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Abstract

We consider the problem of mean-variance portfolio optimization for a generic co-
variance matrix subject to the budget constraint and the constraint for the expected
return, with the application of the replica method borrowed from the statistical physics
of disordered systems. We find that the replica symmetry of the solution does not need
to be assumed, but emerges as the unique solution of the optimization problem. We
also check the stability of this solution and find that the eigenvalues of the Hessian
are positive for r = N/T < 1, where N is the dimension of the portfolio and T the
length of the time series used to estimate the covariance matrix. At the critical point
r = 1 a phase transition is taking place. The out of sample estimation error blows
up at this point as 1/(1 − r), independently of the covariance matrix or the expected
return, displaying the universality not only of the critical exponent, but also the critical
point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal
in-sample variance is found to vanish at the critical point inversely proportional to the
divergent estimation error.

1 Introduction

Starting with Markowitz’s seminal paper [1], the problem of portfolio optimization has
become the subject of a vast literature. The several hundred papers written on this
problem apply widely different approaches; the list [2–46] is just a small selection from
this literature.

The present paper belongs to a narrow subfield where the methods of statistical
physics, in particular the replica method borrowed from the theory of disordered sys-
tems, are applied. In this approach one assumes that the returns on the securities in
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the portfolio obey an idealized probability distribution, in the simplest case a Gaus-
sian, and calculates the quantities of interest like the weights of the optimal portfolio,
the minimal risk, sensitivity to changes in the returns, estimation error, etc., exactly.
Of course, real-life returns are neither normal, nor stationary, therefore one can only
hope that the results produced by the theory will give an idea of the behaviour of
the various characteristic quantities, which can then be compared to simulation results
and empirical data. Well-suited to the case of huge institutional portfolios, the statis-
tical physics-inspired approach targets large portfolios composed of N different kind
of securities, and assumes that the size T of the statistical samples is comparable to
N , so that the ratio of the two, r = N/T , is a fixed value. In this high-dimensional
limit sample fluctuations and the concomitant estimation error can be very large, even
divergent. The problem of estimation error is therefore in the focus of the statistical
physics-inspired approach which, due to the highly idealized nature of the probability
distribution, may be expected to provide a lower bound for this error.

The first step along this path was taken by Ciliberti et al [47] who studied the
large fluctuations and the resulting phase transition in the case of the special risk
measure Expected Shortfall (ES), soon to be followed by a similar work [48] on the mean
absolute deviation. In subsequent papers ES was optimized under various regularizers
to suppress the instability of estimation, and to take into account the future market
impact of an eventual liquidation of the portfolio [49], [50]. The works [47], [48], [49],
[50] were mostly concerned with the instability and the accompanying phase transition,
accordingly they considered i.i.d. returns (i.e. a diagonal covariance matrix with
identical elements), so that to show up the phenomenon in the simplest possible setting.
The papers [51], [52] changed focus, and still assuming i.i.d. returns, they mapped out
the whole parameter space of ES, demonstrating the very serious estimation error
problem even far away from the instability region. Finally, [53] considered also an `2
regularized version of ES, which allowed an insight into how variance-bias tradeoff is
playing out in the case of this particular risk measure.

The prominence of the risk measure ES in all these papers was mainly motivated by
its anticipated regulatory significance; and indeed, after a long consultation period the
Basel Committee finally instituted ES as the global regulatory market risk measure in
January 2016 [54]. Because of the focus on the regulatory context, the application of the
replica method to the most obvious and simplest risk measure, the variance, has been
left in the background. Nevertheless, it was not completely neglected: we performed
the optimization of variance via replicas quite some years ago, but the results were left
unpublished.1 As we recently decided to carry out a systematic study of the sensitivity
of different risk measures to estimation error (as it were, an analytical counterpart of
the numerical study [36]) and also their responses to various regularization schemes, it
is high time to publish the results for the variance now.2

1The results for variance formed part of the PhD thesis “The instability of risk measures” (in Hungarian)
by one of us (I.V-H.), written under the supervision of I.K. and successfully defended at Eötvös University,
Budapest, in 2009. Independently, F.C. also performed the replica treatment of the variance optimization
at the Santa Fe Institute in 2011.

2During the preparation of this manuscript we came to learn about T. Shinzato’s preprint posted on
arXive in May 2016 [55], which is concerned with the replica optimization of the variance at the global
minimum in the special case of i.i.d. normal returns and with a constraint promoting the concentration of
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While the papers quoted in the previous paragraph all confined their treatment to
the simplified case of independent random variables (diagonal covariance matrix) and
studied the global minimal portfolio, here we present the replica treatment of the full
Markowitz problem, that is we consider a generic full rank covariance matrix, and take
into account not only the budget constraint but also the constraint on the expected
return. Thereby we calculate the estimation error all along the efficient frontier.

The optimization of variance leads us to two very interesting results. In contrast
to the usual situation, where at a certain point in the derivation one has to choose the
replica symmetric minimum from among several seemingly possible ones and hope this
choice leads to the correct solution, in the special case of the variance the symmetric
solution emerges as the unique minimum. Since the variance is convex, it necessarily
has a unique minimum, therefore the unique replica symmetric minimum found by
the method must coincide with the correct result. The other remarkable feature of
the solution is that the estimation error turns out to be the same along the whole
efficient boundary, independently of the covariance matrix and the expected return.3

In principle, one might have expected that a covariance matrix with several more or
less strongly correlated returns (but still full rank) would display a reduced effective
dimension, hence a shift in the critical point. The independence of the estimation error
from the covariances and expected returns is the manifestation of a surprising degree
of universality, analogous to the independence of the critical point of the minimax
risk measure from the underlying probability distribution (see [36]), but also to the
universality discovered in a wide class of high dimensional random geometric phase
transitions by Donoho and Tanner [57].

When looking for a minimum, one should, in general, check the behaviour of the
second derivatives. Although there could be no doubt about the extremum being a
stable minimum in the case of the variance, we nevertheless calculate the Hessian (the
matrix of second derivatives) at the extremum, and show that all its eigenvalues are
positive. This is meant to be an example for a check one should always perform, but
often neglects.

Our calculations are limited to the case where both the number N of assets in the
portfolio and the sample size T (the length of the time series for the returns) are large,
with their ratio r = N/T a fixed number, less than 1. (r = 1 is the critical point of
the problem, beyond which the covariance matrix ceases to be of full rank, and the
optimization problem becomes meaningless.) We note that in the case of the variance,
finite N and finite T results also exist (e.g. [30], [39], [43]) and in the appropriate limit
they coincide with our results.

We also note that the Markowitz problem with the expected return constraint
relaxed is equivalent to the problem of linear regression, see e.g. [29], [58], thus the
replica approach can naturally cover regression type problems as well.

The plan of the paper is as follows. In Sec. 2 we formulate the statistical mechanics
of portfolio optimization assuming that the covariance matrix and returns are known.

investment, equivalent to an `2 regularizer. Despite the similar subject and method, there is little overlap
between his work and ours.

3Various special cases of this invariance have long been known to us from earlier numerical [27] and
analytical work [56], but the result to be presented below is the most general proof of this surprising
invariance.
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Sec. 3 is the replica treatment of the problem when the returns are drawn from a
multivariate normal distribution, with a generic covariance matrix, a budget constraint
and a constraint on the expected return. Finally, Sec. 4 is a summary with a discussion
of the nature of the phase transition and the explanation of its universality. As the
main purpose of the paper is to exhibit the technique of replicas in the context of
variance optimization, we include some of the details of the calculation in the main
text rather than exiling them to Appendices.

2 The Markowitz problem as a statistical physics
model

Portfolio optimization is a tradeoff between risk and return: it seeks to maximize the
return of a portfolio at a given level of risk, or minimize the risk at a given level of
return. If, following Markowitz [1], we assume that the returns are drawn from a
multivariate Gaussian distribution and risk is measured in terms of the variance of the
portfolio, then we are led to the following quadratic optimization problem:

min
w∈RN

N∑
i=1

N∑
j=1

σijwiwj , (1)

N∑
i=1

wiµi = µ, (2)

N∑
i=1

wi = 1, (3)

where N is the number of securities in the portfolio, µi is the expected value of the
return on security i, µ is the expected return on the portfolio, σij is the covariance
matrix of returns, and wi is the weight of security i in the portfolio. The solution of
this problem is the set of weights that minimize the variance given a fixed return µ
and a fixed budget expressed by the sum of weights being fixed at 1. Note that in this
simple setup the weights are not constrained to be positive, so unlimited short selling
is allowed.

We will refer to the above optimization problem as the Markowitz problem. If
the covariance matrix and the expected returns are given, the Markowitz problem can
be easily solved by the method of Lagrange multiplyers. As the covariance matrix is
positive definite, the objective function is strictly convex, so the problem has a unique
solution. This solution was first derived by Merton [3].

Introducing the notations A =
∑
i,j σ

−1
ij , B =

∑
i,j σ

−1
ij µj and C =

∑
i,j σ

−1
ij µiµj

4



1/A

B/A

m2

µ

Figure 1: The set of attainable portfolios (yellow area), marginal portfolios (continuous and
dotted blue line) and efficient portfolios (continuous blue line) on the risk-return plane.

the solution is:

w∗i (µ) =

N∑
j=1

σ−1ij [λ∗(µ) + η∗(µ)µj ] , (4)

λ∗(µ) =
C −Bµ
AC −B2

, (5)

η∗(µ) =
Aµ−B
AC −B2

. (6)

The variance of the optimal portfolio for a given expected return µ is:

σ∗2(µ) =
N∑
i=1

N∑
j=1

σijw
∗
i (µ)w∗j (µ) =

A

AC −B2

(
µ− B

A

)2

+
1

A
, (7)

where AC −B2 > 0.
The financial meaning of the result is illustrated in Figure 1. The set of those

portfolios whose expected return µ and risk σ satisfy the inequality σ2 ≥ σ∗2(µ) are
called attainable portfolios, because these are the ones that can be composed out of
the N securities under the budget constraint (3). The solutions of the constrained
optimization problem (1) are called marginal portfolios, because for these σ2 = σ∗2(µ)
holds, so they constitute the boundary of the set of attainable portfolios.

As shown by the figure, if σ2 > 1/A there are two marginal portfolios for every
value of the standard deviation σ. Of these, the one with the larger expected return
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will be efficient, since for a given risk this will have the largest return among the
attainable portfolios. The efficient portfolios will therefore be those for which the
conditions µ > B/A and σ2 = σ∗2(µ) are fulfilled simultaneously. These are shown by
the continuous blue line in the figure.

In order to provide a bridge to the formalism presented in the next section, we now
rephrase the standard Markowitz problem of optimal portfolio selection. Following
Kirkpatrick et al. [59], we convert the problem of optimizing the variance into a problem
in statistical physics. For this purpose, we regard the variance (with a factor 1

2 included
for convenience) as the Hamiltonian of a fictitious physical system:

H =
1

2

N∑
i=1

N∑
j=1

σijwiwj +

N∑
i=1

hiwi, (8)

where wi are the portfolio weights and σij are the elements of the covariance matrix,
which, in this Section, we continue to regard as given. The hi’s are external fields
conjugate to the variables wi. In the case of h1 = h2 = ... = hN = 0 the Hamiltonian is
half of the risk (measured in terms of the variance) of the portfolio w. The optimization
of the variance corresponds to finding the ground state of the above Hamiltonian.

Assume the system is subject to a Boltzmann distribution at inverse temperature β.
Imposing the budget constraint

∑
i wi = 1 and the constraint on the expected return∑

i µiwi = µ the partition function can be written as:

Z =

∫ ∞
−∞

∏
i

dwi exp

−1

2
β
∑
i,j

σijwiwj − β
∑
i

hiwi

 δ

(∑
i

wi − 1

)
δ

(∑
i

µiwi − µ

)
,

(9)
where the index i runs from 1 to N . By the Fourier representation of the Dirac-δ we
obtain the following Gaussian integral:

Z =

∫ ∞
−∞

dη

∫ ∞
−∞

dλ

∫ ∞
−∞

∏
i

dwi exp

−1

2
β
∑
i,j

σijwiwj − β
∑
i

hiwi

×
× exp

[
−iλ

(∑
i

wi − 1

)
− iη

(∑
i

µiwi − µ

)]
. (10)

Having calculated the integral, the free energy, defined by the relation F = −β−1 lnZ,
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can be written as:

F = −N
2β

ln

(
2π

β

)
+

1

2β
Tr ln (σ)− 1

2β
ln
(
AC −B2

)
− 1

2

N∑
i=1

N∑
j=1

σ−1ij hihj+

+
1

AC −B2

A
∑

i,j

σ−1ij µihj + µ

2

+ C

∑
i,j

σ−1ij hj + 1

2

−

−2B

∑
i,j

σ−1ij µihj + µ

∑
i,j

σ−1ij hj + 1

 , (11)

where we used the notations A =
∑
i,j σ

−1
ij , B =

∑
i,j σ

−1
ij µj and C =

∑
i,j σ

−1
ij µiµj .

The weights of the optimal portfolio are the ensemble averages of the variables wi at
zero temperature and zero external field. They can be obtained by taking the derivative
of the free energy with respect to the conjugate fields hi:

∂F

∂hi

∣∣∣∣
h1=h2=...=hN=0

= 〈wi〉, (12)

which gives

〈wi〉 =
∑
j

σ−1ij

(
Aµ−B
AC −B2

µj +
C −Bµ
AC −B2

)
. (13)

It is remarkable that 〈wi〉 does not depend on β, thus the thermal average produces
the optimal weights not only at zero, but also at finite temperature. (A side remark:
this is like the thermal average of the atoms’ positions in a harmonic solid. Thermal
expansion needs anharmonic terms.) As we shall see, however, the curve of the efficient
portfolios can be recovered only in the low temperature limit. For this, let us write the
free energy in zero field:

F = −N
2β

ln

(
2π

β

)
+

1

2β
Tr ln (σ)− 1

2β
ln
(
AC −B2

)
+

1

2

1

AC −B2

(
Aµ2 − 2Bµ+ C

)
.

(14)
At zero temperature the free energy is the minimum of the Hamiltonian, that is the
optimal value of the risk given the expected value of the return µ :

σ∗(µ) = 2 lim
β→∞

F =
Aµ2 − 2Bµ+ C

AC −B2
, (15)

which, after some rearrangement, is seen to agree with the formula for the efficient
frontier derived above.

3 Sensitivity to noise and the replica method

In contrast to the assumption in the previous section, in real life the returns and co-
variances are not known, but have to be estimated from empirical samples. Assume,
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therefore, that we observe the price changes of our securities in T (T < ∞) subse-
quent (nonoverlapping and equal) periods, and denote the relative price change of
security i in period t by xit (i = 1, 2, ..., N s t = 1, 2, ..., T ). Of course, the returns
xit will also be normally distributed variables, furthermore E[xit] = µi (for all t) and
E[xitxjs]−E[xit]E[xjs] = σijδts, because the returns are assumed serially independent
(their autocorrelation is zero). Accordingly, the unbiased estimate of the parameters
of the distribution is given by the formulae

µ̂i =
1

T

T∑
t=1

xit, (16)

σ̂ij =
1

T − 1

T∑
t=1

(xit − µ̂i) (xjt − µ̂j) (17)

Replacing the true distribution by the estimated one based on a finite sample will
unavoidably introduce estimation error in the values of the optimal weights and also
in the value of the variance itself. We will denote the optimal estimated weights by ŵ∗i
and the estimated optimal variance by (σ̂∗)2 in the following. Pafka and Kondor [25]
(see also the considerations in [52]) introduced the quantity

q0 =

∑
i,j σijŵ

∗
i ŵ
∗
j∑

i,j σijw
∗
iw
∗
j

. (18)

as a measure of out of sample estimation error. As in the numerator we have the true
covariance matrix multiplied by the estimated weights, whereas in the denominator
the same true covariance matrix is multiplied by the “true” weights (that minimize
the variance), it is clear that q0 ≥ 1, where for finite samples the equality holds with
zero probability. Thus the number

√
q0 − 1 determines the relative error in the risk in

the estimated portfolio. Since the estimated covariance matrix and the corresponding
optimal weights fluctuate from sample to sample, the quantity q0 itself will also be a
random variable. The first two moments of q0 can give an idea about how sensitive
the Markowitz model is to estimation error. One of the main results of the present
calculation will be to derive the expectation value of q0 for an arbitrary covariance
matrix and verify its universality (its independence of the covariance matrix and the
return), a possibility first raised on the basis of numerical experiments by [27]. As for
the second moment, its behaviour can be inferred from the results in [30], [39], or [43]:
in the thermodynamic limit the variance of q0 vanishes, in the parlance of the theory
of disordered systems, q0 self-averages.

In addition to the estimation error, we may even worry about whether the opti-
mization can be carried out at all, that is whether the estimated covariance matrix
σ̂ij preserves the positive definiteness of the true σij , so that to remain invertible. Ac-
cording to elementary linear algebra, the condition for the positive definiteness of the
estimated covariance matrix is T ≥ N , because the rank of σ̂ij is, with probability one,
equal to min{N,T}. This means we must have at least as many, or more, observations
for each security as the dimension N of the portfolio, a very natural requirement. Ac-
cordingly, the ratio r = N/T will play a crucial role in the following. For very small
values of r, when we have plenty of data, we are in the realm of ordinary statistics, and
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by force of the central limit theorem our estimates will converge to their true values.
If r is not small enough, we will be working in the high dimensional regime, where the
estimates may strongly deviate from the true values, and as we approach r = 1 from
below we may expect the estimation error to blow up. Beyond this critical value of r the
optimization of the variance cannot be performed. During the long history of portfolio
theory, financial mathematics, statistics and computer science introduced a plethora
of methods to deal with this difficulty; ultimately all these procedures boil down to a
modification of the original problem (via dimensional reduction, regularization, etc.)
so as to remove the instability at the price of permitting a, hopefully limited, bias. As
the purpose of the present paper is to demonstrate the application of statistical physics
methods to the optimization of the variance, we do not concern ourselves with these
methods here, and keep to the original framework of mean-variance optimization.

A characteristic feature of the replica method that we are going to apply in the
following is that at a certain point one has to calculate a saddle point integral where
the dimension N is let go to infinity. Then, to keep the ratio r below its critical value
1, we have to consider very large samples. This means we will be interested in the
“thermodynamic” limit where both N and T are large, but their ratio stays finite,
smaller than 1. For this reason, we may safely neglect the 1 in the denominator in
(17).

Let us now consider the optimization of the variance estimated from empirical
samples. Introducing the notation ut =

∑
i wi(xit−µi) the problem can be formulated

as

min
u,w

1

T

T∑
t=1

(
ut −

1

T

T∑
s=1

us

)2

, (19)

N∑
i=1

wi(xit − µi) = ut, (20)

1

T

T∑
t=1

N∑
i=1

wixit = Nµ, (21)

N∑
i=1

wi = N. (22)

Note the change of normalization in the budget constraint (22). The purpose of this
modification is to ensure that the order of magnitude of the weights remain O(1) in
the thermodynamic limit. Let us write up the partition function corresponding to this
problem, following the recipe in the previous section:

Z ∝
∫ ∏

t

dut

∫ ∏
t

dûte
− β

2T

∑
t(ut− 1

T

∑
s us)

2
∫ ∏

i

dwie
i
∑
t ût[ut−

∑
i wi(xit−µi)]

∫
dηe−iη(

1
T

∑
t ut+

∑
i wiµi−Nµ)

∫
dλe−iλ(

∑
i wi−N), (23)

where the integrals run from −∞ to∞. We have omitted here an unimportant constant
factor in Z (hence the notation ∝ instead of =). We will do so also in the following.
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We wish to average Z over the random sample {xit} whose joint distribution func-
tion is:

f ({xit}) = (2π)−NT/2 (detσ)
−T/2

e−
1
2

∑
i,j,t σ

−1
ij (xit−µi)(xjt−µj). (24)

We assume that σij is strictly positive definite. In order to facilitate the derivation,
we express the variables xij through the standard normal variables zit:

xit =
∑
j

Dijzjt + µi, (25)

where Dij is the Cholesky decomposition of the true covariance matrix σij of the
returns, that is, by definition σij =

∑
kDikDjk. On the basis of the formula (24) we

can see, by a simple change of variables, that the joint probability distribution of the
random variables zit is indeed

f ({zit}) = (2π)−NT/2e−
1
2

∑
i,t z

2
it . (26)

Expressed through the standard normal variables zit the partition function becomes

Z ∝
∫ ∏

t

dut

∫ ∏
t

dûte
− β

2T

∑
t(ut− 1

T

∑
s us)

2
∫ ∏

i

dvie
i
∑
t ût(ut−

∑
i vizit)

∫
dηe−iη(

1
T

∑
t ut+

∑
i viθi−Nµ)

∫
dλe−iλ(

∑
i vidi−N), (27)

where we have changed variables vi =
∑
j wjDji , and introduced the notations di =∑

j D
−1
ij and θi =

∑
j D
−1
ij µj .

3.1 The replica method

Our goal is to calculate the average of free energy density over the samples in the
thermodynamic limit (N/T constant and N →∞):

E[f ] = − lim
N→∞

1

Nβ
E [lnZ] . (28)

The direct calculation of the expected value of the logarithm of a random variable is
difficult, but by the relation

lnZ = lim
n→0

Zn − 1

n
(29)

we can reduce the problem to the calculation of E[Zn]. If n is a natural number then
Zn is the partition function of n identical, independent copies or replicas (hence the
name of the method) of the original system, which by (27) can be written as:

Zn ∝
∫ ∏

a,t

duat

∫ ∏
a,t

dûat e
− β

2T

∑
a,t(u

a
t− 1

T

∑
s u

a
s)

2
∫ ∏

a,i

dvai e
i
∑
a,t û

a
t (u

a
t−

∑
i v
a
i zit)

∫ ∏
a

dηae−i
∑
a η

a( 1
T

∑
t u

a
t+

∑
i v
a
i θi−Nµ)

∫ ∏
a

dλae−i
∑
a λ

a(
∑
i v
a
i di−N), (30)

10



The replica indices a run from 1 to n. This expression can be easily averaged over the
zit. In the following, after performing the integrals, we shall bring the replica-partition
function to the form E[Zn] ∝ exp

(
−βNng(β,N/T,N) +O(n2)

)
. Substituting this

expression into the equation (29), and reinterpreting the number n as a real, we can
carry out the limit n→ 0. As a result, we find that the function g in the exponent is,
up to an unimportant additive constant, the average of the free energy density, that is
E[f(β, r)] = const+ limN→∞ g(β, r,N), where we used the notation r = N/T .

The meaning of the expression “reinterpreting the number n as a real” is that we
perform an analytical continuation from the set of natural numbers to the reals, an
operation whose result is not necessarily unique. The analytic continuation is the weak
link in the chain of manipulations making up the replica method; without a rigorous
proof of the uniqueness of analytic continuation the method can only be regarded as
heuristic. A guarantee of the uniqueness of the continuation can only come from im-
posing some additional constraints on the problem. We conjecture that this constraint
is the convexity of the objective function, which guarantees that the optimization prob-
lem has a single solution, and it is hard to imagine how the analytic continuation could
lead to a different one. As the variance is convex, the replica method should produce
the correct results for its minimization. This, of course, does not constitute a proof,
but rigorous proofs exist in similar, and even much more complicated, problems in
the theory of disordered systems [60], [61], [62], which lends support to our conjec-
ture. Furthermore, the results to be derived below agree with the rigorous results
by [30], [39], [43] in the thermodynamic limit, and also with the numerical experiments
by [36].

3.2 Averaging over the samples

Let us average the replica partition function (30) with the density function (26). For
this, we have to calculate the following integral:

(2π)−NT/2
∫ ∏

i,t

dzite
− 1

2

∑
i,t z

2
it−i

∑
a,i,t û

a
t v
a
i zit = e−

1
2

∑
it(

∑
a v

a
i û

a
t )

2

. (31)

Let us introduce the overlap matrix by:

Qab =
1

N

N∑
i=1

vai v
b
i , (32)

and transform (31) as follows:

e−
1

2N

∑
it(

∑
a v

a
i û

a
t )

2

∝
∫ ∏

ab

dQab
∫ ∏

ab

dQ̃ab

e
i
2N

∑
a,b Q̃

ab(Qab− 1
N

∑
i v
a
i v
b
i )−N2

∑
abQ

ab∑
t û

a
t û
b
t . (33)
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Plugging this back into (30), after some rearrangement we obtain

E[Zn] ∝
∫ ∏

ab

dQab
∫ ∏

ab

dQ̂abe
1
2N

∑
ab Q̂

abQab
∫ ∏

a,t

duat e
− β

2T

∑
a,t(u

a
t− 1

T

∑
s u

a
s)

2

∫ ∏
a,t

dûat e
−N2

∑
a,bQ

ab∑
t û

a
t û
b
t+i

∑
a,t û

a
t u
a
t

∫ ∏
a

dηa
∫ ∏

a

dλaei
∑
a η

a(Nµ− 1
T

∑
t u

a
t )+iN

∑
a λ

a

∫ ∏
a,i

dvai e
− 1

2

∑
a,b Q̂

ab∑
i v
a
i v
b
i−i

∑
a,i(η

aθi+λ
adi)v

a
i , (34)

where we have applied the replacement Q̂ab = iQ̃ab ; accordingly the integration with
respect to the variables Q̂ab is along the imaginary axis from −i∞ to i∞. The Gaussian
integrals over ûat , vai , ηa and λa can then be performed easily. The only thing to watch

out for is that as Q̂ab is imaginary, in some of the Gaussian integrals the parameter
standing in the place of the standard deviation will also be imaginary. This, however,
does not pose a problem, because the contour of integration over Q̂ab can be deformed
so as to make it run to the right of the imaginary axis and return to the imaginary

axis only at ±i∞. Thus, for finite values of Q̂ab Re
(
Q̂ab

)
> 0 and all the Gaussian

integrals will be meaningful. Finally, we end up with the result:

E[Zn] ∝
∫ ∏

ab

dQab
∫ ∏

ab

dQ̂abe−N[G(Q,Q̂;β)+O(1/N)], (35)

where

G(Q, Q̂;β) = lim
N→∞

−1

2

∑
a,b

Q̂ab
(
Qab −Nσ∗2(µ)

)
+

+
1

2r
Tr lnQ +

1

2
Tr ln Q̂− 1

N
lnA(Q, Q̂;β)

]
, (36)

A(Q, Q̂;β) =

∫ ∏
a,t

dutae
− β

2T

∑
at(u

a
t− 1

T

∑
s u

a
s)

2− 1
2N

∑
a,b[Q

−1]
ab∑

t u
a
t u
b
t

e
− 1

2

∑
ab Q̂

ab
[
α∗
T2

∑
t,s u

a
t u
b
s−

Nη∗(µ)
T

∑
t(u

a
t+u

b
t)
]
. (37)

and the limit N → ∞ is taken such that r = N/T = const. The quantities η∗(µ)
and σ∗(µ) are defined by (6), and (7), respectively, and, in terms of the notations in
Sec. 2, α∗ = A/(AC − B2). As a reminder: Nσ∗(µ) is nothing but the true risk
of the portfolio (corresponding to r → 0). (The factor N appears because of the
modified budget constraint). In the following, we shall assume that σ∗2(µ), η∗(µ) and
α∗ are of the order of O(1/N). (For example, for σij = δij and µi = const this is so
automatically.) It can be shown that this is merely a technical assumption which does
not influence the validity of the results.
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As we want to determine A(Q, Q̂;β) only in the thermodynamic limit we can omit
the terms less than O(N) to obtain:

A(Q, Q̂;β) =

∫ ∏
a,t

dutae
− 1

2N

∑
a,b,t,s

[
(βr+[Q−1]ab)δts+ r2

N (α∗Q̂ab−βδab)
]
uat u

b
s+η

∗(µ)r
∑
a,b,t Q̂

abubt ∝

∝ e−
N
2r [Tr ln(βrI+Q−1)+O(1/N)], (38)

where I is the n× n identity matrix. Plugging this result back into (36) we get:

G(Q, Q̂;β) =
1

2

−∑
a,b

Q̂ab
(
Qab − ν(µ)

)
+ Tr ln Q̂ +

1

r
Tr ln (βrQ + I)

 , (39)

where ν(µ) = limN→∞Nσ∗2(µ).

3.3 The “physical” meaning of the overlap matrix

Before continuing, let us take a closer look at how the matrix elements of Q can be
interpreted. Let us consider two replicas with indices a and b. Let the vectors va and
vb be the configurations of the two systems. Then from vai =

∑
j w

a
jDji the overlap

between replicas a and b in terms of the portfolio weights is

Qab =
1

N

N∑
i=1

vai v
b
i =

1

N

N∑
i=1

N∑
j=1

σijw
a
i w

b
j . (40)

Therefore, NQab is nothing but the true covariance (calculated on the basis of complete
information, r → 0) of the portfolios wa and wb . In particular, NQaa is the true
variance (risk) of the portfolio wa.

As the portfolio weights have been normalized as
∑
i wi = N , the standard devia-

tion of the true optimum will be Nσ∗(µ), instead of σ∗(µ) . Then the estimation error
q0 of the portfolio wa will be a simple function of Qaa:

q0(wa) =
Qaa

Nσ∗2(µ)
. (41)

The expected error of the estimated optimum is therefore equal to the above expression
in the thermodynamic limit, at zero temperature. As the energy surface is strictly
convex, we expect that at low temperature every replica tends to the same minimum,
therefore Qaa will be independent of the replica index. (In the next subsection this
will be explicitly shown to be the case.) Accordingly,

E [q0] =
1

ν(µ)
lim
β→∞

lim
N→∞

Qaa (42)

independently of a. The equilibrium value of Qaa will be calculated in the next sub-
section.
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3.4 The saddle point

As we wish to calculate the integral (35) in the limit N →∞ , we can use the saddle
point method:∫ ∏

ab

dQab
∫ ∏

ab

dQ̂abe−N[G(Q,Q̂;β)+O(1/N)] ∼ e−N minQ,Q̂G(Q,Q̂;β), (43)

which becomes exact in the thermodynamic limit. The saddle point conditions are:

2
∂Gβ
∂Qab

= −Q̂ab + β
[
(rβQ + I)

−1
]ba

= 0, (44)

2
∂Gβ

∂Q̂ab
= −Qab + ν(µ) +

[
Q̂−1

]ba
= 0. (45)

The solution is not hard and leads us to the following result:

Qabsp =
1

1− r
[
ν(µ) + β−1δab

]
, (46)

Q̂absp = β(1− r)
[

βrν(µ)

βrν(µ) + 1
+ δab

]
, (47)

where the subscript sp signifies the saddle point. We can see therefore that at the
saddle point the overlap matrix and its conjugate are invariant w.r.t. the permutation
of replicas, the only thing that matters is whether we are considering the same replica or
distinct ones. In other words, the saddle point is replica symmetric. As we mentioned
in the previous section, this is a consequence of the fact that, independently of the
sample, the Hamiltonian and the constraints determine a single, unique ground state,
provided r < 1, that is the sample size is sufficiently large.

It can be seen furthermore that the difference between the diagonal and off-diagonal
elements of Qsp is proportional to β−1, so it vanishes at zero temperature, which is
explained by the fact that all the replicas settle into the same equilibrium state, so
the difference between the self-overlap and the overlap of different replicas will become
zero.

At this point, from (42) we can explicitly determine E [q0]:

E [q0] = lim
β→∞

1

1− r

(
1 +

1

βν(µ)

)
=

1

1− r
. (48)

This result is in agreement with the results obtained in the special case of the global
minimum and i.i.d. zero mean returns in [25] and [63]. The most surprising feature of
(48) is that for large portfolios the average estimation error depends only on the ratio
N/T , completely independently of the parameters σij and µi of the distribution, and
also of the expected return µ.

In order to obtain the free energy density, let us substitute (44) and (45) into (39).
Writing Qab = q+ ∆qδab we have Tr lnQ = n (q/∆q + ln ∆q) +O(n2), and after some
algebra we find

G(Qsp, Q̂sp;β) =
1

2
nβν(µ)(1− r) +O(n2). (49)
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According to Subsection 3.1 we can then write the free energy density as follows:

E[f(β, r)] =
f0
β

+ lim
n→0

1

nβ
G(Qsp, Q̂sp;β) =

f0
β

+
1

2
ν(µ)(1− r), (50)

where the additive term f0 comes from the multiplicative constants in E[Zn]. Reviewing
the integrals we can see that f0 does not depend on β, and because of the limits n→ 0
and N →∞ it does not depend on n, N and T either.

The zero temperature limit of the free energy is the minimum value of the Hamil-
tonian, so for large N the estimated risk at the optimum, averaged over the samples,
is:

E
[
σ̂∗2(µ)

]
= 2N lim

β→∞
E[f(β, r)] = N2σ∗2(µ)(1− r). (51)

The estimated in-sample loss is thus seen to vanish inversely proportionally to the
out of sample estimation error at the critical point for a generic covariance matrix
and all along the efficient frontier. This phenomenon was first observed in numerical
experiments and confirmed analytically for a diagonal covariance matrix at the global
minimum of the variance in [25]. The same inverse proportionality was found in the
case of the ES risk measure [51]. These findings demonstrate how grossly in-sample
estimates can underestimate risk.

We conclude this subsection with and important remark. The fact that we could
determine the extremum of (39), was a very lucky happenstance, due to the simplicity
of the objective function. In more complicated cases the usual procedure is to assume
replica symmetry, express the G(Q, Q̂;β) as a function of the diagonal and off-diagonal

elements of Q and Q̂, and minimize over these variables. As the saddle point is, in
general, not necessarily replica symmetric, one has to investigate the stability of the
replica symmetric saddle point. In some cases (for example, in spin glasses) replica
symmetry breaks down at a non-zero temperature, and in the region below this a
symmetry breaking solution becomes stable [64]. Our present problem is much simpler,
and the stability of the replica-symmetric saddle point is preserved all the way down
to zero temperature. This is demonstrated in the next subsection.

3.5 The stability of the replica-symmetric saddle point

The saddle point is stable, if the functional G(Q, Q̂;β) takes its minimum at the point
Qsp. Since the conjugate variable is complex and the contour of integration, originally
running along the imaginary axis, can be deformed, it does not matter whether the
extremum of G with respect to Q̂ is a minimum or maximum. Therefore, it is sufficient
to check the stability of G(Q;β) = G(Q, Q̂sp;β) at Qsp. Expressing Q̂ from (45) and
substituting into (39) we obtain

G(Q;β) =
1

2

[
−n− Tr ln (Q− ν(µ)U) +

1

r
Tr ln (βrQ + I)

]
, (52)
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where U denotes the n×n matrix with all its elements equal to 1. Let us now calculate
the Hess matrix of G(Q;β) (absorbing a factor 2 for simplicity):

Hab,cd = 2
∂2

∂Qab∂Qcd
G(Q;β) =

[
(Q− ν(µ)U)

−1
]ac [

(Q− ν(µ)U)
−1
]bd
−

− rβ2
[
(βrQ + I)

−1
]ac [

(βrQ + I)
−1
]bd

. (53)

Substituting Qsp into the Hess matrix, we get Hab,cd
sp = RacRbd, where

Rab = ρ+ ∆ρδab = β(1− r)3/2
(
− βrν(µ)

βrν(µ)n+ 1
+ δab

)
. (54)

The condition for the stability of the saddle point is that Hab,cd
sp be strictly positive

definite. In order to check this, let us solve the eigenvalue problem

n∑
c=1

n∑
d=1

Hab,cd
sp Scdm = λmS

ab
m , (55)

where λm are the eigenvalues, and the number of the eigenvectors Sabm is n2. We must
find that all the eigenvalues are positive. Because of the symmetry of Rab the matrix
Hab,cd
sp is also symmetric, i.e. Hab,cd

sp = Hcd,ab
sp , thus an orthonormed basis can be

selected from the eigenvectors Sabm . In addition to this, the Hessian also displays an
important further symmetry, namely Hab,cd

sp = Hba,dc
sp . An immediate consequence of

this is that whenever Sab is an eigenvector, its transposed Sba, its symmetric part (Sab+
Sba)/2 and antisymmetric part (Sab−Sba)/2 are also eigenvectors, and they belong to
the same eigenvalue. The n(n+1)/2 dimensional space of symmetric matrices, and the
n(n−1)/2 dimensional space of antisymmetric matrices are thus invariant subspaces of
the Hessian. According to elementary considerations, the invariant subspaces of Hab,cd

sp

are as shown in the Table below:

Subspace Eigenvalue Eigenvectors Multiplicity

I λ = (ρn+ ∆ρ)2 Sab = 1 for all a and b 1

II λ = (ρn+ ∆ρ)∆ρ Sab =
1− n if a = b = k,
2−n
2

if either a = k, or b = k,
1 if a 6= k and b 6= k.

n− 1

k = 1, 2, ..., n− 1

III λ = ∆ρ2 Those symmetric matrices, which leave the
vector (1, 1, 1, ..., 1) invariant.

1
2
n(n− 1)

IV λ = (ρn+ ∆ρ)∆ρ Sab = δak − δbk n− 1
k = 1, 2, ..., n− 1

V λ = ∆ρ2 Those matrices Sab , for which∑n
b=1 S

ab = 0 for arbitrary a.

1
2

(n− 1)(n− 2)

Symmetric matrices belong to subspaces I, II and III, and by adding up the mul-
tiplicities we can see that these subspaces span the full n(n+ 1)/2 dimensional linear
space of n × n symmetric matrices. Similarly, one can convince herself that the in-
variant subspaces IV and V span the full n(n − 1)/2 dimensional space of the n × n
antisymmetric matrices. The grand total of multiplicities is n2, so we have found all
the eigenvalues and eigenvectors.

16



Therefore, the Hessian Hab,cd
sp has three different eigenvalues:

λ1 = (ρn+ ∆ρ)2 =
β2(1− r)3

(βrν(µ)n+ 1)
2 , (56)

λ2 = (ρn+ ∆ρ)∆ρ =
β2(1− r)3

βrν(µ)n+ 1
, (57)

λ3 = ∆ρ2 = β2(1− r)3. (58)

Of these, λ1 has multiplicity 1, λ2 is 2(n − 1)-fold degenerate, while λ3 is (n − 1)2-
fold degenerate. The eigenvalues are positive as long as r < 1. Therefore the replica
symmetric saddle point is stable at any temperature, provided r < 1, that is T > N .
At the critical point r = 1 all three eigenvalues vanish, the model becomes unstable
against fluctuations in any directions. With this we have given the characterisation of
the noise sensitivity of the Markowitz problem in the thermodynamic limit.

4 Summary and discussion

Several years after the first publications on the statistical physics approach to the
optimization of the Expected Shortfall [47] and Mean Absolute Deviation [48] risk
measures, this paper addressed the problem of optimizing the variance. In contrast
to previous studies, which focused on the global minimum, in the present paper the
simplicity of the objective function allowed us to extend the replica method to the full
Markowitz problem, by considering a generic covariance matrix and, in addition to the
budget constraint, also the constraint on the expected return of the portfolio. From
the point of view of the method itself, the most interesting feature we encountered was
that the replica symmetric solution emerged as the unique solution, without having to
assume this symmetry in advance. It was also straightforward to check the stability
of this solution, with a foregone conclusion. These features point in the direction of a
possible rigorous foundation of the replica method in the case of convex risk measures.

The solution we found displayed a phase transition, a sharp change in the nature
of the optimization problem. For the sake of the physicists among our readers, we
point out that the statistical physics model corresponding to variance optimization is
a version of the so called Gaussian model, familiar from introductory courses on phase
transitions. It is an N -component φ2 model in zero spatial dimensions, or, alternatively,
a Ginzburg-Landau model, again with no spatial dependence and without the usual
φ4, or any other higher order, term. What makes the model somewhat less than trivial
is the fact that the components of the covariance matrix are not given in advance,
but have to be estimated from finite samples, and the resulting free energy has to be
averaged over these samples. This last step corresponds to quenched averaging – hence
the application of replicas.

There are two further features that distinguish variance optimization from the Gaus-
sian model:

• the budget constraint, meaning the components of the weight vector sum to 1 (or
any other arbitrarily chosen fixed number),

• the expected return of the portfolio is fixed.
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In the absence of these constraints the optimization task would be completely triv-
ial: the solution would be the null-vector, as indeed, in the Gaussian model the ground
state configuration corresponds to the zero value of the order parameter components. If
we were dealing with a spin model less naive than the Gaussian, we should impose some
other type of constraint, such as stipulating that the components of the weight vector
only take the values ±1 (Ising spins), or are subject to a soft bimodal distribution
(coarse grained cell spins), or subject to a global Euclidean norm constraint (spherical
model). However, we are not treating a spin model here, in the simple setup which
we are considering and which corresponds to the text-book version of the Markowitz
problem, the portfolio weights can take any real value, positive or negative, as long as
they satisfy the above two constraints.

Negative weights correspond to what are called “short positions” in finance. Un-
limited short selling is seldom permitted, but without short positions it would be im-
possible to hedge risk, and also impossible to fully exploit correlations existing between
the various assets in the investment universe.

In real life there are limitations on short positions (typically on long, i.e. positive
weight positions, as well). These limits depend on the type of financial institution
(hedge funds are permissive, while pension funds are forbidden to assume short po-
sitions), but also on the general financial and legal environment. The presence of
such constraints elevates the difficulty of optimization to a qualitatively different level,
where only numerical methods have been available so far. Our approach is analytical
and the present paper is concerned with the simplest version of the Markowitz port-
folio optimization problem, as laid out in eqs. (1), (2) and (3). However, we can see
already at this stage that the technique of replicas will allow us to incorporate the
most frequently occurring constraints in the analytic approach, thus the present paper
should be regarded as a starting platform for such an extended program.

It should also be pointed out that the optimization of variance does not necessarily
display a phase transition. If, for example, the probability distribution of returns is
known and if it is sufficiently narrow so that the covariance matrix exists, then it is
positive definite and no instability arises. This is the classical statistical setup where
the number of data T is much larger than the dimension N of the portfolio, which in
our language corresponds to the limit r → 0. With large institutional portfolios with
N in the hundreds or thousands, and with the length T of the time series limited by
stationarity considerations to at most a few hundred, we are in the high-dimensional
limit where the ratio r is not small and the covariance matrix has to be estimated
from observed data by the maximum likelihood estimator in eq. (17). The estimated
covariance matrix will be positive definite with probability 1, as long as N ≤ T .
However, when N becomes larger than T , the covariance matrix becomes positive
semidefinite and N − T zero modes appear (the number of unknowns, N , exceeds
the number of equations, T ). This is where we enter the other “phase” (in terms
of the ratio N/T this corresponds to the critical point r = 1). This other phase
cannot be called the ordered phase, because no order emerges, instead a continuum
of solutions appears: any linear combination of the zero modes becomes a solution of
the optimization problem and the portfolio variance becomes identically zero. (The
vanishing of all the eigenvalues of the Hessian as r approaches 1 is an indication of
this flat phase space landscape.) This strictly corresponds to what happens in the
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Gaussian model, where the restoring force disappears at the critical point, and there
being no higher order term in the Hamiltonian to constrain the fluctuations of the
order parameter, they become infinitely large.

According to the above, the optimization becomes meaningless above the critical
point. High-dimensional statistics has developed powerful methods to remedy this
difficulty by various regularization procedures, (see e.g. [65]). Technically, these reg-
ularizers show up as portfolio constraints, and as such are beyond the scope of the
present paper.

As must be clear from the foregoing discussion, the instability at r = 1 does not
depend on the distribution of returns: it is a purely linear algebraic or geometric
phenomenon, with the rank of the covariance matrix becoming less than its dimension.

One might then ask why should we call this simple instability a phase transition
at all? Part of the answer is that the completely similar transition into a featureless
phase in the Gaussian model has always been regarded as a phase transition – at least
for pedagogical purposes. More seriously, this transition is one example of a host of
algorithmic phase transitions (see e.g. [66]) and a large number of sharp transitions
in random geometry that are also called phase transitions (see e.g. [57], or the more
theoretical paper [67]).

Furthermore, there are a few features that this transition shares with bona fide
phase transitions. One of these is the universality of the exponent of the scaling law
for the estimation error 1/(1 − r). The value of this exponent seems to be the same
in a number of similar problems: it was obtained by numerical simulations in the case
of portfolio optimization for the variance as risk measure in refs. [22, 25, 27, 36], for
Expected Shortfall in [47, 49, 50, 52], for the minimax risk measure in [52], even for
non-stationary underlying processes in a GARCH framework [37]. The invariance of
this exponent for these different “Hamiltonians” is analogous to the independence of
the usual critical exponents of microscopic details.

We have, however, found another, stronger sort of universality here: the indepen-
dence of the critical point itself (the critical point does not depend on the parameters
of the distribution of the returns, it depends only on the ratio N/T ). This finding is in
accord with the results of large scale numerical experiments on variance optimization
with fat-tailed, Student-distributed returns [56]. Likewise, the behavior of Expected
Shortfall in the region where it can be optimized is certainly different depending on
the distribution of returns, but the phase boundary along which the estimation error
blows up is again insensitive to the distribution of returns [52].

As further, independent support for the universality of the critical point in these
sort of geometric problems, we recall the example of the minimax risk measure, the
best combination of the worst losses. In addition to being a well defined portfolio
optimization problem [11], the minimax has been shown [36] to be equivalent to the
following problem in high dimensional random geometry: What is the probability that
T random hyperplanes thrown into and N -dimensional space make a convex polytope?
The answer was found by Schmidt and Mattheiss [68] for any N and T . Their result
shows that this probability is large for T > N , small for T < N , and the transition
becomes sharp for N and T large, with a critical ratio N/T = 1/2, independently of
the distribution of the parameters of the random planes, provided this distribution is
symmetric. There are a large number of random geometric transitions with universal
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Figure 2: Estimation error as a function of r = N/T : comparison between simulations and theoretical
result for different structures of the covariance matrix. The solid black line represents the analytical formula
of the estimation error given by equation (48). Blue dots: numerical simulations for the global minimum
(i.e. the constraint on the expected return is not enforced) of the variance of a system with N = 100 and a
diagonal covariance matrix with all diagonal elements equal to 1/N , in order to make the total variance of
the portfolio of order O(1). Red squares: numerical simulations of a system with N = 100, µi = 0.04 for all
i, and a diagonal covariance matrix with all diagonal elements equal to 1/N . Green diamonds: numerical
simulations of a system with N = 100, µi = 0.04 for all i, and a block-diagonal covariance matrix with
four blocks. The diagonal elements of the covariance matrix are equal to 1/N , the covariance between
assets within the same block is set to 0.1/N , and the covariance between assets of different blocks is zero.
All results from simulations are averaged over 1000 realizations. The agreement between numerical and
analytical results is very good.

critical points discovered by Donoho and Tanner [57].
Similarly, the optimization of the variance can be rephrased as follows [13]: we

have an N -dimensional random ellipsoid and two intersecting random hyperplanes.
Optimization corresponds to finding the point of tangency of the plane of intersection
with the ellipsoid. As long as N ≤ T , the ellipsoid is non-degenerate, and as a convex
object it has a unique point of tangency with the plane. When N > T , one or more
principal axes of the ellipsoid become infinite, accordingly the ellipsoid goes over into
a cylindrical object with one or more principal directions along which its curvature is
zero, therefore a tangent plane will have a continuum of points in common with the
ellipsoid. Rephrased like this, the problem is again one in high-dimensional random
geometry. This view of the problem makes it clear that the loss of uniqueness and the
appearance of the continuum of solutions cannot depend on the probability distribution
of the returns; it depends only on the rank of the covariance matrix, that is whether
N is smaller or larger than T .

It is always true that the out of sample estimation error is larger than the in-sample
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Figure 3: Estimation error as a function of r = N/T : comparison between simulations and theoretical
result for different values of N . The solid black line represents the analytical formula of the estimation error
given by equation (48). Blue dots: numerical simulations of a system with N = 8. Red squares: numerical
simulations of a system with N = 16. Green diamonds: numerical simulations of a system with N = 32.
All cases refer to the portfolio corresponding to the global minimum of the risk functional. In all cases the
covariance matrix is diagonal with diagonal elements equal to 1/N (in order to make the total variance of
the portfolio of order O(1)) and results are averaged over 1000 realizations. Far from the critical point the
agreement between numerical and analytical results is very good already for N quite small. Closer to the
critical point the agreement improves quickly with N .

error. Our analytic result is a clear illustration of this: while the out of sample error
diverges as 1/(1− r), the “optimal” value of the variance tends to zero as (1− r) times
its true value. (It is identically zero beyond the critical point where the optimal weight
vector belongs to the null-space of the covariance matrix.)

Although we have run extensive numerical simulations on special cases of this prob-
lem (for various covariance matrices) in refs. [25,27,36], in order to give an idea about
the speed of convergence to the large N limit, we provide some illustrations to conclude
this discussion.

In figure 2 we show a comparison between the estimation error given by eq. (48)
and that computed from numerical simulations performed for a portfolio of N = 100
assets for different structures of the covariance matrix. The figure makes it clear that
the formula computed using the replica calculation describes very well the behavior of
the estimation error as a function of the parameter r.

Finally, in figure 3 we show how the estimation error computed from numerical
simulations converges to the analytical expression upon increasing N . From the plot
it is clear that far from the transition the agreement is extremely good already for N
as small as 8. Closer to the transition a larger number of assets is required, but the
convergence appears to be quite fast.
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With the replica approach to variance optimization hereby established, we can turn
to finding a cure for the divergent estimation error by regularization. This is left for a
subsequent publication.
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