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Abstract

Integrons are genetic elements capable of capturing and expressing open reading frames
(ORFs) embedded within gene cassettes. They are involved in the dissemination of antibi-
otic resistance genes (ARGs) in clinically important pathogens. Although the ARGs are
common in the oral cavity the association of integrons and antibiotic resistance has not
been reported there. In this work, a PCR-based approach was used to investigate the
presence of integrons and associated gene cassettes in human oral metagenomic DNA
obtained from both the UK and Bangladesh. We identified a diverse array of gene cassettes
containing ORFs predicted to confer antimicrobial resistance and other adaptive traits. The
predicted proteins include a putative streptogramin A O-acetyltransferase, a bleomycin
binding protein, cof-like hydrolase, competence and motility related proteins. This is the first
study detecting integron gene cassettes directly from oral metagenomic DNA samples. The
predicted proteins are likely to carry out a multitude of functions; however, the function of
the majority is yet unknown.

Introduction

Integrons are commonly found in bacterial genomes, especially in most Gram-negative bacte-
ria. They are involved in the dissemination and differential expression of genes in the bacterial
population [1-3]. They contain two common features, a functional platform and an array of
gene cassettes (GCs). The former or the 5” conserved segment (5’CS) contains the integrase
gene, intl, an att] recombination site and the promoter Pc. This platform is used for the captur-
ing and expression of the GCs, non-replicative mobile elements which generally couple one or
more open reading frames (ORFs) with the cassette-associated recombination attC site. The
intI gene encodes a site-specific tyrosine recombinase, IntI which catalyses the integration and
excision of the GCs. The expression of integrase genes can be upregulated by the SOS response,
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a bacterial stress response induced by the accumulation of single stranded DNA in a cell, such
as transformation, conjugation, starvation and exposure to antibiotics such as quinolones and
trimethoprim [4].

The recombination usually occurs between attl, located immediately adjacent to intI, and
attC which is present on circular gene cassettes [5-7]. The attC sites contain two inverted
regions of homology (L’-R’ and R”-L”), which flank the central region containing a highly vari-
able sequence. The size of attC can be between 57 to 141 bp [8]. Even though the sequences of
attC sites are not conserved, they show a palindromic organization which is essential for the
formation of the correct hairpin structure, which is the recognition site of the integrase during
integron GC recombination reactions [9]. The GCs normally do not have a promoter. The Pc
promoter is usually required for the transcription of GC ORFs, therefore the first GC following
Pc often has the higher levels of expression relative to downstream GC located ORFs [10].

Integrons have the potential to drive bacterial evolution and adaptation by differential
expression of ORFs within GCs. One of the most clinically significant adaptive traits is antibi-
otic resistance [11]. The first integrons were identified by their association with antibiotic resis-
tance genes (ARGs) [12]. Among hundreds of classes of integrons, class 1 integrons are the
most commonly associated with multiple ARGs in clinical strains. More than 130 different
GCs carried by integrons were predicted to confer resistance to a variety of classes of antibiotics
such as aminoglycosides, beta-lactams, chloramphenicol, trimethoprim, and streptothricin
[13].

Gene cassettes are abundant and disseminated widely in diverse environments. Different
isolates of the same bacterial species can have different GC arrays [14]. The predicted protein
functions of ORFs within GCs are varied and include, in addition to antibiotic resistance,
virulence, and secondary metabolism, which are likely to be niche-specific [1, 2]. However,
metagenomic analyses of the integron cassette gene pool from several studies revealed that vast
majority of GCs were novel [15-17].

Due to the fact that, in many environments, less than 1% of the bacterial population is cul-
turable [18], one of the approaches to investigate the GCs in the entire bacterial community is
the PCR-based amplification of GCs using metagenomic DNA as a template [19]. Several stud-
ies on the diversity of GCs in different environments have been performed with this approach
such as soil, seawater, marine sediment and deep sea vents [16, 17, 19, 20].

The human oral cavity is one of the most complex microbial ecosystems in the human
body. More than 700 bacterial species have been detected from the oral cavity, [21, 22]. Many
ARGs have been detected and discovered in the oral cavity, including tetracycline resistance
genes tet(Q), tet(W), tet(M), tet(37) and tet(32); erythromycin resistance genes, ermB and
mef, and kanamycin resistance gene, aphA-3 [23-25]. Recent genetic analysis of the oral meta-
genome showed that 2.8% of the predicted genes had the potential to encode proteins with
antibiotic and toxin resistance [26]. However, very few studies investigating integrons in
human oral cavity have been performed. There are two major reports on integrons in the
human oral cavity; one describing an unusual or reverse integron, an integron with the inte-
grase gene oriented in the same direction as a gene cassette array, in Treponema denticola
ATCC35405 by using whole genome sequencing analysis, and the in silico analysis of an inte-
gron associated with Treponema species by using metagenomic datasets of the Human Micro-
biome Project [14, 27]. The presence of other integrons in other oral bacterial species remains
to be determined.

Despite the oral microbiota being recognised as a potential source of ARGs and the oral
environment providing conducive conditions for the transfer of ARGs between a range of spe-
cies [25], no in depth studies have been carried out to detect integrons and GCs within the oral
microbiota. In this study, we have investigated the presence of integrons and associated GCs in
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the human oral metagenomic DNA from two countries, the UK and Bangladesh using a PCR

approach. Different sets of primers targeting different regions of integrons were used for PCR
amplification, in which multiple GCs were identified and predicted to encode various proteins
including some likely to confer antibiotic resistance.

Materials and Methods
Saliva sample collection and ethical approval

Saliva samples were collected from 11 and 10 healthy volunteers (both male and female with
age between 21 and 65) from UK and Bangladesh, respectively. The UK samples were col-
lected from the staff and international postgraduate students from the UCL Eastman Dental
Institute and represent various ethnic and cultural backgrounds including Asian, Australian,
European, African and Middle-Eastern, some of which had moved to the UK in the past few
months. Therefore, the UK samples represent an international metagenome. The Bangladeshi
samples were collected from the staff, undergraduate and post-graduate students of Depart-
ment of Pharmacy of Rajshahi University all of which were Bangladeshi. All of the volunteers
read and gave written consents before sample collection. None of the volunteers had received
antibiotic treatment for 3 months before the sample collection day. Ethical approvals for the
analysis of pooled saliva as part of this project were obtained from University College London
(UCL) Ethics Committee (project number 5017/001) and the Institutional Animal, Medical
Ethics, Biosafety and Biosecurity Committee (IAMEBBC) for Experimentations on Animal,
Human, Microbes and Living Natural Sources, University of Rajshahi (project number 54/
320/TAMEBBC/IBSC). Both ethics committees approved the consent procedures for the sam-
ple collection and processing. For the UK samples, 2 ml of saliva were collected in a sterile
plastic tube and processed immediately. The samples from Bangladesh were collected and
transported using Norgen’s Saliva DNA Collection and Preservation Device, (Norgen, Can-
ada) following the manufacturer’s guidelines, and transported to UK for analysis. All samples
were anonymised.

Extraction of oral metagenomic DNA

The freshly collected UK saliva samples were pooled together into a sterile plastic tube in a
class I microbiological safety cabinet. The pooled saliva sample was then divided into 1.5ml
aliquots and centrifuged at 20238 g for 1 min. The UK oral metagenomic DNA was then
extracted by using the Puregene DNA extraction kit (Qiagen, UK), following the Gram-positive
bacteria and yeasts protocol with the modification in final step, which the DNA pellets were
dissolved in 400pL molecular grade water at room temperature, instead of 100pL.

The Bangladeshi oral metagenomic DNA was extracted from the Norgen’s Saliva DNA stor-
age buffer using ethanol precipitation technique according to manufacturer’s protocol. The
preservative buffer of Norgen devices is designed for rapid cellular lysis and subsequent preser-
vation of DNA from fresh saliva samples. Prior to DNA isolation, the storage devices were
incubated for 1h at 50°C and mixed by inversion and gentle shaking for 10 seconds. DNA was
then extracted from 500 pL of the pooled saliva in preservative buffer by taking 50 pL aliquots
from 10 saliva samples.

PCR amplification

The list of primers and their sequences are shown in S1 Table and the target sites for the prim-
ers are shown in Fig 1. The typical PCR was prepared as follows; 50 L reaction containing
15ul of 2x BioMix Red (Bioline, UK), 0.2 uM of each 10 uM primer, 50-100 ng of DNA
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Fig 1. The primer binding sites of the published and newly designed primers. Primers were indicated as black arrows on A.) the class 1 integrons
and B.) the unusual integron structure of T. denticola. The open arrowed boxes represent ORFs, pointing in the probable direction of transcription. The
genes in 5’and 3’ conserved segment (CS), the open reading frame (ORF), the recombination site att/ and attC are shown in grey, blue, green, yellow
and orange respectively.

doi:10.1371/journal.pone.0157605.g001

template, and molecular grade water (Sigma, UK) up to 30 uL. The standard PCR was carried
out with (i) an initial denaturation: 94°C for 5 minutes, (ii) denaturation step: 94°C for 1 min-
ute, (iii) annealing step: 50-65°C depending on the primers for 30 seconds, (iv) elongation
step: 72°C for 30 seconds to 3 minutes depending on the size of expected products, repeated
step (ii)-(iv) for 35 cycles and (v) final elongation step 72°C for 10 min.
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PCR purification and gel extraction

The PCR products were subjected to electrophoresis on 1% agarose gel stained with 1:10,000
dilution of GelRed nucleic acid stain (Biotium, UK). The products were then purified by using
either QIAquick PCR Purification Kit (Qiagen, UK) or QIAquick Gel Extraction Kit (Qiagen,
UK), depending on the amplification results and the target amplicons, according to the manu-
facturer’s instructions.

Ligation and transformation

Purified PCR products were ligated into pGEM-T Easy vector (Promega, UK). The ligation
mixtures were transformed into Escherichia coli o.-Select Silver Efficiency competent cells (Bio-
line, UK) by heat shock at 42°C for 40 s, and plated on Luria-Bertani (LB) agar with ampicillin
(100 ug/mL) as a selective marker for the plasmids and 40 pg/ml X-Gal plus 0.4 mM IPTG for
the blue-white colony screening.

Plasmid isolation and sequencing

White colonies were subcultured in 5 mL of LB broth with ampicillin (100ug/mL) and incu-
bated overnight. Plasmids were isolated by using QIAprep Spin Miniprep Kit (Qiagen, UK) fol-
lowing the manufacturer’s instructions. The presence of the insert in a plasmid was verified by
a 10ul DNA digestion reaction, containing 0.5 pL EcoRI restriction enzyme (20 units/pL, New
England Biolabs, UK), 1pL 10x EcoRI buffer, 100-500 ng of DNA and molecular grade water
(Sigma, UK) up to 10 pL. The reactions were incubated at 37°C for 1 hour and electrophoresed
on 1% agarose gel.

Sequence analyses

DNA sequencing of inserts were performed at the Beckman Coulter Genomics (Beckman
Coulter Genomics, UK) with an ABI 3730XL. M13 forward (5 GTTTTCCCAGTCACGAC 3’ )
and M13 reverse (5’ GGAAACAGCTATGACCATG 3’ ) primers were used as the initial primers
for sequencing. Additional primers were designed and used for further sequencing for the lon-
ger inserts using Primer3 (http://biotools.umassmed.edu/bioapps/primer3_www.cgi).

DNA sequences were aligned and manipulated by using BioEdit software version 7.2.0
(http://www.mbio.ncsu.edu/bioedit/bioedit.html). For the inserts which required sequencing
with more than one primer, the sequences were assembled using the CAP contig function in
the BioEdit program [28]. The sequences were screened for vector contamination by using
VecScreen analysis tool (http://www.ncbinlm.nih.gov/tools/vecscreen). The primer binding
sites were then identified by searching the sequences by eye. The sequences were analysed by
the comparison of sequence and translated sequence using the National Centre for Biotechnol-
ogy Information (NCBI) tools and databases including BlastN and BlastX [29], ORF finder and
Clustal Omega.

A sequence obtained using the attC-based primers was considered a putative GCs if (i) it
contains both of the primer sequences (designed from conserved nucleotides of attC) (ii) the
sites included an integrase-like simple site at each end [10] (iii) the primer sites flank a putative
OREF beginning with ATG, TTG or GTG [17]. The sequences which did not contain an ORF,
but contained the attC site, were considered as empty GCs. The putative translated sequences
were subjected to BlastX searches and matches were considered significant if the e-value was
<0.001.
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Nomenclature and accession number of the gene cassettes

The gene cassettes (GCs) were named according to the source and the primers. The first two
letters indicate the forward and reverse primers used for amplification. The third letter indi-
cates the source of oral metagenomic DNA that the GCs amplified from (U for UK; B for Ban-
gladesh), which is followed by a numerical code for the number of clone. For example, TMB1
means it is the first GC obtained from Bangladeshi samples by using the primer TDIF and
MARS2.

The sequences of integron regions, which contained intI, Pc, attI and gene cassettes, were
deposited in the DNA database Genbank under accession numbers from KT921469 to
KT921473. The accession numbers from KT921474 to KT921509 and from KT921510 to
KT921531 represented gene cassette sequences generated by the T. denticola primers from UK
and Bangladeshi samples, respectively.

Results

Recovery and characterization of PCR products containing int/ and the
first gene cassette

Initially, we used previously published primers that had been used to successfully amplify gene
cassettes from a range of environments (Fig 1, S1 and S2 Tables). Unexpectedly none of these
primers produced amplicons having the structural features of a gene cassette [17] when oral
metagenomic DNA isolated from the UK and Bangladesh was used as a template (see materials
and methods).

As Treponema denticola integrons are the only ones that have been described in the oral
microbiota [27], new primers were designed based on this integron. The PCR were performed
by using the intl-based primer TDIF (designed based on the conserved amino acid sequence
SSQNQAL of IntI of the Treponema denticola integron) coupled with the attC-based primer
MARS2. Resulting amplicons were cloned into pPGEM-T Easy vector and a total of 17 clones
were randomly selected from both cohorts and the inserts within the plasmids were sequenced.
All of these contained the basic features of an integron. Within the amplicons, a major part of
intI (768 bp), the full length attI site and a putative integron promoter, Pc were detected. A
total of 5 different amplicons containing 5 different GCs including one empty GC with no
identifiable ORF were found (Fig 2). The putative ORFs detected on the GCs had a size range
of 258 to 777 bp (Table 1).

Among the 17clones sequenced from both cohorts, 8 clones (TMB3/5/6/10/11/13/14/16)
had a GC having an ORF (768-bp) predicted to encode a protein homologous to a cof-like
hydrolase of Treponema putidum. Two of the first gene cassettes with an ORF of 258-bp and
387-bp present on clones TMB1/8/12/15 and TMU18, respectively had no nucleotide sequence
similarity to anything in GenBank. However, at the amino acid level the 387-bp ORF on
TMU18 showed 100% identity with a hypothetical protein of T. denticola. Another GC
detected on clones TMU3/4/11 with an ORF of 777-bp was found to encode a hypothetical
protein of Treponema denticola (Table 1). Finally, an empty first GC was found on clone
TMB4.All but one ORF detected on the first GCs had putative ribosomal binding sites (RBS) at
less than 8-bp upstream of the ORFs. In all first gene cassettes, two putative integrase binding
sites (L and R; also termed as S2 and S1, respectively) were detected on the att! sites where the
integrase binding sites S1 (R) were found to contain a plausible attI-attC junction (GTT). The
7 bp core site R" (1L) of attC was also detected upstream of the reverse MARS2 primer having
the consensus sequence RYY(/R)YAAC (S3 Table). In most cases, the stop codons of the ORFs
was located at these R" integrase binding sites of attC [8, 30].
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The open arrowed boxes represent ORFs, pointing in the direction of transcription. The left and right halves of

attC site are represented by orange semicircles.

Fig 2. Orientation of ORFs in the GCs recovered from metagenomic DNA of saliva samples.

doi:10.1371/journal.pone.0157605.9002
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Gene Cassettes Amplified Using attC-based primers

A library of PCR amplicons obtained using a different set of attC-based primers was con-
structed in pGEM-T Easy vector and the inserts from 100 clones were sequenced (Table 2, Fig
1, S1 and S2 Tables). By analysing the sequences with different bioinformatics tools we have
detected a total of 58 unique GCs having the features of an integron GC and flanked by the
primer binding sites. The size of the cassettes ranged from 425 to 1144 bp. Of the 58 GCs, 12
had no identifiable ORFs and the remaining 46 GCs contained one or more putative ORFs giv-
ing a total of 72 different ORFs with a size range between 117 to 894 bp. As the forward and
reverse primers were designed based on the consensus L' (2R) and L" (2L) core sites, respec-
tively, we were able to locate the R’ (1R) core sites in all GCs with a consensus GTTRR(Y)R(Y)
Y(R) after the forward primer sequence. The complementary R" (1L) core sites with a consen-
sus R(Y)Y(R)Y(R)YAAC were also detected upstream or as a part of the reverse attC primers
which confirms that the putative GCs are not PCR artefacts and is consistent with the attC
structure of a GC [31]. The majority of the R' and R" core sites (51 out of 58 GCs) exhibited
100% complementarity with each other. In the remaining seven, 6 out of 7-bp were compli-
mentary (5S4 Table).

By analysing the arrangement of genetic features within the GCs we found that they were
arranged in seven different ways (Fig 2) as defined by the direction, position and number of
ORFs within the GCs. The type C arrangement accounted for the majority; found in 24 cas-
settes. The sequences of the clones containing two or more ORFs were examined for the pres-
ence of other putative attC sequences in between the ORFs, none of which were found. These
observations show that the attC-based primers based on the T. denticola integron are able to
amplify GCs from oral metagenomic DNA. From 72 putative ORFs found in all GCs, 63 of
them had ribosomal binding sites located upstream of the predicted start codons. As in previ-
ous studies the GCs other than the toxin-antitoxin encoding GCs did not contain an identifi-
able promoter, thus are likely to be dependent on the Pc of the cassette array for expression
[19].

Diversity of the functions of putative proteins encoded by ORFs within
the GCs detected by attC primers

Out of 72 putative ORFs detected on 58 different GCs amplified by using attC primers, 66
(91.66%) of the predicted proteins had a homologue in GenBank. However, only 24 of the 66
OREFs (36.36%) were found to encode proteins with known function and the remaining 42
matched hypothetical proteins. With regards to sequence similarity of the ORFs with those in
GenBank, we found that 45 of the 66 ORFs (68.0%) exhibited >90% amino acid identity. Ten
putative ORFs were predicted to encode completely novel proteins (e-value <0.001).

The putative ORFs detected on the gene cassettes were predicted to encode proteins of
diverse functions including antibiotic resistance, host adaptation to stress and competence
(Table 2). Four different putative antibiotic resistance genes were found among the cassette
ORFs. BlastX searches showed that the clone MMB22 contained an ORF that encoded a pro-
tein with 99% identity to streptogramin A O-acetyltransferase from T. denticola. The single
OREF (390-bp) present in the clones SSU3, SSU4 and SSU30 of UK was predicted to encode a
glyoxalase/bleomycin antibiotic binding protein. Two ORFs were detected in the clone SSU28
encoding potassium ABC transporter ATPase and multidrug transporter MatE. Proteins
related to adaptation to stress include different toxin-antitoxin systems and a twitching motility
protein. The clones containing the ORFs encoding toxin-antitoxin system includes SSU27,
MMB23, MMB38 which encoded HicA (toxin)- HicB (antitoxin), peptidase (antitoxin)-PemK
(toxin) and higA (antitoxin)-higB (toxin), respectively.
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Most of the proteins encoded by the ORFs on GCs showed similarity with many proteins in
the database, some of which were from Treponema spp. (60 out of 66) mostly from T. denticola
(24 out of 60) followed by T. putidum, T. medium, T. vincentii, T. pedis, T. phagedenis, and T.
socranskii. This observation supports the previous reports that T. denticola, T vincentii and T.
phagedenis carry chromosomal integrons [14, 32]. However, we have also identified 27 ORFs
related to other Treponema spp.; T. putidum, T. medium, T. pedis and T. socranskii. Only six
ORFs out of 66 were predicted to encode proteins related to non-treponemes including those
from Paenibacillus sp., Clostridium sp. and Maripofundus sp. however, the homologies of the
ORFs with these species were low (<70%) at the amino acid level.

Discussion

The PCR strategies to recover novel integron cassettes from metagenomic DNA using primers
targeting the conserved sequence of Intl and attC have been successful in previous studies [15-
17,19, 33]. However, all of these metagenomic studies were carried out on non-human envi-
ronmental samples. Most of the metagenomic studies involving human microbiota, were either
sequence-based [34] focusing on the recovery of all genetic features or focusing on a function
of interest such as antibiotic resistance [35]. No studies have been reported so far on metagen-
omes obtained from human saliva to detect integrons using a PCR approach. We detected
mostly Treponema integrons and GCs from metagenomic DNA from human saliva from both
Bangladeshi and UK samples, indicating that this methodology is applicable to any oral meta-
genomic sample.

This study provides an analysis of the diversity of integron GCs amplifiable in saliva meta-
genomic DNA. Using novel primer combinations based on the structural features of the
reverse integron of T. denticola ATCC 35405 [27], we have uncovered a diverse array of
gene cassettes including those in the first position, most of which are novel. Although the
chromosomal integron of T. denticola ATCC 35405 is the only integron described from the
oral bacteria (it has 45 gene cassettes in the array), in silico analysis of metagenomic data sets
from the Human Microbiome Project (HMP) showed that two other Treponema species,
including T. vincentii ATCC 35580 and T. phagedenis F0421, have also been found to carry
integron GCs [14, 27, 32]. However, the PCR strategies used in this study, recovered novel
GCs that were predicted to encode proteins related to those from genera other than Trepo-
nema spp.

Analyzing the proteins encoded by the GCs amplified from the oral cavity showed several
interesting ORFs. GC SSU3 was predicted to encode a protein with 97% amino acid identity to
the glyoxalase of Treponema pedis (WP_009105863.1, 100% coverage). It contains the Glo-
EDI-BRP-like domain which can be found in metalloproteins including glyoxalase I, type I
extradiol dioxygenases and bleomycin sequester proteins. Bleomycin is a glycopeptide antibi-
otic, which inhibits the peptidoglycan synthesis in bacteria, and also used as an antitumor drug
which bind to DNA and generate free radicals that result in both double-strand and single-
strand DNA breaks [36, 37]. Another ORF found on GC MMB22 detected in the Bangladeshi
sample was predicted to encode streptogramin A O-acetyltransferase which had 77.0% nucleo-
tide identity with Clostridium sp. BLN1100 and 99.0% amino acid identity with the streptogra-
min A O-acetyltransferase from T. denticola. Streptogramin A O-acetyltransferases mediate
resistance to the streptogramin A-B combination by adding acetyl group to streptogramin,
which inactivates the drugs [38].

Finally, a cof-like hydrolase gene (a member of haloacid dehalogenase superfamily) was pre-
dicted to be within a GC amplified using both GC primers and first gene cassette primers
(GC SSU26 and GC TMB3). Cof-like hydrolases are a group of enzymes that inactivate
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halogenated aliphatic hydrocarbons by hydrolysing the carbon-halogen bonds. They are essen-
tial for detoxification of many chlorinated compounds [39, 40]. Therefore, a cof-like hydrolase
in the oral cavity could play a role in detoxifying or inactivating antimicrobials or other com-
pounds with carbon-halogen bonds that are used as antibiotics, pesticides and food preserva-
tives such as chloramphenicol, atrazine and brominated vegetable oil, respectively.

Another function of predicted GC ORFs was related to the adaptation of bacteria to envi-
ronmental stress. For example, the twitching motility PilT protein was predicted to be encoded
by the ORF in GC of clone SSU5, MMB3 and MMBY. It has been shown to be involved
with type IV fimbria-mediated twitching motility and protease secretion [41]. Twitching
motility was also shown to play a key role in the development of biofilm from Pseudomonas
aeruginosa [42]. As many oral bacteria can form biofilms on the surfaces in the human oral
cavity, having a PilT-encoded GC could help them to develop biofilms and survive environ-
mental stress.

As in previous metagenomic studies to detect integron GCs [16, 17, 43], ORFs predicted to
encode proteins with regulatory functions such as toxin-antitoxin (TA) systems have been
detected. Four different TA operons including the HicAB, HigBA, RelBE and MazF were
detected on GCs in our study. TA cassettes are usually abundant in chromosomal integrons
and are thought to have a role in the stability of the integron GC arrays [27, 44]. All of the
detected TA cassettes are the members of type II toxin-antitoxin systems [45]. The toxins
(HicA, HigA, RelE and MazF) work by cleaving mRNA, inhibiting translation and exhibit bac-
teriostatic activity, and the antitoxins (HicB, HIgB, RelE, MazE) can inhibit the action of toxin
by protein-protein complex formation [46-49]. Among the four detected TA operons, only the
HicAB TA system was previously found on the T. denticola integron. The nucleotide sequence
of HicA and HicB system found on SSU27 cassette exhibited 97% and 99% nucleotide identity
to the corresponding fourth gene cassette of the integron of T. denticola, containing HicA
(TDE1838) and HicB (TDE1837) genes[27]. We have detected two HigBA TA systems in our
GCs (MMU24 and MMB38), and this system has also been detected on the Vibrio cholerae
super integron Several recovered GCs did not contain ORFs. This kind of ORF-less GCs was
found both in the first position GC and other GC positions in the integron (clone TMB4,
SSU29 and MMU?2). Other noncoding cassettes have been previously found in cassette arrays
comprising, for example, between 4 and 49% of Vibrio spp. cassette arrays [50]. They have
been hypothesised to contain promoters or encode regulatory RNAs [2]. It was previously
shown that a Xanthomonas campestris integron GC encoded trans-acting small RNA, which
was capable of regulating the virulence in Xanthomonas [51].

This survey on the presence of integrons and associated GCs in salivary metagenomic DNA
has resulted in new information regarding the putative functions and diversity of GCs which
likely reflects the highly variable physicochemical and stressful environment of the human oral
cavity.
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