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Abstract—Machine learning research is interested in building
models based on a training set that can then be applied to new
data, whether this unseen data comes from new examples (e.g.
new subjects, other tasks) or new features (e.g. different modali-
ties). In this work, we present a simple approach to transfer learn-
ing using intracranial EEG (also known as electrocorticographic,
ECoG) data from three patients. More specifically, we aimed at
detecting numerical processing during naturalistic settings based
on a model trained with controlled experimental conditions. Our
results showed significant prediction accuracy of numerical events
in naturalistic settings when considering a priori knowledge of
the target task.

Index Terms—Electrocorticography; Transfer learning; Multi-
ple Kernel Learning

I. INTRODUCTION

Machine learning techniques have been applied to brain data
in order to decode a variable of interest (e.g. the cognitive
state of a subject [1] or a type of disease [2]), with a
certain generalization performance often derived from cross-
validation schemes. More recently, advanced techniques have
been developed to improve generalization ability, especially
in the context of multiple subject [3] or multiple modality
learning [4].

Another interesting application is to generalize a model
from one task to another. In this case, the training and test
data might not have been drawn from the same feature space
and the same distribution. This field of research, referred to as
Transfer Learning [5], has received increased attention from
the machine learning community, with applications in diverse
fields including Web document classification and marketing.
Transfer learning can be defined as the ability of a system
to recognize and apply knowledge learned in previous do-
mains/tasks to novel domains/tasks, which share some com-
monality [5]. Transfer learning approaches therefore assume
that the train and target tasks are related. Using such a scheme
on neuroimaging data implies that the brain activity generated
in one or more tasks could help us identify/characterize brain
activity generated during the task to predict [6]. This could
yield important insights for cognitive neuroscience.

The present work provides a first step in the direction of
transfer learning using ECoG recordings of numerical pro-
cessing in experimental and in naturalistic settings. Previous
work has revealed similarities in the electrical brain signal
generated during numerical processing in both tasks [7]. In

the current study, two main questions were investigated using
an approach inspired from transfer learning: (1) Can we
detect numerical processing in naturalistic settings based on
a model trained on experimental conditions?, (2) How does
the detection performance depend on the selected features? In
this work, the transfer between the two tasks was direct: we
assumed that the hypothesis space of the experimental settings
could be used to model the naturalistic settings.

II. MATERIAL
A. Data

The material considered in this work is the same as in
[7]. Therefore, only a brief description of the population and
experimental design will be provided.

Three subjects were implanted with intracranial electrodes
to localize the source of drug-resistant seizures'. Signal was
continuously recorded for clinical purposes for 7-10 days,
during which simultaneous video monitoring was performed
(Nihon Kohden Technology, sampling rate: 1000Hz for P1
and P2, 500Hz for P3). Electrodes containing artifacts or
pathological activity were discarded from further analyses.

Data was recorded when the patients performed simple
true/false judgments of memory sentences or mathematical
equations (Fig.1A). The memory sentences comprised self-
episodic (e.g. ‘I ate pizza this week’), self-semantic (e.g. ‘I eat
pizza often’), and self-judgment (e.g. ‘I am a curious person’)
statements. Basic mathematical additions were presented along
with a result (e.g. ‘4 + 49 = 53°, further referred to as ‘Math’
condition). Interleaved across trials were 5s cued-rest periods,
during which a centered cross sign was displayed on the screen
and patients were instructed to fixate and rest. The experiment
comprised 96 randomized trials of each condition (except for
rest, ~66 trials) and was divided in two sessions.

In addition to the data acquired during experimental condi-
tions, we identified periods of naturalistic condition during
which the patients interacted with their environment (e.g.
talking with medical staff or on the phone with family mem-
bers). Windows of 10 minutes (P1) or 6 minutes (P2, P3)
were transcribed (i.e. each word was written down along with
its timing, temporal resolution of the transcription: 1s) and
selected for further analysis.

IThe procedure was approved by the Stanford Institutional Review Board
and the subjects provided written informed consent to participate in the study.
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Fig. 1. Experimental design and event extraction. A. Examples of events
presented during experimental condition. 48 events of each category (except
rest = 33) are presented during each of 2 distinct sessions. B. Illustration of
event presentation (arrows) and extraction (axes). RT stands for response time,
IST for inter-stimulus interval (200ms). For each event, its onset is rounded
to the closest second and its duration floored to the previous second, giving
categorical labels (math, in green, or others, in grey) to each 1s time window.
C. According to the transcripts of the videos, words assessed as ‘quantitative’
were marked as ‘Math’ events while everything else (including silences) was
marked as ‘Other’.

B. Definition of events

1) Experimental settings: For the experimental settings, a
precise onset can be derived for each event, based on the visual
presentation of the stimulus. However, due to the temporal
resolution of the transcription (1s), events in the naturalistic
cannot be extracted with such timing accuracy. Two feature
sets were hence defined: (1) considering knowledge of the
training task only, and (2) including knowledge about the
target task.

1) Events were extracted based on the precise onset of
visual stimulus presentation (in ms).

2) Each precise onset was rounded to the closest sec-
ond, and the duration of the visual presentation was
rounded towards negative infinity to the closest second
(i.e. Matlab ‘floor’). Each 1s time window defined by
this strategy was labeled as ‘Math’ if an equation was
presented, or ‘Others’ in the case of self-episodic, self-
semantic, self-judgment or rest trials. This is illustrated
in Fig.1.B.

Feature sets #1 and #2 hence corresponded to the same trials,
with the only difference being in the temporal resolution of
their extraction.

2) Naturalistic settings: As the temporal resolution of the
transcription is low (1s), events in the naturalistic settings were
extracted at each second of the recording. Each event was
labeled as ‘Math’ if quantities or numbers were evoked (e.g.
‘some’, ‘a bottle of, ‘small’, ‘all the nurses’, ‘once every hour’,
‘10 days ago’), and ‘Other’ otherwise (including silences).
This is illustrated in Fig.1.C. It is important to note that the

labeling of naturalistic events is prone to imprecision, due to
the low temporal resolution of the transcription compared to
the flow of words, as well as very different sampling rates
between the video and the ECoG signal. However, since only
the video can bring information about the behavior of the
patient, we assumed that the derived labels represented the
‘ground truth’.

C. Pre-processing

Signal pre-processing was performed using Matlab’> and
SPMS8?. The continuous signal was first filtered for line noise
and harmonics, re-referenced to the average of all channels
and downsampled to 436Hz.

For both feature sets, the defined epochs were extracted
using a [—200ms, 1200ms] time window around ‘onset’ and
a time-frequency decomposition was performed using Morlet
wavelets (7 wavelets), with frequencies of interest log-spaced
between 1 and 110Hz. The resulting decomposition was scaled
(point-wise) by the logarithm of its value. The instantaneous
power of the signal in the 0 to 1000ms time-window was then
averaged in each of the following frequency bands: § (1-4Hz),
0 (4-8Hz), o (8-12Hz), 8 (15-25Hz), low-y (30-55Hz) and
a narrow band of High Frequency Broadband (HFB), high-
v (70-110Hz), by averaging the frequency bins within those
bands. For each channel, 436 features were hence considered,
representing the average power in a chosen frequency band in
the selected 1s time window.

III. METHODS
A. Model

Linear kernels were built for each channel and each fre-
quency band. Modeling was performed using the simpleMKL
algorithm [8], a multiple kernel learning (MKL) approach
based on support vector machines (L1 regularization on ker-
nels). A binary MKL classifier was trained to discriminate
between ‘Math’ and ‘Other’ trials, based on the two sessions of
experimental settings. The estimated model was then applied
to each 1s epoch of the naturalistic settings to detect ‘Math’
events.

B. Performance assessment

1) Experimental settings: To apply the model estimated
using data from experimental settings to naturalistic settings,
we first need to show that such model was able to significantly
discriminate between ‘Math’ and ‘Other’ trials. This was
achieved using a 10-folds cross-validation on the events (by
keeping events extracted from a single visual presentation
in blocks). An inner cross-validation was performed to opti-
mize the soft-margin hyper-parameter (C' = 10~21:3), Model
performance was estimated via the computation of balanced
accuracy (i.e. the average of class accuracies). Significance
was assessed using 1000 permutations, with results associated
to a p-value smaller than 0.05 reported as significant.
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2) Naturalistic settings: In the present case, the model was
trained on the two sessions of experimental settings and tested
on each epoch of the naturalistic settings (both on ‘Math’
and ‘Other’ trials). The hyper-parameter value was selected
through an inner cross-validation based on the sessions (i.e.
train on one experimental session and test on the other for
each value of C). The value of C leading to the highest
balanced accuracy was selected for further modeling. Since
we are interested in the detection of numerical processing, we
focused the results on the ‘Math’ condition and computed the
class accuracy for ‘Math’, as well as its positive predictive
value (PPV). In view of the imprecision of the labeling of
the naturalistic condition, we computed those values based
on a direct correspondence between the predictions and the
labels, as well as based on a three seconds correspondence,
i.e. considering a correspondence whenever a labeled ‘Math’
behavioral event was preceded (—1s), corresponding (direct
= 0s) or followed (+1s) by a ‘Math’ prediction. As for
experimental settings, the significance of the obtained results
was assessed using 1000 permutations.

IV. RESULTS

A. Events and features

After discarding electrodes containing noisy or pathological
signal, 40 channels were selected for P1, 102 for P2 and 97
for P3. This led to the computation of 40*6 = 240 kernels for
P1 (612 for P2, 582 for P3), used in the simpleMKL model.

1) Feature set #1 - Experimental settings: 96 ‘Math’ events
were extracted for each subject, based on the two experimental
settings. They were balanced with 96 events randomly selected
in the four other conditions, i.e. 24 events labeled as self-
episodic, 24 labeled as self-judgment, 24 labeled as self-
semantic and 24 labeled as rest.

2) Feature set #2 - Experimental settings: Regarding the
two sessions of experimental condition, 184 ‘Math’ events
were extracted for P1, 255 for P2, and 185 for P3. They were
balanced with an equal number of epochs from each of the
four other conditions, i.e. 46 epochs labeled as self-episodic,
46 labeled as self-judgment, 46 labeled as self-semantic and
46 labeled as rest (total 184) were randomly selected for P1
(63 per category for P2, 46 per category for P3).

3) Naturalistic settings: Regarding the naturalistic condi-
tions, 33 math epochs were defined for P1 (total: 611 epochs),
96 for P2 (total: 358) and 73 for P3 (total: 358) based on
the transcripts. Among the total number of epochs, 230 (resp.
47, 103) epochs corresponded to silences (i.e. patient not
speaking) for patient P1 (resp. P2, P3).

B. Model performance

1) Feature set #1 - Experimental settings: This model was
trained and tested on experimental settings data using feature
set #1. Model performance is displayed in Table I, in terms
of balanced and class accuracy for each subject.

TABLE I
BALANCED (BA) AND CLASS ACCURACY (IN %) FOR THE ‘MATH’
VERSUS ‘OTHER’ CLASSIFICATION FOR EACH SUBJECT, AS WELL AS
SELECTED VALUE FOR THE HYPER-PARAMETER C. SIGNIFICANT
CLASSIFICATION RESULTS ARE DISPLAYED IN BOLD.

Subject | BA ‘Math’ accuracy | ‘Other’ accuracy | C
P1 97.92 97.92 97.92 1
P2 73.75 79.79 67.71 1
P3 81.68 85.71 77.65 1

2) Feature set #1 - Naturalistic settings: When considering
features based on the exact stimulus presentation in experi-
mental condition, the predictions in naturalistic settings were
poor, with almost everything classified as ‘Math’ for the three
subjects in direct accuracy (see Table II) and 100% ‘Math’
accuracy for 3s-range accuracy.

TABLE 11
BALANCED (BA) AND ‘MATH’ ACCURACY (IN %) FOR THE DETECTION
OF ‘MATH’ EVENTS IN NATURALISTIC SETTINGS, FOR EACH SUBJECT,
WITH POSITIVE PREDICTIVE VALUE (PPV). SIGNIFICANT CLASSIFICATION
RESULTS ARE DISPLAYED IN BOLD.

Subject | BA | ‘Math’ accuracy | ‘Math’ PPV
P1 49.92 99.51 49.92
P2 48.18 91.90 48.96
P3 50.42 81.68 50.14

3) Feature set #2 - Experimental settings: This model was
trained and tested on experimental settings data using feature
set #2. Model performance is displayed in Table III, in terms
of balanced and class accuracy for each subject.

TABLE III
BALANCED (BA) AND CLASS ACCURACY (IN %) FOR THE ‘MATH’
VERSUS ‘OTHER’ CLASSIFICATION FOR EACH SUBJECT, AS WELL AS
SELECTED VALUE FOR THE HYPER-PARAMETER C. SIGNIFICANT
CLASSIFICATION RESULTS ARE DISPLAYED IN BOLD.

Subject | BA | ‘Math’ accuracy | ‘Other’ accuracy | C
P1 89.51 88.06 90.96 1
| 7] 87.19 85.49 88.89 1
P3 76.80 72.89 80.71 1

4) Feature set #2 - Naturalistic settings: Considering simi-
lar event extraction for both the training and target tasks led to
improved results, with significant balanced and ‘Math’ direct
accuracy for patients P1 and P2 (see Table IV). The three
subjects displayed significant 3s-range ‘Math’ accuracy and
PPV for this feature set (see Table V).

TABLE IV
BALANCED (BA) AND ‘MATH’ ACCURACY (IN %) FOR THE DETECTION
OF ‘MATH’ EVENTS IN NATURALISTIC SETTINGS, FOR EACH SUBJECT,
WITH POSITIVE PREDICTIVE VALUE (PPV). SIGNIFICANT CLASSIFICATION
RESULTS ARE DISPLAYED IN BOLD.

Subject | BA | ‘Math’ accuracy | ‘Math’ PPV
P1 68.36 42.42 29.79

P2 52.64 8.33 50.00

P3 49.46 1.37 12.5




TABLE V
3S-RANGE ‘MATH’ ACCURACY (IN %) FOR THE DETECTION OF ‘MATH’
EVENTS IN NATURALISTIC SETTINGS, FOR EACH SUBJECT, WITH POSITIVE
PREDICTIVE VALUE (PPV). SIGNIFICANT CLASSIFICATION RESULTS ARE
DISPLAYED IN BOLD.

Subject | ‘Math’ accuracy | ‘Math’ PPV
P1 72.73 44.68

| ) 18.75 81.25

P3 4.11 12.5

V. DISCUSSION

In this work, we present a simple approach to transfer
learning based on ECoG recordings of numerical processing
in two settings (experimental and naturalistic).

The performance obtained on naturalistic settings can seem
low. However, the results were significant for two patients in
direct accuracy and for the three patients in 3s-range accuracy.
This is surprising due to the imprecise labeling of math events
in the naturalistic settings: the transcription was performed on
1s temporal resolution videos, with the evocation of quantities
or numbers happening at any time during the 1s time windows.
Furthermore, the labeling was performed manually, which
led to further approximation in the timing of the events.
Hence obtaining significant math accuracies, both for direct
and 3-s range correspondence can be considered as a good
result. We also computed the number of false positives and
did not discard any period of silences (i.e. when the patient
does not speak). The resulting positive predictive values were
significant, showing that the model did not predict everything
as ‘Math’ (which would also lead to high accuracy but poor
PPV) or at random (chance accuracy and PPV). This might
suggest a common space for numerical processing in the two
tasks, hence revealing a relationship between the activity of
neuronal populations in the human brain during controlled
experimental conditions and during naturalistic settings.

This result was previously suggested by [7], in which the
authors used thresholds on the high-y power to identify ‘Math’
peaks on specific electrodes. Unfortunately, our results can
hardly be compared to the sensitivity and specificity obtained
using univariate techniques [7] since we obtained one value
per subject and not one value per electrode. In addition, our
results display direct correspondence between 1-second epochs
of ‘Math’ trials and behavioral events while the authors of [7]
have computed the co-occurrence of a high-y peak within 5
seconds of a behavioral ‘Math’ event, discarding periods of
silence.

Our results showed that the considered features had a large
effect on the results. It seems that including prior knowledge
on the features (implemented here through the selection of 1s
successive epochs for the experimental settings) is a more sen-
sible choice than selecting features based only on the training
set (i.e. extracting epochs based on the stimulus presentation
timing). This result suggests that although we added variance
(i.e. noise) within the training set, using commonly defined
features brought the two hypothesis spaces closer, which led

to significant detection of numerical processing within the 3s-
range for the three patients.

In this work, the transfer between the two tasks was direct:
we assumed that the hypothesis space of the experimental
settings could be used to model the naturalistic settings. In
addition, the feature construction represents a manual attempt
at uncovering a common feature space between the two tasks.
Together, these two hypotheses aim at fulfilling the major
assumption of traditional machine learning techniques: the
train and target data are drawn from the same feature space
and the same distribution. Although this simple approach led
to significant results, similar transfer problems might benefit
from more advanced algorithms, such as Multi-Task Learning
which aims at uncovering the common (latent) features be-
tween multiple tasks to learn them simultaneously although
they are different [9]. In the present case, only one task
was available for training. In future experiments, multiple
aspects of a classification problem could be divided in different
tasks to increase the generalization ability to new tasks (e.g.
reading numbers, listening to numbers, mental representation
of numbers, ...). Moreover, investigating what information
is shared between tasks to form a common hypothesis space
might provide valuable insights on the cognitive question of
interest.
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