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One  of  the features  of  both  adult-onset  and  developmental  forms  of  amnesia  resulting  from  bilateral
medial  temporal  lobe  damage,  or even  from  relatively  selective  damage  to the  hippocampus,  is  the  sparing
of working  memory.  Recently,  however,  a number  of  studies  have  reported  deficits  on working  memory
tasks  in  patients  with  damage  to  the  hippocampus  and  in macaque  monkeys  with  neonatal  hippocampal
lesions.  These  studies  suggest  that  successful  performance  on working  memory  tasks  with  high  memory
load  require  the  contribution  of  the hippocampus.  Here  we  compared  performance  on  a  working  memory
task (the  Self-ordered  Pointing  Task),  between  patients  with  early  onset  hippocampal  damage  and  a
group  of  healthy  controls.  Consistent  with  the  findings  in  the monkeys  with  neonatal  lesions,  we  found

that  the  patients  were  impaired  on  the  task,  but  only  on blocks  of  trials  with  intermediate  memory  load.
Importantly,  only  intermediate  to  high  memory  load  blocks  yielded  significant  correlations  between  task
performance  and hippocampal  volume.  Additionally,  we  found  no  evidence  of  proactive  interference  in
either  group,  and  no evidence  of  an effect  of  time  since  injury  on  performance.  We  discuss  the role  of  the
hippocampus  and  its  interactions  with  the  prefrontal  cortex  in  serving  working  memory.
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. Introduction

One of the striking features of both adult- and developmental-
nset amnesia produced by damage to the hippocampus is the
paring of working memory (e.g. Milner, 1966; Cave and Squire,

992). Typically, despite their severe and chronic impairment in
pisodic or event memory (Allen et al., 2014; Baddeley et al., 2011,
010; Hurley et al., 2011; Vargha-Khadem, 1997), amnesic patients

Abbreviations: aMCI, amnesic mild cognitive impairment; CMS, children mem-
ry  scale; DLPFC, dorsolateral prefrontal cortex; ECMO, extracorporeal membrane
xygenation; FSIQ, full scale IQ; IFG, inferior frontal gyrus; RT, response time; SOPT,
elf-ordered pointing task; TGA, transposition of the great arteries; VLPFC, ventrolat-
ral prefrontal cortex; WAIS, Wechsler adult intelligence scale; WISC-IV, Wechsler
ntelligence scale for children IV; WMS,  Wechsler memory scale.
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J.M. Cooper), d.gadian@ucl.ac.uk (D.G. Gadian), mishkinm@mail.nih.gov
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1 Present address: Australian Centre for Child Neuropsychological Studies, Mur-
och Childrens Research Institute, Flemington Road, Parkville, 3052 Melbourne,
ustralia.
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878-9293/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
hed  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

often display normal working memory on such standard tasks as
digit span and block span (but see Rose et al., 2012). Given this
profile, it might be surmised that the hippocampus makes no con-
tribution to working memory, an ability that is therefore often
assumed to be served instead by neocortical regions, especially
the prefrontal areas implicated in the maintenance and manip-
ulation of on-line information (Brahmbhatt et al., 2008; Molteni
et al., 2008; Vuontela et al., 2009). However, because of their recip-
rocal neuroanatomical connections (Aggleton et al., 2015; Barbas
and Blatt, 1995; Carmichael and Price, 1995; Goldman-Rakic et al.,
1984; Kondo et al., 2005; Saleem et al., 2008), severe damage to the
hippocampus can potentially compromise the working memory
function of the prefrontal cortex.

Heuer and Bachevalier (2011) induced bilateral hippocampal
lesions in neonatal monkeys and tested the animals as adults on
(a) a self-ordered object-sequence task known to depend on the
functional integrity of the dorsolateral prefrontal cortex (DLPFC),

and (b) a session-unique delayed non-matching-to-sample task
known to depend on the integrity of the ventrolateral prefrontal
cortex (VLPFC). Results indicated a selective deficit in the self-
ordered working memory task. In contrast, there was no effect of

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he neonatal hippocampal lesions on the session-unique, delayed
on-matching-to-sample task, suggesting that the VLPFC of the
ippocampal-lesioned monkeys was functionally intact. In a sub-
equent report, Heuer and Bachevalier (2013) contrasted the
erformance of the same monkeys on two different serial order
orking memory tasks that measure memory for temporal order

f stimuli, one being DLPFC-dependent, and the other not. Once
gain, results confirmed that the operated monkeys were impaired
nly on the more complex temporal order list—viz, the version that
s dependent on the functional integrity of the DLPFC. Taking the
esults of the two studies together, the authors conclude that early
ippocampal lesions “. . .yield significant deficits in.  . .monitoring
f information in working memory. The results further suggest that
he deficits may  relate to an alteration of hippocampal-prefrontal
nteractions” (Heuer and Bachevalier, 2013, p. 11).

To compare directly the contributions of prefrontal cortex and
he medial temporal lobes to performance on the Self-ordered
ointing Task (SOPT), Petrides and Milner (1982) studied groups of
dult patients with unilateral surgical excisions of one or the other
f these two brain regions. The results confirmed the sensitivity
f the SOPT to frontal lobe lesions, especially for removals on the
eft side, but also indicated that patients with large temporal lobe
emovals extending medially and posteriorly (i.e. those involving
adical excisions of the hippocampus along with parahippocam-
al gyrus and entorhinal cortex) were impaired as well. These
atients showed material-specific deficits on the verbal or non-
erbal versions of the SOPT consistent with the side of surgery;
.e. left hemispheric surgery resulted in impaired performance
n tasks involving low- and high-imagery words, whereas right
emispheric surgery resulted in impaired performance on tasks

nvolving abstract designs and representational drawings. Rele-
ant to the current study, the report by Petrides and Milner (1982)
lso highlighted the effects of memory load, with both frontal and
edial temporal lobe lesions yielding error rates that increased as

 function of increasing number of items in each test block.
The issue of memory load was recently addressed in other

eports, where it has been suggested that whether the hippocam-
us plays a role in working memory depends on both memory load
Axmacher et al., 2010, 2007; Jeneson et al., 2012, 2011, 2010) and

emory lag (Elliott and Dolan, 1999; Jeneson et al., 2012, 2011;
lson et al., 2006; Owen et al., 1995). Jeneson and Squire (2012)
rgued that ‘supra-span’ demands (i.e. higher memory loads and
onger delays) require long-term memory and, therefore, the par-
icipation of the hippocampus, since working memory capacity is
verloaded. Others suggest that the hippocampus is involved in
he performance of a working memory task when the task requires
elational memory, irrespective of whether working- or long-term
emory is involved (Hannula et al., 2006; Watson et al., 2013);
hen information coding and binding occurs (Nee and Jonides,

013, 2008; Oztekin et al., 2009); when dealing with novel stimuli
Rose et al., 2012); during on-line maintenance of the stimuli for the
urpose of active processing (Voss et al., 2011; Warren et al., 2011),
r simply during higher order visual spatial processing (reviewed
n Cowell et al., 2010; Lee et al., 2012).

We examined the consequences of relatively selective hip-
ocampal damage on performance on the SOPT after early injury

n humans. From a cohort with a documented history of hypoxic-
schaemic events early in life, we recruited a large group of patients

ho showed a moderate to severe degree of hippocampal damage.
he timing of the hippocampal lesions, and the time lag between
esion-onset and test in this group of patients resemble the rhe-
us monkeys studied by Heuer and Bachevalier (2011, 2013). In

he current study we focused on the relation between memory-
oad and the role of the hippocampus. Building on the growing
vidence that degree of hippocampal activation is correlated with
emory load (e.g. Jeneson et al., 2012, 2011, 2010), we  attempted
e Neuroscience 20 (2016) 12–22 13

to relate the degree of hippocampal atrophy to behavioural perfor-
mance on the SOPT. This approach contrasts with one that treats
hippocampal atrophy as present or absent, as is often the case in
patient studies. We  adapted the abstract designs version of the
SOPT developed by Petrides and Milner (1982), a visual working
memory task with varying memory loads, to suit the young age
level of our patients and controls. Low memory load trials fall within
the span traditionally associated with working memory (Alvarez
and Cavanagh, 2004; Cowan, 2001; Luck and Vogel, 1997), whereas
high-memory-load trials would potentially exceed working mem-
ory span. We hypothesised that the patients’ performance would
show a hippocampal-dependent load-effect, i.e., the greater the
hippocampal atrophy, the lower the memory load it could main-
tain. Theoretically, the hippocampal-dependent load effect could
also be demonstrated in healthy controls. It is therefore conceiv-
able that at high memory-loads, healthy controls would also find
it difficult to hold in mind the order of pointing they generated in
each block. Under such circumstances it would be predicted that
both patients and controls would surpass the limits of their work-
ing memory capacity and make increasing number of errors at high
memory loads.

Lastly, our patient group is unique inasmuch as the hippocam-
pal damage in each case was  acquired in infancy or early childhood.
This could have a different effect on function than it would in
adults who  had developed normally and only later sustained dam-
age to the hippocampus. We therefore also tested the relationship
between elapsed time since damage and behavioural performance
on the SOPT.

2. Materials and methods

2.1. Participants

Eighteen patients (age range = 10–33, mean age = 16.7 ± 6.6,
10M, 8F) with confirmed bilateral hippocampal atrophy and Full
Scale IQ (FSIQ) within the normal range (FSIQ ≥ 85) participated
in the study. Patients had sustained hippocampal damage as a
result of a hypoxic-ischaemic event early in life (during infancy or
early childhood) due to various aetiologies (acute respiratory fail-
ure followed by Extracorporeal Membrane Oxygenation (ECMO)
treatment, n = 6; Transposition of the Great Arteries (TGA) and
open heart surgery, n = 5; neonatal asphyxia, n = 4; pre-term birth,
n = 1; hypoglycaemia, n = 1; epilepsy related, n = 1). Hippocampal
atrophy was defined as ≥15% volume reduction on each side (vol-
ume  reduction averaged across hemispheres: range = 15.7–61.9%,
mean = 34.9 ± 15.9%), relative to the mean of a group of healthy
controls (n = 64; mean = 3248.64 ± 255.45 mm3). Table 1 presents
patients’ clinical and demographic information. Eighteen healthy
volunteers (age range = 9–38, mean age = 18.1 ± 8.9, 10M, 8F) also
participated in the study. Participants had no genetic syndromes,
no overt neurological deficits (e.g. hemiplegia), no central visual
or auditory impairments, and all were native English speakers. The
two groups were matched for gender. Participants completed these
tests as part of a larger study. They were assessed over two to three
days and were compensated for their time and expenses. The study
was approved by the Local Research Ethics Committee and all par-
ticipants, and/or their parents/guardians, read an information sheet
and gave written informed consent before the start of the study.

2.2. Behavioural testing
For the SOPT, participants were shown an array of abstract
designs. The designs were based on those developed by Petrides
and Milner (1982), but created anew by a member of our research
team, so they are easy to distinguish from one another but difficult
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Table 1
Patients’ demographic and clinical information.

Patient Age Sex Hippocampal Volume Reduction (%) Aetiology Age at hypoxic event

1 19 F 61.9 Complicated delivery resulting in neonatal
asphyxia

Neonate

2  21 M 57.1 Neonatal asphyxia and recurring respiratory
illness

Neonate

3  27 M 54.2 Hypoglycaemia First hypoglycaemic episode at age 9.5
4  12 M 52.6 TGA Neonate
5  25 M 51.5 Neonatal asphyxia as a result of the umbilical

cord wrapped around the neck during delivery
Neonate

6  33 M 50.0 Extreme prematurity and neonatal asphyxia Neonate
7  14 F 45.0 Pre-term birth and respiratory distress after

birth
Neonate

8  23 M 34.9 Epilepsy related 4.5 years
9  11 F 31.5 Pre-term birth resulting in respiratory failure

associated with pulmonary hypertension,
requiring ECMO treatment

Neonate

10  11 F 27.0 Neonatal aspiration of meconium followed by
ECMO treatment

Neonate

11  16 M 23.3 Acute respiratory failure followed by ECMO
treatment

Neonate

12  14 F 22.4 Acute respiratory failure followed by ECMO
treatment

Neonate

13  10 F 22.3 TGA Neonate
14  16 M 21.6 TGA Neonate
15  12 M 20.5 TGA Neonate
16  14 M 20.3 Acute respiratory failure followed by ECMO

treatment
Neonate
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17  10 F 16.8 TGA 

18  12 F 15.7 Acute
aspira

o code verbally. Similar to the previous study, the task consisted of
ifferent memory load conditions: 6, 8, 10 or 12 designs, with 3 tri-
ls in each condition. Here we added a 4-design condition, to ease
ur younger patients into a gradual increase in memory load. All

 trials of the same condition were performed consecutively, thus
orming a single block. Within each condition, the same designs
ere used but the location of the designs varied across trials. Hence,

n all 3 trials of the 4-designs memory load condition, the same 4
esigns were used; similarly, in all 3 trials of the 6-designs mem-
ry load condition, the same 6 designs were used, and so on. This
llowed testing whether any trials caused proactive interference
n subsequent trials, and whether any such proactive interference
ifferentially affected the performance of the two groups of partic-

pants. However, each design was repeated only within the same
ondition, and never across different conditions. The positions of
he designs were randomly determined on each page, but the gen-
ral layout remained the same throughout the task (see Fig. 1).

Participants were shown a grid of different designs and were
sked to choose one of the designs and point to it. After making a
ointing response, the participant was shown another page, with
he same designs appearing in a different order, and asked to point
o a different design. Participants were also instructed not to point
o the same spatial location more than twice in succession. There-
ore, participants were required to remember which designs they
ad already selected in that trial. This procedure was  repeated until
articipants had the opportunity to choose all the designs once
ach; thus, in a 4-designs condition, participants were presented
ith 4 pages; in a 6-designs condition, they were presented with

 pages, and so on. The order in which the stimuli were pointed to
nd the time taken to complete the entire trial (i.e. overall response
ime; RT) were recorded. As in the study by Petrides and Milner
1982), participants were told that accuracy, but not speed, was
mportant in completing the test. It was explained that it was  crit-

cal to maintain a comfortable pace to proceed through the test
i.e. not so fast that they were unable to examine each item care-
ully, and not so slow that they would forget which items they had
lready touched). Reaction times were recorded primarily to ensure
Neonate
ratory failure due to neonatal
f meconium & ECMO treatment

Neonate

that participants were not lingering on specific designs or trials,
hence RT was not a primary outcome measure in this study.

In addition, participants completed standardised tests of intelli-
gence (either the Wechsler Intelligence Scale for Children, WISC-IV,
or the Wechsler Adult Intelligence Scale, WAIS) and memory (Chil-
dren’s Memory Scale, CMS, or Wechsler Memory Scale, WMS).

2.3. Imaging data acquisition and processing

MRI  scans were obtained using a 1.5-T Siemens Avanto scanner,
with a T1-weighted 3D FLASH sequence: repetition time: 11 ms,
echo time: 4.94 ms,  flip angle: 15◦, matrix size: 224 × 256, field of
view: 250 mm,  partition thickness: 1 mm,  176 sagittal partitions in
the third dimension, acquisition time: 5.34 min. For the measure-
ment of hippocampal volumes, the datasets were reformatted into
1 mm-thick contiguous slices in a tilted coronal plane perpendicu-
lar to the long axis of the hippocampus using MEDx 3.43 (Medical
Numerics, Inc., Maryland, USA). Hippocampal cross-sectional areas
were measured as described previously (Cooper et al., 2015) by one
of the authors (DGG) along the entire length of the hippocampus,
using every slice. The volumes were calculated by summing the
cross-sectional areas and multiplying by the distance between the
measured slices. A correction was made for intracranial volume,
and the volumes are presented here in this corrected form. For all
participants, measurements were made blind to all clinical data,
and to patient or control status.

2.4. Statistical analysis

The following variables were analysed: (a) Average number of
errors for every memory load condition was  compared to chance
level. The average number of errors that can be accrued if perfor-
mance were at chance level is 1.26, 1.99, 2.74, 3.49 and 4.22 errors

(based on permutation calculations), on the 4-, 6-, 8-, 10- and 12-
design conditions, respectively. (b) Error score: Number of errors
in each condition, averaged over the three trials, divided by [num-
ber of items-1]. (c) Standardised RTs: RTs averaged over the 3 trials
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ig. 1. An illustration of a 4-design trial of the SOPT. Each blue square represents 

esigns circled in red provide an example of a possible correct sequence of choices 

f the same condition, divided by the number of designs in the
ondition. (d) Incremental RT: the difference in RT between two
djacent conditions. (e) Error rate: Average error rate calculated
ccording to trial order, producing average error rate in the first
rials of all memory load conditions (4-, 6-, 8-, 10- and 12-designs
onditions); average error rate in the second trials of all memory
oad conditions; and average error rate in the third trials of all mem-
ry load conditions. Hence, error score summarizes performance
or all trials of a certain memory load condition whereas error rate
ummarizes errors by trial order across the entire task. Note that for
he calculation of error scores we explicitly controlled for the num-
er of items selected. For error rate, the number of items selected is
qual in all three scores, being (4 + 6 + 8 + 10 + 12) = 40 items pointed
o overall.

We used independent sample t-tests to compare the patient and

he healthy control groups; one-sample t-tests to compare partic-
pants’ performance to calculated chance levels; multivariate tests
o examine effects of group and task, and Pearson’s correlation
o examine linear correlations between hippocampal volume and
 on which the participant had to point to one design not chosen before. The four
-designs trial.

performance. Threshold level for significance was set at p < 0.05,
unless stated otherwise.

To examine the effect of time since hypoxic event on task per-
formance, we  applied the method of curve estimation using the
following models: (a) linear—examining the hypothesis that per-
formance improves linearly over time; (b) logarithmic—examining
the hypothesis that improved task performance occurs close to the
hypoxic event (because early insult accrues greater compensation
as a result of neuronal plasticity), or (c) exponential—examining
the hypothesis that improved performance occurs at a time distant
from the time of the hypoxic event (because of the maturation of
frontal lobe function which gradually unfolds with increasing age).

3. Results
3.1. Behavioural performance

Independent samples t-tests confirmed that the two  groups did
not differ in age (t = 0.12, p = 0.909), FSIQ (t = 0.61, p = 0.55) or in
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ig. 2. Mean error score in the different conditions (error bars represent ±1 standard
rror).

arious components of verbal working memory (digit span forward
aw score, t = 1.72, p = 0.094; digit span backward raw score, t = 0.72,

 = 0.477; digit span standard score, t = 1.45, p = 0.156; and letter-
umber sequencing, t = 0.19, p = 0.85, all from the WISC-IV/WAIS).

In contrast, patients performed significantly worse than con-
rols on most of the memory measures of the CMS/WMS (visual
elayed, verbal immediate, verbal delayed, and general memory
core, independent sample t-tests, t > 2.5, p < 0.005 for all, signifi-
ant after Bonferroni correction for multiple comparisons). Table 2
resents the means and the standard deviations relating to the
bove analyses.

Both patient and control groups performed above chance on all
onditions (one sample t-tests, t > 10, p < 0.001 for all). However, a

 × 2 multivariate test of the SOPT error score (5 conditions and 2
roups) revealed a main effect of group (F = 5.36, p = 0.027), a main
ffect of condition (F = 10.55, p < 0.001) and a trend for interaction
F = 2.40, p = 0.067). Conditions also showed a significant linear-
ty effect (F = 34.12, p < 0.001) (see Fig. 2). After controlling for the
ffects of age and FSIQ by adding those covariates to the model, the
roup effect remained significant (F = 5.08, p = 0.031), and there was

 trend for interaction (F = 2.41, p = 0.067), but the effect of condi-
ion was not significant (F = 0.37, p = 0.784). Post-hoc independent
amples t-tests revealed that the two groups did not differ on the
-designs condition (t = 0.52, p = 0.604), but they did differ on the 6-

 8- and 10-designs condition (t = 2.88, p = 0.007; t = 2.23, p = 0.032,
 = 2.12, p = 0.041, respectively), and did not differ on the 12-designs
ondition (t = 1.52, p = 0.139) (see Fig. 2).

In summary, although all participants scored significantly above
hance, patients performed significantly worse than the control
roup on the intermediate load conditions (6-, 8- and 10-designs
onditions).

Reaction times were not fully recorded for one patient and one
ontrol participant. A 5 × 2 multivariate test (5 conditions and 2
roups) comparing standardised RTs revealed a main effect of con-
ition (F = 27.45, p < 0.001), no effect of group (F = 1.93, p = 0.174),
nd no interaction (F = 3.18, p = 0.084). However, none of the effects
ere significant after controlling for age and FSIQ (p > 0.05). See

able 3.
The analysis of the incremental RT examined whether adding
wo more items when moving from low to intermediate memory
oad conditions (for example, from 4 to 6 designs), has a dif-
erent effect on RT than when adding two items at the higher

emory load conditions (for example, when moving from 10 to
Fig. 3. Mean error rate in the 1st, 2nd and 3rd trials, averaged across all memory
load conditions (error bars represent ±1 standard error).

12 designs). A 4 × 2 multivariate test (4 condition gaps and 2
groups) revealed a main effect of group (F = 8.16, p = 0.007), and task
(F = 3.47, p = 0.039) and a significant interaction (F = 4.40, p = 0.044).
These effects are driven by a single significant difference (accord-
ing to post-hoc t-tests) in the control group, where the difference
in RT between the 8- and 10-designs is significantly higher than all
other differences. However, as above, none of the effects remained
significant after controlling for age and FSIQ (p > 0.05).

Lastly, we  examined whether there was evidence for proac-
tive interference within each condition by looking at differences
between error rates. A 3 × 2 multivariate test (3 trials and 2 groups)
revealed a main effect of group (F = 5.87, p = 0.021), but no effect
of trial (F = 1.23, p = 0.3) and no interaction (F = 0.65, p = 0.522; see
Fig. 3). We  also examined whether there was a significant inter-
action between error rate and memory load, using a 3 × 5 × 2
multivariate test (3 trials, 5 memory load conditions and 2 groups),
but none was  found (p > 0.05). These results indicate that partici-
pants made a similar number of errors in the first, second, and third
trials, thus there was  no evidence of proactive interference across
trials.

In addition, none of the models; linear, logarithmic or exponen-
tial, could significantly explain the patients’ test performance in
relation to the time since the hypoxic event (all p > 0.05).

In summary, all participants made more errors in condi-
tions with higher memory load. The control group performed
significantly better than the patient group on conditions with inter-
mediate memory load, but the two  groups did not differ in reaction
time in most conditions and neither group showed evidence of
proactive interference from one trial to the next. We  also found
no effect of time since injury on performance.

3.2. Correlations between behavioural performance and
hippocampal volume

We  next examined the relationship between hippocampal vol-
umes and SOPT error scores across all participants. Significant
p-value for Pearson’s correlation was determined as p = 0.01, after
Bonferroni correction for multiple comparisons. There was no sig-
nificant correlation at the lowest memory load condition (4-designs

condition, Pearson’s r = 0.002, p = 0.496), a trend toward significant
correlation at the next higher memory load condition (6-designs
condition, Pearson’s r = −0.29, p = 0.044), and then significant cor-
relations at each of the still higher memory load conditions (8-, 10-,
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Table  2
Groups’ performance on the various neuropsychological tests. p-values are from independent sample t-tests comparing the two groups. Threshold p-value for significant
difference following Bonferroni correction for multiple comparisons is p < 0.005.

Group Mean Std. Deviation p-value for group difference

Full-scale IQa Controls 110.39 11.653 0.546
Patients 108.11 10.731

Digit Span − Standard scoreb Controls 10.06 2.711 0.156
Patients 11.56 3.451

Digit Span – Forward – Rawb score Controls 9.17 2.618 0.094
Patients 10.72 2.803

Digit Span – Backward – Raw scoreb Controls 7.39 1.754 0.477
Patients 7.83 1.948

Visual Immediate − Standard scorec Controls 106.53 12.694 0.007
Patients 90.50 19.470

Visual Delayed − Standard scorec Controls 103.94 11.244 <0.001*

Patients 82.28 15.988
Verbal Immediate − Standard scorec Controls 101.88 16.363 <0.001*

Patients 80.33 14.637
Verbal Delayed − Standard scorec Controls 102.65 14.283 <0.001*

Patients 74.56 22.781
General Memory − Standard scorec Controls 105.94 15.449 <0.001*

Patients 77.72 19.423

a Full-scale IQ—from Wechsler Intelligence Scale for Children (WISC-IV) or Wechsler Adult Intelligence Scale (WAIS).
b Standardised score for digit span from Wechsler Intelligence Scale for Children (WISC-IV) or Wechsler Adult Intelligence Scale (WAIS).
c Memory scores from the Children’s Memory Scale (CMS) or Wechsler Memory Scale (WMS)  for adults.
* Significant difference between groups.

Table 3
Standardised response times (RTs) for the different conditions in patient and control groups. p-values are from independent sample t-tests comparing the two groups.

Controls Patients p-value for group difference

N Mean Std. Deviation N Mean Std. Deviation

4-designs 17 3.13 0.79 17 2.90 1.10 0.50
6-designs 18 3.74 0.99 18 3.54 1.04 0.56
8-designs 18 4.09 1.17 18 3.92 1.25 0.68
10-designs 18 4.98 1.29 18 4.14 1.53 0.86
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12-designs 18 5.13 1.22 

* Significant difference between groups.

nd 12-designs conditions: Pearson’s r = −0.57, p < 0.001; −0.52,
 = 0.001; and −0.43, p = 0.005, respectively; see Fig. 4).

Applying Fisher’s r-to-z transformation followed by a hypothe-
is test of a point estimate to examine whether these correlations
iffered significantly from each other, we found that the correlation
or the 4-designs condition was significantly lower than those of the
-, 10- and 12-designs conditions (Z score = 3.09, p = 0.002 for com-
arisons of 4- and 8-designs conditions; Z score = 2.66, p = 0.007
or comparisons of 4- and 10-designs conditions; Z score = 2.60,

 = 0.009 for comparison of 4- and 12-designs conditions). The cor-
elation for the 10-designs condition was significantly higher than
hat for the 12-designs condition (Z score = 2.81, p = 0.004). No other
omparisons were significant (Z < 1.5, p > 0.05).

. Discussion

In this study we found that for intermediate memory loads,
erformance on a visual memory task requiring self-generated
esponses was impaired in our patient group with relatively selec-
ive hippocampal damage acquired very early in life. These results:
i) expand on similar findings in rhesus monkeys with neonatal
esions (Heuer and Bachevalier, 2013, 2011); (ii) are consistent with
eficits on a similar task in adult patients with surgical removals
f the medial temporal lobe encroaching on the hippocampus
Petrides and Milner, 1982); and (iii) highlight the importance of
he hippocampus in serving working memory performance on tasks

ith increasing memory load (Jeneson and Squire, 2012). Interest-

ngly, in our patients with a history of neonatal hypoxia-ischaemia
eading to hippocampal atrophy, task performance was  not influ-
nced by increasing age at test, or by proactive interference. The
3.89 1.08 0.003*

implications of these several findings will be discussed in turn in
the sections that follow.

4.1. Effects of neonatal hippocampal lesions in monkeys and
humans

There is a striking similarity between the findings of
Heuer and Bachevalier (2011, 2013) in rhesus monkeys with
pharmacologically-induced neonatal lesions of the hippocampus
tested during young adulthood, and our results in patients with
neonatally-acquired bilateral damage to the hippocampus tested
during adolescence and young adulthood. In both cases, perfor-
mance on self-ordered pointing tasks was  significantly impaired
relative to that of the controls. This consistent pattern of perfor-
mance across both humans and monkeys raises two important
points. First, monitoring of self-selected sequential pointing is dis-
rupted after neonatal/early lesions of the hippocampus, even when
these responses are performed online. Furthermore, across both
species, the deficit on self-generated sequential pointing is related
to increasing memory load (Heuer and Bachevalier, 2013; Jeneson
and Squire, 2012). Second, even when bilateral hippocampal lesions
are sustained prior to development of any memory or monitoring
ability, no other structure can fully compensate for the disruption
of this aspect of hippocampal function.

What might be the role of the hippocampus in our task? Var-
ious current theories can account for our results. As mentioned

in the introduction, some argue that when a task has ‘supra-span’
demands, participants have to draw on information from long-term
memory to perform, and therefore the role of the hippocampus
is simply to retrieve long-term memories (Jeneson and Squire,
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Fig. 4. Mean error scores plotted against mean hippocampal volume (mm3), for the 4-designs (A), 6-designs (B), 8-designs (C), 10-designs (D) and 12-designs (E) conditions.
L
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012). According to Baddeley’s model (2012, Fig. 4), all incoming
nformation is processed by different components of the cogni-
ive system, each of which is, in turn, dependent on long term

emory. Depending on the requirements of the information to be

rocessed, working memory draws on one or more components
f long term memory to update, modify, or add to incoming infor-
ation and translate the product to action. This model highlights

he interactive nature of working memory with long term memory
and its neural substrate, the hippocampus. Others argued that the
hippocampus is responsible for the maintenance of the represen-
tation during on-line processing (Voss et al., 2011; Warren et al.,
2011), even when the task is within working memory limits, as

demonstrated before (von Allmen et al., 2013). If the latter is cor-
rect then our patients must have used their residual hippocampal
tissue to perform even the 4-designs task. Our data do not allow
distinguishing between these competing explanations.
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.2. Comparison of the effects of unilateral temporal lobectomy
ersus selective bilateral hippocampal lesions

In adults, large removals of the right hippocampus as part of a
emporal lobectomy result in a severe and chronic impairment in
he abstract designs version of the SOPT (Petrides and Milner, 1982).
dmittedly, the severity of this impairment could be attributable
ot only to the extent of hippocampal removal, but also to the
emoval of the posterior parahippocampal gyrus and the anterior
edial temporal lobe structures on the right side. These struc-

ures provide indirect forward and backward projections to the
ight dorsolateral prefrontal cortex (Aggleton et al., 2015; Barbas
nd Blatt, 1995; Carmichael and Price, 1995; Goldman-Rakic et al.,
984; Kondo et al., 2005; Saleem et al., 2008). Furthermore, the
emoval of the inferior temporal cortices, necessarily included in a
emporal lobectomy, could disrupt visual perception itself (Mishkin
t al., 1982), thereby potentially contributing additionally to the
ronounced deficit on the abstract design version of the SOPT.

.3. Interactions between hippocampus and prefrontal cortex
uring working memory

Although connections between the hippocampus and the DLPFC
re indirect (Aggleton et al., 2015; Goldman-Rakic et al., 1984;
ondo et al., 2005; Saleem et al., 2014), they are implicated in

acilitating and maintaining different aspects of DLPFC function,
otably the temporal organisation of goal-directed action, a princi-
al component of which is working memory (Fuster and Alexander,
971; Fuster, 2002). Given this pattern of connectivity, and the late
aturation of DLPFC function that stretches to late adolescence

nd adulthood (Fuster, 2002), it is reasonable to hypothesise that
arly hippocampal damage can lead to abnormal development of
PLFC function. Hence, although the impairment in our patients’
orking memory could be a direct consequence of their hippocam-
al damage, an alternative or additional explanation must also be
onsidered, viz., that the impairment is the result of a partially dis-
upted interaction between a directly-compromised hippocampus
nd an indirectly-compromised DLPFC.

From a cognitive viewpoint, network models of working mem-
ry (Fuster, 2009; Petrides, 1994; Ranganath, 2006) have proposed
hat the hippocampus is responsible for maintaining active repre-
entations of novel and complex visual stimuli during short delays,
hile the prefrontal cortex has a role in selection or inhibition of

elevant/irrelevant representations, based on task demands. The
-state model of short–term memory (Oberauer, 2002) postulates
hat the medial temporal lobe in general, and the hippocampus
n particular, is responsible for information coding and binding;

hile the ventrolateral prefrontal cortex mediates access to long-
erm memory. This theory was recently supported by the results
f neuroimaging studies using verbal (Nee and Jonides, 2013;
ztekin et al., 2009) and visual (Nee and Jonides, 2008) stimuli.
ased on results from an fMRI study, Rissman et al. (2008) suggest
hat as memory load increases, the ability of the prefrontal work-
ng memory system to maintain active representations decreases
nd this then entails a shift from reliance on frontal structures
o reliance on the hippocampus. Voss et al. (2011) have argued
hat a prefrontal-hippocampal circuit is active during information-
eeking behaviour, with the hippocampus being responsible for
etermining the strength of the on-line memory trace, thereby
llowing the frontal lobe to direct behaviour aimed at refreshing
his memory trace when needed.

An alternative explanation of our patients’ deficit on the SOPT

s the possibility of occult damage to the prefrontal areas, i.e.,
he damage not being easily detected on conventional structural

RI  scans. Indeed, frontal-related behavioural deficits might occur
ven in the absence of structural damage to the prefrontal cortex,
e Neuroscience 20 (2016) 12–22 19

inasmuch as a damaged hippocampus could fail to send normal
output to the frontal lobe, creating dynamic frontal diaschisis (Price
et al., 2001). However, when such bilateral frontal damage occurs
early in life, it is usually diffuse and is likely to affect the devel-
opment of cognition generally, and speech and language functions
specifically, rather than working memory per se (Vargha-Khadem
et al., 1985). Together, these considerations lead us to suggest that
our patients do not have sufficient frontal lobe damage to explain
their load-related working memory deficit.

Clearly, comparing the performance of our patient cohort to that
of a group of patients with selective bilateral frontal lobe damage
could shed light on the differential contribution of the frontal and
hippocampal structures to task performance. However, cases with
bilateral frontal damage sustained early in life are extremely rare.
Therefore, the question regarding the role of the frontal lobes in
high-memory load tasks remains open.

4.4. Effect of memory load

On trials where memory load was low (4-designs), performance
on the task did not differ between the groups and did not corre-
late with hippocampal volumes, suggesting that in the current task
low memory load does not require recruitment of the hippocam-
pus. However, the lack of correlation should be taken cautiously,
since we cannot exclude the possibility that a ceiling effect is at
least partially responsible for this result. As memory load increased,
however, the patients with hippocampal atrophy performed more
poorly than the control group, and this performance was corre-
lated with hippocampal volume, suggesting that normal visual
working memory with higher memory load requires normal hip-
pocampal function. Note that our patient group was not impaired
on standard measures of verbal working memory, which normally
appears to be extremely limited (Baddeley, 2012; Cowan, 2008;
Fukuda et al., 2010; Marois and Ivanoff, 2005), with many investi-
gators suggesting that it does not exceed four items (Alvarez and
Cavanagh, 2004; Cowan, 2001; Luck and Vogel, 1997). Rather, our
patients had difficulty only when task demands exceeded the clas-
sic definition of working memory capacity, which is traditionally
based on span tasks. This impairment was also found in the stan-
dardised memory tests, where our patient group was  impaired
on an immediate memory task (requiring remembering a large
amount of information, such as stories). On the most difficult tri-
als (those with 12 designs), the two groups did not differ in their
error scores. Therefore, one might argue that the lack of group
difference in the highest memory load condition does not sup-
port this explanation, and instead, as many have argued before,
that the hippocampus is necessary for working memory, long-term
memory, or perceptual tasks when the stimuli are sufficiently com-
plex (for reviews, see Cowell et al., 2010; Graham et al., 2010;
Lee et al., 2012; Olsen et al., 2012). However, behavioural per-
formance on the highest memory load condition still correlated
with hippocampal volume, suggesting that, as we hypothesised,
performance on particularly demanding tasks might vary with hip-
pocampal volume even among healthy participants. Together, our
findings suggest that a visual working memory task with high
memory load, probably exceeding working memory capacity as
measured with standard tasks, cannot be performed successfully
without the contribution of the hippocampus. Importantly, one can
also argue that the hippocampal involvement in the task is a result
of both its ability to maintain increasing loads and its importance
in managing complex stimuli.

When memory load is kept low and constant, however, other

components of working memory, such as maintenance of complex
span and speed of processing (Bayliss et al., 2003), can function nor-
mally even in the presence of severe bilateral hippocampal damage.
Thus, in a series of experiments on patient Jon who  has severe
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ippocampal damage of early onset, cross-modal storage, as well
s complex manipulation of visual and verbal stimuli within work-
ng memory, were all found to be comparable to those of normal
ontrols (Baddeley et al., 2011).

This complements the results of numerous activation studies
n adult humans, suggesting that the hippocampus is involved in

orking memory in a load-dependent manner (Jeneson et al., 2012,
011, 2010). For example, a correlation between increased mem-
ry load and increased hippocampal activation was  found in an
MRI study of healthy participants (Axmacher et al., 2007) and in
ntracranial EEG studies of patients with epilepsy (Axmacher et al.,
010, 2007). In another fMRI study, activation in the right poste-
ior hippocampus increased as working memory load increased
2-back vs. 1-back condition), however, only when demands on
patial processing were high (Lee and Rudebeck, 2010). Lastly, a
elation between an individual’s memory capacity and hippocam-
al activation within the limits of working memory span has also
een documented (von Allmen et al., 2013). Explaining such find-

ngs, Jeneson and Squire (2012) argue that ‘supra-span’ demands
higher memory loads/longer delays) necessitate the involvement
f long-term memory, and therefore the hippocampus, since work-
ng memory capacity is overloaded.

.5. Proactive interference

Interestingly, although the same designs were used within each
emory load level, neither group exhibited proactive interfer-

nce. An early study showed that young rhesus monkeys with
ilateral fornix dissection show proactive but not retroactive inter-
erence, when associating object and food (Owen and Butler, 1984).
tudies of word list learning in patients with amnestic mild cog-
itive impairment (aMCI), have consistently reported a greater
egree of proactive interference in these patients than in healthy
dults (Ebert and Anderson, 2009; Hanseeuw et al., 2012, 2010).
anseeuw et al. (2012) attributed this impairment to interfer-
nce either at the encoding or consolidation stage rather than at
etrieval. Notwithstanding the many differences between patients
ith aMCI and our patients, a factor that may  have contributed to

he absence of proactive interference effects in our sample is the
hoice of stimuli used, namely, the use of words versus abstract
esigns. Given that words have a strong semantic component,
hey are likely to be processed deeply, and so can be more easily
etrieved from long-term memory than can nonverbal stimuli. By
ontrast, the designs used in the current study were both novel and
bstract, allowing only superficial levels of processing and there-
ore more difficult to store in memory. As a result, memory of the
esigns may  well have been too weak to generate any interference.
sing more familiar stimuli might have created interference. On

he other hand, it might also have eliminated the behavioural deficit
ocumented in this study, as suggested by an early case study (Rose
t al., 2012).

.6. Effects of age at injury

We  also examined whether time since the hypoxic event could
ccount for some of the variability in patients’ performance. While
eorganisation of function can occur following early brain dam-
ge (see review by Anderson et al., 2011), it is not clear whether
lastic changes and the accompanying behavioural gain occur
lose to the time of insult, later as a function of interaction
ith the environment, or continuously throughout maturation and

eyond. We  tested this hypothesis by examining whether vari-

us statistical models can account for the change in performance
ith time since the hypoxic event. It should be noted, however,

hat time since the hypoxic event is equal to the patients’ age
t test in all but two cases (see Table 1). None of the models
e Neuroscience 20 (2016) 12–22

yielded significant results, suggesting that elapsed time since the
hypoxic event could not account for the variability in performance,
supporting previous findings from our group (Vargha-Khadem
et al., 2003). While it is likely that our patients experienced some
level of structural and functional brain reorganisation, and, as a
result, developed behavioural compensatory strategies, these were
not sufficient to completely overcome the consequences of bilateral
damage to the hippocampus, as verified by the patients’ compro-
mised performance. Furthermore, it is possible that both structural
and functional reorganisation occur very early in life, but by testing
children at later ages, when cognitive functions have emerged, as
done here, it is impossible to document the ongoing process itself.
Future studies should therefore aim to study very young children
to allow for the possible documentation of early plasticity effects,
although it must be noted that the behavioural function must first
emerge and develop before its trajectory can be tracked during
maturation.

5. Conclusions

In conclusion, we  have demonstrated impairment on a visual
working memory task with intermediate memory load, in a
group of patients with early onset hippocampal damage. We  also
found correlations between the degree of hippocampal damage
and task performance when task demands were intermediate to
high. We  suggest that when memory load falls within the tra-
ditional definition of working memory capacity the task can be
successfully performed even in the presence of severe, bilateral
hippocampal damage, but as memory load increases, hippocampal
recruitment becomes critical. In the task used here, the transi-
tion from working memory independent of the hippocampus to
hippocampal-dependent memory occurred beyond 4 items. How-
ever, it is unclear whether working memory capacity can be defined
based on span tests, since task demands might vary considerably
depending on the types of stimuli used, the length of the delays,
and other variables related to the specifics of the task (Cowan,
2008; Fukuda et al., 2010). Future studies should aim to specify the
contribution of the hippocampus to task performance by manipu-
lating such variables systematically, while disentangling the role of
the hippocampus from the putative role of the prefrontal cortex in
working memory.
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