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Abstract		

Recent	 improvements	 in	 experimental	 and	 computational	 techniques	 used	 to	

study	 the	 transcriptome	 have	 enabled	 an	 unprecedented	 view	 of	 RNA	

processing,	 revealing	many	previously	 unknown	non-canonical	 splicing	 events.	

This	includes	cryptic	events	located	far	from	the	currently	annotated	exons,	and	5	

unconventional	 splicing	 mechanisms	 that	 have	 important	 roles	 in	 regulating	

gene	 expression.	 These	 non-canonical	 splicing	 events	 are	 a	 major	 source	 of	

newly	 emerging	 transcripts	 during	 evolution,	 especially	 when	 they	 involve	

sequences	derived	from	transposable	elements.	They	are	therefore	under	precise	

regulation	and	quality	 control,	which	minimises	 their	potential	 to	disrupt	gene	10	

expression.	While	 non-canonical	 splicing	 can	 lead	 to	 aberrant	 transcripts	 that	

cause	many	diseases,	we	also	explain	how	it	can	be	exploited	for	new	therapeutic	

strategies.		

	

	 	15	
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Introduction	

The	 vast	majority	 of	 human	 genes	 contain	more	 than	 one	 exon,	 and	 therefore	

introns	need	to	be	spliced	from	the	nascent	transcript	and	exons	joined	to	form	

an	mRNA	that	can	be	translated	into	a	protein.	Alternative	splicing	allows	these	

exons	to	be	joined	in	different	variations	to	form	alternative	transcripts,	which	5	

greatly	 increases	 the	 diversity	 of	 proteins	 encoded	 by	 a	 limited	 number	 of	

genes1.		This	alternative	splicing	can	be	either	enhanced	or	repressed	by	trans-

acting	factors,	which	are	directed	to	the	precursor	mRNA	by	cis-acting	regulatory	

elements1,2.	 Genes	 producing	 long	 non-coding	 RNAs	 (lncRNAs)	 also	 typically	

contain	multiple	exons,	and	often	display	evidence	for	alternative	splicing	using	10	

similar	mechanisms	to	those	used	for	protein-coding	mRNAs3	

The	mechanisms	of	splicing	regulation	and	its	perturbation	in	disease	have	been	

reviewed	 elsewhere4,5.	 Here,	 our	 emphasis	 is	 on	 non-canonical	 splicing:	 this	

includes	the	cryptic	splice	sites	that	are	located	far	from	the	currently	annotated	

exons,	and	unconventional	mechanisms	that	deviate	from	the	well-defined	rules	15	

of	splicing.	New	methods	to	sequence	the	transcriptome,	together	with	dedicated	

analysis	 pipelines	 (Box	 1),	 have	 revealed	 a	 broad	 prevalence	 of	 non-canonical	

splicing	 events	 that	 can	 generate	 cryptic	 exons6-10,	 microexons11-13,	 recursive	

splicing14,15,	 circular	 RNAs	 (circRNAs)16-20,	 retained	 introns21-25	 and	 exonic	

introns	 (exitrons)25,26,	 among	 others.	 In	 this	 Review,	 we	 discuss	 the	 known	20	

mechanisms,	 functions	and	evolutionary	potential	of	 these	events.	We	describe	

how	mutations	can	cause	disease	by	disrupting	transcriptome	integrity	via	non-

canonical	 splicing,	 and	 how	 the	 cellular	 quality	 control	 systems	 defend	 the	

transcriptome	 from	 such	 perturbations.	 Finally,	 we	 explain	 how	 the	

unconventional	 splicing	 mechanisms	 can	 be	 targeted	 or	 exploited	 for	 new	25	

therapeutic	strategies.	

	

Types	of	non-canonical	splicing	

The	 fidelity	 of	 splicing	 is	 achieved	 by	 combinatorial	 recognition	 of	 specific	

sequences	within	precursor	mRNA	at	many	steps	during	the	splicing	process4,27.	30	
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The	first,	and	possibly	the	most	important	aspect	of	combinatorial	recognition	is	

described	 by	 the	 exon-definition	 model,	 which	 was	 proposed	 to	 explain	 how	

exons	are	recognised	as	functional	units	in	metazoan	organisms	that	contain	long	

introns27,28.	 This	 process	 involves	 interactions	 between	 factors	 bound	 to	 the	

flanking	 splice	 sites	 (e.g.	 U1	 and	 U2	 snRNPs,	 U2AF	 complex)	 and	 SR	 proteins	5	

bound	to	the	exonic	enhancer	sequences.	We	will	first	discuss	the	cryptic	exons,	

microexons	 and	recursive	 splice	 sites	 (RS	 sites),	 which	 often	 require	

unconventional	exon	definition	mechanisms.	Next,	we	will	discuss	non-canonical	

splicing	 mechanisms	 that	 result	 from	 lower	 or	 higher	 splicing	efficiency	than	

normal	 (retained	introns,	 exitrons),	 changes	 in	 the	usual	 order	 of	 splicing	10	

(circRNAs,	chimeric	RNAs)	or	changes	in	the	consensus	sequence	(atypical	splice	

sites).	

Cryptic	 splice	 sites	 and	 exons.	 Introns	 of	 ENSEMBL-annotated	 genes	 constitute	

around	23%	of	the	human	genome,	and	within	such	a	vast	sequence	space	 it	 is	

inevitable	 that	 many	 sequences	 similar	 to	 the	 consensus	 motifs	 of	 canonical	15	

splice	sites	will	be	present	by	chance.	Such	sequences	are	known	as	cryptic	splice	

sites.	 To	 prevent	 uncontrolled	 splicing	 at	 cryptic	 sites,	 exon	 definition	

mechanism	has	 evolved	 to	maintain	 splicing	 fidelity,	which	 explains	why	most	

individual	cryptic	splice	sites	do	not	efficiently	initiate	splicing27,28.	Nevertheless,	

over	half	a	million	non-annotated	splicing	events	have	been	discovered	through	20	

the	 analysis	 of	mouse	 and	human	RNA-seq	data10,14,29-31.	 Even	 though	many	 of	

these	events	may	be	splicing	‘mistakes’	that	are	tolerated	by	the	cell	and	have	no	

function,	 targeted	 genome	 editing	 experiments	 are	 beginning	 to	 uncover	

functions	 of	 specific	 cryptic	 splice	 sites31.	Moreover,	 cryptic	 splice	 sites	 can	 be	

present	 in	 a	manner	 that	 can	 define	 non-annotated,	 or	 ‘cryptic	 exons’32.	 These	25	

exons	 often	 introduce	premature	 termination	 codons	 (PTCs)	 into	 the	 resulting	

transcripts,	which	 can	 target	 them	 for	 nonsense-mediated	 decay	 (NMD)	 in	 the	

cytoplasm33-35	 (Figure	 1A).	 In	 some	 cases,	 abnormal	 splicing	 also	 leads	 to	

transcription-coupled	surveillance	mechanisms	that	can	decrease	the	expression	

of	 resulting	 transcripts36.	 These	 quality	 control	 pathways	 often	 decrease	 the	30	

expression	 of	 transcripts	 containing	 cryptic	 exons,	 which	 makes	 these	 exons	

more	difficult	to	detect	and	annotate	during	transcriptome	sequencing	analysis6-
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10.		

Cryptic	 exons	 often	 emerge	 from	 transposable	 elements	 (TEs).	 In	 primates,	

antisense	Alu	 sequences	are	 the	best	 substrates	 for	 the	exonisation	process,	 as	

they	 require	 a	 low	 number	 of	 mutations	 to	 form	 potent	 splice	 sites37.	 The	

evolution	of	the	Alu	family	consisted	of	two	phases.	The	original	Alu	monomers	5	

arose	from	a	fusion	of	the	5′	and	3′	ends	of	the	7SL	RNA	gene,	which	encodes	an	

RNA	component	of	the	signal	recognition	particle	(SRP).	A	further	fusion	of	these	

monomers	 led	 to	 the	modern	Alu	 elements	 that	are	 composed	of	 left	 and	 right	

arms	joined	by	an	A-rich	linker	and	followed	by	an	A-tail	(Figure	1B)38.	Notably,	

more	 than	 330,000	 Alu	 elements	 (annotated	 by	 RepeatMasker)	 are	 present	 in	10	

introns	 of	 protein-coding	 genes	 in	 an	 antisense	 orientation,	 where	 they	 are	

transcribed	in	a	reverse	orientation,	thus	containing	two	U-tracts	instead	of	the	

A-tail	and	linker.	These	U-tracts	can	function	as	binding	sites	for	splicing	factors,	

especially	U2	small	nuclear	RNA	auxillary	factor	(U2AF2)	and	T-cell	intracellular	

antigen	(TIA)	proteins,	which	can	induce	the	formation	of	cryptic	or	alternative	15	

Alu	 exons8,37,39.	 Mechanisms	 regulating	 splicing	 of	Alu	 exons	 and	 other	 cryptic	

exons	 have	 been	 uncovered	 with	 studies	 that	 map	 the	 binding	 sites	 of	 RNA	

binding	 proteins	 (RBPs)	 with	 cross-linking	 and	 immunoprecipitation	 (CLIP),	

individual	 nucleotide	 CLIP	 (iCLIP)	 and	 related	 techniques40.	 The	 Alu-derived	

exons	 were	 found	 to	 be	 tightly	 repressed	 by	 heterogeneous	 nuclear	20	

ribonucleoprotein	C	(hnRNP	C),	which	can	displace	U2AF2	from	the	long	U-tracts	

(Figure	 1B)8,	 and	 other	 cryptic	 exons	were	 found	 to	 be	 repressed	 by	 NOVA7,	

RBP	fox-1	homologue	(C.	elegans)	2	(Rbfox2)6	and	TAR	DNA	binding	protein	43	

(TDP-43)9.	 Together	 with	 deep	 sequencing	 of	 RNA	 from	 tissues,	 these	 studies	

revealed	thousands	of	previously	unknown	cryptic	exons,	and	some	of	these	are	25	

becoming	recognised	as	regulated	alternative	exons10	(Figure	1A).	Interestingly,	

repressive	sequences	were	found	to	be	more	common	at	cryptic	exons	compared	

to	 the	 established	 alternative	 exons	 that	 emerged	 from	 transposable	 elements,	

indicating	 that	 loss	 of	 repression	 may	 have	 a	 role	 in	 the	 formation	 of	 new	

exons41.	30	

Microexons.	Exons	that	are	shorter	than	30	nt	have	traditionally	been	referred	to	

as	microexons42-44.	New	computational	methods	for	analysis	of	sequencing	data	
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revealed	 hundreds	 of	 previously	 unidentified	 microexons,	 60%	 of	 which	 are	

preferentially	included	in	neuronal	tissues11-13,44.	Interestingly,	microexons	tend	

to	be	flanked	by	intronic	motifs	that	are	required	for	their	inclusion,	which	bind	

to	 RBPs	 such	 as	 Serine/Arginine	 Repetitive	 Matrix	 4	 (SRRM4;	 also	 known	 as	

nSR100)12,	 RBP	 Fox	 (RBFOX)	 or	 Polypyrimidine	 Tract	 Binding	 Protein	 1	5	

(PTBP1)13.	 SRRM4	 is	an	SR-related	protein	 that	acts	 in	an	unusual	way.	Unlike	

other	SR	proteins	that	bind	to	exonic	enhancers,	SRRM4	binds	to	enhancers	that	

are	embedded	within	the	unusually	long	polypyrimidine	tract	present	upstream	

of	 microexons,	 thereby	 compensating	 for	 the	 limited	 space	 available	 for	

enhancer	sequences	within	the	microexons	(Figure	1C).	10	

Recursive	splice	sites.	RS	sites,	also	referred	to	as	‘zero-length	exons’,	are	defined	

by	 a	 sequence	 that	 combines	 the	 3'	 and	 5'	 splice	 site	 consensus	 motifs.	 This	

allows	an	intron	to	be	spliced	in	multiple	consecutive	steps:	the	3'	splice	site	 is	

used	to	splice	the	preceding	part	of	the	intron,	which	reconstitutes	a	full	5'	splice	

site	that	is	then	used	to	splice	the	remaining	part	of	the	intron	(Figure	2).	First	15	

discovered	 in	 the	 long	 introns	 of	 three	 Drosophila	 melanogaster	 genes45,46,	

analyses	 using	 total	 RNA-seq	 and	 iCLIP	 identified	 197	 RS	 sites	 in	 D.	

melanogaster15	and	11	 in	human14,15.	 In	addition	 to	detection	of	 splice-junction	

reads	bearing	 the	RS	site	motif,	 these	studies	also	required	 the	presence	of	co-

transcriptional	 splicing	 patterns	 (Figure	 2A),	 which	 can	 only	 be	 reliably	20	

evaluated	 in	 long	 introns	 with	 high	 read	 coverage14,47,48	 (Box	 1).	 Accordingly,	

these	numbers	 are	probably	underestimates.	 For	 instance,	 419	 cryptic	 splicing	

events	 were	 found	 at	 putative	 RS	 junctions	 in	 human	 samples	 prior	 to	

considering	 the	 co-transcriptional	 splicing	 patterns14.	 Notably,	 intrasplicing	 is	

another	mechanism	 that	 can	 affect	 alternative	 splicing	by	using	non-annotated	25	

splice	sites.	However,	here	the	first	splicing	reaction	reconstitutes	a	new	3'	splice	

site,	 which	 can	 then	 be	 used	 by	 an	 upstream	 exon	 to	 remove	 the	 remaining	

intron49.	

Even	though	RS	sites	do	not	normally	lead	to	splicing	of	an	exon,	they	employ	the	

exon	 definition	 mechanism	 in	 vertebrates	 (Figure	 2B).	 These	 RS	 sites	 are	30	

present	at	the	start	of	cryptic	exons,	referred	to	as	RS	exons14.	Both	the	RS	sites	

and	the	downstream	5'	splice	site	that	is	required	for	exon	definition	are	highly	
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conserved.	Definition	of	the	RS	exon	is	essential	to	initiate	splicing	at	the	3'	splice	

site.	After	 splicing	of	 the	preceding	 intron,	 the	RS	site	 reconstitutes	a	 strong	5'	

splice	site,	which	leads	to	skipping	of	the	RS	exon	via	recursive	splicing.	Whereas	

the	exon	definition	mechanism	 is	 required	 for	 recursive	splicing	 in	human	and	

zebrafish,	it	remains	unclear	how	RS	sites	are	defined	in	the	fruit	fly.	The	first	RS	5	

sites	 discovered	 in	 the	 fruit	 fly	 overlapped	 with	 the	 start	 of	 annotated	 exons,	

indicating	 that	 an	 exon	 definition	 mechanism	 might	 be	 involved45,46.	

Alternatively,	 the	 3'	 splice	 site	 of	 intronic	 RS	 sites	 is	 often	 strongly	 conserved	

across	Drosophila,	which	 is	 consistent	with	 the	 sensitivity	 of	 fruit	 fly	 recursive	

splicing	to	depletion	of	U2AF215.	It	is	also	possible	that	RS	sites	are	preceded	by	10	

additional	 enhancer	 elements	 similar	 to	 microexons,	 which	 are	 flanked	 by	

binding	motifs	of	multiple	regulators,	including	SRRM412,	RBFOX	or	PTBP113.	

Retained	introns.	Even	though	the	precision	and	efficiency	of	splicing	is	very	high,	

it	 is	 not	perfect.	Both	 in	plants	 and	animals,	 decreased	 efficiency	of	 splicing	 at	

some	introns	can	lead	to	their	retention	within	polyadenylated	transcripts21,25,50-15	
52.	In	fact,	comparison	of	RNA	from	human	and	mouse	tissues	detected	retained	

introns	 in	 alternative	 transcripts	 of	 most	 genes21-24.	 Intron	 retention	 can	 be	 a	

result	of	various	trans-	and	cis-acting	mechanisms	(Figure	3A).	Most	often,	it	is	

caused	by	an	inefficient	recognition	of	canonical	splice	sites53.	Under	conditions	

of	 limiting	 spliceosome	 availability,	 such	 as	 upon	 downregulation	 of	20	

spliceosomal	components,	deficient	splice	site	recognition	can	affect	hundreds	of	

introns	in	this	way24.	Moreover,	inclusion	of	shorter	introns	in	mammalian	cells	

can	be	more	dependent	on	intron	definition,	a	mechanism	that	brings	the	splice	

sites	at	both	ends	of	 the	 intron	 into	closer	proximity27.	This	mechanism	can	be	

regulated	 by	RBPs	 that	 bind	 at	 both	 ends	 of	 the	 intron	 and	 interact	with	 each	25	

other54.	These	proposed	mechanisms	agree	with	the	generally	weaker	5'	and	3'	

splice	 sites,	 and	 shorter	 length	 of	 the	 retained	 introns	 compared	 to	 other	

introns21,53,55.	Moreover,	 retained	 introns	 have	 higher	 GC	 content	 compared	 to	

average	 introns,	which	might	make	 them	more	 sensitive	 to	RNA	polymerase	 II	

stalling21,53.	Certain	RBPs	can	also	promote	specific	intron	retention	events22,56,57.	30	

For	example,	PTBP1	can	repress	recognition	of	a	canonical	splice	site	in	an	intron	

of	the	FosB	gene56,	while	Poly(A)	Binding	Protein,	Nuclear	1	(PABPN1)	promotes	
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retention	of	the	last	intron	within	its	own	transcript	by	binding	to	an	adenosine-

rich	 region	 in	 the	 3'	 UTR57.	 Finally,	 depletion	 of	 exon	 junction	 complex	 (EJC)	

components	 also	 leads	 to	 retention	 of	 long	 introns	 in	 D.	 melanogaster58,59,	

although	apparently	not	in	human	cells60.	

Exitrons.	 Some	 alternatively	 spliced	 introns	 are	 also	 present	 within	 regions	5	

annotated	 as	 exons.	 These	 introns	 are	 rarely	 spliced,	 and	 therefore	 they	 are	

referred	to	as	cryptic	introns,	or	also	as	‘exitrons’25,26	(Figure	3B).	A	total	of	923	

exitrons	 have	 been	 discovered	 within	 regions	 that	 are	 normally	 annotated	 as	

exons26.	 Similar	 to	 retained	 introns,	 exitrons	 are	 shorter	 than	 average	 introns	

and	 have	 weak	 splice	 sites,	 which	 can	 explain	 why	 they	 are	 retained	 under	10	

normal	conditions.	Exitrons	are	formed	from	exons	that	are	amongst	the	longest	

known	 in	 humans,	 and	 have	 higher	 GC	 content	 than	 typical	 exons.	 They	 are	

formed	when	cryptic	splice	sites	within	an	exon	go	on	to	pair	with	the	canonical	

splice	sites	that	flank	the	same	exon,	thereby	leading	to	definition	of	two	smaller	

exons26.	Unlike	retained	 introns,	exitrons	don’t	normally	contain	PTCs.	 Instead,	15	

their	removal	can	change	protein	structure	or	lead	to	frame-shifts	that	introduce	

PTCs,	which	can	target	the	resulting	transcripts	to	NMD	(Figure	3B).	

Circular	RNAs	(CircRNAs).	CircRNAs	are	formed	as	a	result	of	pre-mRNA	splicing	

that	doesn’t	 follow	 its	 canonical	5'	 to	3'	 order20,61.	The	mechanism	responsible	

for	 this	 is	 referred	 to	 as	back	 splicing,	 or	head-to-tail	 splicing,	where	 a	branch	20	

point	upstream	of	an	exon	attacks	a	downstream	splice	donor62-64.	In	some	cases	

this	happens	with	a	single	exon,	whereas	in	others	the	start	of	an	upstream	exon	

splices	 to	 the	 end	 of	 a	 downstream	 exon,	 producing	 multi-exonic	 circRNAs17	

(Figure	 4A).	 In	 these	 multi-exonic	 circRNAs,	 the	 intervening	 intron	 can	 be	

spliced	out.	We	refer	to	such	single-	or	multi-exonic	circular	transcripts	that	lack	25	

introns	 as	 ‘exonic	 circRNAs’.	 Alternatively,	 if	 the	 intron	 between	 the	 exons	

remains	retained,	 the	resulting	circular	 transcript	 is	referred	to	as	 ‘exon-intron	

circRNA’20	(Figure	4A).	Finally,	‘intronic	circRNAs’	can	be	produced	from	intron	

lariats	 that	are	 resistant	 to	de-branching	due	 to	presence	of	C-rich	motifs	near	

the	branch	point20.	These	diverse	types	of	circRNAs	have	been	discovered	in	all	30	

domains	of	life16-20,65,66.	While	most	are	quite	rare,	some	are	highly	abundant	in	a	

specific	tissue	due	to	their	resistance	to	exonucleases	(Figure	4B)67.	Many	have	
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tissue-specific	 expression	 patterns16,17,20,66,	 and	 in	 the	 central	 nervous	 system	

they	tend	to	be	enriched	within	neuronal	dendrites68.	

The	head-to-tail	 splicing	 can	be	promoted	by	 the	presence	of	 intronic	 inverted	

repeat	 sequences,	 which	 hybridise	 and	 thereby	 bring	 the	 ends	 of	 the	 relevant	

exons	 in	proximity69-72	 (Figure	 4A).	 In	primates,	hybridisation	can	be	directed	5	

by	inverted	Alu	repeats	in	flanking	introns70.	As	inverted	Alu	repeats	are	known	

to	be	a	target	for	RNA	editing,	it	is	thus	possible	that	formation	of	circRNAs	could	

be	 regulated	 by	 editing.	 Indeed,	 dsRNA	 hybridisation	 sites	 that	 are	 edited	 by	

adenosine	 deaminase	 acting	 on	 RNA	 (ADAR)	 are	 seen	 in	 introns	 that	 flank	

circRNAs	in	C.	elegans73.	However,	formation	of	a	dsRNA	structure	is	not	always	10	

required	for	circRNA	formation69.	RBPs	such	as	Quaking	(QKI)	and	muscleblind-

like	 (MBNL)	 proteins	 are	 also	 able	 to	 regulate	 circRNA	 biogenesis	 via	 binding	

sites	in	the	flanking	introns20,71,74,75	(Figure	4A).	

Chimeric	 RNAs.	Modified	 algorithms	 for	 analysis	 of	 RNA-seq	 data	 can	 identify	

chimeric	 RNAs,	which	 are	 produced	when	 splicing	 joins	 the	 exons	 of	 different	15	

genes	(Box	1).	Cis-splicing	was	proposed	to	result	from	deficient	transcriptional	

termination,	 which	 allows	 proximal	 genes	 to	 be	 transcribed	 as	 a	 single	 unit,	

thereby	resulting	in	splicing	of	the	penultimate	exon	of	the	upstream	gene	to	the	

second	exon	of	the	downstream	gene76.	Such	chimeric	transcripts	that	combine	

exons	of	adjacent	genes	have	been	detected	in	several	human	tissues77-79	(Figure	20	

4C).	 In	 contrast,	 trans-splicing	 joins	 exons	 derived	 from	 distant	 genomic	

locations	 (Figure	 4D).	 The	 resulting	 chimeric	 transcripts	 have	 been	 best	

documented	 in	 trypanosomes,	C.elegans	 and	 insects80-85,	 and	 to	 a	 lesser	 extent	

also	in	humans86,87.	

Atypical	splice	sites.	More	 than	99%	of	human	 introns	are	 spliced	by	 the	major	25	

U2-dependent	spliceosome.	Most	5’	splice	sites	start	with	GTRAG,	and	remaining	

ones	 have	 a	 stronger	 preference	 for	AG	 at	 the	 end	 of	 the	 exon,	while	 3’	 splice	

sites	end	with	CAG,	TAG	or	more	rarely,	AAG	(Figure	5A).	The	introns	spliced	by	

the	 minor	 U12-dependent	 spliceosome	 can	 be	 distinguished	 by	 the	 longer	

consensus	sequence	at	the	5'	splice	site	and	at	the	branch	point88,89(Figure	5B).	30	

Meanwhile,	5'	splice	sites	that	start	with	a	GC	are	the	most	common	atypical	U2-
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type	 splice	 sites90,91	 (Figure	 5C).	 Each	3'	 splice	 site	 is	 normally	preceded	by	 a	

branch	 point	 that	 contains	 an	 adenine	 nucleotide.	 It	 is	 common	 that	 multiple	

branch	points	are	present92,	and	this	can	affect	the	choice	of	alternative	3'	splice	

sites.	This	was	recently	demonstrated	genome-wide	following	mutation	of	SF3B1	

splicing	factor93-95.		5	

Multiple	 mechanisms	 could	 explain	 recognition	 of	 these	 atypical	 splice	 sites,	

including	 shifted	 base-pairing	 of	 small	 nuclear	 RNAs	 (snRNAs)96	 and	 bulged	

nucleotides	that	retain	base-pairing	to	snRNAs97.	Some	sites	were	also	found	to	

be	 modified	 by	 A-to-I	 RNA	 editing,	 in	 which	 inosine	 is	 effectively	 read	 as	 a	

guanosine91,98.	An	example	of	this	mechanism	is	the	ADAR2-dependent	editing	of	10	

an	AA-3'	dinucleotide	within	its	own	pre-mRNA,	which	then	functions	as	a	strong	

AG-3'	splice	site	to	change	splicing	of	its	transcript	as	part	of	an	auto-regulatory	

mechanism98.	Finally,	the	unconventional	cytoplasmic	splicing	of	XBP1	and	other	

mRNAs	 during	 unfolded	 protein	 response,	 which	 employs	 the	 RNase	 Inositol-

requiring	 enzyme	 1	 (IRE1)	 and	 RNA	 ligase	 RtcB,	 can	 create	 new	 exon-exon	15	

junctions	that	don’t	contain	the	standard	consensus	sequences99-101.	

	

The	functions	of	non-canonical	splicing		

Non-canonical	 splicing	 events	 contribute	 to	 a	 great	 diversity	 of	 cellular	

mechanisms	 and	 biological	 functions.	 Perhaps	 the	 best	 understood	 of	 these	20	

functions	 is	 that	 of	 microexons,	 which	 are	 enriched	 in	 genes	 associated	 with	

synapse	biology	and	axonogenesis12.	Microexons	are	highly	conserved,	and	their	

length	 generally	 comes	 in	 multiples	 of	 three,	 thereby	 preserving	 the	 open	

reading	 frame	 (ORF)11-13.	 Microexons	 are	 enriched	within	modular	 interaction	

domains,	where	they	tend	to	encode	charged	residues	that	are	accessible	at	the	25	

surface,	and	often	overlap	lipid	or	peptide	binding	domains12,13,102	(Figure	1B).	

It	has	been	shown	that	inclusion	of	microexons	alters	the	interactomes	of	several	

proteins12.	Owing	 to	 their	 common	brain-specific	 splicing	patterns,	microexons	

have	a	major	 role	 in	 increasing	proteome	diversity	 in	 the	brain.	Therefore	 it	 is	

not	 surprising	 that	widespread	 skipping	 of	microexons	upon	 loss	 of	 SRRM4	 in	30	

mice	leads	to	neurodevelopmental	defects103.	Another	type	of	newly	discovered	
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events	that	lead	to	new	protein	variants	are	exitrons,	as	most	of	these	preserve	

the	 reading	 frame,	 and	 are	 enriched	within	 disordered	 regions	 of	 the	 encoded	

proteins26,104	(Figure	3B).	

Other	forms	of	non-canonical	splicing	most	often	have	a	role	in	regulating	gene	

expression.	One	of	the	best	studied	examples	is	the	neuronal-expressed	circRNA	5	

CDR1as/ciRS-7,	which	 contains	 at	 least	 63	 conserved	miR-7	 binding	 sites	 that	

sequester	this	miRNA	and	thereby	increases	translation	of	its	mRNA	targets16,17.	

Moreover,	circRNAs	can	contribute	to	mechanisms	that	regulate	transcription	or	

splicing20.	 For	 example,	 by	 enhancing	 production	 of	 circRNAs	 in	 its	 own	

transcript,	 the	 MBNL1	 RBP	 decreases	 the	 amount	 of	 translation-competent	10	

transcripts	produced	from	its	own	gene74.	In	fact,	many	splicing	factors	regulate	

splicing	of	cryptic	exons,	introns	or	circRNAs	in	their	own	transcripts	or	those	of	

other	 RBPs,	 as	 part	 of	 auto-	 or	 cross-regulatory	 mechanisms6,7,20,21,24,33-35,55,105	

(Figure	 1A).	 Retained	 introns	often	 lead	 to	 retention	of	 the	host	mRNA	 in	 the	

nucleus,	where	it	undergoes	exosome-mediated	degradation22.	If	exported	to	the	15	

cytoplasm,	 most	 retained	 introns	 introduce	 PTCs,	 and	 may	 thereby	 promote	

NMD	 of	 the	 resulting	 transcript	 or	 lead	 to	 production	 of	 truncated	

proteins22,23,106,107	 (Figure	 3A).	 Intron	 retention	 was	 found	 to	 coordinate	

expression	of	related	genes	 in	granulocyte	differentiation24,	at	certain	stages	of	

the	 cell	 cycle55	 and	 across	 tissues21.	 Interestingly,	 intron	 retention	 is	 more	20	

common	 in	 transcripts	 that	are	 less	 required	 for	 the	physiology	of	 a	particular	

tissue21.	

The	 function	 of	 recursive	 splicing	 in	 regulating	 gene	 expression	 remains	 to	 be	

fully	understood.	 In	human,	RS	sites	are	 found	 in	 the	extremely	 long	 introns	of	

genes	 that	 are	 expressed	 mainly	 in	 the	 brain,	 and	 function	 in	 neuronal	 axon	25	

guidance	and	cell	adhesion14,15.	It	is	tempting	to	speculate	that	recursive	splicing	

could	 be	 important	 for	 splicing	 integrity	 of	 these	 introns.	However,	 steric	

blocking	 of	 recursive	 splicing	 failed	 to	 reduce	 the	 overall	 splicing	 of	 the	 long	

intron	 in	 two	 human	 genes14.	 An	 alternative	 regulatory	 role	was	 proposed	 for	

human	RS	sites14.	These	RS	sites	are	followed	by	RS	exons,	which	are	spliced	out	30	

of	 dominant	 isoforms,	 but	 included	 in	 minor	 isoforms	 that	 arise	 from	 use	 of	

upstream	cryptic	exons	or	rare	alternative	promoters	(Figure	 2B).	The	reason	
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for	 inclusion	of	RS	exons	 in	minor	 isoforms	 is	 that	 the	preceding	cryptic	exons	

end	 with	 suboptimal	 sequences,	 and	 therefore	 they	 do	 not	 reconstitute	 a	

sufficiently	 strong	 5'	 splice	 site	 at	 the	 RS	 site.	 Interestingly,	 most	 RS	 exons	

contain	 PTCs,	 and	 therefore	 their	 inclusion	 prevents	 translation	 of	 full-length	

proteins	and	targets	the	resulting	transcripts	to	NMD	(Figure	2B).	It	remains	to	5	

be	seen	how	many	RS	sites	are	involved	in	the	regulation	of	alternative	splicing.		

	

Evolutionary	perspectives	on	non-canonical	splicing	

Even	 though	 exemplary	 functions	 of	 individual	 non-canonical	 splicing	 events	

have	been	discussed	in	this	review,	the	same	function	cannot	be	ascribed	to	all	10	

events	of	the	same	type.	For	example,	even	though	a	few	circRNAs	can	sequester	

a	miRNA,	most	of	them	are	not	abundant	enough	to	have	such	a	function108.	It	is	

likely	 that	 many	 transcripts	 produced	 by	 non-canonical	 splicing	 have	 no	

function,	 and	 their	 presence	 reflects	 the	 capacity	 of	 cellular	 quality	 control	

mechanisms	to	protect	from	potential	damaging	effects	of	these	transcripts.	Most	15	

newly-emerging	 exons	 contain	 PTCs,	 and	 their	 initial	 emergence	 is	 likely	 to	

produce	truncated	or	misfolded	proteins	that	are	likely	to	be	deleterious	for	the	

organism.	 It	 is	 therefore	 not	 surprising	 that	 quality	 control	 mechanisms	

minimise	 the	 deleterious	 effects	 of	 such	 events.	 These	 include	 RBPs	 or	 snRNP	

complexes	 that	 have	 secondary	 activities	 aside	 from	 their	 usual	 roles	 in	20	

spliceosome	 function	 or	 regulation	 of	 canonical	 exons.	 These	 RBPs	 or	 snRNPs	

can	 repress	 splicing	 of	 cryptic	 exons8,74,75,109,110,	 edit	 the	 nascent	 RNA	 to	

represses	 splicing111,112,	 prevent	 mRNA	 export,	 or	 decrease	 the	 stability	 of	

aberrant	mRNAs8,60,107,113,114.	

Many	 non-canonical	 events	 are	 introduced	 by	 transposable	 elements	 (TEs),	25	

which	make	 up	 as	much	 as	 two-thirds	 of	 the	 human	 genome115.	 For	 example,	

over	1.5	million	degenerated	 long	 interspersed	elements	 (LINE)	 sequences	 are	

annotated	 in	 human	 genome	 (http://repeatmasker.org),	 and	 while	 many	 are	

transcribed	 as	 parts	 of	 other	 genes,	 fewer	 than	 100	 of	 them	 are	 capable	 of	

retrotransposition116.	 This	 indicates	 that	 evolution	 constantly	 puts	 the	30	

degenerated	TEs	to	new	uses,	and	when	present	in	transcribed	regions,	they	are	
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a	 rich	 source	 of	 new	 exons	 and	 other	 elements	 for	 post-transcriptional	

control37,117,118.	The	newly-emerging	Alu	exons	are	controlled	by	an	antagonistic	

interplay	between	two	RBPs,	hnRNP	C	and	U2AF2,	which	compete	for	binding	to	

U-tracts,	 thereby	affecting	 the	 splicing	outcome8	(Figure	 1B).	While	mutations	

creating	a	splice	site	can	cause	a	major	increase	in	the	inclusion	of	an	Alu	exon,	5	

mutations	 that	 change	 a	 single	 uridine	 within	 the	 U-tract	 are	 likely	 to	 only	

slightly	modify	 the	 inclusion	 of	Alu	 exons.	 Thus,	 repression	by	 hnRNP	C	might	

ensure	 that	 new	Alu	 exons	 emerge	 gradually,	 rather	 than	 in	 discrete	 steps119.	

Notably,	 hnRNP	 C	 is	 a	 conserved	 protein	 in	 vertebrates,	 and	 therefore	 it	 has	

preceded	 the	 insertion	 of	 Alu	 elements	 into	 primate	 genomes.	 It	 remains	10	

unknown	how	such	conserved	RBPs	controlled	the	transition	of	diverse	classes	

of	TEs	within	vertebrate	genomes	 from	a	state	of	repressed	TE-derived	cryptic	

exons	into	functionally	regulated	alternative	exons.	

One	 way	 to	 explain	 the	 evolutionary	 functions	 of	 emerging	 non-canonical	

splicing	 events	 is	 the	 multilevel	 selection	 theory120.	 According	 to	 this	 theory,	15	

even	 if	 only	 a	 small	 number	 of	 individual	 species-	 or	 clade-specific	 TEs	 were	

beneficial	 at	 the	 level	 of	 organisms,	 the	prevalence	of	TEs	 could	have	 adaptive	

value	for	the	species	or	clade	by	promoting	speciation	or	preventing	extinction.	

Similarly,	 the	 prevalence	 of	 cryptic	 splicing	might	 increase	 the	 probability	 for	

emergence	 of	 a	 few	 species-specific	 splicing	 events	 that	 can	 reset	 the	 gene	20	

regulatory	 networks.	 Such	 evolutionary	 tinkering	 is	 particularly	 important	 for	

complex	organisms,	in	which	it	is	linked	to	the	increased	size	of	the	non-coding	

genomic	regions121.	Notably,	the	genes	with	the	longest	introns	tend	to	be	most	

highly	 expressed	 in	 the	 brain14,	 and	 these	 long	 introns	 produce	 the	 highest	

number	of	non-canonical	splicing	events122,123.	It	remains	to	be	seen	if	and	how	25	

such	events	may	have	contributed	to	the	evolution	of	regulatory	networks	in	the	

vertebrate	brains.	

By	 decreasing	 the	 expression	 of	 new	 transcript	 variants	 produced	 by	 non-

canonical	splicing,	the	cellular	quality	control	pathways	not	only	protect	our	cells	

from	 their	 potentially	 toxic	 effects,	 but	 also	 decrease	 the	 negative	 selection	30	

against	 these	 variants	 during	 evolution.	 Thus,	 the	 low	 expression	 level	 of	

transcripts	 produced	 by	 non-canonical	 splicing	 provides	 an	 opportunity	 for	
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evolution	to	test	the	newly	emerging	variants	and	to	select	against	toxic	protein	

isoforms	 before	 expressing	 them	 at	 higher	 levels.	 It	 remains	 to	 be	 seen	 if	

established	 transcripts	 that	 generate	 functional	 protein	 isoforms	 created	 by	

alternative	splicing	 in	our	cells	might	have	 initially	emerged	as	cryptic	 splicing	

events	in	an	ancestral	species,	and	were	then	gradually	co-opted	by	evolution	for	5	

new	functions.	

	

	

Non-canonical	splicing	and	disease	

Disease-associated	 variations.	 Approximately	 a	 third	 of	 disease-causing	10	

mutations	 are	 presently	 estimated	 to	 disrupt	 pre-mRNA	 splicing124-126.	 This	

effect	 can	 occur	 either	 via	mutations	 in	 cis-elements	within	pre-mRNAs,	 or	 via	

mutations	or	misregulation	of	trans-regulatory	factors	that	bind	to	pre-mRNAs5.	

This	figure	may	be	an	underestimate,	since	it	does	not	include	the	disease-linked	

synonymous	 variants	 within	 exons	 that	 can	 affect	 splicing127.	 Moreover,	 even	15	

though	 standard	 computational	 models	 focus	 on	 positions	 close	 to	 canonical	

splice	 sites	 to	 identify	 variants	 that	might	 affect	RNA	 splicing,	 new	models	 are	

being	 developed	 that	 can	 predict	 variants	 at	 other	 positions128.	 These	 models	

were	 successful	 in	 the	 analysis	 of	 variants	 in	 spinal	 muscular	 atrophy	 (SMA),	

colorectal	cancer	and	autism	spectrum	disorder	(ASD).		20	

Mutations	 that	 are	 located	 far	 from	 canonical	 splice	 sites	 can	 activate	 non-

canonical	splicing	to	cause	disease12,86,129-139.	For	example,	the	core	spliceosomal	

component	 U1	 snRNP	 can	 repress	 cryptic	 exons	 when	 it	 binds	 in	 a	 non-

productive	 conformation	 (Figure	 6A).	 Deletion	 of	 the	 repressive	 U1	 snRNP	

binding	 sites	 was	 found	 to	 activate	 splicing	 of	 cryptic	 exons	 in	 both	 ataxia	25	

telangiectasia	and	Laron	syndrome110,140.	Generally,	most	studied	mutations	that	

induce	splicing	of	cryptic	exons	achieve	this	by	inactivating	repressive	sequences	

or	 secondary	 structures133-135	or	 increasing	 the	 strength	of	 a	 cryptic	 splice	 site	

(Figure	 6B).	 Moreover,	 disruption	 of	 canonical	 splicing	 can	 activate	 distal	

cryptic	 polyadenylation	 sites136,137	 (Figure	 6B).	 For	 example,	 triplet	 repeats	30	
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within	the	first	exon	of	the	HTT	transcript	inhibit	splicing	of	the	following	intron,	

thereby	 activating	 a	 cryptic	 polyadenylation	 site	 within	 the	 intron138.	 The	

resulting	transcript	can	be	translated	into	short	toxic	peptides	that	contribute	to	

the	molecular	pathogenesis	of	Huntington	disease.	

About	a	half	of	the	cryptic	exons	that	are	linked	to	disease	are	derived	from	TEs,	5	

particularly	Alu	elements,	which	have	diverged	from	their	original	sequence	by	

accumulating	mutations	that	create	splice	sites37,141.	For	example,	a	cryptic	Alu-

derived	 exon	 can	 disrupt	 expression	 of	 the	 DMD	 gene,	 thereby	 causing	 the	

Duchenne	muscular	dystrophy	(DMD)	phenotype130.	A	particularly	rich	source	of	

variation	within	 the	antisense	Alu	 elements	are	 the	U-tracts,	which	can	control	10	

the	formation	of	an	Alu	exon	by	affecting	the	competition	between	hnRNP	C	and	

U2AF28,129.	 This	mechanism	 has	 been	 seen	 in	 the	 PTS	 gene,	 in	 which	 a	 >50nt	

deletion	containing	the	U-tract	leads	to	splicing	of	a	cryptic	Alu	exon	(Figure	3C,	

6A),	which	disrupts	PTS	gene	expression	and	leads	to	the	neurological	condition	

hyperphenylalaninaemia129.	15	

In	addition	to	cis-acting	mutations,	a	changed	activity	of	a	trans-acting	factor	can	

perturb	non-canonical	splicing	 in	a	manner	 that	 leads	 to	disease12,142-146.	A	 link	

between	 the	 reduced	 expression	 of	 SRRM4	 mRNA	 and	 decreased	 splicing	 of	

microexons	was	also	observed	in	individuals	with	ASD12	(Figure	1B).	Moreover,	

TDP-43,	 a	major	 component	of	 aggregates	 in	~50%	of	 cases	of	 frontotemporal	20	

dementia	and	~98%	of	amyotrophic	lateral	sclerosis	cases,	was	found	to	repress	

splicing	of	a	 large	number	of	cryptic	exons	with	potential	relevance	for	disease	

mechanisms9.	 The	 resulting	 disease-associated	 inclusion	 of	 a	 cryptic	 exon	 into	

the	 autophagy-associated	 gene,	ATG4B,	might	 lead	 to	 the	 defects	 in	 autophagy	

that	 are	 commonly	 linked	 to	 these	 diseases147.	 In	 addition,	 mutations	 in	25	

components	 of	 the	minor	 spliceosome	 can	 lead	 to	 specific	 diseases	 by	 causing	

retention	of	U12-type	introns,	without	affecting	U2-type	introns142-146,148.		

The	 disease	 associations	 of	 other	 recently	 described	 non-canonical	 splicing	

events	remain	to	be	examined.	While	potential	roles	of	circRNAs	in	disease	have	

been	 suggested139,149,150,	 they	might	 also	 be	 candidates	 for	 disease	 biomarkers	30	

owing	to	their	high	levels	of	stability151,152.	Genes	that	undergo	recursive	splicing	
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have	been	 linked	 to	neurodevelopmental	disorders14,	but	 it	 remains	 to	be	seen	

whether	variations	in	RS	sites	are	involved	in	these	diseases.		

Non-canonical	 splicing	 in	 cancer.	 A	 prevalent	 feature	 of	 most	 cancer	 types	 is	

widespread	 intron	 retention131,153-155.	 This	 could	 relate	 to	 competition	 for	 the	

spliceosome	 due	 to	 the	 high	 transcriptional	 activity	 in	 tumours,	 as	 limiting	5	

spliceosomal	activity	is	a	known	cause	of	intron	retention156	(Figure	6C).	Intron	

retention	more	often	occurs	in	genes	encoding	RNA	splicing	and	export	factors,	

and	 therefore	 it	may	perturb	 the	autoregulatory	mechanisms	of	 these	genes	 in	

cancers.	 Moreover,	 enrichment	 in	 intron	 retention	 is	 associated	 with	 the	

presence	of	somatic	single	nucleotide	variants	in	cancer,	particularly	in	tumour-10	

suppressor	genes154.	Cancer-associated	mutations	in	splicing	factors	such	as	U2	

Small	Nuclear	RNA	Auxiliary	Factor	1	(U2AF1)	or	Splicing	Factor	3b,	Subunit	1	

(SF3B1)	 can	 also	 promote	 intron	 retention	 or	 use	 of	 alternative	 3’	 splice	

sites157,158.	 	It	was	proposed	that	mutations	in	SF3B1	induce	selection	of	cryptic	

3’	splice	sites	through	use	of	a	different	branch	point95,157,	which	leads	to	partial	15	

inclusion	of	the	3’	end	of	the	intron.	Importantly,	half	of	these	aberrantly	spliced	

transcripts	 are	 NMD-sensitive	 and	 lead	 to	 downregulation	 of	 corresponding	

mRNAs	and	proteins157.	Finally,	differential	splicing	of	several	exitrons	has	been	

observed	in	breast	cancer26,159.	

Genomic	deletion	breakpoints	 and	 chromosomal	 rearrangements	 that	 generate	20	

chimeric	 transcripts	 are	 another	 common	 feature	 of	 cancer.	Notably,	 the	 same	

chimeric	transcripts	can	also	be	detected	at	a	lower	level	in	non-cancer	cells	that	

do	 not	 contain	 the	 chromosomal	 rearrangement.	 In	 this	 case,	 trans-splicing	

generates	 the	 chimeric	 transcript.	 For	 example,	 JAZF1-SUZ12	 and	 PAX3-FOXO1	

chimeric	 transcripts	 are	 normally	 generated	 by	 trans-splicing	 of	 independent	25	

transcripts	 in	 both	 endometrial	 and	 mesenchymal	 stem	 cells,	 whereas	

chromosomal	 rearrangements	 result	 in	 fusions	 of	 these	 genes	 in	 endometrial	

stromal	 tumours	 and	 rhabdomyosarcomas,	 respectively86,132	 (Figure	 4D).	 This	

could	reflect	that	parental	genes	have	properties,	such	as	spatial	gene	proximity	

or	sequence	features,	that	facilitate	the	trans-splicing	of	individual	transcripts	in	30	

wild-type	 cells	 and	 homologous	 recombination	 to	 cause	 chromosomal	

rearrangements	in	cancer.	Alternatively,	constitutive	generation	of	trans-spliced	
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molecules	 in	 wild	 type	 cells	 might	 in	 some	 way	 facilitate	 the	 long-term	

chromosomal	 rearrangements	 observed	 in	 cancer	 by	 unknown	 mechanisms.	

Furthermore,	 cis-splicing	 between	 adjacent	 genes	 also	 commonly	 produces	

chimeric	transcripts	in	cancer,	such	as	the	SLC45A3−ELK4	transcript	in	prostate	

cancer160,161.	 Taken	 together,	 these	 observations	 suggest	 that	 non-canonical	5	

splicing	 events	 such	 as	 intron	 retention	 and	 chimeric	 transcripts	 could	 have	

important	roles	in	cancer.	

Therapeutic	opportunities.	Splicing	can	be	exploited	for	three	types	of	therapeutic	

strategies:	 those	 that	 modify	 activity	 of	 splicing	 factors,	 those	 that	 change	

specific	 splicing	 events,	 and	 those	 that	 exploit	 non-canonical	 splicing	10	

mechanisms.	 The	 first	 holds	 particularly	 great	 potential	 in	 certain	 types	 of	

cancer,	where	genetic	knockdown	or	pharmacological	inhibition	of	spliceosomal	

components	 can	 prevent	 the	 growth	 and	 metastasis	 of	 MYC-driven	

tumours156,162,163.	 In	 spite	 of	 these	 components	 being	 required	 in	 all	 cells,	 the	

increased	 demand	 for	 spliceosomal	 components	 induces	 accumulation	 of	15	

retained	introns	and	increases	apoptosis	specifically	in	tumours	(Figure	6C).	

In	 cases	 in	 which	 specific	 splicing	 events	 need	 to	 be	 corrected,	 the	 pioneer	

studies	restored	normal	splicing	of	β-globin	in	β-thalasaemia	through	the	use	of	

chemically	 modified	 antisense	 oligonucleotides	 (ASOs)	 that	 sterically	 block	

binding	of	the	splicing	machinery	while	avoiding	RNAse	H-mediated	degradation	20	

of	the	target	RNA164.	This	approach	was	successful	in	correcting	splicing	in	SMA	

and	 many	 other	 diseases165,166.	 Antisense	 sequences	 can	 also	 be	 delivered	 as	

modified	 U-snRNA	 molecules,	 using	 viral	 vectors	 that	 efficiently	 transfer	 a	

modified	 U-snRNA	 gene	 into	 the	 affected	 tissue,	 which	 allows	 continuous	

expression	without	 the	 need	 of	 repetitive	 administration167,168.	 Both	 ASOs	 and	25	

modified	U-snRNAs	can	be	directed	either	to	splice	sites,	to	branch	points	or	to	

other	regulatory	elements,	such	as	splicing	enhancers	or	silencers,	and	therefore	

they	 were	 successful	 in	 preventing	 splicing	 of	 cryptic	 exons	 in	 a	 variety	 of	

diseases	 that	 are	 caused	by	deep-intronic	mutations155,166-170.	To	 increase	 their	

efficiency,	 bifunctional	 ASOs	 or	 U-snRNAs	 can	 be	 designed,	 which	 contain	 an	30	

RNA	binding	domain	and	an	effector	domain,	which	recruits	splicing	factors	that	

either	enhance	or	silence	splicing171,172.	Finally,	 therapeutic	strategies	based	on	
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CRISPR-Cas9	 genome	 editing	 have	 recently	 been	 successful	 to	 induce	 exon-

skipping	 in	 vivo	 in	 adult	mice173-175,	 indicating	 that	 this	 tool	 is	 likely	 to	 prove	

valuable	 as	 therapy	 to	 correct	 various	 types	 of	 canonical	 and	 cryptic	 splicing	

events	in	human	diseases.	

Several	 non-canonical	 splicing	mechanisms	 can	 also	 be	 exploited	 as	 therapies.	5	

Trans-splicing	 has	 been	 applied	 to	 correct	 genetic	 mutations	 in	 monogenic	

disorders.	In	this	technique,	known	as	Spliceosome-Mediated	RNA	Trans-splicing	

(SMaRT),	 specific	 regions	 within	 the	 mutated	 mRNA	 are	 replaced	 using	

engineered	 RNA	 trans-splicing	 molecules	 as	 templates176,177.	 These	 template	

molecules	contain	the	wild-type	mRNA	sequence	to	be	replaced,	a	domain	with	10	

the	essential	 splicing	elements	and	a	domain	 that	binds	 the	 target	 region.	This	

strategy	 has	 been	 applied	 to	 many	 diseases,	 such	 as	 muscular	 dystrophies,	

haemophilia	 and	 cancer177,178.	 Other	 types	 of	 non-canonical	 events	 might	 also	

prove	useful	 for	 therapies,	such	as	 for	example	 the	designed	artificial	circRNAs	

that	could	serve	as	aptamers,	 trans-cleaving	ribozymes,	 small	 interfering	RNAS	15	

(siRNAs),	or	as	sponges	to	sequester	micro	RNAS	(miRNAs)	or	RBPs151,179.	

	

Future	perspectives	

In	 this	 Review	 we	 have	 seen	 how	 new	 methods	 have	 led	 to	 the	 discovery	 of	

various	 types	 of	 splicing	 events.	 The	 next	 challenge	 will	 be	 to	 systematically	20	

examine	non-canonical	splicing	events	that	occur	as	a	result	of	genetic	variation,	

as	 this	 would	 clarify	 their	 importance	 from	 the	 perspective	 of	 evolution	 and	

disease.	So	far,	many	mutations	affecting	splicing	have	been	identified	by	exome	

sequencing,	which	 can	only	 identify	 intronic	mutations	within	 a	 limited	 region	

around	 the	 annotated	 exon-intron	 boundaries.	 Therefore,	 genome-wide	25	

sequencing	will	be	required	to	reveal	the	full	range	of	intronic	variation	that	can	

activate	 cryptic	 splicing,	 perturb	 distal	 branch	 points	 or	 disturb	 regulatory	

regions32.	 It	 is	 also	 important	 to	 bear	 in	mind	 that	 abnormally	 processed	 pre-

mRNAs	 can	 interfere	with	 transcription	 or	 cause	 co-transcriptional	 decay36,180.	

Dedicated	 genomic	 and	 transcriptomic	 experiments	 and	 computational	30	

approaches	will	 therefore	 be	 needed	 to	 detect	 the	 full	 range	 of	mutations	 that	
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cause	disease	via	non-canonical	splicing.	

Even	 though	 it	 is	 clear	 that	 many	 non-canonical	 splicing	 events	 take	 place	 in	

human	 transcripts,	 our	 understanding	 of	 their	 roles	 in	 disease	 and	 physiology	

remains	 limited.	 We	 first	 need	 to	 better	 understand	 their	 roles	 in	 generating	

alternative	 transcripts	 with	 modified	 stability,	 translation	 or	 localisation,	5	

production	 of	 new	 protein	 isoforms,	 or	 sequestration	 of	 specific	 RBPs	 and	

miRNAs.	We	 also	 need	 to	 uncover	 their	 roles	 in	 diversifying	 tissue-specific	 or	

cell-specific	 patterns	 of	 gene	 expression	 across	 populations181,182.	 Many	 non-

canonical	 splicing	events	are	enriched	 in	 the	 central	nervous	 system,	 including	

cryptic	exons10,	microexons12,	RS	sites14,15	and	circRNAs183.	Much	remains	to	be	10	

learnt	 about	 how	 these	 mechanisms	 contribute	 to	 the	 complexity	 of	 gene	

regulation	and	the	diversity	of	protein	isoforms	produced	in	the	brain.	

As	 the	 next	 round	 of	 ENCODE	 data	 on	 protein-RNA	 interactions	 becomes	

available,	 understanding	of	 non-canonical	 splicing	 events	 that	 are	hidden	deep	

within	 introns	 will	 be	 crucial	 to	 help	 explain	 those	 interactions	 for	 which	 a	15	

function	 has	 not	 yet	 been	 identified184.	 Chromatin	 structure,	DNA	methylation,	

histone	 marks,	 nucleosome	 positioning	 and	 the	 kinetics	 of	 transcriptional	

elongation	all	contribute	to	splicing	regulation	in	coordination	with	RBPs	and	the	

spliceosome185.	It	remains	to	be	seen	if	these	factors	cooperate	in	the	control	of	

non-canonical	 splicing.	 It	 is	 likely	 that	 diverse	 regulatory	 interactions	 within	20	

intronic	regions	contribute	to	the	quality	control	that	prevents	aberrant	cryptic	

splicing	from	causing	disease27.	Nevertheless,	it	is	clear	that	many	non-canonical	

splicing	 events	 escape	 this	 quality	 control,	 and	 their	 role	 as	 a	 source	 for	 new	

molecular	 functions	 during	 evolution	 will	 remain	 a	 fascinating	 subject	 of	

research	for	many	years.	 	25	
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Glossary	

β-thalasaemia:	A	genetic	blood	disorder	characterized	by	a	defective	synthesis	

of	the	β-globin	chains	of	hemoglobin,	thus	causing	abnormal	erythropoiesis	and	

anemia.		

Alu	 element:	 A	 retrotransposon	 belonging	 to	 the	 family	 of	 short	 interspersed	5	

elements	 (SINE),	 consisting	 of	 an	 ~300	 nt	 sequence,	 which	 originally	 derived	

from	the	7SL	RNA.	

Aptamers:	 Oligonucleotide	 (or	 peptide)	 molecules	 that	 have	 secondary	 and	

tertiary	 structures	 that	 strongly	 bind	 to	 specific	 proteins	 or	 other	 cellular	

targets.	10	

Ataxia	 telangiectasia:	 Autosomal	 recessive	 disorder	 involving	 cerebellar	

degeneration,	 immunodeficiency,	 chromosomal	 instability,	 radiosensitivity	 and	

cancer	predisposition.	It	is	caused	by	mutations	in	ATM	gene.	

Autophagy:	 Intracellular	 pathway	 responsible	 for	 regulated	 disassembly	 of	

unnecessary	 or	 dysfunctional	 cellular	 components	 after	 their	 targeting	 to	15	

lysosomes.	

Axonogenesis:	 Generation	 and	 outgrowth	 of	 axons	 during	 neuronal	

development.	

CLIP:	 A	 method	 used	 to	 identify	 the	 RNA	 targets	 bound	 by	 an	 RNA-binding	

protein-of-interest	 that	 employs	 crosslinking,	 immunoprecipitation	 and	20	

stringent	purification	of	protein-RNA	complexes	by	SDS-PAGE.	

Chimeric	transcript:	Transcript	formed	when	sections	of	two	or	more	different	

genes	are	joined	together	in	a	new	transcript	either	via	splicing	or	as	a	result	of	

chromosomal	fusions.	

CircRNA:	RNA	that	has	become	circularised	owing	to	intramolecular	ligation	of	25	

its	5'	and	3'	ends.	
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Co-transcriptional	decay:	RNA	surveillance	mechanism	that	acts	in	the	nucleus	

while	transcripts	are	still	associated	with	the	chromatin	template.	

Cryptic	exon:	An	exon	that	is	not	annotated	by	the	current	genomic	databases,	

such	as	ENSEMBL,	and	are	often	only	revealed	after	removing	a	repressive	RBP	

or	after	a	genomic	mutation	that	increases	its	splicing	efficiency.	5	

Duchenne	 muscular	 dystrophy:	 A	 progressive	 proximal	muscular	 dystrophy	

caused	by	mutations	in	the	dystrophin	(DMD)	gene.	

Exitron:	An	intron	located	within	an	annotated	exon.	

Exon	 definition:	 The	 process	 by	 which	 exons	 are	 recognised	 and	 defined	 as	

functional	units	via	 interactions	between	multiple	snRNPs	and	RBPs,	especially	10	

U1	and	U2	snRNPs	and	SR	proteins.		

Hyperphenylalaninaemia:	 A	 neurologic	 disorder	 caused	 by	 autosomal	

recessive	mutations	in	the	genes	encoding	enzymes	involved	in	the	synthesis	or	

regeneration	of	BH4	cofactor.	The	most	common	form	is	caused	by	mutations	in	

the	PTS	gene.	15	

Intrasplicing:	An	unconventional	 splicing	mechanism	 in	which	 splicing	 to	 a	3'	

splice	site	reconstitutes	a	new	3'	splice	to	be	used	in	a	subsequent	splicing	step.	

Laron	 syndrome:	Autosomal	recessive	disorder	characterized	by	short	stature	

that	results	from	mutations	in	growth	hormone	(GH)	receptor	gene.	

Microexon:	Exon	that	is	shorter	than	30	nts.	20	

NMD:	 Nonsense	 mediated	 decay,	 a	 pathway	 that	 initiates	 decay	 of	 certain	

transcripts,	especially	those	containing	a	PTC.	

NMD-exon:	Exon	that	contains	a	PTC,	and	is	therefore	targeted	for	NMD.	

NOVA:		A	joint	name	for	RBPs	encoded	by	two	partially	redundant	genes	that	are	

expressed	 in	 the	brain;	 neuro-oncological	 ventral	 antigen	1	 and	2	 (NOVA1	 and	25	

NOVA2).	
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PTC:	premature	termination	codon	

RBP:	RNA-binding	protein	

RS:	recursive	splicing,	a	mechanism	that	which	allows	an	intron	to	be	spliced	in	

two	or	more	steps.	

RS	 exon:	 An	 exon	 that	 follows	 an	 RS	 site	 and	which	 is	 required	 for	 the	 exon	5	

definition	mechanism	that	initiates	splicing	at	the	RS	site.	

RS	 site:	The	 site	 of	 recursive	 splicing,	which	 consists	 of	 a	 3'	 splice	 site	 that	 is	

followed	by	a	sequence	 that	reconstitutes	a	5'	 splice	site	after	 the	 first	splicing	

event.	

Seed	sequence:	The	section	of	a	sequencing	read	that	is	used	to	align	the	read	to	10	

the	genome	or	transcriptome.		

snRNPs:	 Ribonucleoprotein	 complexes	 assembled	 around	 the	 small	 nuclear	

RNAs	(snRNAs)	that	interact	with	splice	sites	or	the	branch	point	on	pre-mRNA	

and	thereby	coordinate	and	catalyse	the	splicing	reaction.	

Splice	 sites:	 Sequences	 at	 the	 boundary	 of	 exons	 and	 introns,	 which	 contain	15	

motifs	 that	 recruit	 snRNPs	 and	RBPs	 to	 initiate	 the	 splicing	 reaction.	 3'	 and	5'	

splice	sites	are	located	upstream	and	downstream	of	exons,	respectively.	

Spliceosome:	A	macromolecular	machine	 consisting	 of	 snRNPs	 and	 additional	

RBPs	that	coordinate	and	catalyse	the	splicing	reaction.		

SR	proteins:	A	family	of	RBPs	containing	a	protein	domain	with	long	repeats	of	20	

serine	 and	 arginine	 that	 generally	 promote	 exon	 definition	 when	 binding	 to	

exons.	

U2AF	complex:	Complex	of	two	U2	auxiliary	factor	RBPs	that	bind	the	3'	splice	

site	and	facilitate	the	recruitment	of	the	U2	snRNP	to	the	branch	point.	

	 	25	
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Figure	legends		

Figure	1:	Cryptic	exons	and	microexons.	a)	Many	introns	contain	proximally	

spaced	 sequences	 that	 resemble	 splice	 sites,	 which	 can	 in	 some	 cases	 lead	 to	

splicing	of	 ‘cryptic’	exons.	Cryptic	exons	often	introduce	premature	termination	

codons	 (PTCs),	 which	 may	 target	 the	 resulting	 transcripts	 for	 nonsense-5	

mediated	 decay	 (NMD).	 Such	 NMD-exons	 are	 common	 within	 transcripts	 that	

encode	 splicing	 activators,	 where	 they	 function	 as	 part	 of	 autoregulatory	

mechanisms33-35.	In	this	example,	the	SR	protein	enhances	inclusion	of	an	NMD-

exon	within	 its	 own	mRNA	 as	 part	 of	 a	 negative	 autoregulatory	 feedback	 that	

maintains	 appropriate	 steady-state	 abundance.	 	b)	 An	Alu	 element	 is	 normally	10	

composed	 of	 two	 arms,	which	 contain	 an	 A-linker	 and	 polyA	 tail.	 The	Alu	 can	

become	 retrotransposed	 into	 the	 antisense	 strand	 relative	 to	 the	 gene,	 so	 that	

transcription	of	the	gene	produces	antisense	Alu	sequence	that	contains	two	U-

tracts	 at	 the	 beginning	 of	 each	 arm.	 Many	 such	 antisense	 Alu	 elements	 are	

capable	 of	 forming	 cryptic	 exons	 owing	 to	 the	 presence	 of	 splice	 site-like	15	

motifs37.	However,	 they	are	normally	 repressed	by	a	hnRNP	C	 tetramer	 (green	

circle),	 possibly	 because	 each	U-tract	 can	 bind	 the	 two	RNA	Recognition	Motif	

domains	that	are	present	on	the	opposite	surfaces	of	the	tetramer	(as	indicated	

by	the	green	arrow)8,186.	The	example	provided	here	shows	the	U-tracts	around	

the	Alu	exon	from	the	CD55	gene	(encoding	CD55	molecule).	Below,	mutations	in	20	

the	U-tracts	are	shown	that	decrease	binding	of	hnRNP	C,	allowing	binding	of	U2	

small	 nuclear	 RNA	 auxillary	 factor	 (U2AF2)	 and	 TIA1	 cytotoxic	 granule-

associated	 RNA	 binding	 protein	 (TIA1),	which	 initiate	 splicing	 of	 a	 cryptic	Alu	

exon8,37,39.	 C	 =	 hnRNP	 C	 protein.	 C)	Microexons	 can	 be	 detected	 from	 gapped	

regions	 in	 sequencing	 reads11,13,44.	 After	 mapping	 of	 multiple	 parts	 of	 the	25	

sequence	read	to	flanking	exons,	unmapped	intervening	sequences	are	aligned	to	

the	intronic	sequence	present	between	the	two	exons,	with	preference	given	to	

those	 that	 are	 flanked	by	 conserved	 splice	 site	motifs.	 Inclusion	of	microexons	

can	 be	 enhanced	 by	 RNA	 binding	 proteins	 (RBPs)	 such	 as	 Serine/Arginine	

Repetitive	Matrix	4	(SRRM4),	an	SR	protein	that	binds	upstream	of	microexons	30	

and	 promotes	 microexon	 splicing.	 Inclusion	 of	 microexons	 typically	 leads	 to	

modulation	 of	 overlapping	 or	 adjacent	 protein	 domains	 to	 change	 protein	
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activity.	SRRM4	 is	 reduced	 in	autism	patients	 leading	 to	decreased	 inclusion	of	

microexons12.	 YAG,	 3'	 splice	 site;	 GU,	 5'	 splice	 site;	 NMD,	 Nonsense-mediated	

decay;	μ?,	possible	microexon;	μ,		microexon.	

Figure	 2:	 Recursive	 splicing	 of	 long	 introns.	 a)	 Total	 RNA-seq	 read	 counts	

display	 a	 characteristic	 pattern	 of	 depletion	 from	 the	 start	 to	 the	 ends	 of	 long	5	

introns,	which	can	be	used	to	infer	exon	positions	and	splicing	events47,48.	“Saw-

tooth”	 patterns	 that	 overlap	 novel	 junction	 reads	 indicate	 splicing	 at	 deep	

intronic	 loci	 and	 are	 candidates	 for	 recursive	 splicing14,15.	 Here,	 the	 upstream	

exon	first	uses	a	3'	splice	site	to	remove	the	first	part	of	the	intron.	This	process	

reconstitutes	a	5'	splice	site	that	can	then	be	used	to	remove	the	next	section	of	10	

the	intron.	This	special	type	of	splice	site	that	is	shown	in	the	weblogo	is	referred	

to	 as	 a	 recursive	 splicing	 site	 (RS	 site).	 b)	 Recursive	 splicing	 in	 vertebrates	

requires	 the	 RS	 site	 to	 overlap	 a	 cryptic	 ‘RS	 exon’,	 which	 initiates	 the	 exon	

definition	 mechanism,	 required	 for	 recognition	 of	 the	 3'	 splice	 site	 of	 the	 RS	

site14.	After	the	first	splicing	step,	the	5'	splice	site	of	the	RS	site	competes	with	15	

the	5'	splice	site	of	the	RS	exon.	In	the	second	step	of	splicing,	the	outcome	of	this	

competition	decides	whether	the	RS	exon	is	skipped	owing	to	recursive	splicing,	

or	 included	 as	 an	 NMD-exon.	While	 the	 preceding	 exons	 from	major	 isoforms	

end	 in	sequences	 that	 favour	RS	exon	skipping,	 the	minor	 isoforms	and	cryptic	

elements	 end	 in	 sequences	 that	 favour	 RS	 exon	 inclusion.	 RS	 site,	 Recursive	20	

splice	site;	RS	exon,	Recursive	splicing	exon;	YAG,		3'	splice	site;	GURAG,		5'	splice	

site.		

	

Figure	 3:	 Intron	 retention	 and	 exitrons.	 a)	 Intron	 retention	 events	 are	

detected	as	an	accumulation	of	reads	across	intronic	regions,	or	increases	in	the	25	

ratio	 of	 exon-intron	 reads	 to	 exon-exon	 reads21-25.	 Intron	 retention	 events	 are	

characterised	by	numerous	features	including	weak	splice	sites,	high	GC	content	

and	short	intron	lengths.	Trans-acting	factors	such	as	RBPs,	the	spliceosome	and	

the	 EJC	 can	 also	 regulate	 specific	 intron	 retention	 events.	 The	 resulting	

transcripts	are	typically	either	retained	in	the	nucleus	or	targeted	for	NMD	in	the	30	

cytoplasm	 or	 may	 result	 in	 truncated	 proteins21,53,55.	 Other	 intron	 retention	
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events	 might	 be	 translated	 into	 truncated	 proteins.	 b)	 Exitrons	 are	 introns	

within	 annotated	 protein-coding	 exons	 that	 can	 be	 removed	 owing	 to	 the	

presence	 of	 internal	 splice	 site	 motifs	 within	 the	 exon25,26.	 Exitron-containing	

exons	 are	 longer	 than	 typical	 exons,	 and	 removal	 of	 the	 exitron	 can	 lead	 to	

changes	in	protein	structure	or	degradation	via	NMD.	NMD,	Nonsense-mediated	5	

decay;	AG,	3'	splice	site;	GU,	5'	splice	site.		

	

Figure	4:	Formation	of	 circRNAs	and	chimeric	 transcripts.	 a)	CircRNAs	are	

produced	by	head	to	tail	splicing	and	can	be	both	mono-	or	multi-exonic.	In	this	

multi-exonic	example	the	3'	splice	site	of	an	upstream	exon	becomes	spliced	to	10	

the	5'	splice	site	of	a	downstream	exon	to	generate	a	circular	transcript	that	that	

either	has	the	intervening	intron	removed	(exonic	circRNA)	or	retained	between	

the	 two	 circularized	 exons	 (intron-exon	 circRNA)	 20.	 Their	 formation	 is	

promoted	when	the	pre-mRNA	regions	flanking	the	exon	termini	are	brought	in	

proximity.	This	can	be	due	to	the	action	of	RNA-binding	proteins	such	as	Quaking	15	

(QKI)	 or	 muscleblind-like	 (MBNL),	 which	 bind	 to	 flanking	 regions74,75.	

Alternatively,	this	can	be	due	to	RNA	hybridisation	of	the	flanking	regions,	which	

can	be	 caused	by	Alu	 elements	 in	primates70.	b)	 Circular	RNAs	are	 resistant	 to	

RNase	 R,	which	 can	 be	 used	 for	 their	 enrichment	 during	 preparation	 of	 cDNA	

libraries.	They	can	then	be	detected	in	sequencing	data	by	junction	reads	that	are	20	

in	a	head-to-tail	orientation16-19.	c)	Chimeric	RNA	products	can	also	be	produced	

by	cis-splicing	when	transcript	termination	is	deficient76.	This	process	results	in	

read-through	 of	 one	 gene	 into	 its	 neighbouring	 gene,	 before	 splicing	 occurs	

between	the	penultimate	exon	of	gene	1	and	the	second	exon	of	gene	2,	which	is	

seen	in	the	CTSC-RAB38	genes	in	cancer.	d)	Trans-splicing	occurs	when	exons	of	25	

two	 different	 transcripts	 become	 spliced	 together80-87.	 Alternatively,	 the	 same	

chimeric	 transcripts	 can	be	produced	when	genes	become	 fused	at	 the	 level	of	

the	DNA,	such	as	in	JAZF1-SUZ12	genes	in	some	cancer,	which	leads	to	the	same	

chimeric	 transcript	 being	 produced	 by	 a	 linear	 splicing	 reaction.	 RBP,	 RNA-

binding	protein.		30	
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Figure	 5:	 A	 summary	 of	 human	 splice	 site	 consensus	motifs.	 Summarised	

splice	 site	 sequences	 are	 classified	 using	 the	 nucleotides	 marked	 by	 the	 grey	

boxes.	 All	 borders	 of	 human	 exons	within	 Ensembl	 v83	multi-exon	 transcripts	

that	 overlap	 with	 RefSeq	 mRNA	 IDs	 were	 used.	 Identical	 coordinates	 from	

overlapping	 transcripts	 were	 collapsed	 into	 a	 single	 occurrence	 such	 that	5	

junctions	 were	 not	 counted	 multiple	 times.	 First	 exons	 had	 only	 their	 exon-

intron	 junction	 evaluated,	 whilst	 terminal	 exons	 had	 only	 their	 intron-exon	

junction	evaluated.	This	led	to	a	total	of	189,255	5'	splice	sites	(shown	on	the	left,	

with	the	line	showing	exon-intron	border)	and	187,091	of	3'	splice	sites	(shown	

on	 the	 right,	 with	 the	 line	 showing	 intron-exon	 border).	 U12-type	 splice	 site	10	

sequences	 were	 obtained	 from	 U12DB187.	 After	 identifying	 the	 5'	 and	 3'	 sites	

overlapping	with	 the	U12-type	splice	sites,	 respectively,	 the	remaining	U2-type	

splice	 site	 sequences	 were	 examined.	 5'	 and	 3'	 splice	 sites	 were	 classified	

independently	and	sequentially	based	on	the	indicated	nucleotides.		For	example,	

53.58%	 of	 unique	 U1-type	 exon-intron	 junctions	 contain	 GTRAG,	 and	 the	15	

remaining	 U1-type	 junctions	 were	 classified	 based	 on	 the	 first	 two	 intronic	

nucleotides.	 The	 percentage	 of	 unique	 junctions	 containing	 each	 motif	 are	

indicated.		Weblogo	3	was	used	to	show	the	relative	frequency	of	nucleotides	at	

each	position188.	 	a)	The	U1-type	5'	 splice	sites	with	GT	at	 the	border,	and	U2-

type	 3'	 splice	 sites	with	 AG	 at	 the	 border,	b)	 The	U11-type	 5'	 splice	 sites	 and	20	

U12-type	 3'	 splice	 sites,	 c)	 The	 U1-type	 5'	 splice	 sites	 with	 GC	 at	 the	 border,	

remaining	U1-type	5'	splice	sites	with	TN	at	the	border,	where	N	stands	for	any	

nucleotide,	U1-type	5'	splice	sites	with	VN	at	the	border,	where	V	stands	for	any	

nucleotide	except	T,	U2-type	3'	splice	sites	with	BG	at	the	border,	where	B	stands	

for	any	non-A	nucleotide,	the	U2-type	3'	splice	sites	with	W	at	the	border,	where	25	

W	stands	for	T	or	A.	

Figure	6:	Cryptic	 splicing	 in	disease	and	 therapeutic	 strategies.	a)	 	Cryptic	

exons	are	normally	repressed	by	RBPs	such	as	hnRNPC	(green	circle)	or	by	U1	

snRNP.	b)	Examples	of	mutations	(numbered)	in	deep	intronic	regions	that	can	

activate	 cryptic	 splicing	events	 in	disease-associated	genes.	 (1)	hnRNPC	 (green	30	

circle)	 binding	 to	 a	 U-tract	 upstream	 of	 an	 antisense	 Alu	 element	 represses	

recognition	of	the	cryptic	3'	splice	site	within	the	element.	Intronic	deletions	or	
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point	mutations	that	shorten	U-tract	can	impede	hnRNPC	recruitment	but	allow	

U2AF2	(shown	in	purple)	binding,	 leading	to	Alu	exonisation.	A	deletion	within	

an	Alu	in	the	PTS	gene	(encoding	6-Pyruvoyltetrahydropterin	Synthase)	leads	to	

splicing	 of	 an	 Alu	 exon	 that	 introduces	 a	 frameshift,	 thereby	 causing	 the	

neurologic	disease	hyperphenylalaninaemia8,141.	 (2)	 In	 the	ATM	gene,	U1snRNP	5	

(orange	circle)	binding	 to	an	 intronic	element	within	a	cryptic	exon	 inhibits	 its	

recognition	 as	 a	 splicing	 competent	 exon.	 Patients	 with	 ataxia	 telangiectasia	

present	a	4	nt	deletion	that	abolishes	U1snRNP	interaction,	causing	cryptic	exon	

activation110.	(3)	A	point	mutation	within	a	deep	intronic	sequence	of	the	CFTR	

gene	 generates	 an	 active	 5'	 splice	 site	 that	 allows	 insertion	 of	 a	 cryptic	 exon	10	

within	 the	 CFTR	 transcripts,	 which	 causes	 cystic	 fibrosis135.	 (4)	 In	 the	 BRCA2	

gene,	a	point	mutation	that	disrupts	a	canonical	3'	splice	site	activates	(depicted	

by	 a	 grey	 arrow)	 an	 upstream	 cryptic	 exon136.	 Disrupted	 BRCA2	 expression	

causes	breast,	ovarian	and	other	cancer	types.	c)	New	therapeutic	strategies	 in	

cancer	involve	spliceosome	targeting156,162,163.	In	MYC-driven	tumours,	oncogenic	15	

MYC	 causes	 transcriptional	 amplification,	 which	 overloads	 the	 splicing	

machinery	and	makes	these	cells	more	sensitive	to	alterations	in	splicing	fidelity.	

Genetic	 knockdown	 or	 pharmacological	 inhibition	 of	 spliceosomal	 components	

leads	to	accumulation	of	retained	introns	that	results	in	increased	apoptosis	and	

reduced	tumorigenic	and	metastatic	potential	of	MYC-driven	tumours.	C,	hnRNP	20	

C	protein;	U1,	U1	snRNP;	AF2,	U2AF2	protein.	

	

Box	1:	Identification	of	non-canonical	splicing	events	

High-throughput	 methodologies,	 and	 in	 particular	 RNA-seq,	 have	 created	

opportunities	 for	 transcriptome-wide	 annotation	 of	 rare,	 cell-type-specific	25	

transcripts	and	non-canonical	splicing	events	in	our	transcriptomes12,14,15.	Whilst	

cDNAs	generated	from	poly(A)-purified	RNAs	in	mRNA-seq	primarily	detect	fully	

spliced	mRNAs	 that	 have	 passed	 the	 cellular	 quality	 control,	 cDNAs	 generated	

with	random-primers	 in	total	RNA-seq	also	 identified	the	 intermediate	steps	of	

splicing	 reactions14,15,48,189.	 To	 study	 non-canonical	 splicing,	 several	 alignment	30	

algorithms	 have	 been	 tailored	 for	 the	 discovery	 of	 novel	 splice	 junctions	with	
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RNA-seq	data11,29,30.	A	particularly	great	diversity	of	transcripts	was	found	in	the	

brain,	in	agreement	with	the	great	variety	of	cell	types	and	functions	that	exist	in	

this	organ10,14,29,30.	Even	though	many	of	these	are	rare	and	non-functional,	some	

are	functionally	important	non-canonical	splicing	events.	One	way	to	distinguish	

those	 that	 may	 have	 a	 function	 is	 to	 focus	 on	 novel	 junctions	 that	 contact	5	

conserved	sequences	that	bear	features	of	splicing	elements,	such	as	proximally	

spaced	3'	and	5'	splice	sites	(i.e.	within	 typical	exon	size	 limits),	branch	points,	

exonic	enhancers	and	other	regulatory	elements10,14,26,31.	

More	specialised	methods	for	preparing	and	analysing	RNA-seq	data	have	led	to	

discovery	of	new	types	of	exons	and	RNAs.	For	example,	several	commonly	used	10	

alignment	 algorithms	 require	 a	 minimum	 length	 of	 the	 seed	 sequence	 for	 the	

alignment,	which	generally	limits	detection	of	exons	to	those	longer	than	30	nt,	

thereby	 excluding	 microexons.	 To	 overcome	 this	 limitation,	 alignment	

algorithms	were	modified	 to	use	shorter	seeds	and	 to	allow	 longer	reads	 to	be	

mapped	in	multiple	parts11.	If	much	shorter	parts	of	a	 long	read	are	mapped	to	15	

two	 exons	 in	 a	 way	 that	 leaves	 an	 unmapped	 intervening	 sequence,	 this	

sequence	can	then	be	mapped	back	to	the	intronic	sequence	present	between	the	

two	exons,	with	priority	given	to	conserved	sites	flanked	by	proximally	spaced	3'	

and	 5'	 splice	 sites	 consistent	 with	 a	 <30nt	 microexon	 (Figure	 1B)11,13,44.	

Alternatively,	 custom	 alignment	 files	 incorporating	 all	 putative	 cryptic	 exons	20	

with	flanking	splice	sites	can	be	used	for	mapping12.	

Information	 on	 splicing	 efficiency	 can	 also	 be	 gained	 by	 analysis	 of	 intronic	

reads.	For	example,	intron	retention	can	be	examined	by	the	ratio	of	exon-intron	

junction	 reads	 relative	 to	 junction	 spanning	 reads,	 or	 by	 comparing	 read	

coverage	 across	 the	 intron	 to	 the	 flanking	 exons21,23,24.	 Moreover,	 co-25	

transcriptional	 splicing	 patterns	 can	 be	 visualized	 across	 introns	 in	 total	 RNA-

seq	data	as	 ‘saw-tooth’	patterns14,15,31,48.	Specifically,	 the	RNA	abundance	at	 the	

start	of	a	 long	intron	is	higher	than	at	 its	end	owing	to	the	presence	of	nascent	

transcripts	in	various	stages	of	transcription,	and	because	splicing	can’t	proceed	

until	 transcription	 of	 the	 3'	 splice	 site47,48.	 Novel	 junctions	 that	 overlap	 clear	30	

troughs	in	the	co-transcriptional	splicing	patterns	often	identify	recursive	splice	

sites	(RS	sites)14,15	(Figure	2A).		
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Dedicated	computational	approaches	also	 facilitated	discovery	of	circular	RNAs	

(circRNAs)	 and	 chimeric	 transcripts66,67,190,191.	 In	 the	 simplest	 method	 for	

discovery	of	circRNAs,	unaligned	reads	are	split	into	two	parts	before	being	re-

mapped	to	exons.	If	the	second	part	maps	to	an	exon	upstream	of	the	first	part,	

these	 are	 then	 considered	 as	 circRNA	 candidates17	 (Figure	 4B).	 This	 local	 re-5	

ordering	of	the	alignments	distinguishes	circRNAs	from	chimeric	transcripts	that	

can	 also	 be	 identified	 by	 discordant	 alignments192,193	 (Figure	 4B-D).	

Experimentally	 enriching	 the	 sample	 preparation	 for	 non-linear	 RNAs	 before	

cDNA	 library	 preparation	 using	 the	 exoribonuclease	 RNase	 R	 can	 further	

enhance	circRNA	discovery65,67.		10	
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