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Abstract 

Taste evaluation is a critical factor for determining acceptance of medicines by 

patients. The human taste panel test is the main method used to establish the overall 

palatability and acceptability of a drug product to a patient towards the end of 

development. Non human in vitro and in vivo taste evaluation tools are very useful 

for preformulation, quality control and screening of formulations. These non-human 

taste assessment tools can be used to evaluate all aspects of taste quality. The 

focus of this review is bitterness as it is a key aspect of taste in association with the 

development of medicines. In this review recent in vitro (analytical) and in vivo (non-

human) tools used are described for the assessment of bitter taste of medicines. 

Their correlations with human taste data are critically discussed. The potential for 

their use for early screening of the taste of active pharmaceutical ingredients (API’s) 

to expedite paediatric formulation development is also considered. 

Keywords. Bitterness, in vitro, in vivo, taste, paediatric and medicine.  

Introduction 

The taste of a medicine is a predominant contributor of patient’s acceptability and 

compliance, especially in children. As most drugs have a bitter taste which poses a 

challenge for development of oral dosage forms, valid taste evaluation methods are 

needed. The most common method is human taste panel test but its use is restricted 

by ethical and safety concerns especially when testing drugs with limited toxicity data 

[1, 2]. Several direct in vitro and in vivo taste evaluation methods have been reported 

such as the animal behavioural test, electronic taste sensing systems and cell based 

assays [1, 2]. An indirect taste assessment method such as drug release/dissolution 

based mainly on quantification of drug concentration can provide supportive 

information. These methods might have the potential of overcoming challenges 

associated with human panels. In this review, the in vitro and in vivo methods used 

for bitter taste evaluation in the pharmaceutical industry are discussed with a view to 

assess their industrial and regulatory usability.   

Literature review and data collection 

Data sources 

Indexed publications were identified by searching Scopus (subject area was limited 

to pharmacology, toxicology and pharmaceutics), PubMed, Embase and Web of 
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Science (subject area was limited to pharmacology and pharmacy). Studies were 

included if they were published in English and included search terms bitterness, in 

vitro, in vivo and taste.  

Publication selection 

After removing duplicate publications, a step review process was conducted (Figure 

1). First publications’ abstracts were screened for relevance to taste evaluation (in 

vitro, in vivo and human). Review publications and cell based studies were excluded. 

(The authors are aware that a short review on cell based in vitro taste assessment 

methods is under preparation). Then, selected full texts were screened for relevance. 

Only taste studies for active pharmaceutical ingredients/or formulations were 

included. Taste studies using only human taste panels were excluded as well as 

studies using only drug release/dissolution or electronic sensors but without human 

taste data. Only in vivo taste studies using unconditioned and not genetically 

modified animals were included. Non medicinal taste studies (Food and Beverages 

Industry) were excluded.  

Data extraction 

Data extracted were: in vitro/in vivo taste evaluation tools (type and conditions), 

sample (concentration and preparation), sample analysis (measurement time, pH 

and temperature), data analysis and taste results (correlation with human taste panel 

test).  

Data analysis 

The electronic search results were imported into, and then managed and grouped in 
Endnote (online https://www.myendnoteweb.com).  

Selected publications 

This review included only recent publications (2013-2015) of studies assessing taste 

of pure APIs, formulations, and commercial medicines (with or without taste 

masking) in vitro and in vivo. Only 43 publications were eligible for inclusion 

according to selection criteria mentioned above – the various steps are summarised 

in Figure 1.  

https://www.myendnoteweb.com/
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                            Removal of duplicates: number of records: 1826                     

                                                                                                                                           

                                           Check abstract for relevance  

                                      Number of records retrieved:  471                                                                                       

                                                                                                                   

                              Reviews Excluded: 35        Cell based   excluded: 45                                                                                       

 

                                         Full text screened for relevance:  391   

       

Papers with only human data     Papers with release data only             Papers with only electronic       
Excluded: 48                                          Excluded: 73                                      tongue data Excluded: 21                                   

                                                          Non English papers Excluded: 12 

                                                

                                      Only recent publications (2013-2015) Reviewed: 43 

Figure 1. Literature search results for non-human taste assessment tools. 

 

A. In vitro taste evaluation analytical methods 

1. Electronic taste sensors   

There are several electronic sensors in food and beverages industry using different 

measurement principles such as voltammetry, potentiometry, impedance, optical 

techniques and, mass change [1]. The most commonly used Electronic taste sensing 

systems (‘electronic tongues’) in the pharmaceutical industry for taste evaluation are: 

(i) SA401, SA402/ TS-5000z (Insent Inc, Atsugi-Chi, Japan) based on lipid 

membrane sensors and, (ii) α-Astree e-sensor (Alpha M.O.S, Toulouse, France) 

based on chemical modified field effect technology (ChemFET) with polymeric 

sensors. Each sensor (undisclosed exact composition) in the Insent electronic 

sensor is assigned to a specific taste with partial cross selectivity (e.g. AAE for 

umami, CT0 for saltiness, CA0 for sourness, AE1 for astringency and, AC0, AN0 and 

C00 for bitterness), while sensors in the α-Astree electronic sensor are cross 

Databases                      Hits 

Scopus 325 

Pubmed 1049 

Embase 671 

Web of Science 897 

Total 2942 
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selective [3]. The α-Astree electronic taste sensing system is composed of seven 

sensors which differ in composition. Therefore, three types of sets are available: (i) 

for pharmaceutical application (ZZ, AB, GA, BB, CA, DA and JE), (ii) for food 

application (ZZ, BA, BB, CA, GA, HA, JB), and (iii) for bitterness intensity 

measurement of new chemical entities (BD, EB, JA, JG, KA, OA, OB). Selected 

examples of taste evaluation of pure active pharmaceutical ingredients, preclinical 

taste masked formulation and commercially available medicines are summarised in 

Table 1. The operating principle, components and type of sensors and data analysis 

for these taste sensing systems have been extensively described in other reviews [1, 

4]. The Insent system provides information about initial taste (called relative value) 

and aftertaste (called CPA; Change of membrane Potential caused by Adsorption). 

α-Astree system measures initial taste only.  

As for any analytical tool, the performance of the electronic sensor should be 

checked to ensure validity of taste data according to the International Conference on 

Harmonization (ICH) guidelines Q2 [5, 6]. The intra- and inter-day precision of the 

Insent taste sensing system was investigated within the linearity range (0.01-100 mM 

Quinine HCl) [5]. All sensors showed acceptable repeatability (RSD<4% is 

acceptable and R2 should exceed 0.98 according to ICH guidlines) except bitterness 

sensor 3 and the sourness sensor. The inter-day precision was assessed over six 

months, none of the sensors showed acceptable values (RSD>4%). This suggested 

that the taste sensing system was susceptible to minor changes in the analytical 

conditions [5]. Small variations in temperature, pH and age of sensors can have a 

large impact on sensor response [5]. It is recommended to have an external 

standard with known concentration and expected sensor response. This external 

standard should be tested at the same time as the samples and exposed to the 

same environment settings as the sample to ensure elimination of these variations. 

Furthermore, contemporary calibration should be conducted using known 

concentrations of a single compound close to its concentration in the tested 

formulation in order to evaluate the results [5]. 

In the α-Astree electronic taste sensing, each sensor for both sensors sets 

[set 2 for pharmaceutical industry and set 5 for Food industry] fulfilled the ICH 

repeatability requirements for quinine HCl (RSD<2.5%). Two sensors of set 5 

showed more sensitivity to quinine than set 2. The sensors of set 5 can be used to 

improve bitterness detection [6]. Only sensors ZZ and JE met the requirement for 

inter-day precision. Use of an external standard did not improve the inter-day 

precision [6]. The effect of analytical conditions and sensor age on the performance 

of the α-Astree electronic tongue was not described in the literature. However, some 

sensors of the α-Astree electronic tongue displayed poor performance after storage 

for 4 months. The robustness of the α-Astree electronic tongue can be checked by 

constructing calibration curve of a known bitter compound before and after the 

storage of the sensor [5, 6].   
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Woertz et al. [3] reported that the Insent electronic tongue was found to 

provide more reliable (in vitro/in vivo correlation) and precise (reproducibility and 

repeatability) data than the α-Astree electronic tongue. However it is impossible to 

give an absolute statement regarding the taste of API based on any electronic 

sensors data only and correlation of these data with human taste panel is required to 

draw aversiveness conclusions [3]. Both Insent and α-Astree can be used for taste 

assessment of taste masked formulations by comparing its taste to the pure API or 

the placebo formulations [3, 7, 8]. This can be done by measuring the Euclidian 

distance between taste masked formulation and either pure drug or placebo (pure 

taste masking agent) on the principle component analysis (PCA) map [3, 7-9]. The 

smaller the distance between the formulation and placebo the more effective the 

taste masking should be. On the contrary the smaller the distance between taste 

masked formulation and pure drug, the more bitter the formulation and the lower 

taste masking efficiency [7-9]. 

1.2 Correlation between electronic tongues and human taste evaluation of 

medicine.  

Correlation of taste sensor data and human taste panel results can be done by either 

using sensor output (relative value or CPA) or predicted bitterness scores obtained 

from the taste sensor. In the latter, bitterness prediction models are obtained using a 

standard bitter compound with known human bitterness scores either supplied by the 

manufacturer or experimentally determined. Inverse calibration model based on 

partial least square analysis (PLS) have been used as correlation method [9, 10]. 

The model specifies the relationship between single independent variable (bitterness 

scores from human taste panel data) with a combination of multiple components of 

electronic sensors data. The correlation curve can be used to predict bitterness 

score of each sample [10]. The Euclidean distance between: (1) taste masked 

formulation and placebo or pure drug and, (2) pure drug and water can also be used 

to compare electronic tongue data to human taste data [7, 11].The conditions used in 

the taste sensors studies described below are summarised in Table 1.  

1.2.1 Astree electronic tongue 

Several studies showed that taste evaluated using α-Astree electronic tongue 

correlated well with human taste panels [7-10]. In Wang et al. [10], the sensors were 

trained with human bitterness scores [0=not bitter up to 5=so bitter] to establish the 

PLS model. 10 ml of berberine HCl of different concentrations were held in the 

mouth for 10s before spitting out (129 volunteers). Identical samples (1.23, 2.46, 

4.92 and 12.30 mg/ml) were analysed by electronic tongue. The electronic tongue 

data matched the human panel data with R2 of 0.99 according to correlation plot 

(between predicted bitterness scores (electronic sensors) and bitterness scores from 

human panel) [10]. This curve was used to predict bitterness of berberine HCl. There 

was no significant difference between bitterness scores predicted from electronic 
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tongue data using the correlation plot and bitterness scores from human data 

(P>0.05) [10].  

In study by Ito et al. [9], the predicted bitterness score of H1-antihistamines 

was obtained and correlated with those of a panel (actual bitterness score) by using 

PLS. The samples were tested at 0.1 mM in both electronic tongue and human taste 

panel test. In human taste panel test (11 volunteers), quinine HCl was used as the 

bitterness standard at concentrations of 0.01, 0.03, 0.10, 0.3 and 1 mM 

corresponding to bitterness scores of 0, 1, 2, 3 and 4 respectively. 2 ml of the 

samples were kept in the mouth for 15s [9]. The electronic sensors (AB and JE) data 

fitted the human bitterness scores with r2 of 0.9621. In this case quantitative and 

qualitative prediction of unknown drug bitterness intensities using electronic sensor 

was achievable and precise based on the PLS prediction model when used for 

evaluation of basic bitter drugs such as H1 antihistamines [9]. Furthermore, the 

ability of this electronic tongue to assess the taste masking of epinastine HCl using 

acesulfame potassium was evaluated [9]. The Euclidean distance of epinastine HCl 

to water was 300.63 in comparison to 376.70 for quinine HCl which indicated that 

epinastine HCl has similar bitterness to quinine HCl.  The human sensory test gave a 

bitterness score of 5.1 for pure epinastine HCl and scores of 3.5, 2.8 and 2.2 for 

epinastine HCl taste masked solutions containing different concentrations of 

acesulfame potassium 0.05, 0.050 and 0.150 mg/ml respectively [9]. The relationship 

between actual bitterness scores from human panel and Euclidean distance of taste 

masked epinastine HCl to placebo (A to P) showed a good correlation (r2=0.9787). 

Also a good correlation was found between bitterness scores and Euclidean distance 

of taste masked epinastine HCl to pure drug (A to A) (r2=0.9891). PLS analysis 

indicated good correlation between predicted bitterness (electronic tongue and 

actual bitterness (human sensory test) for taste masked epinastine HCl formulation 

(r2=0.9996)[9].  

In Maniruzzaman et al. [8], the taste of Citrizine HCl and Verapamil HCl was 

evaluated and correlated with human taste panel by using PLS. In human taste 

panel test (6 volunteers), pure drug/extrudates containing equivalent to 100 mg drug 

were held in the mouth for 60s and then spat out. Bitterness was recorded using a 

scale of 1=none, 2=threshold, 3=moderate, 4=bitter to 5=strong bitterness [8]. A 

similar dose (100 mg drug) was used in electronic tongue analysis. A good 

correlation was found (r2>0.8) (predicted bitterness scores from electronic tongue 

versus bitterness scores from taste panel). However, data from the taste panel 

should be carefully considered as the number of panellists and variability on 

measurements was not disclosed [8].  

In studies by Nakamura et al. [12], the taste of famotidine and amlodipine 

besylate orally disintegrating tablets (ODT) was assessed using the Astree electronic 

tongue and a human taste panel. In the human taste panel (31 volunteers), the taste 

of the tablet was evaluated after its disintegration in the oral cavity using a 100 mm 

VAS scale [12]. Volunteers perceived the ODT containing no flavouring or 
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sweetening agent bitter (lowest mean score of 28.7 and 16.9 for famotidine and 

amlodipine respectively), while palatability improved with addition of flavouring/or 

sweetening agent [12]. In the electronic tongue analysis, the Euclidean distances 

(between ODT and placebo) were shorter for the ODT containing flavouring (317.2) 

or sweetening agent (243.3) or both (61.4) than the ODT without taste masking 

(392.7) [12]. Plotting clinical VAS scores versus Euclidean distances resulted in good 

correlation (r20.95 and 0.93 for famotidine and amlodipine respectively). This 

correlation plot was then used to calculate predicted VAS score using electronic 

tongue data. PLS analysis was used to correlate between VAS scored predicted 

from electronic tongue and clinical VAS scores (human taste panel). According to 

PLS regression good correlation was obtained (r2=0.923 and 0.939 for famotidine 

and amlodipine ODTs) [12]. These studies confirmed that Astree electronic tongue 

could be used for taste evaluation of ODTs and Euclidean distances for correlation 

with human taste data [12]. Similar results were reported by Pimparade et al. [13]. 

Taste data of caffeine citrate ODT obtained from electronic tongue (Euclidean 

distance drug/placebo) was similar to human taste data (no correlation plot was 

constructed) [13].  

All the studies mentioned above reported that taste data obtained using α-

Astree sensors showed good correlation with human taste panel data. However in 

most of these studies; the method followed for constructing bitterness prediction 

model in the electronic sensor was not fully described. Direct comparison of 

electronic tongue data (e.g. Euclidean distance) with human data might provide more 

robust correlation than bitterness prediction model.  

1.2.2 Insent electronic tongue 

Several studies showed that taste data evaluated using Insent electronic sensors 

correlated well with human taste panel test [14, 15]. In these studies the aftertaste 

sensor output (CPA) was used as drug bitterness measure. The CPA values (AN0 

sensor of SA501C) were successfully used in prediction of bitterness of amlodipine 

ODT [14]. In human taste panel test (6 volunteers), quinine HCl was used as 

standard for bitterness with concentrations of 0.01, 0.03, 0.10, 0.3 and 1 mM 

corresponding to bitterness scores of 0, 1, 2, 3 and 4 respectively [14]. Amlodipine 

ODT bitterness was evaluated after the tablet was kept in the mouth for 10, 20 and 

30s. The taste of dissolved drug after 10, 20 and 30s (50 mg in 100 ml water) was 

assessed using electronic sensor and there was correlation with human taste panel 

(r2=0.54) [14] despite different conditions used ((100 ml of water versus few ml of 

saliva). In another study CPA values (C00, SA402B) were successfully used for 

determination of bitterness of acidic non-steroidal anti-inflammatory drugs and were 

compared to human taste panel test [15]. In the human taste panel test (6 

volunteers), quinine HCl was used as the standard for bitterness with concentrations 

of 0.01, 0.03, 0.10, 0.3 and 1 mM corresponding to bitterness scores of 0, 1, 2, 3 and 

4 respectively. The panel had to keep concentrations of 0.1, 1 and 10 mM in the 

mouth for 10s. Similar concentrations were assessed using the electronic tongue. 
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There was a good correlation using Pearson´s test (r=0.83) [15]. These results 

confirmed that CPA values could be used for the prediction of bitterness of drugs.  

1.2.3 Astree and Insent electronic tongues 

Maniruzzaman et al. assessed the taste of propanolol using two taste sensing 

systems (Astree and TS5000Z) and human taste panel [7]. In the human taste panel 

test, pure drug/extrudates containing the equivalent of 100 mg of API were held in 

the mouth for 60s and then spat out (6 volunteers). Bitterness was recorded (from 

1=none, 2=threshold, 3=moderate, 4=bitter to 5=strong bitterness). Volunteers 

perceived pure drug bitter (score 5), while propanolol polymer extrudates were non-

bitter (Drug-Eudragit® L100 or L100-55 scored 1 at drug/polymer ratio of 10:90% 

w/w). Analysis of these extrudates at a similar drug dose (100 mg dissolved  in 25 ml 

deionised water for 60s) using the Astree electronic tongue showed better taste 

masking in case of Eudragit® L100 compared to Eudragit® L100-55 [7]. This 

difference was explained by the use of deionised water which resulted in variation of 

dissolution rates of these extrudates made with different pH depend polymers. This 

resulted in faster release of drug from Eudragit® L100-55 [7]. PLS model was used 

to correlate Astree electronic tongue data with human taste panel data which 

revealed a good correlation for both drug-Eudragit® L100 (R2=0.9892) and 

Eudragit® L100-55 (R2=0.9959) extrudates [7]. The taste of extrudates in artificial 

saliva at 0.5, 1, 10 and 30 min was assessed using BT0 sensor  with the Insent 

electronic tongue in comparison to pure propanolol (0.09 mg/ml) [7]. Insent showed 

better taste masking when Eudragit® L100 was used compared to Eudragit® L100-

55, matching the Astree findings aforementioned. CPA values were plotted against 

human panel bitterness scores and showed a good correlation (R2=0.94) [7]. The 

drug extrudates concentration used in the Insent was lower than concentration used 

in both the human taste panel and the Astree electronic tongue tests because BT0 

showed response to a lower concentration range of the pure drug (0.009-0.296 

mg/ml) [7]. Therefore, direct comparison of Insent electronic tongue data with human 

taste panel test and Astree electronic tongue was not possible. The PLS model used 

in correlation of the Astree electronic tongue data and the human taste panel data 

was not fully described. Furthermore, the number of panellists and the variability of 

measurement were not reported.   

To sum up, it is very important to mention clearly the method of constructing 

the bitterness prediction model in order to obtain reliable electronic sensors data. To 

achieve good bitterness prediction, human taste data either supplied by the 

manufacturer or conducted in the experiment should be used to this model. 

Alternatively, data from sensor response (relative value mV or CPA, Euclidean 

distances) can be correlated directly with human taste panel data. Good correlation 

between taste data obtained using electronic sensor (Insent and Astree) and human 

taste data can be achieved when same solutions of APIs were analysed 

simultaneous by these methods.  However, most of the studies discussed here have 

used electronic sensors to evaluate specific bitter compounds or set of bitter 
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compounds (similar chemical properties) that gave good correlation with human data 

which might not be achieved if other bitter compounds (different chemical nature) are 

evaluated. Electronic sensors can quantify bitterness of compounds in question and 

the correlation might not be transferable to other bitter compounds with different 

chemical nature. The number of panellists in some of the studies discussed here is 

low (6 sometimes) whereas it is recommended to have 10-15 panellists (ISO 13299). 

Moreover, as the scale is not often enough discriminant, this might affect the 

robustness of the correlation.  
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Table 1. Examples of taste evaluation of pure APIs, commercial and preclinical taste masked formulations using electronic taste 

sensor. (NS=not stated and ODT=orodispersable tablet). PCA is principle component analysis. 

 Product or Pure API Dosage 
Form 

Sensor 
type 

Drug dose 
(mg/ml) 

Sample preparation Results REF 

H1-antihistaminics Pure drugs Astree 0.03 Dissolved in purified water.  
 
T=NS 

Relative sensor output (AB 
and JE)  in PCA analysis (no 
specific reason) 

[9] 

Berberine HCL Chinese 
medicine 

Astree 0.93 ,4.66, 
9.30 and 

18.63 

Dissolved in purified water.  
 
T=NS 

Relative sensor output (all 
sensors)  

[10] 

Sildenafil citrate 
 
 
 
 

Pure drug 
 
 
 

Microcapsules 
(Eudragit® ) 

Astree 0.1 Amount of drug equivalent to 10 mg 
sildenafil free base dissolved in 100 ml 
artificial saliva buffer solution (pH 6.2) 
 Stirring for 180 s and then filtration (0.45 
um nylon membrane) at room 
temperature. 

Relative sensor output for ZZ, 
BB and CA were used in PCA 
analysis (other sensor were 
excluded because of their low 
discriminating power). 

[16] 

Citrizine HCl, 
 

Verapamil HCL 

Pure drugs 
 

Melt extruded 
with Eudragit®  

Astree 14 Dissolved in deionised water (25 ml). 
Stirring for 60 seconds then filtration 
using filter paper (2.5 µm pore size) 
through Buchner funnel for 60s. 
 
T=NS 

All sensors relative outputs 
were used in PCA analysis. 

[8] 

Famotidine 
Amlodipine Besylate 

ODT 
(spray ethyl 

cellulose 
coated 

granules) 

Astree 2  
0.5  

ODT dissolved in distilled water (10 ml) 
with stirring for 30s then filtration through 
funnel fitted filter paper and further 
filtration through 0.45 µm Millipore filter 
Finally dilution 10 folds in distilled water. 
 
T=NS 

All sensors relative outputs 
were used in PCA analysis. 

[12] 

Caffeine citrate  ODT (ethyl 
cellulose melt 
extrudates) 

Astree 5 Sample (0.05 g) dispersed in phosphate 
buffer saline (pH=6.8, 50 ml). Shaking 
gently for 30s and then filtration (syringe 
nylon membrane 0.45 µm).  T=NS 

All sensors relative outputs 
were used in PCA analysis. 

[13] 
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 Product or Pure API Dosage 
Form 

Sensor 
type 

Drug dose 
(mg/ml) 

Sample preparation Results REF 

Amlodipine (Amlodine® OD) 
Other nine generic OD products. 
 
 
Quinine HCl 

Orally 
disintegrating 
tablets 
 
Pure drug 

SA501C 50 Ten tablets in a stainless-steel basket 
placed in 100 ml of purified water (25 rpm 
at 37°C). After 10, 20 and 30s, the 
solutions were filtered. 
 
T=37°C 

CPA (sensor AN0). [14] 

Cetirizine HCl Lyophilisates 
cyclodextrin 

TS-5000Z 2 Samples dissolved in 100 ml of water (at 
dose equivalent to 10 mg/5ml drug). 

All sensors relative outputs 
were used in PCA analysis. 

[11] 

Non-steriodal anti-inflammatory 
drugs (e.g. diclofenac sodium) 

Pure drugs SA402B 0.03, 0.3 
and 3 

NS Relative sensor (CA0) output 
and CPA (C00). 

[15] 

Propanolol HCl 
 

Melt extrudes 
with Eudragit®  
Pure drug 

1. Astree 
 
 
 
2.TS5000
Z 

4 
 
 

0.5 

1. Drug extrudates dissolved in 
deionised water (25 ml) for 60s then 
filtrated through a Buchner with a 
2.5 µm filter. 

2. Extrudates dissolved in KCl (10mM, 
50 ml) then filtered through a 
Buchner with 2.5 µm membrane. 
T=NS 

1. All sensors relative outputs 
were used in PCA analysis. 
 
 
2. Relative sensor output and 
CPA of BT0. 

[7] 
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2. In vitro drug release and dissolution 

The measurement of the amount of drug released/dissolved in simulated oral cavity 

conditions can give an idea about the taste of the drug. Only dissolved drug 

molecules would interact with the taste receptors in the human taste buds. Analytical 

methodologies used for assessing drug release and dissolution have been 

thoroughly described to screen taste masked oral formulations in other reviews [17, 

18]. Parameters such as volume (1-2 ml), temperature (35-36°C), pH (5.7-7.5) and 

osmolarity of saliva (50-100 mosmole/kg) as well as exerted sensor force (0.135 N) 

(especially in case of solid dosage form such as orodispersible tablets) should be 

taken into consideration when mimicking oral cavity conditions [17, 18], which is  

critical and challenging as it is a dynamic environment (fresh saliva is produced 

continuously, the dosage forms disintegrate, the tastant is washed away etc). 

Information about sampling method, sample preparation, such as filtration and 

analytical method (inline or offline), is very important as there might be ongoing 

dissolution of the drug which could affect the results [17, 18]. Examples of 

release/dissolution studies for pure drug and taste masked formulation are shown in 

Table 2. The most common bias in these studies are: (1) the use of larger dissolution 

medium far exceeding normal human saliva volume, (2) uncontrolled pH for e.g. use 

of water as dissolution medium and, (3) filtration of sample and/or inline analytical 

method are not used (Table 2). 

2.1 Correlation of release/dissolution data with human taste data 

The correlation of release/dissolution data with human taste panel test can be done 

by; (1) comparison of concentration of released/dissolved drug with human 

bitterness threshold and/or (2) conducting simultaneous drug release and human 

taste studies using similar drug concentrations and time points. The conditions used 

in these release/dissolution studies are described in Table 2.  

Kharb et al. [19] looked at the human bitterness threshold of ondansteron 

determined by assessing its bitterness at 22, 40, 60, 100, 200, 400 and 600 µg/ml 

using the swirl and spit method (10 ml for 30s). A bitterness score of 0=pleasant, 

1=tasteless, 2=slightly bitter, 3=moderately bitter to 4=strongly bitter was used. All 12 

volunteers reported 22 µg/ml as tasteless but 40 µg/ml bitter which was set as the 

threshold. A drug concentration-bitterness score curve was constructed, and a 

polynomial equation for bitterness estimation was established (y=0.6206x2-0.2011x-

0.7796, where x is log drug concentration and y is bitterness score). This equation 

was used to predict bitterness score of ondansteron and correlate the amount of 

ondanstron released after 5 min with human taste data. The amount of drug released 

from pure drug and the marketed tablet (Vomikind-MD 4) was 56.21 and 48.73% 

respectively which was higher than bitterness threshold. The predicted bitterness 

scores were similar to estimated scores by human taste panel (R2 values 0.990-

0.998) from linear regression and residual plot [19]. Furthermore, low value of 

percentage bias was observed. The polynomial model was considered as valid [19]. 
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Lahoti et al. [20] checked the amount of Ondansetron HCl released from resinate in 

phosphate buffer saline and compared to human bitterness threshold. Their 

bitterness threshold was determined in humans using concentrations from 10 to 50 

µg/ml in phosphate buffer (pH 6.7) by swirling 10 ml in mouth for 30s before spitting 

out [20]. Bitterness threshold was found to be 40 µg/ml. Ondansetron HCl released 

even after 120s was less than 40 µg/ml therefore ondasteron resinates were non 

bitter [20].These results indicated the feasibility of predicating the taste sensation by 

comparing the amount of released/dissolved drug and with human bitterness 

threshold.  

Stange et al. [21] determined the human bitterness threshold of naproxen 

sodium using concentration range from 0.01 to 10 mg/ml. There was high variability 

between individuals (7 healthy volunteers only) with threshold ranging from 0.063-

5.999 mg/ml with the majority in the range of 0.2-0.7 mg/ml [21]. The average value 

of all the measured concentrations was found to be 1.124 mg/ml for naproxen 

sodium and was set as the bitterness threshold [21]. The amount of naproxen 

sodium released from Eudragit® E coated granules after 5 min in 25 ml of PBS was 

below this threshold. The taste of naproxen sodium granules was also assessed in 

healthy volunteers: the granules were held in the mouth for 5 min before being spat 

out and were not perceived as bitter by most of the volunteers (9/12) which showed 

similar results despite in vitro/vivo different conditions.   

Tan et al. [22] established the bitterness threshold of pyridostigmine bromide 

in 18 healthy volunteers by crushing tablets (1, 2, 3, 4 and 5 mg) and after holding  

for 30s in the mouth It was found to be 4 mg. The amounts of pyridostigmine 

bromide released from pure drug powder, solid dispersion with Eudragit® powder 

and ODT (20 mg drug) in 900 ml simulated saliva fluid (SSF) after 30s were 

98.72±1.59, 7.89±1.12 and 8.56±0.42% respectively which were less than human 

bitterness threshold in the case of solid dispersion and ODTs. However, as the 

experimental conditions of the dissolution were very different than the oral cavity, the 

correlation the authors established is debatable [22]. Hu et al. [23] established that 

the amount of 50 mg Berberine HCl Eudragit®  E100 microcapsules (ODT) dissolved 

in 1000 ml of water after 20 min was only 0.56% (indicating successful taste 

masking), whereas the panel perceived microcapsules ODT (25 mg) to be non bitter 

after 30s. Although dissolution data and human panel data were consistent, direct 

comparison between in vitro dissolution test and human taste panel cannot be made 

as a different dose was used in each test [23].  

Several studies used both electronic tongue and drug release/dissolution as in 

vitro tools for taste evaluation of drugs [14, 16, 24]. In study by Yi et al. [16], 100% of 

sildenafil citrate (10 mg) was released in distilled water (900 ml) within 5 mins [16]. 

Human volunteers found sildenafil citrate pure powder bitter [10 mg, score of 

3.3±0.52, bitterness scale of 0 = no taste, 1 = threshold, 2 = slightly bitter, 3 = bitter, 

to 4 = remarkably bitter after holding it in the mouth for 30s. The Authors mentioned 

that similar results were obtained when the taste of sildenafil citrate (10 mg/100 ml) 

was assessed using an electronic tongue (Astree II) [16]. However, as the 
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concentrations of sildenafil citrate assessed using these three methods were 

different, direct correlations made might not be reliable [16]. Uchida et al. [14] 

measured the bitterness of commercial amlodipine orally disintegrating using brief 

dissolution test, Insent electronic tongue (SA501C) and a human panel. There was 

no correlation between the amount of amlodipine dissolved after 10, 20 and 30s and 

the bitterness intensity perceived by the human panel. Analysis of the same 

dissolution media by the taste sensor gave results similar to the human taste panel 

test. The lack of agreement between the dissolution test and the human taste panel 

data was explained by the presence of taste masking agents in the ODT. These 

taste masking agents were not taken into account in the dissolution test but only the 

amlodipine concentration [14]. Similar findings were described in studies by shah et 

al. [25], where the drug release studies showed a similar profile for both the ODT 

and the ODF of Chorpheniramine Maleate with approximately 40% drug release 

within 5 mins [25]. Human taste panel showed complete masking for ODT 

microparticles and moderate to slight bitterness for ODF after holding in mouth for 

45s. The ODT was better than the ODF, although there was no significant difference 

in the release profile between the two formulations. This difference was explained by 

the presence of mannitol (sweet taste) as a filler in the ODT [25]. These studies 

confirmed that dissolution/release studies cannot detect the effect of the excipients 

on the taste of the drug and that release/dissolution studies cannot be used alone to 

determine the taste of an API in a taste masked formulation containing taste masking 

agents such as sweetener. 
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Table 2.  Examples of in vitro drug release/or dissolution of pure API and formulations used for taste assessment. NS=non stated.  

Product or Pure API Drug dose 
(mg) 

Dissolution medium 
type, T, pH 

Dissolution 
method 

Mixing 
method 

Sampling method Analytical 
method 

Ref 

Ondansetron HCl 
(pure drug and 
marketed tablet) 

8 Phosphate buffer (25 ml) 
T=NS 
pH= 6.8 

Volumetric flask Stirring  Aliquot withdrawn 
after 5 min. 

UV 
spectrometer  

[19] 

Pyridostigmine 
bromide 
 (pure drug, solid 
dispersion Eudragit® 
, ODT) 

20 Simulated salivary fluid 
(SSF) (900 ml)  
T=37±0.5   pH= 6.2 
 

Paddle method-
China 

pharmacopeia 
2010. 

Continuous 
Stirring at 
100 rpm. 

Aliquot withdrawn 
at time intervals 
30s-upto 45 mins. 

HPLC  [22] 

Sildenafil citrate 
(pure drug) 

10 Distilled water 
(900 ml) 
T=37±0.5 pH= NS 

USP dissolution 
test apparatus type 

II 

Paddle 
rotating at 50 
rpm. 

Aliquot withdrawn 
at time intervals  5-
120 min 

HPLC  [16] 

Ondansetron HCl 
resinate (Indion 244 
resin) 

4 Phosphate buffer (10 ml) 
 
T= NS 
pH= 6.7 
 

Volumetric flask Stirring at 50 
rpm 

Samples withdrawn 
and filtered after 
10, 30, 60 and 120 
s. 

UV  
spectrometer 

[20] 

Naproxen sodium 
Eudragit®  E coated 
granules. 

200 Phosphate buffer (25 ml) 
 
T= NS 
pH= 6.8 

Volumetric flask 

 

 

shaken for 5 
mins 

Samples collected 
and filtered (0.2 
µm).  after 5 min   

UV 
spectrometer 

[21] 

Amlodipine 
(Amlodine® ODT). 
Other nine generic 
OD products. 

50 Purified water (100 ml) 
T= 37° C 
pH= NS 

Brief conventional 
dissolution test 
(using Basket 
apparatus) 

Shaking at 
25 rpm 

Samples collected 
and filtered after 
10, 20 and 30s.  

HPLC [14] 

Chorpheniramine 
Maleate ODT and 
ODF  of spray dried 
drug-Eudragit® PEO  

1.3 SSF (300 ml) 
 
T= 37° C 
pH= 6.8 

USP basket 
apparatus 

Rotation at 
50 rpm 

Inline concentration 
monitoring 

 Inline 
ultraviolet 
detector. 

[25] 

Berberine HCl 
Eudragit® E100 
microcapsules (ODT) 

50 Purified water (1000 ml) 
T= 37±0.5° C 
pH= 6.3 

Microcapsules were 
placed in SSF 

NS Aliquots withdrawn 
at various time 
intervals up to 20 
min 

UV 
spectrometer 

[23] 
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(B) Animal models for taste evaluation 

Some animal models are designed to measure the taste quality of a compound 

defined as the sense by which the qualities and flavour of a substance are 

distinguished by the taste buds (e.g. bitter, salty, sweet, umami and sour): these 

models are classified as “taste discrimination experiments”. Alternatively studies of 

“taste-guided” behaviour can assess the palatability of tastants defined by the overall 

appreciation of a substance by organoleptic properties such as vision, smell, taste, 

aftertaste and mouth feel (e.g. good/bad taste and aversive). Animal models such as 

the conditioned taste aversion (CTA), the operant taste discrimination, the high 

throughput taste assessment model using 96-well plates, two-bottle taste preference 

test and the brief-access taste aversion (BATA) model have shown promising results 

for identifying bitter-tasting compounds [26] and examples are shown in Table 3. 

In the conditioned taste aversion paradigm, the rats are presented to a 

reference taste (conditioned stimuli), which becomes associated with an aversive 

stimulus such as peritoneal injections of lithium chloride (LiCl). As a consequence, 

when the rat is exposed to novel compounds with a similar taste, they will avoid it as 

a function of their similarity to the conditioned stimuli [27]. This model can assess the 

taste quality of a drug, not its palatability and has the disadvantage of requiring an 

aversive conditioning and a high number of animals to investigate the response 

similarity among a large number of stimuli [28].  

The operant taste discrimination model is an animal model in which rats are 

trained to perform a specific behavioural task such as pressing a lever after having 

tasted a certain compound and an alternative task after sampling another tastant that 

can be distinguished from the first one [29]. When a novel tastant is presented to the 

animal, it will perform the task learnt depending on the degree of similarity of the new 

compound to the two compounds learnt. In this procedure, only the taste quality of 

the drug can be evaluated. Moreover, long training is needed and only pairwise 

comparisons can be tested on each trial [28]. 

In the high throughput taste assessment model, rats are trained to sample 

different tastants in a standard 96-well plate, and then perform an operant 

discrimination task: pressing levers to deliver food pellets [26]. In this method, taste 

quality is assessed by the taste discrimination component whereas palatability is 

evaluated by the licks recorded from the 96-well plate. This animal model has the 

advantage of requiring few animals (cohorts of 3 to 4 rats), assessing both taste 

quality and palatability and can screen a high number of samples within a single 

session. However, the entire training process is very long (up to 7 weeks) and a 

single concentration of the reference taste stimuli is used for the training which can 

lead to the risk of inadvertently establishing a discrimination based on the stimulus 

intensity rather than the taste quality [26].  

In the two-bottle taste preference experiment, animals have free access in 

their cage to two different bottles, one containing a taste solution and the other 
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containing water or a different taste solution. This test is usually 48 hours in duration 

to assess a single concentration. After 24 hours, the relative positions of the two 

bottles are counterbalanced because rodents can have pronounced side 

preferences. The volume missing from each bottle is measured and a preference 

ratio of tastant to water is then calculated [30]. This procedure is the simplest animal 

model available to assess the palatability of solutions. However, the interpretation of 

the data obtained should be done cautiously. Indeed, intakes and preferences reflect 

post-ingestive effects such as toxicity or satiety as well as chemosensory ones. 

Moreover, additional physiological effects that result following ingestion of tastants 

ad libitum over a large period of time could influence intake of the solutions. Last but 

not least, this method has the disadvantage of being very long. Even if a daily 

measurement can be made very quickly, several weeks or months are needed to 

test different concentrations of the same compound [31].  

In the brief-access taste aversion (BATA) model, rodents, most often mice or 

rats, are mildly water-deprived for a period of 16 to 24 hours in order to motivate 

them to drink. The rodents are then put into an apparatus called a “lickometer” which 

records the number of licks that the rodents make to different concentrations of the 

compound under test samples presented in several sipper tubes. Animals only have 

a very short period of time (between 5 and 10 seconds) to sample a solution. 

Typically, a high number of licks indicate a pleasant taste whereas when licks are 

nearly completely suppressed it indicates an aversive taste. With this procedure, a 

full aversion-concentration curve of lick rate can be obtained over a short period of 

time, generally in 30 minutes. This procedure enables assessment of the palatability 

of drugs but not its taste quality. As subjects are water-deprived, the baseline for lick 

rates is relatively high making assessment of appetitive solutions difficult [26]. This 

animal model can assess several concentrations of a compound in a single session 

with few animals, it reflects the taste processing independent of other controls of 

appetitive behaviour, and because immediate responses are measured the intake of 

each sample is limited and post-ingestive factors are reduced or avoided [32].  

1.1 Correlation between animal models and human taste evaluation of 

medicines 

A comparison between rodent and human taste data has been done in a few studies. 

Devantier et al. [33] found that the relative potencies of four drugs (quinine, 

ciprofloxacin, clarithromycin, and nystatin) assessed in the mice brief-access taste 

aversion assay matched the taste intensities evaluated by a trained human taste 

panel. Moreover, the absolute potencies of the drugs in humans were within one-half 

log unit of molar concentration derived from the mouse BATA and did not differ 

statistically [33]. They found that mice were more sensitive than humans to the 

aversive taste of quinine and clarithromycin and less sensitive to the aversiveness of 

ciprofloxacin.   

Rudnitskaya et al. [34] compared taste data obtained for eight drugs 

(azelastine hydrochloride, caffeine, chlorhexidine digluconate, potassium nitrate, 
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naratriptan hydrochloride, paracetamol, quinine hydrochloride and sumatriptan 

succinate) with the rat BATA model and a trained human taste panel. The rat data 

showed exactly the same rank order of bitterness prediction as the human panel with 

a consistent offset of approximately half-log unit of molar concentration, with rats 

always rating the bitterness lower than humans [34]. They explained this offset by 

the fact that rats were encouraged to drink whilst the human panel was not [34]. 

Analysing deeper their methodology for the comparison of the rat BATA data and the 

human taste data, it was noticed that the concentrations tested were not necessarily 

the same for both panels and that for some compounds, e.g. quinine hydrochloride, 

the concentrations chosen in both panels were not even overlapping. Moreover, for 

some of the drugs they tested, the range of concentrations chosen was lower for the 

human panels than for the rat panels. Therefore, this can be one of the reasons why 

they always found that rats were less sensitive to the bitterness than humans.   

Noorjahan et al. [35] assessed the taste of an iron EDTA complex dissolved in 

water as well as formulated in chewable and orodispersible tablets with a human 

taste panel and a rat BATA model. They found that the correlation coefficient 

between mean responses of rats and humans was above 0.5 and concluded of a 

good correlation. However, the methodology they used for the taste assessment with 

rats was different from the BATA procedure usually used as well as the data 

compared to previous published studies [35]. Rats were water-deprived for 24 hours 

and were then presented to a bottle containing water for 5 min; the licking activity 

was taken as standard. After similar water-deprivation duration, rats were randomly 

presented to three different concentrations of the drug under assessment. The 

number of licks done in five minutes was counted and a percentage of licking 

frequency compared to water was calculated. 

 

1.2 Other in vivo models 

Other animal models such fish and drosophila flies have been recently used in taste 

screening of pure drugs. Fish and drosophila flies have taste receptor similar to 

mammals [36, 37]. The preferences of taste in fish have been performed by the 

observation and scoring of food sorting and consumption. Quantitative methods 

using fluorescent dye mixed with food have been used in Medaka fish larvae [38]. 

The intensity of ingested dye is measured using fluorescence microscope to 

determine preference scoring. This method can also be used in adult fish [38]. In 

study by Boyer et al. [39], fluorescently labelled food containing either amino acid or 

denatonium was given to adult zebra fishes [39]. The fluorescence of the remaining 

food (unconsumed) was measured to determine taste preference and was lower for 

denatonium spiked food. Similar results was observed in both zebra and Medaka fish 

[39].  

Several studies proved that Drosophila melnogaster can distinguish between 

different basic taste qualities (sweet, bitter and salty) [40]. The taste can be 

assessed in drosophila flies using: (1) electrophysiological recording of nerve 
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electrical activity elicited as response to certain tastant [41, 42], (2) behavioural 

feeding assays (capillary or petri dish feeding and two choice assay) where flies are 

starved for 22-24 h followed by feeding with a tastant solution [42-48], (3) survival 

assay [42] and, (4) Proboscis Extension Reflex (PER) where the extension of the 

proboscis is measured after applying the tastant to the forelegs [49]. 

Electrophysiological recording in drosophila flies involves several technical 

problems such as: (1) lack of signal due to unresponsive nerve, (2) presence of air 

bubbles in the recording electrode affecting the signal, (3) signal received higher or 

lower than amplifier measuring range, (4) death of flies during the preparation and, 

(5) presence of noise that does not represent signal from tastant. Furthermore, 

insoluble drugs cannot be assessed and there is a low throughput [41].   

In the two choice assays, Drosophila larva flies are placed in agarose Petri 

dish. This Petri dish is half filled with tastant solution (e.g. quinine) and the other half 

contains pure agarose [42, 47]. Flies are left to move free for 5 min, and then the 

flies at each side are counted. The quinine side was avoided by the flies even at low 

concentration (1 mM). The avoidance was found to be concentration dependant 

manner [42]. In the feeding assay, flies are left to feed on a Petri dish containing 

agarose solution (1%) and tastant (e.g. quinine) for 30 mins. After this period the 

food intake is quantified [42, 48]. Feeding on quinine-agarose mixture was 

decreased compared to pure agarose at quinine concentration higher than 3 mM. In 

the survival assay; flies are placed in vials containing agarose solution (1%) and 

tastant at 25°C [42]. The number of flies is counted each day for 7 consecutive days 

[42]. Survival of flies decreased in vials containing quinine, there was more reduction 

at 6 mM when compared to 3 mM quinine [42]. These behavioural assays using 

drosophila flies and fish might be promising tools for aversive taste screening of 

APIs. However no correlation has been made with human data in these studies.  
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Table 3. Examples of taste assessment of APIs/formulation using animal models. NS=Not  stated.

Drug Drug concentration 
(mM) 

Sample 
preparation 

Type of test and 
animal 

Water 
deprivation (h) 

Time tastant Results Ref 

Zinc sulphate  

Quinine hydrochloride  

Amiloride 

1 and 10 

1 

10 

All tastants 
dissolved in 
double-
deionised 
distilled water 

High throughput 
taste assessment 
with 96-well plates. 
Animal: Male 
Sprague-Dawley rats 

No No restriction 
until they 
press the 
lever 

Taste quality determined by the 
percentage of presses that 
occurred on the lever. Palatability 
determined by the number of licks 
per trial (EC50 values calculated) 

[26] 

Azelastine hydrochloride 

Caffeine 

Chlorhexidine digluconate 

Potassium nitrate 

Naratriptan hydrochloride 

Paracetamol 

Quinine hydrochloride 

Sumatriptan succinate 

2.10-3 to 1 

1 to 100 

1.10-2 to 30 

100 to 3.103 

3.10-2 to 10 

1.10-1 to 30 

1.10-2 to  5 

3.10-2 to 10 

Pure water or 
either 10% vol. 
Ethanol in 
water 

Brief-access taste 
aversion model 

 

Animal: Rats (strain 
NS) 

NS NS EC50 derived from the graph for 
each drug (Azelastine HCl 
≈7.101mM ,Caffeine≈30mM, 
Chlorhexidine digluconate≈6.10-

1mM, Potassium nitrate≈700 mM, 
Naratriptan HCl≈1 mM, 
Paracetamol (ND), Quinine 
HCl≈1.10-1mM, Sumatriptan 
succinate≈3 mM) 

[34] 

Quinine hydrochloride 0.01 to 3 All the solutions 
prepared in 
deionised water 

Brief-access taste 
aversion model 

Animal: Male 
Sprague-Dawley rats 

22 NS Quinine IC50 (CI95%) with “lick 
numbers” with all data: 0.0496 
(0.0297-0.0857) mM 

-Quinine IC50 (CI95%) with “lick 
ratio” with all data: 0.0502 (0.0267-
0.0859) mM.  

[50] 

Quinine hydrochloride 0.01 to 3 Prepared in 
distilled water 

Brief-access taste 
procedure 

Animal: Male 
Sprague-Dawley rats 

23 

 

10s tastant/water lick ratio and 
standardized lick ratio 

 [51] 
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C. Comparison of common bitter taste assessment methods 

 A scoring system was developed based on usability, speed, ability to screen pure 

active pharmaceutical ingredients or formulations, evidence for correlation with 

human taste data, potential for validation and cost. It was used to compare between 

the commonly used bitter taste evaluation tools (Table 4). Based on this literature 

review, the most useful bitter taste assessment methods were: (1) animal model: 

brief access taste aversion model (BATA) (score 46) and (2) electronic taste sensing 

systems: Insent (score 42). 1 and 2 can only be used for assessment of liquids. To 

assess the taste of solid dosage forms these methods would need to be combined 

with dissolution/release test conducted at conditions mimicking oral cavity. 

Table 4: Scoring method for comparison of common non-human bitter taste 

assessment tools: from 0= Not known, 1=low to 5=high. 

Criterion Animal model Electronic tongue 

BATA Electrophysiological Two bottles Astree Insent 

Usability 

SOP use easy for trained technical staff or 
experienced user 

3 1 3 4 4 

Needs a licence or REC approval 1 1 1 5 5 

Speed (time from setup to data collection) 2 1 1 3 3 

Ability to screen pure drug/product 

Drug, excipients 5 4 4 5 5 

Formulated product (ideally other than 
solution e.g. suspension) 

3 0 3 3 3 

Evidence of correlation to in vivo data 4 1 3 4 5 

Potential to validate 

Specificity 5 5 5 5 5 

Linearity 5 4 1 4 4 

Accuracy 5 4 3 0 0 

Precision 4 0 0 1 2 

Range-quantification limit-detection limit 3 3 3 1 1 

Costs 

Initial investment (platform) 2 1 2 2 2 

Running costs 4 1 4 2 3 

Sum of scores 46 26 33 39 42 

 

Conclusion 
Taste evaluation is very important for assuring the acceptance of medicine to 

patients. Human taste panels remains the undisputed gold standard method for taste 

evaluation but this method is hindered, particularly when developing paediatric 

dosage forms, by safety and ethical concerns (especially when testing drugs with 

unknown toxicity), and relevance of adult findings as the testing is 

generally performed in adults for children applications. Several in vitro and in vivo 

taste evaluation methods have been developed to overcome these obstacles. 

Over the past two years, the most common in vitro taste evaluation method 

was found to be electronic taste sensors mainly either (i) SA402B/ TS-5000z (Insent 

Inc) or (ii) α-Astree e-sensor (Alpha M.O.S). Most of the published data reported 
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good correlation between the human taste panel test and the electronic taste 

sensing systems. However, in most of these studies methods followed for bitterness 

prediction and constructing the correlation with human taste data were not always 

fully described. Electronic sensors give relative taste statement and should be 

validated with human taste panel tests. Ideally electronic tongues could be used for 

early screening of taste of pure APIs and optimisation of taste masked preclinical 

formulations in industry. However until it is demonstrated that electronic tongues can 

reliably predict bitterness intensity of the compounds which were not used for 

developing calibration model, the use of this technology is still limited. The taste of 

final optimised pharmaceutical products should be assessed in human before 

marketing. In vitro dissolution/ release studies were also common but could not be 

used alone to determine the taste of pure API or formulated API without knowing 

human taste thresholds. However, dissolution/ release tests are very important when 

assessing taste of poorly soluble APIs and coated solid dosage forms. It can be used 

to support electronic tongues or other in vivo methods in early screening of taste of 

API/ coated solid dosage forms where it is not feasible to test non liquid forms.  

In vivo methods such as behavioural test (brief access taste aversion model, 

mainly rats) have also been used for taste evaluation of drugs. Several studies 

showed good correlation with human taste data. This model can be used for early 

screening of taste of pure API and formulated products. Finally, more than one in 

vivo and in vitro tool might need to be combined to give accurate taste assessment 

without need for human testing. 
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