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Abstract

We reexamine Rogers’ (1994) analysis of the biological basis of the rate of time

preference. Although his basic insight concerning the derivation of the felicity function

holds up, the functional form he uses does not generate the evolutionary equilibrium

behavior. Moreover, Rogers relies upon an interior solution for a particular kind of

intergenerational transfer. We show such interior solutions do not generally arise.

Hence Rogers most striking prediction, namely that the real interest rate should be

about 2% per annum, does not follow.

Key words: Biological evolution, rate of time preference, intergenerational trans-

fers.

1 Introduction

Why do individuals have the preferences they have? Why are they as risk-averse as they

are or as impatient? Although these questions have traditionally been claimed to be

inappropriate to address within economics, recent work has realized some of the potential

of evolutionary biology and anthropology to provide illuminating answers.

One such path-breaking contribution is due to Rogers (1994), who examines the bio-

logical underpinnings of intertemporal preferences and of the rate of time preference, in

particular. Rogers’ argument can be paraphrased as follows. Consider the evolution of a

sexually reproducing species in which resource availability plays a key role. Each individ-

ual uses resources to increase the probability of survival until the next period, but, as a
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simplifying assumption, has fixed fertility at every age at which he or she is alive. Fur-

thermore, each parent can save resources for the ultimate benefit of an offspring. Rogers

supposes that savings behavior is controlled genetically, and looks for the evolutionary

equilibrium level of such savings. He considers how individuals might be motivated to

choose the equilibrium level of saving by means of the appropriate interdependent utility

functions. These interdependent utilities are then those that would be generated by the

evolutionary process.

Rogers considers that a key option is for a mother to make a “same-age transfer,” that

is, to save resources to benefit her daughter in the future, at a date when her daughter will

be the same age as the mother is now. Since the daughter has more remaining reproductive

life than her mother will at that future date, it may be advantageous for the mother to

make this transfer rather than to keep the repayment for herself. This advantage is offset by

the fact that the daughter is only a half-relative of her mother and by population growth.

When considering the tradeoff between resources now for the mother and resources in the

future for the daughter, it is only the degree of relatedness of one half and the population

growth rate that matters, since the mother’s biological value now and that of her daughter

later are the same. Rogers assumes there is no growth in income, and that the rate of

interest then equals the pure rate of time preference. With zero population growth, the

overall discount factor due to time preference must then equal a half, and this is also the

overall discount factor due to interest. Given a reasonable estimate of the length of a

generation, he then derives a plausible estimate of annual rate of pure time preference,

and of the annual real rate of interest, in the neighborhood of 2%.

Although we believe strongly in the basic biological approach adopted here, there

are serious problems with Rogers’ model. Altogether, these problems make much of his

argument invalid as it stands. In particular, his prediction concerning the real rate of

interest does not follow. Rogers’ paper is frequently cited within the small but growing

research field that attempts to provide a biological basis for economic phenomena. Since

it is a keystone paper in this area, it is crucial to get the analysis correct. We illustrate

the problems with Rogers’ approach by means of an example that permits some insight

into the true properties of such a model.

Perhaps Rogers’ most important theoretical claim is that the utility function of an

individual can be derived from “reproductive value.” The overall biological success (or

“inclusive fitness”) of an individual must allow for the reproductive value of descendants,

as well, so this utility function is interdependent. Rogers uses a notion of reproductive
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value due to R.A. Fisher, which is the expected future offspring of an individual, discounted

by the rate of growth of population, and conditioning on the age of the individual. How-

ever, we show that this particular notion is inappropriate here, since it presumes that all

offspring are identical, which cannot be true when the mother makes resource transfers to

her offspring that vary with her age. The preferences identified by Rogers do not generate

evolutionarily appropriate behavior.

In analyzing our example, that is, we need a more general notion of reproductive value.

This general notion allows for different types of individual, and reflects the ultimate repre-

sentation of each type’s descendants in the overall population. The type of an individual

here is the age of his or her mother at birth. Such types must be distinguished since

offspring with larger transfers are at a biological advantage and hence have a higher re-

productive value than do their poorer siblings. The evolutionary equilibrium choices are

supported by utility functions that are the total discounted general reproductive values of

all the individuals who are affected by the choice.

In our example, furthermore, there will generally not be an interior optimum for a

“same-age transfer.” The example is constructed so as to produce an incentive for transfers

and saving in favor of offspring. However, the optimal transfer that is positive is consumed

when the daughter will be younger than her mother is now. The associated MRS does not

reflect only the degree of relatedness and the population growth rate, but depends also on

the underlying survival functions. Even though these survival functions are assumed to

have infinite derivatives at zero, corner solutions are bound to arise for same-age transfers.

The underlying reason for this is a robust one that is not particular to this example but

derives from the biological assessment of the net effect of a transfer when the donor and

related recipient have the same age. Since Rogers requires an interior solution to the same

age transfer problem for his prediction of the long term interest rate, this prediction is not

generally valid.

2 The Example

Individuals are born at age 0 and live to at most to age 3. Let Pi (ci) denote the survival

probability from age i to age i + 1, when consumption is ci, for i = 0, 1, 2. In particular,

it is assumed that P0 ≡ 1, so that individuals surely survive until the age of one.1 The
1Rogers does not consider the possibility that an intended recipient dies before receiving a transfer.

The mortality rate is not then incorporated in the rate of time preference in Rogers, in contrast to Irving
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functions P1 and P2 are assumed to be continuously differentiable, strictly increasing,

strictly concave, and to have infinite derivatives at 0. This last condition favors transfers

and savings.

At each age, i = 1, 2, 3, each individual is paired with another individual of the same

age and the couple has two offspring. The transfer decisions is controlled by a single gene,

with each possible choice implemented by a corresponding variety (or allele) of that gene.

Sexual reproduction means that each offspring acquires either the paternal allele or the

maternal allele, each with probability 1/2.2

Individuals have zero endowment at ages i = 0, 1, 3 but have one unit of endowment at

age 2.3 At age 2, the individual can transfer part of her endowment, in the total amount

s, to her two newborn offspring. The transfer from each parent is shared equally between

each of the two offspring, since it is not possible for a parent to distinguish between mutant

and non-mutant offspring. The new born offspring will choose to save this transfer, since

survival for one period is guaranteed.

The technology for intertemporal transformation is linear, with an exogenous interest

factor of R. It follows that each offspring then receives Rs/2 at age of one, as the return

from a particular parent’s transfer, which they consume at once.

The question is: What value of s would arise in equilibrium? Consider a population

with an allele that selects savings s̄. A small proportion of the population is then replaced

by a mutant allele that saves s. The question becomes: For what value of s̄ is it true that

no matter what s is, the mutant allele saving s grows no faster than the original allele

that saves s̄?

Fisher (1930, II.IV.60-62), and to the present paper.
2The assumption that individuals are characterized by a single allele is that individuals are “haploid,”

with a single locus. This is for simplicity, since, in reality, humans are diploid, having two alleles at each of

a large number of position or “loci.” Sexual reproduction actually entails each of two individuals randomly

making a selection of one allele from each locus, and then contributing that to the new individual.
3Perhaps a more realistic pattern of fertility and income would reverse the situation of three year olds,

giving these income but zero fertility. This would reduce savings by the new born offspring of two year

olds, since the income of three year olds could serve instead. Perhaps the survival of two year olds to age

three is a biological form of saving. The present assumption produces a central need for savings, which

illuminates the issues that arise in Rogers model.
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2.1 Transfers to Newborns

To address this question, consider the following survival probabilities. The survival prob-

ability of a mutant two-year-old who saved s is given by P2 (1− s). The probability of

survival of a mutant (or any) one year old who had one or three year old parents, and

hence got zero transfer is simply given by P1 (0) = P 11 , say.

What is the probability of survival of a mutant one year old who had two year old

parents? Since the mutant gene is rare, essentially all mutant individuals have one mutant

and one non-mutant parent. Recall that the total resources passed down by the two par-

ents, s̄+ s, are shared equally between their two offspring. Hence the survival probability

of the one year old mutant is P1(R s̄+s
2 ) = P 21 , say, because the total return on savings is

(R s̄+s
2 ).

Suppose then that µi ≥ 0, for i = 1, 2, 3, is the proportion of i−year-olds in the mutant
gene pool, ignoring newborns, so that

P3
i=1 µi = 1. These proportions need not match

those in the general population. Thus F =
£
(µ1 + µ3)P

1
1 + µ2P

2
1

¤
is the overall probability

of survival of a mutant individual from age one to two.

The expected number of mutant offspring of each mutant parent is one, when mutants

are rare. It follows that, if yt is the number of one year old mutant individuals at date t,

then:

yt = yt−1 + yt−2F + yt−3P2F, (1)

This difference equation generates steady state growth in the limit. (Robson and Szentes

(2007), provide more details.) That is, the mutant population converges to steady state

growth with growth factor g satisfying

g3 = g2 + (g + P2)F. (2)

It follows that4

µ1 =
1

g
, µ3 = µ2

P2
g
, and µ1 + µ2 + µ3 = 1,

so the steady state population proportions are given by

µ1 =
1

g
; µ2 =

g − 1
g + P2

, and µ3 =
P2
g

g − 1
g + P2

. (3)

4Consider the second equation, for example. Suppose that the total population of ages 1, 2, and 3 last

period is normalized to unity. It follows that µ2P2 is then the number of two year olds who survive to

age three. Given steady state growth, this must also equal the number of three year olds from last period

times the growth rate, µ3g.
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Upon substituting these values for the µi’s into (2), we obtain the following equation

implicitly determining the growth factor of the mutant population:

g3 = g2 + (1 + P2)P
1
1 + (g − 1)P 21 . (4)

It follows that g as determined by this equation is maximized if and only if the right hand

side is maximized for parametric choice of g. There must be a unique interior solution for

this maximization problem, with first-order condition:

P 02 (1− s)P 11 =
P 01(R

s̄+s
2 ) (g − 1)R
2

. (5)

This characterizes the choice of s that yields the fastest growth rate of a small fraction

of mutant alleles, where the rest of the population chooses s̄. The right hand side of (4) is

strictly concave in s. In addition, if s = s̄, then the growth rate of the mutant alleles must

match that of the original type. Hence, if the maximum of (4) occurs anywhere except

at s = s̄, the mutants can invade in the sense of initially growing faster than the original

population. Conversely, if the maximum is at s = s̄, then any nontrivial mutant with

s 6= s̄ will be strictly outdone by the original allele.

Altogether, that is, the evolutionary equilibrium value of savings and the growth factor

satisfy

P 02 (1− s̄)P1(0) =
P 01(Rs̄) (g − 1)R

2
, (6)

where g3 = g2 + (1 + P2 (1− s̄))P1(0) + (g − 1)P1(Rs̄).
It is clear that (6) has no simple interpretation in terms of a pure rate of time preference,

since it can be written
2P 02 (1− s̄)P1(0)

P 01(Rs̄) (g − 1)
= R,

where the left hand side is an appropriate marginal rate of substitution, MRS. However,

this MRS depends in a complex way on the various survival functions, and is not simply

the factor of 2g that is derived by Rogers.

The factor of 2 arises here from the assumption that transfers must be made blindly

and therefore equally to each of the two offspring, one of whom is a fellow mutant, in

expectation, but one of whom is not. This is a particular derivation of a general result

known as Hamilton’s rule. (See Bergstrom, 1995, for a discussion of this rule and the

limits to its applicability.)
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2.2 Reproductive Value

Next, we argue that the equilibrium saving behavior is a solution to a problem where the

two-year old individual maximizes the total discounted reproductive value of those who

are affected by her savings. Indeed, this total reproductive value is the utility function

yielding equilibrium behavior.

In general, the reproductive values should be defined as the relative shares attained

in the population, in the limit as the time into the future tends to infinity. (See Robson

and Szentes, 2007.) In the present example, a heuristic approach to finding the correct

reproductive values is as follows. Let v(01) and v(11) denote the reproductive values of

individuals of ages 0 and 1, respectively, who receive no transfer; and v(02) and v(12) as

the reproductive values of individuals of ages 0 and 1, respectively, who receive transfer

( s̄+s2 ). In addition, let v(2) and v(3) denote the reproductive values of individuals of age

two and three, respectively. Considering the descendants of each type one period ahead,

these values must satisfy the recursive relationships

v(01) =
v(11)

g
; v(02) =

v(12)

g
(7)

v(11) = v(01) +
P 11 v(2)

g
; v(12) = v(01) +

P 21 v(2)

g

v(2) = v(02) +
P2v(3)

g
; v(3) = v(01),

Let us explain the third equality, yielding v(11), the value of a one year old who had one or

three year old parents, for example. Such a one year old produces an offspring with value

v(01). In addition, this one year old survives to the next period with probability P 11 , when

her reproductive value is v(2). This expected reproductive value from the next period must

finally be discounted by g because population growth deflates the evolutionary importance

of any given number of individuals.

We now show that the equilibrium behavior can be derived from each two-year old

individual solving the following problem

max
s

P2(1− s)v(3) +
P1(R

s̄+s
2 )v(2)

g
. (8)

The maximand is the relevant component of intertemporal preferences for a two year old

parent. It is the expected reproductive value of the parent, as influenced by the choice of s,

plus the expected discounted reproductive value of the age one recipient, also as influenced
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by the choice of s.5 Thus these reproductive values generate the utility that underpins

the evolutionary equilibrium. Rogers must be given credit for this basic insight. Our

disagreement stems from the appropriate notion of reproductive value to be used in such

an expression. We first show that our general notion of reproductive value does generate

equilibrium behavior; the next section shows that the simple notion used by Rogers does

not.

A comparison of (8) and (6) implies that what is necessary and sufficient for these

problems to be identical is that
v(3)

v(2)
=

P 11
g(g − 1) . (9)

But it is a straightforward calculation to show that the equations in (7) pin down all

relative reproductive values and that (9) holds, in particular, as required.

2.3 Rogers/Fisher Reproductive Value

The notion of reproductive value used by Rogers is that due to R.A. Fisher. This notion,

which is appropriate in models where offspring are identical, simply counts the future

expected discounted total fertility of an individual at each age. In the present example,

this would mean, using the notation w instead of v:

w(01) =
w(11)

g
=
1

g
+

P 11
g2
+

P 11P2
g3

;w(02) =
w(12)

g
=
1

g
+

P 21
g2
+

P 21P2
g3

;

w(2) = 1 +
P2
g
;w(3) = 1.

This implies that
w(3)

w(2)
=

g

g + P2
>

v(3)

v(2)
=

P 11
g(g − 1)

since, using (4),

g3 − g2 − P 11 g − P 11P2 = (P
2
1 − P 11 )(g − 1) > 0.

Thus the evolutionary equilibrium is not the solution to

max
s

P2(1− s)w(3) +
P1(R

s̄+s
2 )w(2)

2g
;

indeed, the solution to the problem as formulated by Rogers entails too little savings. The

problem is that Fisher’s notion of reproductive value is inappropriate when offspring are

5Although there are two offspring, each of them inherits the parent’s gene with probability half. The

second expression then reflects the expected number of mutant offspring.
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distinguished in any important way, perhaps by their inheritance, as is true here. Thus

Rogers’ formulation of the utility functions that support the equilibrium level of savings

is incorrect on this account.

2.4 Zero Same Age Transfer

The previous analysis assumed that the only transfer possible was from a two-year-old

parent to her current newborn. Suppose now that this two-year-old parent can also put

aside resources for her current one-year-old offspring. These resources must be saved for

one period, and are then given to the offspring. Thus, this offspring will be the same age

when she consumes the transfer as her mother is when she gives it. This combination is

then a same-age transfer, as in Rogers.

We assume that there exists a competitive market for these savings by current one-

year-old offspring. This market returns a fixed interest factor, R0. Since only a proportion

of P 11 of the intended recipients survives until the age of two, and the market is competitive,

R0 = R/P 11 .
6

We now show that, in any evolutionary equilibrium, zero additional transfers like this

will be made, given that R ≤ 2g. Robson and Szentes (2007) show that this additional
transfer is zero in equilibrium if and only the following applies for each two year old

parent–

0 ∈ argmax
s0

V (s0) ≡ P2
¡
1− s̄− s0

¢
v (3) +

P 11P2(1− s̄+R0 s
0
2 )v(3)

g
.

The function V , from a biological viewpoint, is “inclusive fitness”; from an economic

viewpoint, it is the utility function that underpins behavior. That is, it is the relevant

part of intertemporal preferences for this two-year parent contemplating transfers to her

current one year old offspring. The first term is the individual’s own expected survival

probability to age three multiplied by her age-three reproductive value. The second term

is the survival probability of the current one year old offspring from age one to age three

multiplied by the present value of her age-three reproductive value.

6Nothing crucial depends on this specific assumption. A similar conclusion is valid even if we assume

instead that the saving is lost.

Although Rogers does not explicitly address such issues, they also arise in his model. He is simply silent

as to the fate of savings made by an individual when this individual dies before repayment can be made.

As noted previously, mortality does not then influence the rate of time preference, in Rogers’ model.
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Since R ≤ 2g, it follows that

V 0(0) = −P 02(1− s̄)v (3) +
R0P 11P 02 (1− s̄) v(3)

2g

=

·
R

2g
− 1
¸
P 02 (1− s̄) v(3) ≤ 0,

so s0 = 0 is an equilibrium transfer. A similar analysis shows that, if R > 2g, then there

again cannot be an interior solution for s0. The only possibility for an interior solution is

for the non-generic case where R = 2g.

The intuitive reason that an interior solution does not generally exist for the same age

transfer is that the evolutionary criterion considers the net income position of all two-

year-olds. Such transfers appear both as a debit, and as a credit, the latter multiplied by

the appropriate interest and growth factor, in the single argument of the same survival

function.

Note that, although the growth rate, g, is endogenous, it must generally differ from

R/2. For example, here it must be that g ≥ g for some g > 1, since all offspring survive

to be one year old and have one offspring at that age, and have a positive probability of

having further offspring. If the exogenous parameter R ≤ 2g, then R < 2g.

The discussion so far was based on a linear intertemporal technology. But even if

this technology were strictly convex, so that corner solutions for total savings could not

arise, it is clearly possible that the endogenous interest rate would be determined by the

strictly positive savings of new born offspring of two year old parents. It could well then

still satisfy R ≤ 2g, and still choke off the “same age transfer.” There is then no robust
prediction here concerning the real rate of interest, contrary to Rogers claim.

2.5 Zero Population Growth

The Rogers approach involves assuming zero population growth, on the basis of the argu-

ment that the average growth rate for humans must have been close to zero over the two

million years of our history. Our example entails a growth rate necessarily greater than

zero, since all individuals survive to age one, where each couple produces two offspring,

and each individual has a positive probability of producing more offspring after that. But

nothing crucial depends on a positive growth rate.

In order to generate an example with zero population growth, all that is needed is to

deflate all probabilities of survival by a factor of g, where g is the maximum growth factor
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as found above. That is define

P̄i(ci) = Pi(ci)/g, for i = 0, ..., 3.

Suppose that the interest factor R facing an individual is as before. To achieve this, the

underlying technological interest factor must also be scaled down by g. That is, if this

underlying factor is R̄, then R = R̄/g, so that R̄ = Rg.

The above analysis applies to this modified example with minor reinterpretation. That

is, the same levels of transfers and savings yield an evolutionary equilibrium, but the equi-

librium growth factor is now one. Rogers’ analysis is still subject to the same criticisms,

and there is no robust prediction on the real rate of interest, for example.

2.6 A Generalized Example

One might be concerned that our conclusions hold only because we restricted the possible

transfers. Indeed, in a generalized model, the basic philosophy might be that all individuals

may transfer any amount contemporaneously to any living relative, and all individuals may

save any amount. Individuals cannot borrow, however. This is consistent with a stylized

version of a primitive agricultural society in which savings can be made by means of

reinvesting the harvest, but where borrowing is circumscribed.

In Robson and Szentes (2007) we reanalyze the present example in this light. Although

the analysis is more complex, the essential points made by the above version of the ex-

ample are preserved.7 In addition to transferring resources to their new born offspring,

two year old parents now make positive transfers to their one year offspring, who imme-

diately consume it. Two year old parents also save for one period, with the return from

this being transferred to the new born offspring they have at age three. These offspring

reinvest this transfer and finally consume it at age one. It remains inappropriate to use

the simple notion of reproductive value used by Rogers. Furthermore, all of the other

myriad contemporaneous transfers and savings that might be made in principle in this

generalized example may well be chosen to be zero in equilibrium. Most significantly, that

7One of the complications is as follows. Age two parents have a strong incentive to transfer resources

to their current one year old offspring, if this is consumed immediately. However, such transfers imply a

proliferation of types of such offspring. There are those with no surviving parent, those with one surviving

parent, and those with two. In addition, the transfers made by one parent might be contingent on whether

the other parent is still alive. This complexity seems entirely tangential to the current purposes, however.
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is, there are now a number of combined transfer and savings options that amount to same

age transfers, and all of these are optimally chosen to be zero.

3 Conclusion

Although we are enthusiastic about Rogers basic biological approach to deriving the rate of

time preference, a number of aspects of his model do not withstand careful examination.

Relatively minor issues include his neglect of mortality when considering intertemporal

choice. Mortality is not then a component of the rate of time preference. There are

perhaps two key aspects of his model that do not hold up. The first of these is that

the reproductive value he uses is not general enough for the present circumstances. The

expression he gives for the utility function is correct only in its basic additive form. The

second issue is that there will not generally be interior solutions for “same age transfers.”

Although the one half degree of relatedness between mothers and daughters does play

a role in determining the marginal rates of substitution between consumption now and

consumption in the future, the theoretical situation here is more complex than described

by Rogers. The most striking conclusion of Rogers–a particular real rate of interest–does

not generally follow.
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