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Abstract 
 

The increasing prevalence of dementia in the ageing population combined with the lack of 

treatments and the burden on national healthcare systems globally, make dementia a public health 

priority. Despite the plethora of important research findings published over the past two decades, 

the mechanisms underlying dementia are still poorly understood and the progress in 

pharmacological interventions is limited. Recent advances in cellular reprogramming and genome 

engineering technologies offer an unprecedented new paradigm in disease modeling. Induced 

pluripotent stem cells (iPSCs) have enabled the study of patient-derived neurons in vitro, a 

significant progress in the field of dementia research. The first studies using iPSCs to model 

dementia have recently emerged, holding promise for elucidating disease pathogenic mechanisms 

and accelerating drug discovery. In this review, we summarise the major findings of iPSC-based 

studies in Frontotemporal Dementia (FTD) and FTD overlapping with Amyotrophic Lateral Sclerosis 

(FTD/ALS). We also discuss some of the main challenges in the use of iPSCs to model complex, late-

onset neurodegenerative diseases such as dementias. 

 

Keywords: induced pluripotent stem cells (iPSCs), frontotemporal dementia (FTD), amyotrophic 

lateral sclerosis (ALS), FTD/ALS, dementia modeling 

 

Corresponding author:  
Elisavet Preza 
Department of Molecular Neuroscience  
Institute of Neurology, University College London 
London, WC1N 1PJ, UK 
Tel: +44 (0) 207 6794 294 
Fax: +44 (0) 203 448 4017 
E-mail: e.preza@ucl.ac.uk 
 

 



Introduction 
 

It is estimated that over 44 million people are currently affected by dementia  globally, a figure that 

is predicted to double every 20 years [1]. The devastating nature of the syndrome, as well as its 

immense socio-economic impact, highlight the urgency for reliable pre-clinical biomarkers and 

effective treatments.  

Our current understanding of dementia has been greatly shaped by genetic studies that have led to 

the identification of numerous dementia-causing genes and genetic risk factors. Such genetic data 

have allowed the development of animal and cell models for functional studies which have proven 

crucial in elucidating certain aspects of disease biology. There are however some limitations in their 

use to model complex human diseases such as dementias as well as their fidelity as candidate drug 

screening platforms. Transgenic mouse models of overexpressed mutant proteins have been 

dominant in dementia modeling and drug development, however, most of these models have not 

faithfully reproduced the full spectrum of pathology or dementia symptoms resembling the ones 

seen in humans. Most significantly, pre-clinical screens in such systems have pointed towards series 

of candidate drugs that failed in subsequent human clinical trials. Despite any similarities between 

human and mouse brains and conserved sequences of genes and proteins, there are profound 

differences in physiology, genome, transcriptome, proteome and connectome that highlight the 

importance of relevant human in vitro systems for (i) faithful and fully translational disease modeling 

and (ii) additional preclinical evaluation of candidate drugs. Human immortalised cell lines are also 

widely used in dementia research, however their suitability as modeling systems is questioned as 

most of these lines are non-neuronal cancer lines characterised by dysregulated signaling pathways, 

wide genomic alterations and karyotypic abnormalities relying on non-physiological protein 

overexpression. Studies of port-mortem human brain tissues have been fundamental so far in 

elucidating neuropathological hallmarks of dementias, however, this only serves as an end-point 

snapshot into the pathology of a severely degenerated brain following years of disease underlying 

processes.  

The lack of relevant human cellular models in dementia research has been recently overcome by 

advances in reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) [2]. This 

technology has revolutionised the field of neurological disease modeling and allowed the generation 

of patient-derived iPSCs, by overexpression of four transcription factors OCT3/4, SOX2, KLF4 and c-

MYC in patient’s cells such as fibroblasts [2] (Figure 1). IPSCs are in principle indistinguishable from 

embryonic stem cells (ESCs) in their ability to self-propagate and differentiate into any type of 

somatic cell. Differentiation of these iPSCs into neurons and glia is possible, offering a highly relevant 

system to study dementia pathogenic mechanisms or use as drug screening platforms. Ultimately, 

the ability to generate patient-derived neurons in vitro has raised hopes for the development of 

potential cell replacement therapies for several neurodegenerative diseases [3]. 

In this review, we discuss the major findings of iPSC studies in Frontotemporal Dementia (FTD) and 

FTD overlapping with Amyotrophic Lateral Sclerosis (FTD/ALS) to date, as well as the main challenges 

of using iPSCs to model complex, neurodegenerative diseases such as dementias.  



 

Figure 1. Induced pluripotent stem cells (iPSCs) have allowed for the first time the study of patient-derived neurons in 
dementia. Patient somatic cells such as fibroblasts can be reprogrammed to iPSCs by overexpression of four transcription 
factors. iPSCs can subsequently differentiated to neurons or glia for modeling dementia mechanisms or as drug screening 

platforms or potentially used in the future as cell replacement therapy. 

 

Frontotemporal dementia 
 

Frontotemporal dementia (FTD) is the second most common form of young-onset dementia, 

characterised by progressive loss of neurons in the frontal and temporal lobes of the brain and 

subsequent gradual deterioration in the functions controlled by these regions such as personality, 

behaviour, language as well as certain types of movement [4-6]. FTD is a clinical syndrome 

characterised by clinical, genetic and neuropathological heterogeneity [7, 8]. The clinical phenotypes 

of FTD include behavioural variant FTD (bvFTD) and two variants of primary progressive aphasia 

(PPA), the semantic and nonfluent/agrammatic. FTD can also overlap with other movement 

disorders such as progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and 

amyotrophic lateral sclerosis (FTD/ALS) [9]. Neuropathologically, FTD is often described as 

frontotemporal lobar degeneration (FTLD). Analysis of FTLD post-mortem tissue has revealed 

characteristic patterns of abnormal deposition of tau, TDP-43, FUS and ubiquitin proteins in neurons 

and/or glia of cases and based on these findings, FTLD is classified into four main subgroups; FTLD-

tau, FTLD-TDP43, FTLD-FUS and FTLD-UPS [10].  



Mutations in several genes have been described that can cause FTD with or without amyotrophic 

lateral sclerosis (ALS). A common cause of familial FTD are mutations in MAPT and GRN genes, both 

located on chromosome 17 [11-14], while rare mutations in CHMP2B have also been linked to FTD 

[15]. Mutations in VCP [16, 17], SQSTM1 [18-20], TBK1 [21, 22] and UBQLN2 [23, 24] genes have 

been described that cause FTD with or without ALS. In recent years, an intronic expansion in C9orf72 

has been reported as the most common genetic cause of both FTD and familial ALS [25, 26]. 

Mutations in TARDBP [27] and FUS [28] genes usually lead to pure ALS, however these proteins are 

found mislocalised and aggregated into characteristic neuropathological inclusions in FTD [29]. All 

this clinical, genetic and neuropathologic overlap suggests FTD and ALS are part of a spectrum of 

neurodegeneration with overlapping molecular aetiology. Here we review the findings of iPSC 

studies in FTD and FTD/ALS which are also summarised in Table 1.  

 

MAPT  
 

Hyperphosphorylated, insoluble aggregates of the microtubule-associated protein tau are a 

pathological hallmark of a range of disease, collectively termed the tauopathies, including 

Alzheimer’s disease (AD) and FTD. Evidence for a causative link between tau and disease was 

established by the discovery of mutation in MAPT linked to FTD with tau pathology. Mutations in 

MAPT either alter the coding sequence of tau or are located in intronic regions leading to an 

alteration in tau splicing [11, 30]. 

Tau splicing is complex and subjected to developmental regulation and dysregulation in disease. The 

alternative splicing of exons 2, 3 and 10 of MAPT generates six protein isoforms in the adult human 

CNS, differing by the presence of 0, 1 or 2 N-terminal repeats (0N, 1N, 2N) and 3 or 4 microtubule-

binding repeats (3R or 4R) at the C-terminus of the protein [31-33]. The balance of tau isoform 

expression is tightly controlled, and only the smallest tau isoform (0N3R) is expressed during fetal 

stages but all six isoforms are expressed post-natally. The precise balance of 3R and 4R tau appears 

to be critical for neuronal function, the 3R/4R ratio is approximately 1 under normal conditions, but 

mutations in MAPT that disrupt this ratio (generally increasing the relative amount of 4R tau) are 

sufficient to cause disease [11, 34].  

This splicing of MAPT is not recapitulated in tumour cell lines or most model organisms, and 

therefore iPSC-neurons represent a potentially viable way to generate physiologically-relevant 

models, expressing the appropriate complement of tau isoforms. Overcoming the developmental 

regulation of tau splicing has proved challenging in this regard, with several reports demonstrating 

that the regulation of tau splicing is conserved in iPSC-neurons, where the full complement of tau 

isoforms is only apparent at extended in vitro time points [35, 36]. This is an important observation 

given that many clinically-aggressive mutations in MAPT are located within exon 10, and therefore 

expression of 4R tau isoforms is necessary in order to have mutant protein present in the model. 

Interestingly, iPSC-neurons generated from patients with splice-site mutations in MAPT 

demonstrated an early increase in 4R tau expression, suggesting these mutations are able to 

override the developmental regulation of tau splicing [35-38]. 



In spite of these challenges several reports have described neuronal phenotypes linked to mutation 

in MAPT. Iovino and colleagues demonstrated that neurons with the MAPT N279K (splicing) and 

P301L (coding) mutations displayed a premature maturation phenotype, with earlier 

electrophysiological maturity than controls [36]. Tau’s role as a microtubule associated protein 

means that tau dysfunction could result in disrupted axonal transport, and indeed vesicle trafficking 

and altered distribution of mitochondria has been observed in patient neurons [36, 37]. Another 

study reported increased oxidative stress and activation of the unfolded protein response in the 

presence of MAPT mutations [38]. 

Tau pathology spreads throughout the brain in a trans-synaptic manner, and abnormal tau is able to 

seed pathology in recipient neurons.  This has been modeled effectively in vivo and in non-neuronal 

human cell lines, but a human, iPSC-neuron model for the spread of tau pathology would be a step 

forward in modeling this aspect of disease. Tau fragments are released by iPSC-neurons and tau 

oligomers, but not monomer, can be internalized by iPSC-neurons, resulting in pathogenic tau 

accumulation and neurotoxicity [39, 40]. Thus, iPSC-neurons represent a good system for the study 

of both coding and splice-site MAPT mutations and findings yielded from these models will have 

broad implications for the tauopathies. 

The A152T variant in MAPT is a risk factor associated with increased risk for FTD, AD and tauopathies 

[41, 42]. Fong and colleagues generated iPSC from patients with the A152T variant in MAPT, and also 

used genome engineering to generate a homozygous 152T/T line and an isogenic control 152A/A line 

[43]. A152T neurons had a significant increase in cleaved fragments of tau, an effect that was further 

exacerbated in homozygous 152T/T neurons. Immunostaining with specific antibodies revealed 

these to be caspase-cleaved tau fragments, which accumulated in the axon. This was accompanied 

by abnormal neuronal morphologies such as neurite fragmentation in certain neuronal subtypes 

(GABA and glutamatergic). All of these findings were eliminated in the isogenic control line, 

suggesting a central role of the A152T variant in degeneration of these cells. 

 

GRN 
 

Progranulin (PGRN) and its proteolytic cleavage products, granulins, are a family of secreted proteins 

with important roles in cell growth regulation, development, wound healing and tumorigenesis. 

Mutations in the GRN gene account for ~25% of familial FTD cases and their pathogenicity is 

consistent with a loss-of-function mechanism [13, 14]. In the first study using human iPSCs to model 

PGRN-deficient FTD, Almeida and colleagues generated iPSC lines from one unaffected individual, 

one sporadic FTD patient and one FTD patient with the S116X GRN mutation [44]. The differentiated 

neurons and microglia from the S116X GRN lines showed ~50% decrease in levels of both secreted 

and intracellular PGRN, recapitulating the PGRN haploinsufficiency disease phenotype. Induction of 

cellular stress revealed compromised PI3K/Akt and MEK/MAPK signaling pathways in S116X neurons, 

phenotypes which were rescued by overexpression of wild-type PGRN. The patient-derived neurons 

of the above study and also neurons derived from C9orf72 GGGGCC expansion carriers, were used in 

a study by Gascon and colleagues, to evaluate findings from their in vivo mouse study of behavioural 



alterations on FTD [45]. They confirmed an age-dependent reduction in miR-124 levels and 

upregulation of Gria2 and Gria4 AMPAR subunits in 8 week old patient-derived neurons compared to 

controls. Their findings linked for the first time the behavioural deficits observed in bvFTD with 

altered expression of AMPA receptor (AMPAR) subunits opening another possible therapeutic 

avenue for behavioural variant FTD [45]. 

PGRN-deficient FTD offers the most promising clinical subtype for therapeutic intervention, where 

restoration of PGRN levels could modify pathogenic pathways andalleviate the disease symptoms. 

However, such therapeutic approaches should be taken cautiously as little is known about the 

pleiotropic functions of progranulin and granulins and their anti- and pro-inflammatory properties 

respectively. Two recent studies in PGRN-deficient iPSC-neurons have provided further evidence 

supporting modulation of PGRN levels as a potential therapeutic intervention. In the first, Lee and 

colleagues restored PGRN levels in S116X GRN neurons by reducing SORT1-mediated endocytosis of 

PGRN using a SORT1 suppressor bioactive compound MPEP [46]. Suppression of SORT1 expression 

via MPEP was specific and led to increased extracellular levels of PGRN without affecting 

intracellular PGRN levels or other sortilin-related family members. In the other study, Raitano and 

colleagues used iPSCs with a different GRN mutation, the GRNIVS1+5G>C, which they differentiated 

into cortical neurons, the most physiologically relevant neuronal subtype to model FTD. IPSCs with 

the GRN mutation had reduced ability to generate cortical neurons compared to controls, a 

phenotype that was rescued after introducing GRN cDNA by homologous recombination with zinc 

finger nucleases (ZFNs) in the safe-harbour AAVS1 locus [47].  

 

C9orf72  
 

Much research has focussed recently on C9orf72, an expanded repeat in which is responsible for the 

majority of both FALS and FTD cases. The hexanucleotide repeat is located in an intronic region of 

the gene, between two non-coding exons. The disease-causing mechanism of the repeat expansion 

remains largely unknown and initial findings support the existence of both gain and loss of function 

pathogenic mechanisms. Consistent with a toxic gain of function of the expanded repeat, 

preliminary studies in patient fibroblasts and post-mortem tissue have shown that the expanded 

repeats form RNA aggregates in the nuclei of patient cortex and motor neurons [25]. In addition, the 

expanded repeat has been found to be translated via a repeat-associated non-ATG (RAN) translation 

mechanism, producing long dipeptide repeat proteins (DRPs) from either sense: Gly-Ala (GA), Gly-

Arg (GR), Gly-Pro (GP) or anti-sense: Pro-Arg (PR), Pro-Ala (PA), Pro-Gly (GP) transcripts that are also 

found in cytoplasmic aggregates in patient tissue [48, 49]. On the other hand, loss of normal C9orf72 

normal function is another possible underlying disease mechanism. C9orf72 has three pre-mRNA 

transcript variants, some of which have been found to be ~50% reduced in patients carrying the 

repeat [25, 50, 51] and epigenetic studies show that repeat-associated hypermethylation near 

C9orf72 can also be responsible for reduced C9orf72 expression [52, 53]. C9orf72 is a distant 

homologue of the differentially expressed in normal and neoplastic cells (DENN) family of GDP–GTP 

exchange factors (GEFs) that activate Rab GTPases [54]. Although its biological function remains 



largely unknown, some initial evidence suggest C9orf72 regulates endosomal trafficking [55]. A more 

recent study has revealed that C9orf72 is required for the normal function of macrophages and 

microglia, therefore linking toxicity and loss of function mechanisms in a dual-effect pathogenic 

mechanism [56]. 

In the first C9-FTD iPSC study by Almeida and colleagues, patient-derived neurons recapitulated 

certain aspects of C9orf72 expansion-related pathology in FTD [57]. Interestingly, the GGGGCC 

expanded repeats showed instability during reprogramming to iPSCs and differentiation into 

neurons. Moreover, C9orf72 expression was found to be reduced in patient-derived neurons 

compared to controls. Patient-derived neurons exhibited RNA foci and RAN GP dipeptide pathology 

as well as significantly high levels of p62 protein and compromised autophagy mechanisms.  

Additional evidence supporting a toxic gain of function disease mechanism came from two recent 

studies on C9-ALS iPSC models using antisense oligonucleotide (ASO) treatment to rescue the 

disease phenotypes [58, 59]. In terms of C9orf72 repeat stability, Sareen and colleagues observed 

instability of the repeat in iPSCs and motor neurons, whereas Donnelly and colleagues found iPSCs 

and neurons maintained a stable number of repeats which was attributed to clonal selection of 

fibroblasts. Moreover, in one study  the levels of two C9orf72 variant transcripts were found reduced 

in patient-derived neurons compared to controls [58], recapitulating C9orf72 downregulation seen in 

patient tissue, whereas in the other no changes in C9orf72 expression were observed in patient-

derived motor neurons [59]. Knockdown of C9orf72 transcript was not toxic to cultured motor 

neurons, arguing against a loss of function mechanism as the drive of neurodegeneration in this in 

vitro model [59]. Both groups were able to detect intranuclear RNA foci in their neuronal models, 

whereas dipeptide RAN pathology was only observed by Donnelly and colleagues. Patient-derived 

neurons of both studies displayed toxicity phenotypes of dysregulated gene expression and 

sequestration of RNA binding proteins like ADARB2, hnRNPA1 and Pur-a by the expanded RNA 

repeat [58, 59] in contrast to previous reports from Almeida and colleagues on lack of sequestration 

of major RNA binding proteins by the RNA foci [57]. In addition, one group reported susceptibility to 

glutamate excitotoxicity, whilst patient-derived motor neurons of Sareen and colleagues showed 

decreased electrical excitability compared to control motor neurons. Antisense oligonucleotide 

(ASO) treatment in both studies reversed toxicity phenotypes in patient-derived neurons supporting 

a GGGGCC repeat-associated RNA toxic gain-of-function as a primary mechanism for 

neurodegeneration.  

Non-cell-autonomous toxicity mechanisms in ALS were investigated in the study of Meyer and 

colleagues who showed that directly converted astrocytes from either skin or spinal cord of familial 

and sporadic ALS, including C9orf72 mutation carriers, were toxic to co-cultured motor neurons [61]. 

Satoh and colleagues analysed transcriptome data performing molecular network analysis showing 

reduction in the expression of extracellular matrix proteins and matrix metalloproteinases in patient-

derived motor neurons [60]. Investigation of electrophysiological properties of C9orf72 and TARDBP 

(M337V) patient-derived motor neurons by Devlin and colleagues revealed abnormal patterns of 

initial hyperexcitability followed by diminished firing and synaptic activity [62]. Interestingly, the loss 

of excitability phenotype is in line with previous reports from Sareen and colleagues [59] and 

appears at a similar time point during motor neuron maturation. Yang and colleagues identified 



Notch pathway to be affected by RAN GR toxicity and found reduced levels of some Notch target 

genes in patient-derived cortical neurons. Moreover, they suggest RAN GA dipeptides act as 

suppressors of RAN GR toxicity by recruiting GR into cytoplasmic inclusions in patient-derived 

neurons [63]. 

Three recent in vivo studies in fly and yeast models of the repeat expansion have revealed impaired 

nucleocytoplasmic transport as a novel phenotype in FTD/ALS and confirmed findings in vitro in 

patient-derived neurons [64-66]. RanGAP was identified by Zhang and colleagues as a suppressor of 

neurodegeneration in Drosophila expressing 30 hexanucleotide repeats and was shown to bind the 

sense RNA G-quadruplex of the repeat expansion. The human orthologue RanGAP1 was found in 

puncta in C9orf72 patient-derived neurons that also co-localised with the expanded repeat RNA foci. 

Impaired RanGAP1 function was also linked to disrupted nuclear-cytoplasmic pattern of Ran, leading 

to higher cytoplasmic levels of the protein in patient-derived neurons, subsequently rescued by 

overexpression of RanGAP1. Impaired nucleocytoplasmic transport was responsible for the 

abnormal nuclear/cytoplasmic ratios of Ran and TDP-43 which were restored after ASO treatment in 

C9orf72 patient-derived neurons. In the other study, Freibaum and colleagues also observed 

impaired nucleocytoplasmic transport phenotypes due to the hexanucleotide repeat toxicity. 

Investigation of total RNA distribution revealed a 35% increase in the nuclear/cytoplasmic ratio of 

RNAs in 60 days-old patient-derived cortical neurons compared to controls. Finally, in the third 

study, directly converted patient neurons showed decreased nuclear localisation of the Ran- GEF 

RCC1 compared to controls [66]. Taken together, the above findings suggest nucleocytoplasmic 

transport as a novel target for therapeutic intervention in C9orf72-linked FTD and ALS. 

 

TARDBP 
 

Mutations in the TAR DNA-binding protein 43 (TARDBP) gene are a rare cause of ALS while a few 

have also been linked to FTD [27]. Transactive response DNA binding protein 43 (TDP-43) is a DNA 

and RNA binding protein with important roles in regulation of gene expression, RNA stability and 

splicing. It is mainly localised in the cell nucleus but can shuttle to the cytoplasm to exert its RNA 

regulatory functions. However, in some neurodegenerative diseases such as ALS and a subtype of 

FTD (FTD-TDP), TDP-43 has been found mislocalised to the cytoplasm as a major component of 

ubiquitin-positive aggregates. This has been a key finding for ALS and FTD research, highlighting how 

two so phenotypically different clinical syndromes can share the same molecular pathology. 

Moreover, this has allowed the classification of several neurodegenerative diseases that share the 

same TDP-43 pathology into a group of TDP-43 proteinopathies.  

In the first study of a human neuronal model of FTD linked to TDP-43 mutations, Zhang and 

colleagues generated neurons from an FTD/ALS patient carrying the TARDBP A90V mutation. Patient 

neurons were found to be sensitive to staurosporine-induced stress [67]. When stressed, patient-

derived neurons exhibited mislocalised TDP-43 in the cytoplasm, lower total TDP-43 as well as 

decreased levels of microRNA-9 (miR-9) and its precursor pre-miR-9-2 compared to controls. MiR-9 



downregulation was also observed in neurons derived from patients carrying the M337V mutation 

suggesting miR-9 downregulation may be a common downstream event for FTD and ALS.  

The majority of TDP-43 iPSC modeling studies focused on ALS assessing cell-autonomous phenotypes 

in differentiated motor neurons or glia. In one of them, Bilican and colleagues generated iPSCs with 

the M337V mutation and differentiated them into motor neurons. They observed cell-autonomous 

phenotypes of increased levels of soluble and insoluble TDP-43, decreased survival in longitudinal 

studies and increased vulnerability to antagonism of the PI3K pathway in patient-derived neurons 

compared to controls [68]. Cell-autonomous phenotypes were also observed in another study of 

iPSC-derived M337V astrocytes which showed elevated levels and mislocalisation of TDP-43 as well 

as and decreased cell survival compared to controls [69]. In contrast to the observed toxicity of 

astrocytes from another ALS mutation in SOD1, TDP-43 patient astrocytes did not display any toxic 

effects longitudinally in co-cultured control and patient motor neurons in this study.  

A number of iPSC modeling studies in TDP-43-ALS have used patient-derived neurons in drug 

screening assays, showing some interesting candidate compounds that were able to rescue ALS-

related phenotypes. In one of them, Egawa and colleagues performed a small chemical screen on 

iPSC-derived motor neurons from patients with the Q343R, M337V and G298S TARDBP mutations 

[70]. The differentiated motor neurons displayed mislocalised, aggregated TDP-43, elevated 

insoluble TDP-43 bound to SNRPB2 spliceosomal factor and shorter neurites compared to control 

motor neurons. Moreover, gene expression profiling revealed upregulation of RNA metabolism 

genes and downregulation of cytoskeletal genes. They found that anacardic acid, an inhibitor of 

histone acetyltransferases, was able to rescue ALS disease phenotype in patient motor neurons. A 

larger high content chemical screen in upper and lower motor neurons from a large cohort of 

control, familial and sporadic ALS cases identified four classes of compounds that reduced TDP-43 

aggregation phenotype in sALS; cyclin-dependent kinase inhibitors, c-Jun N-terminal kinase 

inhibitors (JNK), Triptolide and FDA-approved cardiac glycosides, Digoxin, Lanatoside C, and 

Proscillaridin A [71]. Finally, a drug screening in human motor neurons from fALS patients showed 

that kenpaullone, a multikinase inhibitor, strongly improved motor neuron survival [72]. More 

importantly, the effect of kenpaullone on motor neuron survival was found to be much stronger 

than the corresponding effect of olesoxime and dexpramipexole, two compounds that have failed in 

ALS clinical trials, highlighting the importance of iPSC-derived human neurons as relevant drug 

screening platforms.   

 

Challenges in iPSC-dementia modeling 
 

Although it is still early days in dementia iPSC modeling, it is becoming apparent that this technology 

has the potential to accelerate dementia research and identify new therapeutic avenues. As iPSC 

studies become more prevalent in dementia research, it is therefore crucial to consider some of the 

challenges in the use of iPSCs to model complex, late-onset dementias. Here we focus on two main 



general challenges, heterogeneity and cellular phenotyping, and discuss ways they can be addressed 

in order to develop robust models and most importantly reproducible data for the field. 

 

Heterogeneity 
 

The first and significant challenge to generate robust iPSC models is heterogeneity in all its forms, 

namely genetic, epigenetic and cellular. Genetic and epigenetic heterogeneity can be attributed to 

reprogramming methods, human genetic variation among study lines or can be a result of selective 

pressure due to culture conditions. Cellular heterogeneity reflects differences in expression, function 

or morphology between cells or cell subpopulations within the study system. Such sources of 

heterogeneity in iPSC cultures are illustrated in figure 2. 



 

Figure 2. Types of heterogeneity in iPSC-derived neuronal cultures. Genetic or epigenetic heterogeneity may already exist 
in fibroblasts but are also induced by the reprogramming process. That leads to the generation of heterogeneous iPSC 
clones that need to be isolated and characterised individually. Karyotype analysis is a necessary step in the establishment 
of iPSC clones. Ideally, several clones are used per iPSC line to account for variability. That leads to large and labour-
intensive study cohorts of patient and control-derived neurons. Cellular heterogeneity in neuronal cultures reflects cell-to-
cell variation and also variation between different cellular types in culture. Different neuronal subtypes, for instance 
neurons from all layers of the cortex, with a wide range of in vitro ages, as well as different glial subtypes lead to a diverse 
cellular population in culture. 

Traditionally, the generation of iPSCs has relied on delivery of the reprogramming transgenes via 

lentiviral or retroviral vectors which randomly integrate in the genome [73, 74]. This random virus 

integration in the genome has unknown effects and can limit the differentiation potential of the 

generated iPSCs, whereas excision of reprogramming transgenes has been found to significantly 

improve their differentiation capacity [75]. Therefore, several integration-free strategies have been 

developed based on the use of excisable [75, 76] or episomal vectors [77, 78], non-integrating 

Sendai virus [79, 80], as well as direct protein [81] or mRNA [82] to minimise random mutagenesis. 

Although in theory integration-free methods are less mutagenic, comparative studies have shown no 



difference in the frequency of somatic coding mutations [83] or karyotypic abnormalities [84] 

between integrating and non-integrating methods. Regardless of the method though, 

reprogramming is a mutagenic procedure, leading to increased frequency of CNVs [85, 86] or 

somatic coding mutations [83, 87, 88] in iPSCs compared to parental cells. Reprogramming-induced 

benign variants have also been detected by a recent study in isogenic iPSCs derived with three 

different reprogramming methods, namely integrating retroviral vectors, non-integrating Sendai 

virus and synthetic mRNAs [89]. A large scale karyotype analysis on more than 1,700 human ESC and 

iPSC cultures from independent laboratories has revealed similar types and frequency of karyotypic 

abnormalities, with trisomies 8 and 12 the most common, suggesting that these are independent of 

reprogramming procedures [84]. Karyotypic alterations and CNVs are closely dependent on culture 

conditions and especially prolonged cultures, reflecting adaptation of the iPSC and ESC cultures to 

positive selection pressure [85, 90-92]. Other factors that may influence culture-induced variability 

are the passage number, passaging method, substrates and culture media. Generally, choice of 

integration-free reprogramming methods, the use of same reprogramming method across all study 

lines, selection of multiple clones per generated line and careful characterisation are the best ways 

to control reprogramming-derived heterogeneity. Moreover, a way to control culture-induced 

variability is maintenance of iPSCs under feeder-free conditions, in defined serum-free media, using 

non-enzymatic passaging with frequent karyotype analysis checkpoints. All the above highlight the 

necessity for standardised and controlled procedures in iPSC line generation and differentiation, a 

fact also reflected by the creation of consortia and stem cell banks for the reprogramming, storage 

and distribution of iPSCs to research centres. Validated and reproducible protocols are critical to the 

success of iPSC derived dementia models. 

Human genetic variation among the different iPSC lines in a study is the main source of genetic 

heterogeneity that needs to be considered early on during study design. Frequently that problem 

has been somewhat circumvented by increasing the power of iPSC modeling studies, including 

several patient and control lines. However, increasing the power may reduce the robustness of the 

study model due to genomic background noise, result in large labour-intensive iPSC cohorts and 

finally may not always be possible, especially in the case of studying rare mutations, such as  in 

PSEN1 or PSEN2 genes in AD. Recent advances in genetic engineering technologies such as TAL-

effector nucleases (TALENs) and the most recent CRISPR/Cas9 systems, have allowed the cost-

effective generation of isogenic iPSC lines that share the same genetic background (Figure 3). 

Although some initial studies linked the use of such “designer” nucleases with the generation of “off-

target” mutations in a range of additional genomic sites apart from the intended ones [93], novel 

strategies such as obligate-dimer nucleases and nickase versions offer improved, highly specific and 

“scarless” genome editing [94]. Effectively, with the use of these tools, one can study the effect of a 

mutation by inserting the mutation in a control iPSC line or rescue a disease phenotype by replacing 

the mutation with the wild-type sequence in a patient iPSC line. The generation of such isogenic 

lines eliminates the genetic heterogeneity between the study lines and allows the study of the net 

effect of a disease mutation in a robust and reproducible way. Isogenic lines can also accelerate 

research as they do not rely on patient material, therefore can bypass ethical requirements or 

enable the study of extremely rare or even hypothetical mutations.  



 

Figure 3. The generation of isogenic iPSC lines with the use of CRISPR/Cas9 nucleases can solve the problem of iPSC line 
heterogeneity and lead to robust systems for cellular phenotyping. Isogenic lines can be applied to correct a disease 
mutation by replacing the mutation with the wild-type sequence in patient-derived iPSCs, or to study the effect of a 
mutation by inserting the mutation in a control iPSC line. In both systems, the result is robust and smaller-scale studies.  

Interclonal variation in iPSCs is very much dependent on cell culture procedures as already 

discussed, all these are sources of selective pressure and subsequent genetic drift in the cultured 

highly-proliferative iPSCs. Such cellular heterogeneity is not limited to proliferating cells but can also 

be found in post-mitotic neurons which are susceptible to DNA damage during their lifespan. Single-

cell whole genome sequencing of individual neurons from the human prefrontal cortex has revealed 

thousands of somatic single-nucleotide variants (SNVs) that cluster into distinct lineages [95]. 

Cellular heterogeneity of human brain has also been investigated by single-cell RNA sequencing [96]. 

In vitro, cellular heterogeneity becomes a challenge after differentiation of iPSCs to neurons, as 

cultures become enriched in several different neuronal and glial subtypes of variable in vitro ages. All 



this cellular variability has major implications in cellular phenotyping as we will discuss in the next 

section. 

Finally epigenetic heterogeneity exists in iPSC model systems in the same way as genetic that we 

already described; it can be heterogeneity between the lines or a result of reprogramming. In the 

latter case, it is generally accepted that the forced expression of the reprogramming factors in 

somatic cells leads to a genome-wide change in the epigenetic landscape where chromatin is re-

organised to an ESC-like state. Chromatin architecture in ESCs is in an “open” state with abundant 

euchromatin and less heterochromatin modifications, whereas lineage-committed somatic cells are 

characterised by highly condensed heterochromatin. Despite the epigenetic similarities between 

iPSCs and ESCs, several lines of evidence suggest that iPSCs retain some epigenetic “memory” from 

the somatic cell type of origin and aberrant methylation patterns [97].  

 

Cellular phenotyping 
 

Identifying disease-specific phenotypes is particularly challenging in late-onset dementias in which 

ageing is the main risk factor. IPSC modeling is tied to developmental procedures, therefore, 

manifestation of phenotypes may not happen early on in vitro, unless there is an underlying 

developmental phenotype, or it may require the application of appropriate stressors (figure 4). 

 

Figure 4. Manifestation of dementia-related phenotypes in iPSC-neuronal cultures may require longer in vitro cultures, the 
application of several stressors, co-cultures or other ways to accelerate ageing phenotypes such as expression of progerin. 
Transdifferentiation of fibroblasts to induced neurons (iNs) has also been described as a way to potentially accelerate 
phenotypes as iNs retain the “age memory” of the fibroblasts.  

  



This developmental component and its implications in FTD modeling is highlighted in our study of a 

10+16 splice-site mutation MAPT patient-derived neuronal model, where using tau splicing as a 

surrogate marker of neuronal maturation in vitro, we showed that control neurons expressed the 

fetal isoform of tau (0N3R) up to 100 days in vitro and only started expressing the full range of tau 

isoforms in extended culture time-points of one year in vitro [35]. The 10+16 mutation was able to 

override this developmental regulation of exon 10 splicing early on in cultures. However, neuronal 

maturation and proper tau splicing are important considerations for studies of mutations located in 

exon 10 of MAPT, which may be absent from neurons at conventionally assessed timepoints (day 80 

or day 100 in vitro) leading to major implications in phenotyping.  

Accelerated neuronal maturation and aging are important factors for optimisation in iPSC studies, as 

they can lead to shorter and cost-effective time-frames that are more suitable for disease modeling. 

In an effort to generate an iPSC model of late-onset Parkinson’s disease (PD), Miller and colleagues 

expressed progerin, to induce premature ageing in their cultures of dopaminergic neurons [98]. 

Progerin-induced ageing successfully recapitulated phenotypes associated with both ageing and 

genetic composition, suggesting it is a useful system in late-onset disease modeling. 

The concept of biological age in iPSC-derived neurons, as reflected by epigenetic modifications and 

transcriptome signatures, still remains unclear. In the study of Miller and colleagues, age memory 

was shown to be lost after reprogramming and could not be re-established upon differentiation but 

required rather long in vitro maturation in culture [98]. In a different study, induced neurons (iNs) 

directly converted from fibroblasts retained the age-specific transcriptional profile of the donor 

fibroblasts, in contrast to the generated iPSCs and iPSC-neurons, suggesting iNs may be useful in 

late-onset disease modeling [99].  

In the context of cellular phenotyping, another important consideration is the autonomous versus 

non-autonomous mechanisms. Cell-autonomous phenotypes can be observed in the affected 

neuronal type that may recapitulate certain aspects of dementias. However, the complexity of brain 

networks as well as the apparent spread of pathology across brain regions may be an indication of 

non-cell autonomous co-existing mechanisms. This can either be due to direct toxicity of one cell to 

the other or simply a gradual loss of neuronal networks, as a result of loss of synaptic connections or 

glial support. It is a great challenge to model human brain in a dish, however, progress in co-culture 

systems such as microfluidics and 3D cultures offer a good way of investigating the spread of 

pathology or network interactions and employing more physiological, brain-mimicking conditions 

respectively. Indeed, most of the studies use two-dimensional cultures, a non-physiological spatial 

conformation of neurons in vivo. Such a 3D cell culture system has been described for Alzheimer’s 

disease, recapitulating key pathogenic events, such as increase levels of hyperphosphorylated tau 

and extracellular aggregation of amyloid-β (Aβ) [100]. A limitation in the current model systems, 2D 

or 3D, is that they are isolated, lacking blood supply and interactions with the vascular system. 

Significant developments have recently been reported on 3D neural constructs where different 

cellular precursors combined on chemically defined hydrogels self-assembled into 3D neural 

constructs comprised of diverse populations of neurons and glia, including ramified microglia, and 

interconnected vascular networks [101]. 



As we already discussed in the previous section, heterogeneity in iPSC cultures directly affects the 

robustness of cellular phenotypes. Genetically engineered isogenic lines offer the best solution to 

this problem by eliminating background genomic noise. Moreover, cellular heterogeneity in 

neuronal cultures, combined with selective vulnerability of specific neuronal subtypes is making the 

detection of phenotypes even harder. Dissecting real data from background noise from pooled cells 

is very hard and perhaps adds an unnecessary level of complexity. Single-cell transcriptomics is a 

powerful way to extract informative data from single neurons rather than profiling the bulk 

population of cells that may lead to noisy data masking any potential phenotypes [102]. Finally, 

another hurdle to overcome is the limited ability to model certain aspects of dementia due to 

unavailability of robust differentiation protocols for specific and topographically defined neuronal 

subpopulations. 

 

Conclusions 
 

Like with any other model system, the use of iPSCs to model dementia is challenging. Nevertheless, 

iPSCs have bridged the gap between modeling systems and human neurodegenerative diseases, 

enabling studies of patient-derived neurons in vitro. Moreover, isogenic iPSC lines offer an 

unprecedented way of modeling the effect of mutations by eliminating genomic noise and producing 

robust data. They also offer a great tool to address the major issue of reproducibility in the field of 

cell modeling research. Some of the first studies in FTD and ALS that we have reviewed here show 

interesting results, recapitulating some major disease phenotypes and even elucidating novel 

pathogenic mechanisms [64]. It is however too early to conclude on mechanisms and more studies 

are required in order to have a complete picture of the pathogenic processes involved in FTD. 

 



Study Gene (mutation) iPSC generation method Differentiated 
cell type  

Disease Phenotypes observed Phenotype rescue 

Fong et al. 2013 MAPT (A152T) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons Tauopathy  tau fragmentation and phosphorylation 
Axonal degeneration 
Dose-dependent effect of A152T mutation on neurodegeneration 
Vulnerability of DA neurons to A152T neurotoxicity 

Genetic correction of the 
mutation with Zing-Finger 
nucleases (ZFNs) 
Elimination of tauopathy 
phenotypes 

Ehrlich et al. 2015 MAPT (N279K,  V337M) Lentiviral  OCT4, SOX2, 
KLF4, and c-MYC 

Mixed neurons FTD tau pathology;  tau fragmentation and phosphorylation 
 neurite extension 
 oxidative stress response to inhibition of mitochondrial respiration 
(reversible) 
Unfolded protein response (UPR) activation 
Distinct disease-associated gene expression profiles 

N/A 

Sposito et al. 2015 MAPT (10+16) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Cortical neurons FTD Mutation overrode developmental regulation of exon 10 splicing 
Patient-derived neurons expressed 0N3R and 0N4R tau 
At 365 days in culture, neurons expressed all 6 tau isoforms with  levers 
of 4R in patient neurons 
Faithful recapitulation of human developmental tau expression  

N/A 

Wren et al. 2015 MAPT (N279K) Episomal OCT4, SOX2, 
KLF4, L-MYC, LIN28, and 
p53 shRNA 

Neural stem cells 
(NSCs) 

FTD Mutation dramatically affected neuronal viability and differentiation of 
NSCs to mature neurons 
 ratio of 4-repeat to 3-repeat tau 
Accumulation of stress granules;  cellular stress 
Impaired endocytic trafficking 

N/A 

Iovino et al. 2015 MAPT (P301L, N279K) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Cortical neurons  
(+ DAPT Notch 
inhibitor for 
neuronal 
maturation) 

FTD Earlier electrophysiological maturation  
Altered mitochondrial transport  
N279K neurons;  premature developmental 4R tau, 3R:4R isoform ratio 
changes, AT100-hyperphosphorylated 
tau aggregates 
P301L neurons;  contorted processes with varicosity-like structures, some 
containing both alpha-synuclein and 4R tau 

N/A 

Almeida et al. 2012 GRN (S116X) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons and 
microglia 

FTD  intracellular and secreted PGRN 
Compromised PI3K/Akt and MEK/MAPK signaling pathways 

PGRN expression 

Gascon et al. 2014* GRN (S116X)   Same line as 
Almeida et al. 2012 
C9ORF72 (GGGGCC 
expansion) 

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons bvFTD Age-dependent  (8-week-old neurons)  
 miR-124 levels 
 Gria2 and Gria4 AMPAR subunits mRNA 

N/A 

Lee et al. 2014 GRN (S116X) 
Same line as Almeida et al. 
2012 

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons 
(2 week-old) 

FTD PGRN haploinsufficiency Restoration of PGRN levels by 
reduction of SORT1-mediated 
endocytosis  via  blocking with  
MPEP compound   

Raitano et al. 2015 GRN (GRNIVS1+5G>C) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Cortical neurons FTD  generation of cortical neurons due to PGRN haploinsufficiency 
Altered gene expression 
Wnt signalling pathway dysregulated 
 

ZFN-mediated introduction of 
GRN wild-type cDNA in the 
AAVS1 locus 
corrected cortical neurogenesis  
defects and restored altered 
gene expression and Wnt 



pathway dysregulation 

Almeida et al. 2013 C9ORF72 (GGGGCC 
expansion) 

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons FTD RNA foci detected in fibroblasts, iPSCs and neurons 
RAN dipeptides detected in neurons 
 p62 levels 
Compromised autophagy mechanisms 

N/A 

Donelly et al. 2013 C9ORF72 (GGGGCC 
expansion) 

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons ALS  C9orf72 RNA levels 
Detection of intranuclear RNA foci and cytoplasmic poly-(Gly-Pro) RAN 
dipeptides 
Sequestration of RNA binding proteins by the expanded GGGGCC RNA, 
validation of  ADARB2 interaction 
Aberrant gene expression 
Neurons susceptible to glutamate excitotoxicity 

Antisense oligonucleotides 
(ASOs)  targeting C9orf72 the 
repeat expansion or transcript 
rescue toxicity phenotypes 

Sareen et al. 2013 C9ORF72 (GGGGCC 
expansion)  

Episomal OCT4, SOX2, 
KLF4, L-MYC, LIN28, and 
p53 shRNA 

Motor neurons ALS 
ALS/FTD 

No reduction of C9orf72 RNA  
Detection of RNA foci but absence of RAN dipeptide products 
Co-localisation of RNA foci with hnRNPA1 and Pur-α 
Aberrant gene expression 
Reduced excitability of C9orf72 motor neurons 

Antisense oligonucleotides 
(ASOs)  targeting C9orf72 
transcript suppressed RNA foci 
formation and rescued gene 
expression profile 

Meyer et al. 2014 C9ORF72 (GGGGCC 
expansion) 
SOD1 (A4V) 

Direct conversion  of 
fibroblasts to NPCs 

Astrocytes 
(i-astrocytes) 

ALS Non-cell autonomous toxicity of patient induced astrocytes to co-
cultured motor neurons 
 

N/A 

Satoh et al.  2014 C9ORF72 (GGGGCC 
expansion)  
Molecular network 
analysis of Sareen et al. 
2014 RNA-seq dataset 

N/A N/A ALS  expression of a wide range of extracellular matrix proteins and matrix 
metalloproteinases in patient-derived motor neurons  
No reduction of C9orf72 mRNA in patient motor neurons compared to 
controls 

N/A 

Devlin et al. 2015 C9ORF72 (GGGGCC 
expansion)  
TARDBP (M337V) 

Lentiviral or Sendai 
OCT3/4, SOX2, KLF4, and c-
MYC 

Motor neurons ALS Initial hyperexcitability followed by progressive loss of action potential 
output and synaptic activity  
No changes in cell viability 

N/A 

Yang et al. 2015 C9ORF72 (GGGGCC 
expansion)  

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC  and  
Episomal OCT4, SOX2, 
KLF4, L-MYC, LIN28, and 
p53 shRNA 

Mixed neurons FTD/ALS  expression of some Notch target genes  
Co-expression of (GA)80  partially suppressed (GR)80 toxicity by 
recruitment of (GR)80 into cytoplasmic inclusions 

N/A 

Zhang et al. 2015 C9ORF72 (GGGGCC 
expansion  

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons ALS Mislocalisation of RanGAP1 and interaction with expanded repeat RNA 
Disrupted nuclear-cytoplasmic pattern of Ran; 
 cytoplasmic levels of Ran in patient-derived neurons - rescued by 
RanGAP1  overexpression 
Abnormal nuclear/cytoplasmic ratio of TDP-43 
Impaired nucleocytoplasmic transport  

Small molecules and antisense 
oligonucleotides targeting the 
repeat expansion G-
quadruplexes rescued 
nucleocytoplasmic transport 
deficits 

Freibaum et al. 
2015 

C9ORF72 (GGGGCC 
expansion)  

Episomal OCT4, SOX2, 
KLF4, L-MYC, LIN28, and 
p53 shRNA 

Mixed neurons FTD/ALS RNA nuclear export defect, retention of RNA in nuclei 
  nuclear to cytoplasmic ratio of RNA in patient neurons vs controls 
~ 35%  in the nuclear:cytoplasmic ratio of RNA density in patient 
neurons 

N/A 

Jovicic et al. 2015 C9ORF72 (GGGGCC 
expansion)  

Direct conversion  of 
fibroblasts to neurons (iNs) 
via NGN2 and ASCL1 
expression 

Induced neurons 
(iNs) 

FTD/ALS  nuclear localization of RCC1 in patient iNs N/A 



Table 1.  Summary of iPSC studies in FTD and FTD/ALS.  

 

 

Bilican et al. 2012 TARDBP (M337V) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Motor neurons ALS  soluble and insoluble TDP-43 
 survival in longitudinal studies  
increased vulnerability to antagonism of the PI3K pathway 

N/A 

Serio et al. 2013 TARDBP (M337V) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Astrocytes ALS  levels and subcellular mislocalisation of TDP-43  
 cell survival 
Absence of non-cell-autonomous component; patient astrocytes not 
toxic to neurons in co-culture systems 

N/A 

Zhang et al. 2013 TARDBP (A90V, M337V) Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Mixed neurons FTD/ALS Neurons sensitive to staurosporine-induced stress 
Stress-induced phenotypes;  
TDP-43 mislocalisation in the cytoplasm 
 total TDP-43  
 levels of microRNA-9 (miR-9) and pre-miR-9-2  
 miR-9 expression also in M337V neurons 

N/A 

Egawa et al. 2012 TARDBP (Q343R, M337V, 
G298S) 

Retroviral  OCT3/4, SOX2, 
KLF4, and c-MYC or 
episomal  OCT4, SOX2, 
KLF4, L-MYC, LIN28, and 
p53 shRNA  

Motor neurons ALS Mislocalised, aggregated TDP-43 
 insoluble TDP-43 bound to SNRPB2 spliceosomal factor  
Shorter neurites compared to control motor neurons 
Upregulation of RNA metabolism genes and downregulation of 
cytoskeletal genes in patient neurons compared to controls 

Anacardic acid, an inhibitor of 
histone acetyltransferases, 
rescued ALS phenotype in 
patient motor neurons 

Burkhardt et al. 
2013 

8 familial ALS lines from 
which known mutations in; 
TARDBP (A315T),  SOD1 
(N139K, A4V),  FUS 
(G1566A )  
and 16 sporadic ALS  

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Motor neurons 
(upper and lower) 

ALS TDP-43 aggregates 
Aggregates recapitulate pathology in postmortem tissue of patients 

High-content chemical screen 
revealed four classes of 
compounds that reduced TDP-
43 aggregation phenotype in 
sALS neurons; cyclin-
dependent kinase inhibitors, c-
Jun N-terminal kinase 
inhibitors (JNK), Triptolide and 
FDA-approved cardiac 
glycosides, Digoxin, Lanatoside 
C, and Proscillaridin A 

Yang et al. 2013 TARDBP (M337V) 
SOD1 (L144F) 

Retroviral OCT3/4, SOX2, 
KLF4, and c-MYC 

Motor neurons ALS Reduced survival of patient motor neurons compared to controls Kenpaullone, a multikinase 
inhibitor, strongly improved  
patient motor neuron survival 
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