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Abstract 
When making choices under conditions of perceptual uncertainty, past experience can play a vital role. However, it 

can also lead to biases that worsen decisions. Consistent with previous observations, we found that human choices 

are influenced by the success or failure of past choices even in a standard two-alternative detection task, where 

choice history is irrelevant. The typical bias was one that made the subject switch choices after a failure. These 

choice-history biases led to poorer performance and were similar for observers in different countries. They were 

well captured by a simple logistic regression model that had been previously applied to describe psychophysical 

performance in mice. Such irrational biases seem at odds with the principles of reinforcement learning, which would 

predict exquisite adaptability to choice history. We therefore asked whether subjects could adapt their irrational 

biases following changes in trial order statistics. Adaptability was strong in the direction that confirmed a subject’s 

default biases, but weaker in the opposite direction, so that existing biases could not be eradicated. We conclude 

that humans can adapt choice history biases, but cannot easily overcome existing biases even if irrational in the 

current context: adaptation is more sensitive to confirmatory than contradictory statistics. 

Significance Statement 
Adapting to the environment requires using feedback about previous decisions to make better future decisions. 

Sometimes, however, the past is not informative and taking it into consideration leads to worse decisions. In 

psychophysical experiments, for instance, humans use past feedback when they should ignore it, and thus make 

worse decisions. Those choice history biases persist even in disadvantageous contexts. To test this persistence we 

adjusted trial sequence statistics. Subjects adapted strongly when the statistics confirmed their biases, but much 
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less in the opposite direction: existing biases could not be eradicated. Thus, even in our simplest sensory decisions 

we exhibit a form of confirmation bias in which existing choice history strategies are easier to reinforce than to 

relinquish. 

Introduction 
When making decisions, we often learn from past failures and successes by using knowledge of those events to assist 

with subsequent choices. For example, when a choice leads to a reward it can be beneficial to repeat it, or when it 

leads to failure, to avoid it. Such a success-stay/fail-switch strategy can be fruitful in cooperative behavior (1). Indeed 

the literature on reinforcement learning is built on the idea that we learn the value of choice options from the 

outcomes of past decisions (2, 3). Moreover, when the only source of information on expected value are past 

decisions and their outcomes, subjects have little difficulty relying on these past cues (4). These behaviors 

demonstrate that humans can appropriately adapt to the statistics of their history of choices.  

Humans and other animals, however, also apply strategies based on past failures and successes in contexts where 

their use is irrational and will adversely affect performance. For example, human subjects tend to apply the success-

stay/fail-switch strategy to the game of “rock-scissors-paper” (5) as do monkeys in the “matching pennies” task (6). 

The optimal behavior, instead, is to respond randomly, because any strategy can be exploited by other players (7). 

People also resort to the suboptimal success-stay/fail-switch strategy in situations that would require more complex 

decision-making strategies (8). Thus, despite our ability in some situations to adapt to choice history statistics, in 

other contexts we are unable to appropriately adjust behavior to account for choice history statistics. 

Sensory psychophysics offers an opportunity to examine how subjects integrate sensory evidence with past history, 

and what conditions promote appropriate adaptation to choice history statistics. Most psychophysics experiments 

are carefully designed such that subjects should make choices based only on the sensory evidence at hand. However, 

under such conditions human observers exhibit non-sensory biases (9-20) For instance, in the classical two-

alternative forced choice task, a subject is asked to make a perceptual decision based solely on the present sensory 

evidence (21) and to use success or failure feedback only to optimize their use of such sensory information (22). Yet, 

both mice (14) and humans (15, 17, 18) make choices that are biased by their recent history of successes and failures, 

and are thus suboptimal. Such biases are a form of fallacy, where prior beliefs rather than evidence guide behavior, 

similar, for example, to the gambler’s fallacy or hot-hand fallacy (23, but see 24).  

Why might choice-history biases remain despite degrading performance? One possibility is that they may be hard-

wired, inadaptable to the statistics of the task at hand. In support of this view, an early study reported that choice-

history biases remained constant regardless of whether stimulus sequences were ordered or randomized (25). 

Perhaps choice-history biases are not adaptable, or perhaps they cause such a small loss in performance that there 

is not sufficient incentive to adapt them (6) as they may be optimal in more general circumstances.  

To address this question, we assessed whether choice-history biases can adapt when given a strong enough learning 

signal in the form of trial order statistics. We manipulated the probability of a visual stimulus appearing on the left 

or right side of the screen, depending on the success or failure on the previous trial. For example, in one of the 

conditions, if the subject failed on the previous trial by choosing left, the stimulus would be presented on the right 

with 80% probability. We used a probabilistic choice model (14) to document each subject’s choice-history biases, 

such as preference to stay on the same side after a failure or switch after a success. By measuring the biases, this 

model allowed us to assess their adaptability, by comparing the conditions where trial statistics were manipulated 

to the baseline condition where they were truly random. We found that choice history biases are highly adaptable. 

However, reversing an existing bias to switch after failure proved more resistant to adaptation then promoting 

existing biases. 
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We presented preliminary versions of these results in two distinct conference abstracts (15, 17). Given the 

concordance of the results, we decided to join forces and publish the work together. 

Results 
To estimate choice-history biases we performed classical measurements of contrast sensitivity using a two-

alternative forced choice design (Figure 1A,B). We presented a visual grating on the left or the right of the screen, 

as asked the subjects to report its position by pressing one of two buttons. We varied grating contrast to make the 

task easier or harder. We collected data in three laboratories situated in Japan, the United Kingdom, and the United 

States. At RIKEN and Stanford, the grating appeared on a gray background (Figure 1A). At UCL, the grating appeared 

on one of two patches of visual noise (Figure 1B). Subjects were informed of their success or failure by a sound (at 

RIKEN and Stanford) or a change in color of the fixation cross (at UCL). These are standard methods in visual 

psychophysics, and have been used for over a century (26-28).  

Identifying choice-history biases 
In a first set of experiments, we fully randomized the contrast and position of the stimuli, so that past trial success 

or failure had no influence on the current trial. Consequently, adopting any choice history strategies by subjects was 

suboptimal for this task. Nevertheless, we found that subjects in all three laboratories showed clear choice-history 

biases.  

To gain initial insight into these biases we computed the proportion of rightward responses (psychometric function) 

for each subject after sorting trials into two sets: trials preceded by a left choice and trials preceded by a right choice 

(Figure 1C-E). By computing proportion of rightward choices separately for those two sets, we could visually assess 

if the subject had a tendency to switch or to stay. For some subjects, there was an equal number of staying and 

switching, suggesting they did not have choice-history biases (e.g. Figure 1C). However, other subjects tended to 

switch more often than staying (e.g. Figure 1D). Yet other subjects preferred to stay rather than to switch (e.g. Figure 

1E). Overall, switching/staying biases were seen when stimulus intensities were harder to perceive (the middle part 

of the psychometric curves) suggesting that subjects were defaulting to choice-history biases when sensory evidence 

was weak.  

Quantifying choice-history biases 
To determine whether subjects’ responses also depended on their success or failure on the previous trial, and to 

quantify these biases, we fit a probabilistic choice model to the responses (14) (Figure 2A). In the model a choice is 

made by flipping a coin with unequal odds. The logarithm of the odds is the sum of a sensory term (that depends on 

current stimulus side and contrast) with two choice-history terms (which weigh previous successes and failures), and 

with a general bias for left or right. If, for example, a subject displayed a tendency to switch sides after a failure, the 

failure weight would be negative. If the subject tended to stay on the same side, the failure weight would be positive. 

If failure had no effect, its weight would be zero.  

This scheme could also capture a general tendency to switch or stay irrespective of success or failure. For a subject 

who tends to switch regardless of outcome, both success and failure weights would be negative. Conversely, for a 

subject who tends to stay regardless of outcome, both weights would be positive. The impact of success or failure 

on a subject’s decision, therefore, can be assessed by asking whether the weights associated to success and failure 

are statistically different. Similarly, the impact of choice history on a subject’s decisions can be assessed by asking 

whether the weights associated with past choices are significantly different from zero.   

Most subjects were significantly biased by their choice history (Figure 2B). We used a likelihood ratio test to compare 

the full model to a “no-history” model where choice-history weights were set to zero. Applying this test for each run 
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(each subject completed multiple runs), we found that the full model better explained each subject’s choices for the 

vast majority of runs (66% ± 6.2% SE of runs had c 2(2) <= 0.05 uncorrected for multiple comparisons, blue bars 

Figure 2A). In terms of subjects, the full model better explained at least 75% of the runs for 18 subjects (i.e. 50% of 

subjects). By this measure, only data from 7 subjects (19%) could be explained by the no-history model. We also 

confirmed the results of the likelihood ratio test using leave-one-trial-out cross-validation on each run and found 

that the majority of runs had a better median likelihood for the full model than for the no-history model on the left-

out trial. If anything, the cross-validation analysis found 9% more runs better fit with the full-model than the 

likelihood ratio analysis. 

The importance of the choice history terms can also be judged from the model’s predictions of the psychometric 

curves (Figure 1C-E). The model did not assign large choice history terms to the first example subject ( bSuccess = 0.01, 

bFail  = -0.17, Figure 1C), but it did for the subsequent two subjects. The subject with a tendency to switch sides 

had a large failure bias ( bFail  = -0.89, Figure 1D) and the subject with a tendency to stay had a large success bias (

bSuccess =0.60, Figure 1E). As shown by the confidence intervals, with these parameters the model provided excellent 

fits to the data. 

Choice-history biases had a sizeable effect on perceptual decisions, an effect equivalent to that elicited by a low 

contrast stimulus (Figure 3A-C). As expected, subjects were more influenced by the stimulus when it had high 

contrast: the weights associated with the stimulus invariably grew with stimulus contrast (Figure 3A-C). Overall 

contrast intensities (abscissa of Figure 3A-C) differed between measurements made at RIKEN and Stanford and those 

made at UCL due to differences in the stimuli (see Methods). Choice-history biases, however, did not depend on 

specifics of the stimulus or the testing laboratory. They were not different across three testing locations (F(2,33) = 

0.49, p = 0.62, partial η2 = 0.03). The weights associated with these biases were on average smaller than those 

associated with high-contrast stimuli, but of similar magnitude as those for lower contrasts. The weights associated 

with failures, specifically, tended to be negative and of magnitude nearing those associated with contrasts close to 

the average 75% detection threshold. Conversely, the average success bias was positive. These results indicate that 

subjects on average used a success-stay/fail-switch strategy.    

We verified that history biases were not different across three testing locations (Japan, the US or the UK, F(2,33) = 

0.49, p = 0.62, partial η2 = 0.03). However, history biases could differ substantially across subjects (Figure 3D). Some 

subjects showed a strong bias to switch sides after a failure (negative failure weights on lower portion of vertical 

dashed line, Figure 3D) while others also or alternatively tended to stay after a success (positive success weight on 

right portion of horizontal dashed line, Figure 3D). A few, as noted above, did not express any significant choice-

history biases.  

A possible post-hoc hypothesis for this diversity is that subjects better trained and more knowledgeable about 

psychophysical tasks would have less of a tendency to have history biases, i.e. non-optimally biased by choice 

histories. As our subjects came from diverse backgrounds, we examined choice-history biases using graduate 

education as a proxy measure for experience and knowledge of psychophysical tasks. We split our subjects by 

education into a “PhD” group (those with or working towards a PhD, n = 20) and “No PhD” group (n = 16).  

We found that education level did have a significant effect on choice-history biases. However, contrary to the 

hypothesis, both types of subjects showed significant irrational history-based biases: “PhD” subjects were more 

likely to be affected by failure, and the others more likely to be affected by success. Specifically, “PhD” subjects 

tended to have a “switch after failure” bias (red points, Figure 3D, mean bFail = -0.86, t(19) = 6.5, p < 0.01; mean

bSuccess = 0.09, t(19) = 1.5, p = 0.33; t-tests comparing to 0). By contrast, “no PhD” subjects tended towards a “stay 
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after a success” bias (yellow points, mean bSuccess = 0.50, t(15) = 3.70, p < 0.01; mean bFail = -0.16, t(15) = 0.95, p = 

0.36; t-tests comparing to 0). p values were Bonferroni adjusted for multiple comparisons.  

We stress that these results, however, are post-hoc observations on subject samples that were not equated for 

potentially important factors such as age or IQ and does not exclude the possibility of other covariates such as 

gender, ethnicity, age or even whether subjects majored in Psychology or Neuroscience. All these factors could affect 

the results. We report them here solely as a potential starting point for future investigation into covariates of choice 

history biases.  

Further supporting the view that history biases were not due to inexperience, we found that biases did not decrease 

across task runs. We regressed success and failure bias weights against run number. The history biases were not 

significantly different between the first run and the last run ( slopeSuccess  = 0.03, slopeFail = -0.01, both p > 0.05, 

regression to individual z-score values of success and failure biases). These results indicate that subjects commenced 

the task with pre-existing biases and did not learn to adapt them over the course of a few thousand trials.  

Quantifying history bias driven sensitivity loss 
Using model simulations, we found that the history biases caused a significant loss in visual sensitivity (Figure 4). We 

measured sensitivity loss as the ratio of slopes of psychometric curves computed with and without bias (Figure 4A). 

We found that 67% of subjects, or 24 out of 36, had significant sensitivity loss due to choice history biases (all p < 

0.01, Wilcoxon one-sample median test comparison to 0). The mean loss of sensitivity was 4.7% (95% CI[3%, 7%]). 

For 19% of subjects the bias-driven decline ranged from 10% to 20%. We note that contrast threshold would need 

to be corrected by the same percentage because the slope and threshold are inversely related. To visualize the 

sensitivity loss across subjects we constructed a model based on the average sensory weights from all subjects, and 

we systematically varied history biases in a range of failure and success weights similar to that found in individual 

subjects (Figure 4B). 

Inducing choice-history biases 
Having found that subjects exhibited consistent and significant choice-history biases even when these biases worsen 

performance and decrease sensitivity, we asked if these biases are immutable or whether they are adaptable. If 

subjects can adapt choice-history biases given a large enough incentive, then we should be able to induce choice-

history biases by adjusting trial statistics. In a subset of subjects from RIKEN and Stanford, we adjusted trial statistics 

such that 80% of the time after a specific outcome (success or failure), the target would have a predictable position 

(stay or switch sides).  

The results revealed that both failure and success biases were highly adaptable to match trial statistics (Figure 5). 

When we changed the trial statistics after failure, we found a significant shift in failure bias in the optimal direction 

(Figure 5A). The subjects adopted a more negative failure bias (making them more likely to switch from a losing side) 

when failure led the targets to switch than when it led them to stay (mean difference bFail = 0.45, t(13) = 3.00, p = 

0.02, 95% CI[0.13, 0.78], Bonferroni-adjusted). Conversely, as may be expected from optimal behavior, the success 

bias was not significantly affected (mean difference of bSuccess = 0.06, t(13) = 0.46, p = 0.99, 95% CI[-0.32, 0.21], 

Bonferroni-adjusted). Similarly, when we changed the trial statistics after success, we found a significant shift in 

success bias in the optimal direction (Figure 5B). The subjects adopted a more positive success bias (making them 

more likely to stay on a winning side) when success led the target to remain in the same position than when it led it 

to switch sides (Figure 5B, mean difference of bSuccess = 1.04, t(13) =6.61, p < 0.01, 95% CI[0.70, 1.38], Bonferroni-

adjusted). The subjects also slightly adjusted their failure bias (mean difference of bFail = 0.36, t(13) = 2.76, p = 0.03, 

95% CI[0.07, 0.63], Bonferroni-adjusted), which suggests a bit of over-generalization.  
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While both bias weights were adaptable, induced failure biases were on average half as large as induced success 

biases. We reasoned that the difference in adaptability between success and failure biases could arise from the 

difference in these biases already observed in the control condition, when successive trials were independent (Figure 

3D). Indeed, in many subjects, the failure bias was substantially stronger than the success bias. Perhaps a strong pre-

existing bias is less adaptable than a weak one?  

To test this hypothesis, we compared the magnitude of the shift of induced bias relative to subjects’ natural bias 

(Figure 6). We used the same data as reported above, but compared each condition to the control condition, in 

which trial statistics were completely random. As we have seen (Figure 3D), in the control condition subjects tended 

to have negative failure biases (leading to a tendency to switch after failure) and weaker, positive success biases 

(leading to a weaker tendency to stay-after-success, mean bFail = -0.55, mean bSuccess = 0.27, both p < 0.01, 

Bonferroni-adjusted). We take these values to indicate each subject’s “natural bias” (open symbols in Figure 6). We 

then examined the four adaptation conditions one by one.  

This analysis confirmed that adaptation was more successful in shifting biases in the same direction as subjects’ 

natural biases. Specifically, when the stimulus statistics favored an unnatural strategy of staying after failure (Figure 

6B), adaptation of the failure bias was small and not significant (mean difference of bFail = 0.06, t(15) = 0.59, p = 

0.99, 95% CI[-0.29, 0.17], Bonferroni-adjusted). By contrast, when the stimulus statistics encouraged the natural 

switch-after-failure bias (Figure 6A), it resulted in significant effects in the expected direction (mean difference of

bFail = 0.39, t(14) = 5.4, p < 0.01, 95% CI[0.23, 0.54], Bonferroni-adjusted). Similarly, the subjects significantly 

changed their success bias when stimulus statistics favored the natural, but weak, tendency of staying after a success 

(Figure 6C, mean difference of bSuccess = 0.64, t(16) = 5.66, p < 0.01, 95% CI[0.40, 0.88], Bonferroni-adjusted). Subjects 

also slightly adapted to the opposite unnatural strategy of switching after a success (Figure 6D, mean difference of

bSuccess = 0.36, t(13) = 2.90, p = 0.03, 95% CI[0.09, 0.63], Bonferroni-adjusted).   

While there was a large bias variability between subjects in the adaptation condition, the results were not driven by 

subjects who changed their biases the most. We verified the absence of long tails by computing D'Agostino’s test of 

normality and skewness for both failure and success induced bias in each condition and we could not reject the 

hypothesis that weights were normally distributed and not skewed (all p > 0.05).   

To examine whether induced history biases increased across runs, we calculated the slope of a linear regression 

fitted to success and failure biases against runs in a given adaptation condition (subject z-score values computed by 

bias type and bias induction condition). Subjects gradually increased their stay-after-success bias ( slopeSuccess=0.21, 

p<0.01; no change in failure bias) and their switch-after-success bias ( slopeSuccess=-0.41, p<0.01; no change in failure 

bias). Failure biases, instead, did not significantly change across runs (all p > 0.05).  

One possibility is that subjects could use a conscious cognitive strategy if they became aware of our trial history 

manipulations. However, when debriefed at the end of the experiment, no subject noticed that switching or staying 

was contingent on previous choices, despite the fact that their history weights showed that they had learned this 

contingency.  

Finally, we examined whether subjects were better able to adapt history biases after being exposed to our trial 

history manipulations. To examine changes in adaptability to trial history manipulations, we split the data into 

“early” versus “late” runs and compared the magnitude of adaptation between the two. This is a fair comparison, 

because the order of adaptation conditions was randomized and counterbalanced to avoid block ordering effects. 

When subjects adapted to success-stay bias “late” rather than “early”, they did show larger success biases (

bSuccess_early=1.1, bSuccess_ late = 0.4, t(12.9)=3.8, p<0.01, Bonferroni adjusted), however no other condition showed this 
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effect (all p > 0.05). Overall, therefore, there seems to be an innate ability to adapt the history biases to the trial 

statistics, especially when these statistics tend to encourage the subject’s default biases.    

Discussion 
We have seen that subjects display systematic choice-history biases in their behavior, even when performing a 

psychophysical task where trials are fully randomized, and where such biases lead to poorer performance. These 

biases generally manifest as switch-after-failure or as stay-after-success strategies (8, 10, 11, 18). Both types of 

biases were disadvantageous in that they reduced sensitivity for most of the subjects. By manipulating the statistics 

of the trials so as to encourage or discourage these strategies, we found that the weights were most adaptable in a 

direction that strengthened them, and much less so in a direction that reduced them. Our results thus demonstrate 

that subjects can alter, but never fully disengage, their natural choice-history biases.  

Though our results show a difference in adaptability, they do not prove inadaptability of existing strategies. Perhaps 

with stronger incentives, even such existing strategies might be adaptable. History biases thus act like an 

unconscious confirmation bias; when statistics of the environment agree with existing biases, they are strengthened, 

but they are resilient to non-confirmative statistics.  

The inability to disengage disadvantageous choice-history biases suggests a more global strategy; indeed such biases 

occur across many types of stimuli and sensory modalities. Choice-history biases have been observed when subjects 

had to make judgments about physical weights (9), auditory stimuli (12, 16, 18) or visual stimuli (4, 8, 10, 11, 14, 18). 

As in our experiment, subjects show a diversity of biases ranging from switching strategies (4, 9, 12, 14, 16), to staying 

strategies (10, 11, 18), to success-stay/fail-switch strategies (5, 6, 8, 18). These biases are typically limited to the 

preceding one trial and the magnitude of the choice-history biases is inversely proportional to the strength of 

sensory stimulus, such that weaker sensory stimulus elicits stronger choice-history biases (13, 15, 18). These effects 

are readily captured by our simple choice-history model (Figure 2). However, it is possible that more complex choice-

history biases exist, which may be identified using information theory or novel statistical methods (29).  

Our results and our model provide a way to correct for the loss in visual sensitivity caused by choice history biases. 

This loss was statistically significant for most subjects with a mean near 5%. For about 20% of subjects, it resulted in 

a loss that ranged from 10 to 20%. Correcting for these kinds of biases can have implications not only for basic but 

also for clinical and applied vision science. Visual sensitivity is typically measured using a 2-alternative force choice 

(2AFC) task similar to the one we used here (30). Coupled with the fact that older adults maybe more prone to using 

choice history biases than younger adults (31), correcting for choice history bias driven visual threshold 

measurement errors may be important in real-world applications of vision sensitivity testing. 

That choice-history biases were most prevalent at weaker stimulus intensities is suggestive of a Bayesian inference 

strategy, where biases act as priors that influence decisions more when sensory evidence is weak (32). Given this, 

Bayesian models of contrast discrimination (33-35) might be better extended to incorporate choice history biases 

then models which do not incorporate priors (27, 36). Bayesian frameworks have been used to explain motion 

perception biases (37, 38), biases around cardinal orientations (39) and tilt perception biases (40). An ecological 

basis of these biases is thought to come from long-term and evolutionary exposure to environmental statistics (37, 

39), although stimuli seen a few seconds earlier can also bias our judgment of orientation perception (41, 42). Thus 

perceptual biases are thought to be specific to the particular statistics of the sensory quality that is being inferred. 

Like what we found with choice-history biases, specific perceptual biases can also be altered with appropriate 

training (43). Similarly, stimulus expectations can be introduced by cueing subjects to probabilities of motion 

direction or indicating pay-offs associated with one or another choice (44-46). Despite these similarities, perceptual 
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biases and perceptual learning (47) effects typically do not readily transfer to other stimuli and tasks, and are thus 

likely different from choice-history biases, which tend to generalize across stimuli and tasks. 

If choice-history biases reflect more global strategies than those in perceptual inference, then reinforcement 

learning (2), with some crucial caveats, might provide another computational framework for understanding them. 

Reinforcement learning provides a compelling account of how animals and humans can learn the value of choice 

options based on past choices and rewards. In games where reinforcement learning has been used to model 

behavior, animal (48, 49) and human (8) subjects often display success-stay/fail-switch strategy similar to those 

observed in our experiments. Our task differs from typical reinforcement learning tasks in that it requires weighing 

sensory evidence and choice options where the latter have no explicit value or probability associated with them (50). 

Nonetheless, humans may perform the task by assigning value to choice options (51) or by treating successful trials 

as rewards. Unlike typical reinforcement learning tasks in which the value of a perceptually strong stimulus is 

assigned a value, choice-history biases were most evident at weak contrasts, suggesting that they may best be 

described by an amalgam of Bayesian inference and reinforcement learning theories.  

Taken together, our results suggest that choice-history biases are general, not easily overcome in individual tasks 

and thus a strategy likely to be useful across a wide variety of different contexts. Choice-history biases are evident 

in a variety of situations even when they are maladaptive (5). A possibility is that subjects are applying strategies 

that lead to optimal decisions in their natural environment, but those same strategies become fallacies when faced 

with the artificial constrains of psychophysical experiments (52, 53). In that sense, they resemble heuristics, which 

are commonly employed to assist in decision making under conditions of uncertainty (54). Heuristics are 

generalizable and can be flexibly employed in many decision-making contexts (55), but when exposed in a context 

where they are maladaptive, they seem arbitrary and problematic. Similarly, choice-history biases appear as fallacies 

in attempts to rationally measure sensation, but nonetheless likely constitute an important component of choice 

behavior operational across a wide array of environments. 

Materials and methods 

Observers 
Fourteen naive observers and one of the authors volunteered as subjects (5 females; mean age 31 years; age range 

21-38 years) for data collected at RIKEN. At Stanford University, 12 subjects volunteered but 3 were excluded as a 

result of exceptionally poor performance that suggested they were not preforming the task (leaving 7 females and 

2 males, age range 19-36 years). At the University College London (UCL), data from 12 subjects were collected (1 

female; mean age 35 years). Subjects gave prior written informed consent and optically corrected their vision when 

necessary. The study procedures were approved in advance by the RIKEN Ethics Committee and local Ethics 

Committees at the UCL and Stanford.    

Apparatus at RIKEN and Stanford 
Sitting in a dark room, observers responded to stimuli presented on a 21-inch gamma-linearized flatscreen cathode 

ray tube (CRT) monitor (Dell Trinitron P1130, Dell Inc.) at RIKEN and 22.5-inch light-emitting diode (LED) monitor at 

Stanford both operating at 100 Hz vertical refresh rate with resolutions set at 1980 x 960 or 1920 x 1080 pixels, 

respectively. Observers self-adjusted the height of a pneumatic chair or table to comfortably place their head on a 

gel-cushioned chin and forehead rest. The chin and forehead rest restricted head movements which facilitated 

accurate monocular eye-tracking using infrared video-based eye-tracker at 500 Hz (EyeLink 1000, SR Research). We 

calibrated the eye-tracker at the beginning of each run using a built-in five-point calibration procedure. Visual stimuli 

and task sequence were programmed in MATLAB (MathWorks) using the MGL library (http://justingardner.net/mgl) 

on a Mac Pro computer (Apple Inc.).   

http://justingardner.net/mgl
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Apparatus at UCL  
Subjects responded to stimuli presented on a 21-inch CRT monitor operating at 75 Hz and gamma linearized in 

software. Stimuli and trial sequences were generated using a Matlab script and Psychtoolbox (56, 57).  

Task and stimulus 
RIKEN and Stanford. Subjects were asked to detect faint visual stimuli which were presented for 500 ms either to 

the left or right of fixation. Stimuli were vertical sinusoidal gratings (1 c/deg, 6° in width and height, modulated by a 

symmetric two-dimensional Gaussian window at 100% of peak contrast) presented 12° to the left or right of fixation 

at a viewing distance of 50.5 cm at RIKEN and 56 cm at Stanford (Figure 1A). Gratings randomly drifted either to the 

left or to the right at 0.5 c/sec. The stimulus was presented within a white ring (diameter, 7° of visual angle) to reduce 

spatial uncertainty (36). The monitor was calibrated with a Topcon SR-3A-L1 Spectroradiometer (Topcon, Tokyo, 

Japan) at RIKEN and SpectraScan 650 (Photo Research, Inc.) at Stanford. The gamma table was linearized and 

dynamically adjusted to take full advantage of the 10-bit gamma table resolution. The background appeared 

uniformly gray with luminance equal to 47 cd/m2 (midpoint of calibrated monitor’s full luminance range) both at 

RIKEN and Stanford.   

Stimulus detection difficulty varied with stimulus intensities that ranged from 0.4% (very difficult) to 3% (very easy) 

Michelson contrast which is computed by taking the difference between the lowest and highest luminance values of 

the stimulus and dividing by the full luminance range of the monitor. We took advantage of the video card’s 10-bit 

gamma table to improve luminance resolution while maintaining luminance linearity. Subjects did not report image 

aftereffects. 

At the beginning of each trial subjects fixated at the central white cross for 1 to 2 sec followed by the presentation 

of the stimulus either to the left or right side of the fixation. When the stimulus disappeared, the fixation color 

changed to pale blue prompting subjects to respond. The task instruction was to fixate, detect the stimulus location 

and rapidly and accurately make a choice by pressing one of two keys with their left hand. An auditory feedback 

followed, which indicated correct and incorrect decisions (“pop” and “basso” system sounds on Mac OS). A new trial 

started either immediately after the response or after 4 second when the observer did not respond. 

In each run observers were shown 5 different contrast intensities. Each intensity was presented either 50 or 60 times 

(we increased stimulus repetitions after observing that longer run durations did not impair the performance). 

Stimulus presentation order was pseudo-randomized and each contrast intensity appeared on the left or right side 

equal number of times. Each run lasted around 10 min and observers took short breaks between the runs by 

disengaging their head from the chin rest while remaining in the room when possible. Subjects completed different 

number of runs in different conditions. In the condition with random trial order, 15 subjects at RIKEN completed an 

average of 9 runs (range 5-13; mean number of trials per subject 2510) while 9 subjects at Stanford completed an 

average of 3 runs (or 900 trials). At RIKEN, eight of the observers from the initial group of 15 also took part in 

subsequent bias induction experiments. They completed an average of 11 runs across all bias induction conditions 

with an average number of trials being 3298. At Stanford, all 9 subjects also participated in bias induction 

experiments. Each subject finished 12 runs across all bias induction conditions comprising an average of 3600 trials. 

Each bias induction condition was typically completed on different testing days, and the order of conditions was 

randomized and counterbalanced across subjects. 

To test whether we could induce choice history biases we manipulated trial order such that 80% of time after a 

success or failure the stimulus side stayed or switched sides. To do this, we initially generated a random sequence 

of trials. Stimulus side on a trial was then chosen to stay or switch 80% of the time to match the desired trial order 

statistic given the choice outcome of the previous trial. If the stimulus side did not match the random pre-generated 

order, a future matching trial was swapped with the current trial. Because stimuli were pre-generated in a random 



10 

 

 

order with equal number of stimulus presentations on either side and contrast intensities, the stimulus swapping 

guaranteed that subjects were presented stimuli on the same side an equal number of time. Also, this ensured that 

the run size in condition with random trial order did not differ from conditions in which the trial order statistics were 

manipulated. Stimulus swapping became impossible for a few trials at the end of some runs, but this resulted in 

negligible changes of desired trial sequence probabilities.    

To learn the task and response buttons, subjects were given a few practice trials. During practice, subjects also learnt 

that the task difficulty varies with stimulus contrast and were instructed to guess when in doubt. The same set of 

instructions were given in all conditions. We did not discuss the structure of trials, such as randomization or trial 

dependencies.  

UCL. Subjects were asked to detect vertical gratings (1.7 c/deg, 4.8º in width and height) presented randomly either 

to the left or right of a white fixation dot for 200 ms. The grating was embedded in a white noise patch, and noise 

patches were presented both on the right and left of fixation (Figure 1B). After the stimulus offset, a high contrast 

white noise pattern appeared in place of the stimulus as a mask to prevent image aftereffects. The monitor was 

situated 120 cm from the subject and had a uniformly gray background which was set to the midpoint of the 

calibrated monitor’s full range. Stimuli were presented using the method of constant stimuli wherein grating 

contrasts were randomly selected from values of 0% (no stimulus), 1, 2, 3, 4 or 8%. 

Subjects were asked to fixate and then detect where the stimulus was presented. They were warned about the task 

difficulty and encouraged to go with their instinct to guess the stimulus side when uncertain. After the grating was 

masked by high contrast noise, subjects could report the detected stimulus by pressing the “Z” or “M” keys for left 

or right sides, respectively. The response was followed by a brief visual feedback. The fixation dot changed to black 

when subjects made a mistake, but otherwise remained white. The next trial started after the feedback allowing 

subjects to set their own pace of the experiment. Each run consisted of 550 trials (50 trials per contrast) and each 

subject completed 3 runs.  

Analysis 
Data processing. Unanswered trials were excluded. In the natural history bias condition, 51 such trials were excluded 

across all subjects which was 0.13% of the total number of trials in that condition. In all induced bias conditions, 

there were 13 unanswered trials which was 0.04% of the total number of trials in those conditions.  

Psychophysical analysis. For each subject and for each run, proportion of rightward choices for each contrast 

intensity were computed as:  

pR(c) =
NR(c)

NR(c)+ NL (c)
, (1)   

where c  is the contrast intensity, NR(c) and NL (c)are the total number of rightward and leftward choices for 

contrast c , respectively. To get the mean proportion of rightward responses for each subject, we averaged 

proportions computed for each run.  

Probabilistic choice model. To quantify the influence of stimulus contrast and previous trial outcome (success or 

failure) on current trial choices we employed a probabilistic choice model (14). The model is a binomial logistic 

regression which estimates the probability of selecting the right or left side based on weighting of the stimulus 

location (separately for each contrast), success and failure outcome on the previous trial and overall bias (preference 

of one side over the other). The probabilistic choice model assumes that the log-odds of a probability of choosing a 

stimulus on the right (p) or left (1-p) is a linear function of sensory (stimulus contrast) and non-sensory (choice 

history) parameters:  
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L(t) = ln
pR(t)

pL (t)

æ

èç
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ø÷
= ln

pR(t)

1- pR(t)

æ

èç
ö

ø÷
= bSuccessCSuccess(t -1)+ bFailCFail (t -1)+ b1I1(t)+ ...+ bnIn(t)+ bL/R, (2)   

where t  is the trial number, PR  and PL  are probabilities of choosing right and left, CSuccess and CFail the 

subject choice on the previous trial contingent upon whether it was a success or failure encoded as -1 and 1 for left 

and right choices, respectively. For previous trials that were not a success or failure, both CSuccessand CFail  were 

set to 0 and this only applied to the first trial of each run (unanswered trials, which were subject to the same rule, 

were excluded). I is the stimulus intensity encoded as -1 and 1 to indicate left and right stimulus side and 0 when 

the corresponding stimulus intensity was not presented. bSuccess,bFail ,b1...bn  are weights which were obtained by 

fitting the model and bL/R
is the weight of the model intercept which indicates a general left or right bias. Equation 

2 is a continuous function that ranges from -¥  to +¥ . To convert log-likelihood estimate into a probability the 

logit (in generalized form called softmax) function was used:  

pR(t) =
1

1+ e-L(t )
, (3) 

where pR  is the probability of choosing right rising from 0 (choose left) to 1 (choose right) and L(t) is the log-

likelihood of choosing right computed using Equation 2.  

Recently, Frund et al. (18) presented a model that captures choice-history biases by representing choices as a 

combination of stimulus (i.e., left/right presentation) and response (e.g., left/right response) weights. This 

parametrization of choice-history biases allows distinguishing between response biases, such as when subjects 

generally prefer to switch independent of feedback as well as stimulus driven choice-history biases, such as when 

subject's choices are driven by the stimulus on the previous trial. Combination of these parameters can help identify 

win-stay/lose-switch biases. The Frund et al. (18) model has the same number of parameters as our model and is 

therefore equivalent. Indeed, we found no difference in the fitted log-likelihoods of the two models. Preference for 

using one or the other models would depend on which parameterization is more conveniently interpreted in the 

context of the questions being asked. 

Model fitting  
We fitted the probabilistic choice model to data from each run. For model fitting we built a matrix in which the 

columns consisted of sensory parameters, non-sensory parameters and subject choice histories encoded as -1 or 1 

to indicate left or right, and 0 to code unrelated parameters in the current trial. The number of sensory columns 

matched the number of stimulus contrast intensities used during the run (typically 5). Non-sensory parameters 

consisted of two columns indicating success or failure on the previous trial. For each trial, one of these two columns 

was set to either -1 or 1 while the other column was 0. Values of -1 or 1 indicated the choice on the previous trial 

(left or right) that led to failure or success. Finally, subject choices were coded in a separate column and values of -

1 or 1 indicated left or right choices, respectively.  

To prevent overfitting, which could happen in runs in which subjects responded 100% of the time to high-contrast 

stimuli, we used “ridge” regularized logistic regression (58). Ridge (or L2) logistic regression is similar to standard 

logistic regression except that the error parameter is modeled to include the squared sum of regression coefficients 

scaled by an additional parameter L :  

Lregularized = L + L b 2, (4)å  

where L is defined by Equation 2, b  are parameters defined in Equation 2 with the exception of bL/R
, and 

L ³ 0  is a free parameter which controls “shrinkage” of b  parameter estimates. To estimate an optimal L  we 
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used a cross-validation procedure. For each run, we fitted the model to randomly sampled 80% of the trials and 

validated the model on 20% of the remaining trials (59). This random sampling and validation procedure was 

performed 100 times using 19 values of L  which were exponentially distributed from e-8  to 20  (thus, for each 

lambda 100 values of likelihood were computed). We then selected the L  value which produced the highest 

likelihood. The likelihood was computed as: 

LH = z(t)Õ , (5)   

where t refers to trial number and z(t)  corresponds to:  

z(t) =
l + (1- 2l)pR(t), if subject choice=right

l + (1- 2l)(1- pR(t)), if subject choice = left

ì
í
î

ü
ý
þ

  

where pR(t)  was the probability of choosing right computed using Equation 3. l denotes the lapse rate, which 

is the proportion of mistakes when the stimulus is clearly visible, such as missing the stimulus due to an eye blink. 

The lapse rate was computed as a proportion of errors at the highest stimulus intensity as proposed by Prins (60). 

This approach to lapse rate computation was possible because we chose the highest contrast such that it was clearly 

visible. The model was fitted in R (61) using the “glmnet” package (62). We note that the model is generalizable, and, 

can be fitted using the probit function instead of logit (Equation 3). Because logit and probit functions are nearly 

identical, we expect the difference between logistic and probit regressions to be indistinguishable.  

In addition to L2 regularization, we also fitted the model using L1 regularization. The difference between the two 

approaches is that while L2 adds noise into the model to equally affect both “strong” and “weak” weights, L1 

regularization attempts to redistribute the bias towards “strong” weights (i.e., weights corresponding to strong 

contrast intensity) and eliminate model parameters that are “weak”. We found that both L2 and L1 regularizations 

produce similar results, which testifies to the robustness of choice history biases.  

Interpreting model weights 
Positive weights (bSuccess andbFail )  obtained for success and failure choice-history biases indicated that subjects 

preferred to remain on the same side they chose on the previous trial, while negative weights indicated a preference 

to switch sides. Positive weights obtained for contrasts (b1 ...bn )  indicated that subjects, overall, correctly chose 

the side where stimuli of a given contrast were presented, whereas negative weights indicated that subjects chose 

the side opposite to where those stimuli were presented (making mistakes). Finally, positive and negative values of 

the intercept (bL/R )  indicated left or right choice biases, respectively.  

Model selection 
We used likelihood ratio tests, which allows comparisons between two nested models (63), to evaluate whether 

subjects had choice-history biases. We compared the full model (probabilistic choice model) to a simpler no-history 

model which contained the same parameters but without choice history weights. Parameters of the full model were 

stimulus contrast weights, choice history weights of success and failure on the previous trial and a weight for general 

bias for left or right choices. For this procedure, we first computed the likelihood ratio statistic LR  as follows:  

LR = -2log
LHFull Model

LHNo-historyModel

æ

è
ç

ö

ø
÷   

where LHFullModel
 and LHNo-historyModel

 were maximum likelihoods of the full and no-history models, respectively, 

computed using Equation 5. The distribution of values of the likelihood ratio statistics asymptotes to a chi-squared 



13 

 

 

distribution with degrees of freedom equal to the difference in the number of parameters between the two models, 

which in our case was 2 (success and failure bias parameters were removed from the no-history model). Second, we 

subjected the likelihood ratio to chi-squared statistics to compute the probability of the null hypothesis that the no-

history model was better. p values less than or equal to 0.05 were used to reject the null hypothesis and accept the 

full model as the better fitting model.  

Estimating sensitivity loss 
To estimate differences in subjects’ performance with and without biases we fitted psychometric curves to the 

model simulated choices with and without bias. In one case, the model simulated subjects’ biased choices by 

including both sensory and non-sensory terms. In another case, the model included only sensory terms and all non-

sensory terms were set to zero to simulate a subject who has no biases and only responds to sensory signals. In a 

simulated run, both biased and unbiased models made choices on the same set of randomly generated trials of 

different contrast intensities presented to the left or right visual field. Each contrast intensity was presented 48 

times, similar to the number of trials used during the experiment. We next fitted psychometric function to the 

proportion of rightward choices using Equation 6 to extract the slope as a measure of sensitivity. The sensitivity loss 

was computed as the ratio of two slopes which indicated the percent of drop of slope steepness caused by choice 

history biases. Each run was simulated 500 times for each subject and the median decline of sensitivity is shown in 

Figure 4A. Each subject model was constructed by taking the average weights of multiple runs collected during the 

experiment.  

Fitting psychometric curves 
The psychometric function models the relationship between the stimulus intensity and subject’s responses. For each 

run, the fit was applied to the proportion of rightward choices when stimuli were presented to the right or left (see 

Figure 2). This approach to fitting psychometric curves is more general as it helps to estimate left/right choice biases 

(64). The psychometric function had the following form: 
 

Y(x;a,b,l) = l + (1- 2l)F(x;a,b), (6)  

where a and b are free parameters that correspond to the threshold and slope of the psychometric function. l

is the lapse rate which indicates unintentional errors that occur when the stimulus is obvious. The lapse rate was 

computed as a proportion of errors when the stimulus was clearly visible (60). The stimulus was clearly visible at 3% 

contrast for data collected at RIKEN and Stanford and 8% for the data acquired at the UCL (mean l = 0.02, 95% CI 

[0.01, 0.03]). The same lapse rates were also used in estimating the weights of the probabilistic choice model. Low 

lapse rates confirm that subjects were alert to the task and choice history biases were not a result of inattention, 

but rather unintended misses. We applied probit analysis in which the psychometric function, F(x;a,b), was a 

cumulative Gaussian: 

  F(x;a ,b ) =
1

2pb
e

-
(x-a )2

2b2

-¥

contrast

ò , (7)  

We chose probit analysis because it provided a better fit compared to the logistic function and is also one of the 

most commonly used psychometric functions (65). To assess changes in subjects’ performance, we computed the 

slope and 75% contrast threshold of psychometric functions. The threshold was computed as a contrast increment 

that allowed subjects to reach 75% performance from 50% performance. 

Variance inflation factor 
Changing trial order statistics introduces relationship between previous trial and current trial and potentially 

between choice-history bias parameters and stimulus contrast parameters, such that our predictor variables could 
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be determined by other predictors in the model. This relationship is called collinearity and can affect accuracy of 

estimating model weights (66), which is computed as 1/ (1- R2 )  where R2 correlation is computed by regressing 

each parameter of the model with the remaining parameters (67). When R2 is close to 0 (little correlation between 

parameters), VIF is close to 1 which indicates no collinearity effects while larger R2 values lead to larger VIF and 

values above 5 mark a collinearity problem.  

To ensure that we were actually measuring induced biases and that our trial order manipulations did not spuriously 

cause changes in fitted choice history weights, we ran several control analyses. We evaluated whether changing trial 

order statistics introduced collinearity among model weights by computing variance inflation factor and found no 

collinearity effects in our data (Mvif = 1.07, 95% CI[1.06, 1.08]). We also permuted (scrambled) subjects’ responses 

within each run 10 times, and fitted the model to these data to estimate choice-history biases. This approach 

preserved trial sequence structure generated through trial order manipulations, but eliminated subjects’ choice-

history biases. We found that choice history weights, as expected, were not different from 0 (mean bFail = -0.003, p 

= 0.1; mean bSuccess = -0.002, p = 0.2). We ran another validation by simulating an observer based on subjects’ model 

weights after removing choice-history biases (history weights were set to 0) and found that our trial order 

manipulations did not induce any artificial biases in the induced direction (all p > 0.05, one-tailed t-test comparison 

to 0). 
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Figure Legends 
 

Figure 1. Task design and examples of psychometric functions biased by the previous choice. Subjects performed 

a two-alternative forced-choice discrimination of whether a sinusoidal grating presented against a gray 

background (A, RIKEN and Stanford subjects) or superimposed on visual noise (B, UCL) was to the left or right of 

fixation. C-E: Examples of psychometric curves for three subjects sorted by whether the previous trial was a left 

(red) or right (blue) choice. Stimulus contrast (abscissa) is coded as positive for a stimulus on the right and negative 

for the left. Examples of subjects without any bias (C), a tendency to switch sides (D) and, a tendency to stay (E) are 

depicted. In each case, a probabilistic choice model fitted to each subject’s data accurately fitted these effects 

(lines and shaded areas indicating 68% confidence intervals). Error bars for the data are bootstrapped SEM. 

 

Figure 2. Probabilistic choice model and statistical test for the role of choice history terms. A: The probabilistic 

choice model represents choices as a linear sum of sensory evidence (contrast), choice-history biases (successes 

and failure) and general L/R bias as predictors. Dashed boxes show example of predictors from one trial. Fitted 

weights of the model provide the estimate of the magnitude of influence of sensory and non-sensory terms 

rectified using the lapse rate (l). The weighted sum can be transformed into choice probability using the logistic 

function. The model can then simulate trial-by-trial choices by “flipping the coin” using choice probability p. 

Modified with permission from Busse et al. (14). B: Proportion of runs for each subject for which the full model 

(blue) or no history model (red) provided better fits according to a likelihood ratio test. 

 

Figure 3. Quantifying choice-history biases. A, B, C: Choice-history and contrast weights of probabilistic choice 

model averaged across subjects for data collected across diverse demographics at RIKEN (A), Stanford (B) and UCL 

(C). Error bars are bootstrapped SEM. D: Success and failure biases of individual subjects colored according to 

whether subjects had (or were in the process of obtaining) a PhD (red, large dot is mean across these subjects) or 

not (orange). Example subjects from previous figures are indicated. Error bars are SEM. 

 

Figure 4. Bias-driven sensitivity loss. A: Biases can significantly reduce visual sensitivity when comparing the slope 

of psychometric function from responses simulated with and without biases. Black circles show subjects with 

significant median decline in visual sensitivity (p < 0.01). Error bars are median bootstrapped 95% CI. B: Sensitivity 

decline matrix shows simulated median loss in sensitivity as a function of choice history biases using average 

sensory weights across all subjects. Each grid point shows the median decline in sensitivity over 200 simulation 

runs. Circles show individual mean biases. 

 

Figure 5. Induced choice-history biases A: Subject by subject choice history weights for experiments in which trial 

statistics were manipulated such that on 80% of trials stimulus presentation location was switched after a failure 

(open circles) or stayed on the same side (closed circles). The gray arrow shows the mean group shift from origin to 

displacement. B: Same conventions as A, but for when trial statistics were manipulated after successes. 
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Figure 6. Biases are easier to induce when they align with subject’s natural biases. Data from Figure 5 are plotted 

for each condition against experimental runs in which trial order was completely randomized (open circles), which 

we use as a measure of subject’s natural bias. Subjects had a tendency for switch-after-failure and stay-after-success 

(gray arrows all begin in lower-right quadrant). Inducing in this same direction (panels A and C) resulted in large 

adaptation effects, whereas inducing in the opposite direction (panels B and D) resulted in small if any changes. Gray 

arrows show the mean group shifts from origin to displacement. Plotting conventions similar to Figure 5.  

 


