak, C. Kalimantan Regional Forest (Intact) 2013 - 2014 25 0.25 - 1 0.57 10 Phillips et al., in prep. 

ASI7 Asia Indo-Pacific Indo-Pacific Regional Mangrove 2008 - 2009 25 0.015 0.015 5 Donato et al., 2011 

ASI8 Asia Indonesia Kalimantan Local Mangrove 2008-2009 11 0.015 0.015 5 Murdiyarso et al., 2010 (a) 

(a) The metadata for this dataset are provided in Amira (2008) and Kauffman and Donato (2012) 
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Table S8: Metadata of the ground reference datasets (part 2) 

ID Parameter 

measured 

Tree Height Allometric equation Parameters of 

allom. eq. 

Plot type Permanent plot 

AFR1 Dbh, Sp, Hei not used Chave (2005) Moist Dbh, wd, hei For. Inv. No 

AFR2 Dbh, Sp, Hei local eq. Chave (2005) Moist Dbh,wd, hei For. Inv. No 

AFR3 Dbh, Sp Feldpausch (2012) Chave (2005) Moist Dbh,wd, hei Res. plots Yes 

AFR4 Dbh, Sp not used Chave (2005) Wet dbh, wd Res. plots No 

AFR5 Dbh, Sp, Hei measured for all trees Chave (2005) Moist Dbh,wd, hei Res. plots No 

AFR5 Dbh, Sp, Hei measured for all trees Chave (2005) Moist Dbh,wd, hei Res. plots No 

AFR6 Dbh, Sp Feldpausch (2012) Chave (2005) Moist Dbh,wd, hei Res. plots Yes 

AFR7 Dbh, Sp, Hei stand-specific eq. Chave (2005) Moist Dbh,wd, hei Res. plots Yes 

SAM1 Dbh, Sp Feldpausch (2012) Chave (2005) Moist Dbh,wd, hei Res. plots Yes 

SAM2 Dbh, Sp, Hei measured for all trees Chave (2005) Moist Dbh,wd, hei For. Inv. No 

SAM3 Dbh, Sp not used Chave (2005) Moist dbh, wd For. Inv. No 

CAM1 Dbh, Sp, Hei measured for all trees Urquiza-Haas et al. (2007) Dbh,wd, hei For. Inv. Yes 

ASI1a Dbh, Sp, Hei local eq. Chave (2005) Moist Dbh,wd, hei For. Inv. No 

ASI1b Dbh, Sp not used Chave (2005) Moist dbh, wd Res. plots No 

ASI2 Dbh, Sp not used Chave (2005) Dry/Moist dbh, wd Res. plots No 

ASI3 Dbh, Sp, Hei stand-specific eq. Chave (2005) Moist Dbh,wd, hei Res. plots No 

ASI4 Dbh, Sp not used Komiyama et al. (2008), Chave (2005) Moist dbh, wd Res. plots No 

ASI5 Dbh, sp Feldpausch (2012) Chave (2005) Dry/Moist/Wet Dbh,wd, hei Res. plots No 

ASI6 Dbh, sp Feldpausch (2012) Chave (2005) Moist Dbh,wd, hei Res. plots Yes 

ASI7 Dbh, sp not used Komiyama et al. (2008) dbh, wd Res. plots No 

ASI8 Dbh, Sp not used Komiyama et al. (2008) dbh, wd Res. plots No 
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Table S9: Metadata of the reference biomass maps (part 1) 

ID Continent Country/Region Location Extent Vegetation 
types (a) 

Year (map) Resolution 
(m) 

Accuracy 
dataset 

RMSE 
(Mg/ha) 

R2 RS data Reference 

AFR8 Africa Uganda Uganda National For – Wood – 
Sav. 

1999-2003 30 Validation 13 0.81 Landsat, 
LC 

Avitabile et 
al., 2012 

AFR9 Africa Madagascar North 
Madagascar 

Local Forest 2010 100 Calibration 42 0.88 Landsat, 
LiDAR 

Asner et al., 
2012 

AFR10 Africa Mozambique Gorongosa  Local Wood – Sav 2007 50 Validation 20 0.49 ALOS Ryan et al., 
2012 

AFR11 Africa Cameroon Mbam Djerem Local For - Sav 2007 100 Calibration 29 NA ALOS Mitchard et 
al., 2011 

SAM4 S. America Peru Peru National For – Wood – 
Grass 

NA 100 Calibration 55 0.82 Landsat, 
LiDAR 

Asner et al., 
2014 

SAM5 S. America Colombia Colombian 
amazon 

Regional Forest 2010 100 Validation 58 NA Landsat, 
LiDAR 

Asner et al., 
2012 

CAM2 C. America Mexico Mexico National Forest 2007 30 Validation 28 0.52 Landsat, 
ALOS 

Cartus et al., 
2014 

CAM3 C. America Panama Panama National For – Wood – 
Grass 

2008 - 
2012 

100   45 0.62 Landsat, 
LiDAR 

Asner et al., 
2013 

AUS1 Australia Australia West Australia Local Wood – Sav   50 NA NA NA ALOS Lucas et al., 
2010 

(a) Forest (For), woodland (Wood), Savannah (Sav), Grassland (Grass) 
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Table S10: Metadata of the reference biomass maps (part 2) 

ID N. plots Years (Plots) Plot size - 

Range (ha) 

Plot size - 

Mean (ha) 

Min. DBH 

(cm) 

Parameter 

measured 

Tree Height Allometric equation Parameters of 

allometric eq. 

Plot type 

AFR8 2527 1995-2005 0.25 0.25 3 Dbh, Sp, Crown measured Drichi (2003) Dbh, wd, 

crown 

For. Inv. 

AFR9 19 NA 0.28 0.28 0 Dbh, Sp, Hei local eq. Chave (2005) Wet Dbh, wd, hei Res. plots 

AFR10 96 2006-2009 0.1 - 2.2 0.63 5 Dbh not used Ryan et al. (2011) dbh Res. plots 

AFR11 25 2007 0.2 - 1 0.6 10 Dbh, Sp, Hei local eq. Chave (2005) Dry/Moist/Wet Dbh, wd, hei Res. plots 

SAM4 272 NA 0.3 - 1 0.33 NA Dbh, Sp, Hei local eq. Chave et al., 2014 Dbh, wd, hei For. Inv. 

SAM5 11 NA 0.28 0.28 10 Dbh, Sp local eq. Chave (2005) Moist Dbh, wd, hei Res. plots 

CAM2 16906 2004 - 2007 1 1 7.5 Dbh, Sp, Hei measured National species-specific eq. Dbh, wd, hei For. Inv. 

CAM3 228 NA 0.1 - 0.36 NA 10 Dbh, Sp, Hei local eq. Chave (2005) Dry/Moist/Wet Dbh, wd, hei Res. plots 

AUS1 2781          
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