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Abstract 

Background: The high risk of ventricular arrhythmias in heart failure patients 

remains despite the benefit of cardiac resynchronization therapy (CRT).  An 

electromechanical interaction between regional myocardial strain patterns and the 

electrophysiological substrate is thought to be important. Objective: We investigated 

the in-vivo relation between left ventricular (LV) activation recovery interval (ARI), 

as a surrogate measure of activation potential duration (APD), and local myocardial 

strain patterns in responders and non-responders to CRT. Methods: ARI were 

recorded from the left ventricular epicardium in 20 CRT patients 6 weeks and 6 

months post implant. Two-dimensional speckle tracking echocardiography was 

performed at the same time to assess myocardial strains. Patients with ≥15% 

reduction in end-systolic volume at 6-months were classified as responders. Results: 

ARI reduced in responders, 263±46ms vs. 246±47ms, p<0.01; and increased in non-

responders, 235±23ms vs. 261±20ms, p<0.01. Time-to-peak (TPS) radial, 

circumferential and longitudinal strains increased in responders (+41±27ms, 

+35±25ms, +56±37ms; p<0.01); and reduced in non-responders (-58±26ms, -

47±26ms, -64±27ms; p<0.01). There was a non-linear correlation between changes in 

TPS and ARI (r≥0.70; p<0.01).  Baseline QRS >145ms and QRS shortening with 

biventricular pacing was associated with ARI shortening during CRT. Conclusions: 

Changes in ventricular wall mechanics predict local APD lengthening or shortening 

during CRT. Non-responders have a worsening of myocardial strain and local APD. 

Baseline QRS >145ms and QRS shortening on biventricular pacing identified patients 

who exhibited improvement in APD.  

Key Words: Cardiac remodeling, cardiac resynchronization therapy, activation 

recovery interval, action potential duration, myocardial strain 
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Introduction  

Cardiac resynchronization therapy (CRT) has been demonstrated to provide 

symptomatic improvement, induce structural reverse remodeling and improve 

survival in heart failure patients with prolonged QRS durations.
1-3

 However, 

approximately one third of patients do not derive benefit and the incidence of 

arrhythmias remains substantial.
4,5

 The further understanding of the electromechanical 

changes during CRT therefore remains an important challenge.  

The response to CRT in patients with broad QRS complex is generally considered to 

be multifactorial.
6
 Several studies demonstrating the beneficial effects of CRT on LV 

remodeling have suggested that improvement of LV mechanical synchrony was the 

predominant mechanism,
7
 while others have in addition focused on the molecular and 

cellular effects that it chronically induces.
8-10

 

Information in humans is limited. We have recently reported activation recovery 

interval (ARI), as a surrogate measure of APD, changes in heart failure patients 

during CRT.
11

 The clinical response to CRT is known to be closely linked to reversal 

of dyssynchrony.
12

 Improved LV function by CRT has been shown to be associated 

with a reduced arrhythmia burden,
13

 whereas persistent or new radial dyssynchrony or 

abnormal longitudinal strain is associated with an increased rate of ventricular 

arrhythmias or death.
14,15

 The effect of LV resynchronization on the 

electrophysiologic substrate is a suggested mechanism. However, at present it has not 

been determined whether changes in APD during CRT relate to changes in regional 

mechanical function in humans. 

We aimed to explore the relationship between LV APD and strain following LV 

reverse remodeling in response to CRT. To assess this we recorded ARI from the 
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epicardial CRT LV lead as a conventional measure of local APD together with 

speckle tracking analysis of regional ventricular strain at 6 weeks and 6 months 

following the initiation of CRT.  

 

Methods 

Study population and protocol  

We prospectively studied 20 consecutive patients receiving CRT in our institution. 

All patients were invited to participate in the study in the pre-CRT assessment clinic, 

following local research ethics committee approval. The selection criteria included 

drug refractory symptomatic heart failure with New York Heart Association (NYHA) 

class II-IV, impaired left ventricular ejection fraction (LVEF) ≤ 35% with a QRS 

duration ≥ 120ms. Clinical status according to NYHA class and Minnesota heart 

failure questionnaires (MLHFQ) and echocardiographic measures of LV function 

were assessed pre and 6 months post CRT implant. Simultaneous echocardiography 

and LV unipolar electrogram (UEG) recordings were performed 6 weeks and 6 

months post CRT implant to assess LV functional and electrical remodeling in 

response to CRT.  

A positive LV functional response was defined as ≥ 15% reduction in LV ESV on 

TTE assessment coupled with improvement in clinical heart failure symptoms at 6 

months post implant. 

Functional remodeling assessed by transthoracic echocardiography  

Transthoracic echocardiography was performed by independent operators who were 

blinded to the outcome of the electrical remodeling data using a GE Vivid 7 scanner 
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(General Electric-Vingmed, Milwaukee, WI, USA) at baseline, 6 weeks and 6 months 

post implant. Standard 2D images of LV dimensions in standard short axis and long 

axis views were acquired during breath-holds. LV volumes in end-systole (ESV) and 

end-diastole (EDV) were measured to estimate EF using the 2-dimentional modified 

biplane Simpson’s method. Analysis was done on EchoPac 6.0.1 (General Electric-

Vingmed, Milwaukee, USA). CRT device optimization was performed at 6 weeks 

post-implant as per our standard clinical protocol. At this time the AV and VV delays 

were adjusted under echocardiographic guidance using mitral valve inflow Doppler 

signals and aortic valve outflow velocity-time-intervals to achieve the best 

hemodynamic benefit. Fluoroscopic image acquisitions in right and left anterior 

oblique views during CRT implant were used to estimate the LV segment where the 

LV lead was positioned for each individual. Each segment was classified according to 

the American Heart Association 16 segment classification. Short axis and longitudinal 

images focusing on the AHA segment of LV lead position were acquired at 6 weeks 

and 6 months post CRT implant in preparation for off-line speckle tracking analysis in 

order to calculate the time (gated from the onset of QRS body surface 

electrocardiography complex) to peak radial, circumferential and longitudinal strain 

of the respective myocardial segment (see Figure 1A-C). Speckle-tracking analysis 

was performed using independent 2D Cardiac Performance Analysis software 

(TomTec, Unterschleissheim, Germany).  

Figure 1  

Electrical remodeling assessed by activation recovery interval, ARI, measurement 

At 6 weeks and 6 months post CRT implant, a 30 second recording of the LV UEG 

signal was made via the device programmer (Merlin, St Jude Medical) during DDD-
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RV or VVI-RV pacing, depending on whether the patient was in sinus rhythm or in 

atrial fibrillation. The data from our previous study implied that electrical remodeling 

may take place before 6 weeks, however, differences observed at 6 weeks were not 

statistically significant.
11

 Others have observed these changes to be short term 

following initial CRT.
16

 The adoption of measuring the interval between 6 weeks and 

6 months allowed both electrical and anatomical modelling to establish before our 

measurements were taken. UEG recordings were made after at least 2 minutes of 

pacing at a constant rate of 10 beats above the patient’s intrinsic heart rate. This 

enabled comparisons between patients with sinus rhythm and those with atrial 

fibrillation and eliminated the influence of heart rate on ARI. This is based on original 

work by Franz et al showing that adaptation to rate change approximates an 

asymptote by 2 minutes for a wide range of cycle length perturbations.
17

 This is also 

the case for patients with atrial fibrillation as we ourselves confirmed in a more recent 

study.
18

 The 30-second LV UEG recordings were analyzed off-line using a custom 

software script within MATLAB (MathWorks, Massachusetts, USA) to derive the 

ARI. ARIs were measured using conventional validated criteria from minimum dv/dt 

of the QRS of the UEG to maximum dv/dt of the local T wave as previously 

described,
11

 see Figure 1D. As a local measurement of repolarization, ARI gave us a 

unique opportunity to study the regional changes in APD and strain 

Statistical analysis 

Continuous variables for the baseline characteristics were reported as mean ± SD and 

categorical variables as number (and percentage) of participants. Continuous variables 

were compared using the Wilcoxon rank test or Mann-Whitney U test for dependent 

or independent observations respectively. Categorical variables were compared using 

the Chi-squared test. Correlation between time to peak strain (TPS) and ARI were 
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expressed using Spearman’s correlation coefficient. A p value < 0.05 was considered 

to be statistically significant. All statistics were performed using Prism version 6, 

(GraphPad software, California, USA) 

 

Results 

Study population 

Twenty patients fulfilling standard indications for CRT
 
participated and completed the 

study. In this cohort, 25% were female and the overall mean age was 61±12yrs. All of 

the patients were in NYHA class III or IV. The mean QRS duration was 143±21ms, 

45% of the patients had an ischemic etiology and 55% dilated cardiomyopathy on the 

basis of World Health Organization criteria. The baseline characteristics of the 

patients including the positions of the LV leads are shown in Supplemental Table1 

(Online supplementary data).  

Left ventricular functional remodeling  

At 6 months post CRT, LVESV reduction ≥15% occurred in 11 patients (55%), all of 

whom reported an improvement in heart failure symptoms (NHYA class reduction ≥ 

1 class and quality of life questionnaires reduction of ≥20% in MLHFQ scores). 

These patients were considered to be positive responders with functional reverse 

remodeling. The mean LV ESV in the responders group improved from 177±87ml at 

baseline pre CRT implant to 107±51ml (p<0.01) at 6 months post CRT. The mean LV 

EF improved from 23±9% to 36±11%. In contrast, the mean LV EF in the non-

responders group was 22±4% at baseline and 23±4% at 6 months post CRT. The 
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changes in clinical LV functional status between responders and non-responders at 6 

months are shown in Table 1.  

Table 1 

Changes in LV electrical remodeling and time to peak strain  

During the 6 months receiving CRT, all the patients (responders and non-responders) 

were paced via bipolar vectors (LV and RV). The pacing vectors and pacing outputs 

were not changed during the 6 weeks to 6 months post CRT implant study period. The 

percentages of the bi-ventricular pacing were the same between the two groups. There 

were no major differences between the optimized AV delays and VV delays between 

the responder and non-responders in the study cohort. Median AV delays were 

130ms±10ms and 130±10ms in the patients with sinus rhythm in the responders and 

non-responder groups. Variations in VV delays between responders and non-

responders group were not significantly different. 

LV UEGs were recorded during DDD-RV or VVI-RV pacing at a fixed heart rate 

ranged from 70bpm to 100 bpm within the cohort (the same heart rates were 

maintained during recordings at 6 weeks and 6 months for individual patients; paced 

heart rate of the two patients with atrial fibrillation were 75bpm and 80bpm, which 

were similar to the other patients in sinus rhythm, mean 80bpm). There was a clear 

divergent change in ARI seen between CRT responders and non-responders from 6 

weeks to 6 months post CRT implant. In the responders ARI decreased from 263 +/-

46 to 246 +/-47 (p<0.01) whereas in the non-responders ARI increased from 235+/-23 

to 261+/-20 (p<0.01).  (See Figure 2 and Table 2).  
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Figure 2 

The corrected QT (QTc, Bazett’s correction) intervals averaged across all 12 surface 

ECG leads estimated by an electronic caliper were manually checked at 6-weeks and 

6-months post CRT during RV pacing to allow comparison with ARI data. The trend 

of changes in QTc intervals reflected regional ARI measured in the responders and 

the non-responders. At 6 weeks, the QTc was 554±52ms (responders), 543±50ms 

(non-responders); and at 6 months 536±54ms, 558±49ms, respectively. The changes 

were Δ -17±14 for responders; and Δ +16±11 for non-responders, p<0.01. A weak 

correlation was observed between Δ ARI and Δ QTc, r= 0.59, p <0.01. 

A similar divergent change was observed in TPS between the two groups with 

responders showing a decrease in TPS in radial, circumferential and longitudinal 

strains between 6 weeks and 6 months of CRT and non-responders showing an 

increase. (See Figure 3 and Table 2). The mean values of LVARI at 6 weeks differed 

(263±46ms vs. 235±23ms), although not significantly different, p=0.12. The 

difference in ARI between the responders and the non-responders at the 6 weeks post 

CRT is reflected in the time to peak strain between the responders and the non-

responders. A possible explanation for this perceived difference is the differences 

(although not statistically significant) in baseline QRS duration between the 

responders and the non-responders. 

Figure 3 

Table 2 
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The relationship between changes in ARI and changes in time to peak strain (TPS) 

Although for each of the strain measures (radial, circumferential and longitudinal 

strain), shortening during CRT was associated with APD shortening and vice-versa, 

the relationship between ARI local strain and TPS was likely to be non-linear 

(Spearman correlation coefficient 0.72 radial; 0.70 circumferential; 0.71 longitudinal 

strain, see Figure 4). Nevertheless whether local strain increased or decreased 

indicated whether APD shortened or lengthened with a high degree of sensitivity and 

specificity.  

Figure 4 

Changes in ARI and QRS duration 

The relation between changes in ARI during CRT and baseline QRS duration is 

shown in Figure 5 (upper panel). Above a QRS duration of 145ms ARI shortened 

during CRT in all patients whereas patients with a baseline QRS below 145ms 

showed either ARI shortening or lengthening. Changes in ARI in relation to the effect 

of biventricular pacing on the QRS duration (i.e. difference in QRS duration during 

biventricular pacing vs. baseline QRS), are shown in Figure 5 (lower panel). A QRS 

decrease during biventricular pacing was associated with ARI shortening whereas a 

QRS increase was associated with either ARI shortening or lengthening. 

Figure 5 
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Discussion 

The main findings of our study are:(1) patients with heart failure receiving CRT 

classified as responders exhibit LV ARI shortening in the late activated region, 

whereas non-responders show ARI lengthening confirming our previous observations; 

(2) ARI shortening was associated with local decrease in time to peak radial, 

circumferential and longitudinal strain, whereas ARI lengthening was associated with 

an increase in all three strain patterns; (3) non-responders have a worsening of local 

myocardial strain and prolongation of local ARI; (4) the relationship between changes 

in ARI and changes in local strain patterns was non-linear; (5) a baseline QRS of 

145ms separated patients in whom ARI and local strain decreased (>145ms) from 

patients in whom ARI and local strain either decreased or increased  (<145ms) in 

response to CRT; (6) a decrease in QRS duration during biventricular pacing 

compared to baseline was associated with ARI shortening in response to CRT, 

whereas an increase in QRS duration was associated with either ARI shortening or 

lengthening.  

A consistent finding in experimental models of heart failure is ventricular action 

potential duration prolongation.
19

 In a canine model with LBBB ablation, cells 

isolated from the LV lateral wall after 6 weeks showed APD prolongation which was 

attenuated by CRT.
8
  In humans several studies using body surface ECG 

measurements have reported repolarization changes during CRT. Braunschweig and 

colleagues found an initial increase in QT and JT interval followed by a sustained 

reduction in a group of responders.
16

 Lellouche and colleague compared the peak to 

end of T wave and corrected QT measurements at the time of CRT implantation and 

after 1 year, and observed a decrease in responders and an increase in QT dispersion 

and T wave peak-to-end dispersion in non-responders.
20

 We recently reported APD 
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shortening in responders and APD lengthening in non responders during CRT in 

patients with heart failure using ARI recordings from the LV epicardial free wall.
11

 

While the mechanism underlying reverse electrical remodeling during CRT in heart 

failure is considered to be multifactorial a general consensus is that LV mechanics 

play an important role.
6-10

 Canine models of myocardial dyssynchrony show APD 

changes with APD shortening in the early activated low strain regions and APD 

lengthening in the late activated high strain regions.
21,22

 In humans, Kroon et al have 

recently demonstrated a good correlation between LV depolarization pattern and 

strain pattern in heart failure patients,
23

  and our group has also found a similar 

correlation in heart failure patients with LBBB.
24

 Several studies have investigated 

the effect of CRT on LV mechanics. Strain patterns have been shown to improve in 

CRT in responders with lesser changes or worsening in non-responders.
25

   

At the present time we are unaware of any previous report on the relationship between 

APD and regional wall mechanics in humans.  In the present study we showed 

concordance between the change in APD and the change in strain pattern during CRT. 

However, the relation between delta APD and delta strain was not linear. Such a 

relationship would be consistent with the interaction of dyssynchronous contraction 

with the electrophysiology being multifactorial resulting in ion channel remodeling 

involving stretch activated receptors, gap junctions via connexins, calcium handling, 

beta adrenergic responsiveness, mitochondrial function, fibrosis and other changes.
6-10

  

APD prolongation, particularly in the late activated lateral wall, is a consistent 

manifestation of heart failure and may contribute to the substrate for ventricular 

arrhythmias. Changes in all three strain patterns identified whether APD would 

lengthen or shorten during CRT with a high degree of sensitivity and specificity 
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(Figure 4). Therefore an increase in regional strain would indicate a likely worsening 

of APD. If this effect were inhomogeneous it would favor re-entry arrhythmia. The 

prolongation in ARI observed in the non-responders may provide an explanation for 

the potential harmful effects of CRT in patients with narrow baseline QRS duration.
26

 

Conversely, improvement in strain pattern has been shown to be an independent 

predictor of CRT response in terms of long-term outcome including death and 

hospitalization.
27

  

The trend of changes in QTc intervals appears to reflect that of regional ARI 

measured in the responders and the non-responders. Our results are in keeping with 

prior findings that QTc interval shortened amongst the responders to CRT.
20

 However 

the weak association between the ARI and QTc reflects that ARI is a local measure of 

repolarization unlike the QT interval which is a global measure. Other mechanisms in 

addition to changes in local strain may contribute to the global electrical remodeling 

following CRT.  

Above a baseline QRS duration of 145ms all patients showed APD shortening during 

CRT whereas below QRS of 145ms patients showed either shortening or lengthening 

(Figure 5). These electrophysiological changes lend support to the current 

recommendation for heart failure patients with baseline QRS ≥150ms to receive CRT. 

In our data a shortening of QRS during biventricular pacing compared to baseline was 

associated with APD shortening and a lengthening of QRS was associated with either 

APD shortening or lengthening. This is in keeping with findings of other studies.
28,29

 

Bonakdar and colleague also found baseline QRS >145ms to be an independent 

predictor of CRT response with the best sensitivity and specificity.
29
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Methodological considerations 

ARI has been extensively theoretically and experimentally validated as a reliable 

surrogate for local APD.
30

 Unlike other measures of repolarization ARI has the 

advantage of providing local information in contrast to the QT interval and avoids the 

proarrhythmic risk of premature stimulation during estimation of refractory periods. 

Two dimensional speckle tracking echocardiography has been shown to be effective 

and simple in providing useful insights to the mechanics of myocardial contraction. 

Based on standard grey scale images, strain defined by percentage change of the 

myocardial fiber length from its relaxed state in end systole is used to quantify 

myocardial deformation.
31

. Speckle tracking echocardiography has certain advantages 

compared with tissue velocity imaging and is an accurate way of indexing the 

complex ventricular contraction motions with radial, circumferential and longitudinal 

strain measurements.
32

  

Limitations 

The study cohort is relatively limited in number, but has sufficient power (>95%) to 

detect a change in LV remodeling based on the data gathered previously.
11

 The device 

programmer only enables recordings of unipolar electrograms to be made from the 

distal pole of the LV lead, consequently limiting to single site recordings. It has been 

shown that increased regional dispersion of repolarization varied between responders 

and non-responders.
33,34

 It would be of interest to see how this regional change related 

to the global LV repolarization time and dispersion as depending on the extent of the 

region exhibiting the changes; there might be either pro- or antiarrhythmic effects. We 

are unable to comment on the initial response because no LV strain measurements 

were acquired immediately after CRT implant due to clinical constraints of patient 
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discomfort. Anatomical features such as regional scars may alter local stress / strain 

relations and influence the remodeling process. The present study however was not 

designed to assess the influence of pathogenesis on the ARI. 

Conclusions 

Cardiac resynchronization therapy in heart failure patients with dyssynchronous LV 

electromechanical activation sequence resulted in LV epicardial APD shortening in 

CRT responders and APD lengthening in non-responders. Changes in regional 

ventricular wall mechanics, i.e. radial, circumferential and longitudinal strain patterns 

predicted local APD shortening or lengthening during CRT. Baseline QRS duration 

and change in QRS between baseline and biventricular pacing could identify patients 

showing APD shortening during CRT.  
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Figure Captions 

Figure 1 Speckle tracking analysis and activation recovery interval (ARI) 

measurement 

Panel A: Two-dimensional gray scale echocardiography with speckle tracking to 

allow strain assessment. B: The three main directions of strain during myocardial 

contraction. C: Myocardial strain plotted against time and gated to 

electrocardiography ECG. D: Illustration of the relation between activation time and 

repolarization time in ventricular action potential and local unipolar electrogram. 

Figure 2 Divergent changes in activation recovery interval ARI between 6-weeks 

and 6-months post CRT between responders and non-responders. 

Figure 3 Changes in time to peak strains (radial, circumferential and 

longitudinal) between 6-weeks and 6-months post CRT between responders and 

non-responders 

Figure 4 Correlation between changes in activation recovery time (ARI) and 

changes in time to peak strain  (TPS) 

r = Spearman’s correlation coefficient 

Figure 5. Relationship between changes in activation recovery interval ARI and 

baseline QRS duration and CRT paced QRS duration 
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Figures 

Figure 1  
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Figure 2  
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Figure 3  
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Figure 4  
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Figure 5 
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Tables  

Table 1. Clinical and LV functional response at 6 months 

 Responders Non-responders P 

Patient, n 11 9  

NYHA Class 2±1 3±0 P=0.01 

Minnesota heart failure score 27±15 45±23 P<0.01 

    

Δ LVEF, % +13±7 +1±6 P<0.01 

Δ LVESV, % -37±15 +8±23 P<0.01 

 

 

Table 2. Activation recovery intervals (ARI) and time to peak strains (TPS) in 

responder and non-responder groups 

 

Time, ms 

Responders 

n = 11 

Non-responders 

n = 9 

p 

6-week ARI,  263±46 235±23  

 Δ -17±10 Δ +26±17 <0.01 

6-month ARI,  246±47 261±20  

6-week TPS radial,  375±59 311±34  

 Δ -58±26 Δ +41±27 <0.01 

6-month TPS radial,  317±58 352±50  

6-week TPS circumferential 370±58 322±39  

 Δ -47±26 Δ +35±25 <0.01 

6-month TPS circumferential 322±59 357±43  

6-week TPS longitudinal 397±61 333±31  

 Δ -64±27 Δ +56±37 <0.01 

6-month TPS longitudinal 332±63 389±46  

 

 

 

 

 



 23 

 

 

Reference: 

1. Linde C, Abraham WT, Gold MR, et al.: REVERSE (REsynchronization 

reVErses Remodeling in Systolic left vEntricular dysfunction) Study Group: 

Randomized trial of cardiac resynchronization in mildly symptomatic heart 

failure patients and in asymptomatic patients with left ventricular dysfunction 

and previous heart failure symptoms. J Am Coll Cardiol 2008;52:1834-1843.  

2. Moss AJ, Hall WJ, Cannom DS, et al.: Cardiac-resynchronization therapy for 

the prevention of heart-failure events. N Engl J Med 2009;361:1329-1338.  

3. Tang ASL, Wells GA, Talajic M, et al.: Cardiac-resynchronization therapy for 

mild-to-moderate heart failure. N Engl J Med 2010;363:2385-2395.  

4. Cleland JGF, Daubert J-C, Erdmann E, et al.: Cardiac Resynchronization-Heart 

Failure (CARE-HF) Study Investigators: The effect of cardiac 

resynchronization on morbidity and mortality in heart failure. N Engl J Med 

2005;352:1539-1549.  

5. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson 

P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM: Cardiac-

resynchronization therapy with or without an implantable defibrillator in 

advanced chronic heart failure. N Engl J Med 2004;350:2140-2150.  

6. Prinzen FW, Vernooy K, Auricchio A: Cardiac resynchronization therapy: 

state-of-the-art of current applications, guidelines, ongoing trials, and areas of 

controversy. Circulation 2013;128:2407-2418.  

7. Abraham WT, Hayes DL: Cardiac resynchronization therapy for heart failure. 

Circulation 2003;108:2596-2603.  

8. Aiba T, Hesketh GG, Barth AS, Liu T, Daya S, Chakir K, Dimaano VL, 

Abraham TP, O'Rourke B, Akar FG, Kass DA, Tomaselli GF: 

Electrophysiological consequences of dyssynchronous heart failure and its 

restoration by resynchronization therapy. Circulation 2009;119:1220-1230.  

9. Cho H, Barth AS, Tomaselli GF: Basic science of cardiac resynchronization 

therapy: molecular and electrophysiological mechanisms. Circ Arrhythm 

Electrophysiol 2012;5:594-603.  

10. Kirk JA, Kass DA: Electromechanical dyssynchrony and resynchronization of 

the failing heart. Circ Res 2013;113:765-776.  

11. Chen Z, Hanson B, Sohal M, Sammut E, Child N, Shetty A, Boucher R, 

Bostock J, Gill J, Carr-White G, Rinaldi CA, Taggart P: Left ventricular 

epicardial electrograms show divergent changes in action potential duration in 

responders and nonresponders to cardiac resynchronization therapy. Circ 



 24 

Arrhythm Electrophysiol 2013;6:265-271.  

12. Bleeker GB, Mollema SA, Holman ER, Van de Veire N, Ypenburg C, Boersma 

E, van der Wall EE, Schalij MJ, Bax JJ: Left ventricular resynchronization is 

mandatory for response to cardiac resynchronization therapy: analysis in 

patients with echocardiographic evidence of left ventricular dyssynchrony at 

baseline. Circulation 2007;116:1440-1448.  

13. Chatterjee NA, Roka A, Lubitz SA, Gold MR, Daubert C, Linde C, Steffel J, 

Singh JP, Mela T: Reduced appropriate implantable cardioverter-defibrillator 

therapy after cardiac resynchronization therapy-induced left ventricular 

function recovery: a meta-analysis and systematic review. Eur Heart J 

2015;36:2780-9  

14. Haugaa KH, Marek JJ, Ahmed M, Ryo K: Mechanical dyssynchrony after 

cardiac resynchronization therapy for severely symptomatic heart failure is 

associated with risk for ventricular arrhythmias. Journal of the American … 

2014;27:872-9 

15. Hasselberg NE, Haugaa KH, Bernard A, Ribe MP, Kongsgaard E, Donal E, 

Edvardsen T: Left ventricular markers of mortality and ventricular arrhythmias 

in heart failure patients with cardiac resynchronization therapy. Eur Heart J 

Cardiovasc Imaging 2016;17:343-50 

16. Braunschweig F, Pfizenmayer H, Rubulis A, Schoels W, Linde C, Bergfeldt L: 

Transient repolarization instability following the initiation of cardiac 

resynchronization therapy. Europace 2011;13:1327-1334.  

17. Franz MR, Swerdlow CD, Liem LB, Schaefer J: Cycle length dependence of 

human action potential duration in vivo. Effects of single extrastimuli, sudden 

sustained rate acceleration and deceleration, and different steady-state 

frequencies. J Clin Invest 1988;82:972-979.  

18. Bueno-Orovio A, Hanson BM, Gill JS, Taggart P, Rodriguez B: Slow 

adaptation of ventricular repolarization as a cause of arrhythmia? Methods Inf 

Med 2014;53:320-323.  

19. Aiba T, Tomaselli GF: Electrical remodeling in the failing heart. Curr Opin 

Cardiol 2010;25:29-36.  

20. Lellouche N, De Diego C, Boyle NG, Wiener I, Akopyan G, Child JS, 

Shivkumar K: Relationship between mechanical and electrical remodelling in 

patients with cardiac resynchronization implanted defibrillators. Europace 

2011;13:1180-1187.  

21. Aiba T, Tomaselli G: Electrical remodeling in dyssynchrony and 

resynchronization. J Cardiovasc Transl Res 2012;5:170-179.  

22. Jeyaraj D, Ashwath M, Rosenbaum DS: Pathophysiology and clinical 

implications of cardiac memory. Pacing Clin Electrophysiol 2009 Edition. 

2010;33:346-352.  



 25 

23. Kroon W, Lumens J, Potse M, Suerder D, Klersy C, Regoli F, Murzilli R, 

Moccetti T, Delhaas T, Krause R, Prinzen FW, Auricchio A: In vivo 

electromechanical assessment of heart failure patients with prolonged QRS 

duration. Heart Rhythm 2015;12:1259-1267.  

24. Sohal M, Shetty A, Duckett S, Chen Z, Sammut E, Amraoui S, Carr-White G, 

Razavi R, Rinaldi CA: Noninvasive assessment of LV contraction patterns 

using CMR to identify responders to CRT. JACC Cardiovasc Imaging 

2013;6:864-873.  

25. Bernard A, Donal E, Leclercq C, Schnell F, Fournet M, Reynaud A, Thébault 

C, Mabo P, Daubert J-C, Hernandez A: Impact of Cardiac Resynchronization 

Therapy on Left Ventricular Mechanics: Understanding the Response through a 

New Quantitative Approach Based on Longitudinal Strain Integrals. J Am Soc 

Echocardiogr 2015;28:700-708.  

26. Ruschitzka F, Abraham WT, Singh JP, et al.: Cardiac-resynchronization 

therapy in heart failure with a narrow QRS complex. N Engl J Med 2013; 

369:1395-1405.  

27. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, Read PA, 

Begley D, Fynn SP, Dutka DP: Targeted left ventricular lead placement to 

guide cardiac resynchronization therapy: the TARGET study: a randomized, 

controlled trial. J Am Coll Cardiol 2012;59:1509-1518.  

28. Serdoz LV, Daleffe E, Merlo M, Zecchin M, Barbati G, Pecora D, Pinamonti B, 

Fantoni C, Lupo P, Di Lenarda A, Sinagra G, Cappato R: Predictors for 

restoration of normal left ventricular function in response to cardiac 

resynchronization therapy measured at time of implantation. Am J Cardiol 

2011;108:75-80.  

29. Bonakdar HR, Jorat MV, Fazelifar AF, Alizadeh A, Givtaj N, Sameie N, 

Sadeghpour A, Haghjoo M: Prediction of response to cardiac resynchronization 

therapy using simple electrocardiographic and echocardiographic tools. 

Europace 2009;11:1330-1337.  

30. Potse M, Vinet A, Opthof T, Coronel R: Validation of a simple model for the 

morphology of the T wave in unipolar electrograms. Am J Physiol Heart Circ 

Physiol 2009;297:H792-H801.  

31. Park S-J, Miyazaki C, Bruce CJ, Ommen S, Miller FA, Oh JK: Left ventricular 

torsion by two-dimensional speckle tracking echocardiography in patients with 

diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 

2008;21:1129-1137.  

32. Altiok E, Neizel M, Tiemann S, Krass V, Kuhr K, Becker M, Zwicker C, Koos 

R, Lehmacher W, Kelm M, Marx N, Hoffmann R: Quantitative analysis of 

endocardial and epicardial left ventricular myocardial deformation-comparison 

of strain-encoded cardiac magnetic resonance imaging with two-dimensional 

speckle-tracking echocardiography. J Am Soc Echocardiogr 2012;25:1179-

1188.  



 26 

33. Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschenes I, Yu X, 

Rosenbaum DS: Mechanoelectrical feedback as novel mechanism of cardiac 

electrical remodeling. Circulation 2007 Edition. 2007;115:3145-3155.  

34. Suzuki A, Shiga T, Nakai K, Futagawa K, Matsuyama Y, Shoda M, Kasanuki 

H, Hagiwara N: Interlead difference between T-peak to T-end intervals in 

resynchronization patients with an implantable cardioverter-defibrillator. J 

Electrocardiol 2010;43:706-712.  

 

 

 

 




