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Highlights 

 
 

- We review the literature on movement-related potentials - the BP, the CNV 

and the LRP, in PD. 

- There is clear evidence that the early BP and CNV are affected in dopamine-

dependent manner in PD. 

- LRP studies suggest impairment of motor control processes relating to the late 

preparation in PD.  

 

Abstract 

To date, many different approaches have been used to study the impairment of 

motor function in Parkinson’s disease (PD). Event-related potentials (ERPs) are 

averaged amplitude fluctuations of the ongoing EEG activity that are time locked to 

specific sensory, motor or cognitive events, and as such can be used to study different 

brain processes with an excellent temporal resolution. Movement-related potentials 

(MRPs) are ERPs associated with processes of voluntary movement preparation and 

execution in different paradigms. In this review we concentrate on MRPs in PD. We 

review studies recording the Bereitschaftspotential, the Contingent Negative 

Variation, and the Lateralized Readiness Potential in PD to highlight the contributions 

they have made to further understanding motor deficits in PD. Possible directions for 

future research are also discussed. 

 

Keywords: Movement-related potentials, Bereitschaftspotential, Contingent Negative 

Variation, Lateralized Readiness Potential, Parkinson’s disease.  

  



  

Movement-related potentials in PD 

 3

Abbreviations 

BP = Bereitschaftspotential; CNV = Contingent Negative Variation; CRT = Choice 

Reaction Task; DBS = Deep Brain Stimulation; DT = dopaminergic therapy; EEG = 

electroencephalography; ER = Error Rate; ERP = Event-related potential; GPi = 

globus pallidus pars interna; LRP = Lateralized Readiness Potential; M1 = Primary 

Motor Cortex; MEG = magnetoencephalography; MP = motor potential; MRP = 

Movement-related potential; NFB = neurofeedback; NS = Negative Slope; PD = 

Parkinson’s disease; PMP = premotor positivity; PSP = Progressive Supranuclear 

Palsy; RT = Reaction Time; SMA = supplementary motor area; SNPc = substantia 

nigra pars compacta; SRT = Simple Reaction Time Task; SPN = Stimulus Preceding 

Negativity; STN = subthalamic nucleus; TMS = transcranial magnetic stimulation; 

VP = vascular parkinsonism. 
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1. Introduction 

Parkinson’s disease (PD) is a chronic neurodegenerative disease marked by 

degeneration of the substantia nigra pars compacta (SNpc) and accumulation of 

aggregated α-synuclein in specific brain stem, spinal cord and cortical regions and 

characterized by disturbed motor functioning, clinically manifested as bradykinesia, 

rigidity and resting tremor (Lees et al. , 2009). In addition to the lack of dopamine, 

which is the major pathophysiological hallmark of the disease, other neurotransmitter 

systems, such as those involving acetylcholine, noradrenaline and serotonin play a 

crucial role in the pathophysiology of the disease (Barone, 2010). Many different 

approaches to study the motor impairment in PD have been applied, one of which is 

the recording of event-related potentials (ERPs). ERPs are averaged amplitude 

fluctuations of the ongoing electroencephalographic (EEG) activity that are time 

locked to certain sensory, motor or cognitive events (Luck, 2014). The procedure is 

non-invasive and has been employed to study different cognitive and motor 

phenomena (Picton et al. , 2000) with an excellent temporal resolution. The ERPs can 

be evoked by external stimuli, or can be ‘emitted’ by the brain as it processes 

information to produce a response. Movement-related potentials (MRPs) are ERPs 

associated with processes of voluntary movement preparation, initiation and 

execution in different paradigms, with the movement execution encompassing the 

time immediately after movement completion (Colebatch, 2007). In general, two main 

types of anticipatory slow waves preceding movements can be distinguished: the 

Bereitschaftspotential (BP), and the Contingent Negative Variation (CNV). In 

addition, movement preparation can also be studied by analyzing the lateralized 

readiness potential (LRP), which is derived by subtracting the ipsilateral from the 
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contralateral movement-related slow wave activity over the motor cortex. The 

Stimulus Preceding Negativity (SPN), which is sometimes regarded too as an MRP 

(Brunia et al. , 2012), was primarily conceptualized by the observation, that a slow 

negativity similar to the CNV can be seen even without a motor response (Brunia, 

Boxtel, 2012). SPN will not be discussed here, as this potential is strictly speaking not 

an MRP; while in MRPs amplitude rises until the time-point of responding, the 

negative slope in SPN ends before stimulus onset – long before the response onset.   

The aim of this review is 1) to give an overview of MRPs in PD by 

highlighting the major findings from the studies published to date and 2) to highlight 

possible directions for future research. In each section (e.g. BP, CNV, LRP), the ERP 

will be first defined, followed by a review of the literature on the corresponding 

potential in PD. Studies measuring the classical amplitude/latency based approach 

were included in this review. The cognitive ERPs in PD are reviewed in a separate 

paper (Seer et al., under review).  

 

2. The Bereitschaftspotential in Parkinson’s disease 

When a simple voluntary movement (e.g. finger movement) is made, a slowly 

rising, negative potential appearing 2 to 1 s prior to the movement can be registered in 

the EEG at central electrodes (Jahanshahi and Hallett, 2002, Shibasaki and Hallett, 

2006). This potential – the Bereitschaftspotential – was first described about 50 years 

ago (Deecke et al. , 1969, Gilden et al. , 1966, Kornhuber and Deecke, 1964, 

Kornhuber and Deecke, 1965), and it has been broadly accepted in the research and 

clinical community as a useful tool for exploring motor physiology in neurological 

populations (Table 1).  
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 A few distinct components can be discerned during the course of the BP (Fig. 

1). The first part of BP, starting 2 to 1 s before a movement, is the so-called ‘early 

BP’, and has a more diffuse, yet midline distribution over the cortex. The early BP is 

thought to reflect more general preparation for the forthcoming movement 

(Jahanshahi and Hallett, 2002, Shibasaki and Hallett, 2006) and its generation has 

been linked to the pre-supplementary motor area (pre-SMA), supplementary motor 

area (SMA) and the lateral premotor cortex bilaterally corresponding to the Brodmann 

area 6 (Brunia, Boxtel, 2012, Shibasaki and Hallett, 2006). The early BP is followed 

by the ‘late BP’ (Shibasaki and Hallett, 2006), starting 400-500 ms before the 

movement, characterized by a sudden shift of the gradient of the negativity at the 

central electrodes contralateral to side of movement (e.g. C1 and C3 for the right 

sided movements and C2 and C4 for the left-sided movements according to 10-20 

system). This late BP has been related to activation of the primary motor cortex 

(Brunia, Boxtel, 2012). As we will see later on, there is indeed evidence that these 

two BP components are functionally related to different brain areas. It is worth noting 

that in the literature different terminology has been used to refer to these earlier and 

later phases of the BP (Jahanshahi and Hallett, 2002). Therefore, while ‘early BP’ has 

been variably referred to as simply ‘BP’, ‘BP1’(Deecke, Scheid, 1969), or negative 

slope 1 (NS1), ‘late BP’ has been referred to as BP2 (Deecke, Scheid, 1969), negative 

slope (NS’) (Shibasaki and Hallett, 2006), negative slope 2 (NS2). The components 

following late BP – the premotor positivity (PMP) seen 50 ms before the movement, 

and the motor potential (MP) occurring 10 ms before the movement onset, as well as 

the post-motor potentials (Shibasaki and Hallett, 2006) – will not be discussed in this 

review because they have been less investigated in PD.  
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The major clinical presentation of PD is impairment of movement related to 

the dysfunction of the basal-ganglia-thalamo-cortical circuits (including the SMA, 

which is strongly implicated in the generation of the BP) (Jahanshahi and Hallett, 

2002). Therefore, it seems reasonable to expect BP alterations in patients with PD. 

The studies, which have recorded the BP in PD, are summarized in Table 1. Indeed, 

most of the studies (Dick et al. , 1987, Dick et al. , 1989, Jahanshahi et al. , 1995) 

reviewed in detail elsewhere (Praamstra et al. , 2002) have found BP amplitude 

reduction in patients with PD (but see Barrett et al. 1986). In contrast, prolongation of 

the latency of the BP, regarded as a marker of the slowness of movements in PD, was 

only infrequently reported (Shibasaki et al. , 1978). As prolonged BP latency in PD 

was not replicated in later studies, this finding could be a result of the suboptimal 

averaging methodology used in this early study on BP (Praamstra, Jahanshahi, 2002).  

MRP studies have looked in more detail at different aspects of the BP in PD. 

For example, Dick, Rothwell (1989) found lower amplitude of the early BP and 

higher amplitude of the late BP in PD patients off dopaminergic medication, 

interpreted as indicating reduced SMA activity and compensatory activity of M1. In 

an earlier study from the same group (Dick, Cantello, 1987) by comparing PD 

patients on and off dopaminergic medication and healthy participants after taking 

levodopa or a dopaminergic antagonist, the authors found that levodopa 

administration increased the amplitude of the early BP in both PD patients and 

healthy controls. In healthy controls, dopaminergic antagonist decreased the 

amplitude of the early, but not the late BP. In addition, there was no effect of 

levodopa on the late BP in healthy controls and there was no difference in the peak 

BP (late BP) between PD off medication and healthy subjects. In contrast, chronic 
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administration of levodopa in de novo PD patients increased the amplitude of the late, 

but not the early BP (Feve et al. , 1992) (Fig. 2).  

Even though the results of the studies presented above differ considerably, the 

difference in the results could be due to methodological differences, such as acute 

(Dick, Cantello, 1987) vs. chronic levodopa administration (Feve, Bathien, 1992). 

Notwithstanding these inconsistencies, both studies suggested that the early BP 

amplitude reduction in PD is sensitive to dopaminergic medication. Later studies shed 

light on the different generators of the early vs. late BP components. In a combined 

PET-EEG study, Jahanshahi, Jenkins (1995) (Fig. 3) compared self-initiated and 

externally triggered (by auditory cue, see also Kopp et al. (2000)) finger extension 

movements in PD patients and age-matched healthy participants. In order to control 

for the effect of the auditory cue, they also presented the same tone 100 ms after the 

self-initiated movements. Strictly speaking, only self-paced voluntary movements are 

preceded by the BP, as these are not executed in an automatic fashion but with a 

willful realization of the intention to move at a particular time (Lang, 2002). Any 

interference with the self-pacing, such as external cueing, interrupts this condition, 

even though externally-paced movements also produce movement-related cortical 

negativity prior to movements, which is more precisely designated as a MRP, rather 

than a BP (Jahanshahi and Hallett, 2002). The results showed that the early and peak 

BP amplitude was lower in PD than in healthy controls for self-initiated movements, 

but there was no difference in MRPs for externally triggered movements between the 

two groups. The electrophysiological findings for the self-initiated movements (lower 

early BP in PD patients) were accompanied by significantly reduced activation of the 

SMA in PD relative to healthy controls, which supports the notion that the SMA 

contributes to the early BP. Further evidence for the dissociation of BP 
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subcomponents was provided in a study by Cunnington et al. (1995), who tested the 

effect of external cues on MRPs. By comparing the response on external vs. no cue 

trials in PD and healthy participants, they found a greatly reduced early MRP in PD. 

Furthermore, when the cue was present the early MRP was reduced in both PD and 

healthy participants. These findings were interpreted as suggestive of impaired 

internal control mechanisms in PD dependent on the SMA. Namely, the coordination 

of an internally guided movement sequence comes from the basal ganglia that project 

to the SMA, considered as the likely generator of the early MRP (BP) slope. This 

signal then initiates submovements at appropriate times. This mechanism is therefore 

insufficient in PD (reduced early MRP compared to healthy controls in non-cued 

condition), which also makes PD patients more reliant on external cueing in which the 

coordinating signal bypasses the basal ganglia and the SMA and probably operates by 

engagement of other parts of the motor cortex, presumably the lateral premotor area 

(Cunnington, Iansek, 1995). Taken together, the evidence from the studies presented 

above suggests that the deficit in motor preparation in PD is reflected in the lower BP 

amplitude, mainly restricted to the early part of the potential. Second, data from PD 

studies do suggest that there is a functional segregation of different BP 

subcomponents (e.g. functional dependence of the early BP on the SMA). Third, there 

is a dopaminergic dependence of BP amplitude, such that administration of 

dopaminergic medication increases the early BP amplitude.  

A study by Filipović et al. (1997) aimed at elucidating the functional 

significance of the attenuation of the BP amplitude in PD by correlating individual BP 

amplitudes to different response time measures. They found a negative correlation 

between the amplitude of the early BP and a specific response latency measure: the 

difference in response latency between complex and simple reaction time tasks, which 
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they interpreted as evidence for reduced movement pre-programming in PD patients. 

However, one of the limitations of research on response selection and motor 

preparation using RT tasks is the lack of temporal resolution to identify the exact time 

course of processes that occur between stimulus presentation and response initiation. 

In another study (Filipović et al. , 2001) they compared the BP in depressed and non-

depressed patients with PD. The results showed that both depressed and non-

depressed PD patients had lower overall BP amplitudes compared to healthy 

participants, but there was no evidence of modulation of the BP amplitude as a 

function of depression in PD. In a more recent study, the effect of neurofeedback 

(NFB) training for slow cortical potentials on increasing the amplitude of BP was 

tested in PD and healthy participants (Fumuro et al. , 2013). As expected, PD patients 

showed lower early BP. In good NFB performers, NFB increased the amplitude of the 

early BP in both PD and healthy participants, suggesting the potential of NFB training 

to enhance the excitability of cortical areas related to voluntary movement 

preparation. Hence, the authors concluded that by helping patients to modulate the BP 

amplitude, NFB might be a promising means for improving motor performance in 

PD.  

All of the studies mentioned above assessed the BP response during 

performance of voluntary movements of the upper limb. Vidailhet et al. (1993) 

recorded the BP response while stepping in a standing position and when moving the 

feet in a sitting position in PD patients off medication and healthy participants. They 

found that the BP amplitude preceding stepping movements in a standing position 

was higher than the BP amplitude preceding feet movements while sitting in healthy 

participants, but not in PD. This was interpreted as reflecting an impairment of 

preparation and assembly of the complex sequences of movements necessary to 
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initiate walking in PD. In a later study by using the same protocol, they found that in 

patients with isolated gait ignition failure, a condition similar to the freezing of gait 

phenomenon in PD (Taskapilioglu et al. , 2009), there was an increase of BP 

amplitude on stepping while standing compared to foot movements while sitting, 

indicating different mechanisms of isolated gait ignition failure compared to gait 

ignition failure in PD (Vidailhet et al. , 1995).  

The impact of subcortical surgery on the BP has been addressed in a few 

studies. Limousin et al. (1999) examined the effect of unilateral pallidotomy in PD 

patients off medication before and three months after surgery. The results showed that 

there was an increase in the slope of the late BP contralateral to the side of 

pallidotomy, suggesting that pallidotomy improved mainly the later stages of 

movement preparation in the limb contralateral to the lesion in the internal segment of 

the globus pallidus (GPi). In another study comparing six PD patients operated with 

GPi deep brain stimulation (DBS) to six PD patients operated with subthalamic 

nucleus (STN) DBS, Brown et al. (1999) failed to find a difference in the amplitude 

of either the early or late BP between DBS on versus off conditions. A co-occurrence 

of the pre-movement potentials recorded from the DBS electrodes chronically 

implanted in the STN and electrodes over the scalp was shown in PD patients while 

they performed self-paced movements (Paradiso et al. , 2003). The onset latency of 

MRPs recorded from the STN and from the scalp surface did not differ significantly, 

indicating a direct involvement of the STN in generation of MRPs.  

In summary, there is clear evidence that the BP is affected in PD, mostly 

reflected in the lower early BP amplitude that can be increased by dopaminergic 

medication, which in turn suggests a clear dependence of the early BP on the 

dopaminergic system. This potential has mostly been explored in tasks involving 
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upper limb movements, but can also precede movements of other body parts, such as 

lower limbs or tongue movements (Shibasaki and Hallett, 2006).  BPs prior to such 

movements of other body parts have to be explored in more detail in future studies. 

Similarly, the possibility offered by DBS to experimentally manipulate the functional 

activity of the basal ganglia-thalamo-cortical circuits should be addressed more 

extensively in future studies.  

 

3. Contingent Negative Variation in PD 

The CNV is a slow negative brain potential that develops between two 

consecutive stimuli, S1 and S2, where S1 is a warning (contingent, anticipatory) 

stimulus anticipating the imperative S2 stimulus that signals initiation and execution 

of a motor response. The CNV represents the neural activity necessary for 

sensorimotor integration or association and is related to planning or execution of 

externally-paced, voluntary movements (Brunia, Boxtel, 2012). Data indicate that 

premotor and prefrontal cortices, including the SMA, as well as the basal ganglia are 

important in generation of this cortical activity. The early CNV component is more 

frontally distributed and involves the prefrontal cortex, SMA and cingulate cortex and 

is linked to the arousal and attention associated with S1. The late CNV has a more 

central distribution and CNV-like activity can also be recorded from the putamen, 

implying a crucial importance of the basal ganglia-thalamo-cortical circuits in CNV 

generation as well (Brunia, Boxtel, 2012). Pharmacologically, the most explicit model 

for the CNV states that its amplitude is determined by the activity of cholinergic 

neurons, which are in turn under the control of other neurotransmitters – dopamine, 

noradrenaline and gamma-aminobutyric acid (Brunia, Boxtel, 2012).  
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A number of investigators have recorded the CNV in PD (see Table 2). Ikeda 

et al. (1997) investigated the CNV and BP in patients with PD and Progressive 

Supranuclear Palsy (PSP) and related MRP amplitudes to the severity of symptoms. 

The BP and CNV amplitudes for patients with mild symptoms did not differ 

considerably from those of healthy age-matched controls. However, in patients with 

severe symptoms, while the BP was normal, the late CNV was very small or absent 

and it was smaller than in healthy participants. It was concluded that the late CNV 

rather than the BP reflects the severity of parkinsonian symptoms, and that the 

dissociation between the two surface negative slow potentials strongly supports the 

different generating mechanisms at the level of subcortical structures; the late CNV 

being more related to the basal ganglia, whereas the BP might be more associated 

with other structures including the cerebellum. Oishi et al. (1995) also compared the 

CNV and BP in 10 PD and 10 vascular parkinsonism (VP) patients. The early CNV 

and BP amplitudes were lower in PD and VP patients when compared to healthy 

controls. Also the latencies of the early and late BP were longer in PD and VP, 

suggesting impaired voluntary movement programming in both PD and VP patients. 

In a recent study by measuring the CNV as an electrocortical correlate of preparation 

for action, Renfroe et al. (2016) tested whether PD patients would be less prepared for 

action under threat of loss compared to age-matched healthy controls. PD patients 

showed generally reduced action preparation (i.e. reduced CNV amplitude) compared 

to healthy participants, but there was no difference between the two groups when 

additional negative incentives (threat of loss) were added, indicating that even though 

action preparation is impaired in PD, this is not emotion- or valence specific and that 

movement preparation in PD may potentially be helped by adding positive incentives.  
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Similar results were obtained in a study by Wascher et al. (1997), in which 

they found a lower CNV amplitude and force in PD, but no difference in the 

lateralized readiness potential (LRP, the latter potential is elaborated in more detail 

below), reflecting reduced activation of movement preparation, but unimpaired 

response selection, respectively. In an earlier study Wright et al. (1993) compared 20 

PD and 30 age-matched healthy individuals on a simple response time task in which a 

central arrow cue directed the participants’ attention to the probable location of a 

lateralized target stimulus which was validly or not validly cued. In addition to 

isolating other non-motor ERP components that are beyond the scope of this review, 

the most striking finding was diminished CNV amplitudes in PD patients compared to 

healthy participants, indicating impaired response preparation in PD.  

Bötzel et al. (1995) compared PD patients with older and younger healthy 

controls during execution of simple (SRT) and choice (CRT) reaction time tasks. 

They found a clear CNV in young healthy individuals, small CNV amplitude in older 

healthy people and absent CNV in PD patients. In addition, there was also a positive 

slowly increasing wave frontally whose steepness decreased as a function of task 

complexity and age in controls, but not in PD. In PD, the relationship between task 

complexity and the steepness of the potential was absent or even reversed, with a 

slightly larger frontal positivity in CRT than in SRT. In addition, in PD the reaction 

times were disproportionally longer in SRT compared to CRT. The results of this 

study were interpreted as indicating greater impairment in storing or initiating simple 

preprogrammed motor responses in the SRT task in PD patients compared to selecting 

and initiating the motor response in the more complex CRT task. Cunnington et al. 

(2001) found generally reduced CNV amplitude, a frontal shift of CNV and a 

particularly pronounced CNV amplitude reduction over the midline and ipsilateral to 
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the side with greater basal ganglia impairment in PD patients compared to age-

matched healthy controls. Similarly, CNV amplitude has been shown to be attenuated 

in PD patients during performance of a Go/NoGo task (Pulvermüller et al. , 1996). 

As for the effect of different clinical manipulations, such as dopaminergic 

medication or surgical treatment of PD on the CNV amplitude, Amabile et al. (1986) 

tested 47 PD patients off medication (after a pharmacological washout-period of 

seven days), and then 15 days and 30 days after the re-start of dopaminergic 

medication. The CNV amplitude increased after the start of the dopaminergic 

medication. This was replicated in other studies (Lukhanina et al. , 2006). These 

results are, therefore, similar to the results for BP indicating dependence of the CNV 

generation on dopaminergic processes.  

Furthermore, Gerschlager et al. (1999) found that the CNV amplitude in PD 

patients treated with STN DBS was higher on than off stimulation (Fig. 4). In 

addition, the amplitude was higher in healthy participants compared to PD off 

stimulation at the frontal and frontocentral electrodes, but not at the electrode sites 

located more posteriorly (i.e. centrally and parietally). These between-subject 

differences were diminished when PD patients were on stimulation, indicating 

improvement of the impaired cortical functioning in PD mainly in the frontal and 

premotor areas. Gironell et al. (2002) tested eight PD patients before and after 

unilateral pallidotomy. They recorded ERPs during self-paced finger movements 

(BP), a Go/NoGo task (CNV), and found an increase of the late BP contralateral to 

the pallidotomy but no change in CNV suggesting that neurophysiological changes 

after pallidotomy are mainly in the last stages of movement preparation and 

execution. A reduction of the early BP and absence of the CNV indicating difficulties 

in preparing and maintaining preparation for a forthcoming movement were observed 
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in a patient with accidental bilateral lesions of the globus pallidus (Kuoppamäki et al. 

, 2005).  

In conclusion, the CNV has provided the opportunity of investigating motor 

preparation in anticipation of imperative stimuli. Similar to the BP, the available data 

suggest that the CNV amplitude is reduced in PD. This reduction can be restored by 

either dopaminergic medication or other treatment options, such as STN DBS. In 

contrast to the BP, the CNV is inherently externally induced, as the movement 

triggered by the imperative stimulus (S1) is cued by a contingent stimulus (S2). As 

such, the CNV offers the possibility to use more complex paradigms and experimental 

designs and addressing questions such as the interaction of the attentional and 

preparatory motor processes in movement execution. As this potential is 

pharmacologically related to the cholinergic system, it also offers the possibility to 

more directly explore the role acetylcholine plays in generation (planning and 

execution) of movements in PD.  

 

4. The Lateralized Readiness Potential in PD 

 The BP and CNV do not give a clear picture of lateralized movement-related 

activity. A procedure of subtracting the ipsilateral from the contralateral EEG activity 

provides the opportunity to examine with greater precision the cortical activity related 

to the preparation of the contralateral limb movement initiation. This yields the so-

called LRP (Smulders and Miller, 2012). The onset of the LRP has been shown to be 

a sensitive marker of response preparation, indexing the time at which response 

preparation becomes selective with respect to the hand. Indeed, CNV is thought to 

reflect a rather widespread cortical activation not restricted to a specific effector 

involved in subsequent motor execution and can thus be considered to represent the 
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non-specific activation aspect of movement preparation. In order to reveal more 

specific aspects of movement preparation, the activation pattern of the cortex 

contralateral to the hand initiating and executing the movement has to be examined. 

This can be achieved by the subtraction procedure [Left hand(AmpC4(t)-AmpC3(t)) + 

Right Hand(AmpC3(t)-AmpC4(t))]/2, where AmpC3 and AmpC4 is the potential at C3 and 

C4 locations in a specific time interval t. The first part of the equation refers to the 

amplitude of the LRP when a movement of the left hand is required, and the second 

part of the equation refers to the LRP amplitude when a movement of the right hand is 

required. As a result, positive values indicate incorrect response tendencies, whereas 

negative values indicate correct response tendencies. Typically, positive deflections 

occur relatively early after stimulus onset (particularly in tasks where conflicting 

response tendencies are induced) and are then followed by negative deflections that 

occur before the response. When locked to the stimulus, the LRP is considered to be a 

good measure for the timing (onset latency) and extent (amplitude) of response 

tendencies and response selection and therefore mainly reflects the ‘cognitive’ or 

‘higher order’ aspects of movement preparation (Smulders and Miller, 2012).  

In PD, the stimulus-locked LRP has been used mainly to explore the processes 

of action selection in conflictual situations using different tasks, such as the flanker 

(Falkenstein et al. , 2006, Praamstra et al. , 1998) and Simon tasks (Praamstra and 

Plat, 2001), (see Table 3). For example, Praamstra et al. (1996) (Fig. 5) compared the 

CNV and the LRP response in a visual CNV paradigm between PD patients and 

healthy controls. The CNV amplitude was lower in PD and there was no difference in 

the temporal LRP parameters (i.e. the onset latency), but the LRP was extended more 

frontally in PD and was more focal in healthy controls suggesting different cortical 

organization of movement preparation in PD. They also found evidence of greater 
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attentional demands elicited by the S1 stimulus in PD, suggestive of greater effort 

during response preprograming in these patients. The same authors (Praamstra, 

Stegeman, 1998) compared performance on a flanker task by PD patients and healthy 

controls. In this paradigm the participants are required to react to a target stimulus 

(e.g. an arrow pointing to the left) while ignoring task-irrelevant information that is 

presented simultaneously by flanking stimuli, typically either in a congruent (e.g. 

flanking arrows pointing to the left) or an incongruent (e.g. flanking arrows pointing 

to the right) manner. PD patients showed higher amplitude of the initial positive LRP 

deflection (i.e. incorrect response tendency) on incongruent trials compared to 

controls. In addition, PD patients also showed longer RTs in incongruent trials than 

healthy controls. These findings indicated that PD patients are influenced by 

incongruent information to a larger extent than controls. Furthermore, in general the 

LRP latency of the negative deflection was shorter for PD than for controls, and this 

difference was based on shorter LRP latencies in PD patients on congruent trials. 

These results suggested intricate changes in sensorimotor integration underlying the 

PD patients’ increased dependence on external cues for response initiation that might 

be related to a possible compensatory mechanism or strategy that evolves with disease 

progression and incorporates the alterations in cortical physiology caused by the 

disease. A similar flanker task was used by Falkenstein, Willemssen (2006). In 

contrast to the findings by Praamstra, Stegeman (1998), Falkenstein, Willemssen 

(2006) reported lower incorrect response activation (i.e. lower positive LRP 

deflections) by incongruent flankers in PD patients compared to controls. Further, 

they found earlier negative LRP onsets on incongruent trials in PD patients compared 

to controls. These divergent results across studies may be attributed to differences in 

the tasks used in the two studies and to the fact that Falkenstein, Willemssen (2006) 
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tested the patients on medication, whereas Praamstra, Stegeman (1998) tested the 

participants off medication. The flanker task was also used by Rustamov et al. (2013), 

who showed that patients with PD and healthy controls show similar congruency 

effects as judged by RTs, and the initial positive deflection of the LRP. However, 

these measures were modulated by sequential effects of stimulus congruency across 

consecutive stimuli (‘congruency sequence effect’, see Rustamov, Rodriguez-Raecke 

(2013) for detailed explanation) in controls, but not in PD patients. This pattern of 

results indicates a lack of adaptive modulation over time (cognitive inflexibility) with 

relatively spared abilities to instantaneously exert control over action selection.  

Praamstra and Plat (2001) used the Simon stimulus-response compatibility 

task, where on some trials, the spatial position of the stimulus is incompatible with the 

required response, hence producing conflict and prolonging RTs. They showed that 

inhibitory modulation of the automatic, stimulus-driven, visuomotor activation of the 

incorrect response occurs after the initial sensory activation of motor cortical areas. In 

this study RTs were shorter in PD than in healthy controls. Moreover, in contrast to 

healthy controls, the LRP amplitude but not the LRP latency was higher in both 

compatible and incompatible trials for PD patients. Therefore, the visuospatial 

positioning of the target stimuli was accompanied by activity over the motor cortex 

with similar latencies but enhanced amplitude in PD patients compared to controls.  

Longer RTs and delayed LRPs were recorded in PD patients compared to 

healthy participants in a study employing a choice reaction time task, indicating both 

motor and premotor slowing in PD (Low et al. , 2002). By using LRPs and the 

masked priming paradigm (masked subliminal presentation of visual stimuli), Seiss 

and Praamstra (2004) evaluated covert inhibition in PD and young and elderly healthy 

controls. They found that while for young controls covert response activation induced 
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by a subliminal prime was inhibited when a 100 ms delay was introduced between the 

prime and target (so called ‘negative compatibility’ effect), this covert inhibition was 

reduced in PD and to a lesser extent for the elderly controls, suggesting that deficient 

inhibition may contribute to the greater susceptibility of PD patients to response 

interference.  

Taken together, the LRP studies reviewed here suggest further impairment of 

motor control processes in PD patients, particularly the late preparation of the 

contralateral motor cortex controlling the responding hand which could not be 

revealed by using the BP and CNV alone. Indeed, because of the subtraction 

procedure, this potential has been widely interpreted as a manifestation of the hand 

specific response activation (Smulders and Miller, 2012), which at the same time 

offers the possibility to index the exact time of hand-specific response preparation. 

Therefore, this potential offers the possibility first, to more precisely ‘dissect’ the time 

course of motor preparation, response initiation and execution and second, to relate 

more reliably the electrophysiological (LRP) findings to the experimental effects on 

RT, which cannot be achieved with such a precision by the use of the other (BP and 

CNV) MRPs described here.  

 

5. Conclusions and future directions 

The advent of MRPs has definitely triggered decades of high quality research 

in the field of motor physiology in both healthy participants and patients with 

movement disorders and particularly individuals with PD.  

 In general, there is strong and consistent agreement across studies that 

processes reflected by the different ERP components reviewed here, namely the BP, 

CNV, and LRP are disturbed in PD. This is most commonly seen as attenuated 
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amplitudes of these potentials in PD patients when compared to healthy controls 

(especially true for the early BP and the CNV). Importantly, decreased MRP 

amplitudes in PD appear to be amenable to clinical manipulations, such as 

dopaminergic treatment or DBS. These effects are sometimes subcomponent-specific, 

such as a selective increase of the early BP by dopaminergic medication.  

 An interesting point is that this ‘spectrum’ of MRPs reveals different 

properties of motor preparation in PD. While the BP can be regarded as a rather 

‘pure’ motor potential most commonly recorded by time locking to self-paced 

voluntary movements, the CNV reflects processes of movement preparation in 

anticipation of imperative stimuli. The essence of the LRP is reflected in the double 

subtraction procedure (Smulders and Miller, 2012), rendering the choice of tasks that 

can be used to record this potential quite broad. As quite complex tasks have already 

been used to trigger LRPs, the potential role of this component to reveal more subtle 

processes related to motor control is vast, especially taking into account the most 

prominent advantage of this MRP compared to the others – the fact that it is hand 

specific (i.e. lateralized). Related to this, it can be regarded as a sensitive marker of 

response preparation, indexing the time at which response preparation becomes hand 

specific (Smulders and Miller, 2012).  

 Although much has been done to date to reveal the different processes 

represented by the MRPs (Jahanshahi and Hallett, 2002), there are still many 

unresolved issues that have to be addressed in future studies, especially regarding the 

functional significance of the potentials, their neuropharmacology and their likely 

generators (Verleger, 2002). In this regard, studies in PD and other movement 

disorders are more than welcome, as the knowledge of the pathophysiology of PD 

may help address questions such as which brain regions contribute to generation of 
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MRPs and in which way. Furthermore, even though the question of the modulation of 

the MRPs by different neurotransmitters has been addressed since the early studies 

(Dick, Cantello, 1987, Dick, Rothwell, 1989), there is still a need for further studies to 

first, replicate these early findings, and second, to address the question of the 

modulation of the MRP by other neurotransmitter systems (e.g. acetylcholinergic, 

noradrenergic, serotoninergic), as it is improbable that the neural processes 

underlying EEG activity are modulated by a single neurotransmitter only.  

A great potential for further research of MRPs in PD and also in healthy 

controls lies in combining different methodologies – EEG and imaging (Nguyen et al. 

, 2014, Plichta et al. , 2013), transcranial magnetic stimulation (TMS) (de Tommaso 

et al. , 2012, Sato et al. , 2015), or MEG – since every technique has strengths and 

drawbacks. Furthermore, most of the studies completed to date have used a limited 

number of electrodes restricted to the central and frontocentral motor regions of the 

scalp to record MRPs. High-density EEG recordings improve the spatial resolution of 

the EEG which would allow improved investigation of movement preparation 

processes. We have not discussed frequency domain approaches (Makeig et al. , 

2004) in this paper, however their wider application would be of value to gain insights 

into the brain oscillations underlying MRPs at cortical and subcortical levels (Kühn et 

al. , 2004, Oswal et al. , 2013, Oswal et al. , 2012, Williams et al. , 2002).  

Albeit a few studies have examined the effect of subcortical surgery (lesional 

or DBS) on MRPs (Brown, Dowsey, 1999, Devos et al. , 2002, Devos et al. , 2004, 

Gerschlager, Alesch, 1999, Gironell, Rodriguez-Fornells, 2002, Limousin et al. , 

1995, Obeso et al. , 2009), there is in general a paucity of studies in PD patients 

treated with DBS or pallidotomy or subthalamotomy. The well-established fact that 

the basal ganglia-thalamo-cortical circuits are involved in the generation of these 
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potentials (Brunia, Boxtel, 2012) makes this line of research particularly interesting. 

Specifically, there is a lack of studies co-registering the signal from the deep brain 

nuclei and from the surface of the scalp in the period when the electrodes implanted in 

the nuclei are externalized for a few days after the operation. The main advantage of 

this approach is that it gives a possibility to directly correlate and compare the signals 

derived from generators in the cortex (cortical MRPs) and in the deep brain nuclei 

(deep brain movement related activity) (Shen, 2014) and it should be exploited more 

frequently in future.  

Another aspect of the MRP research that has to be explored in more detail in 

future studies is identifying the ‘cognitive’ processes that contribute to motor 

preparation, initiation and execution. This calls for the development and use of more 

specific paradigms that allow more clear dissociation of the processes involved. 

Movement execution is followed by post-motor movement related potentials 

(Shibasaki and Hallett, 2006), which to our knowledge have not been explored so far 

from the perspective of the neurobiological changes typical of PD. In addition, there 

are only few studies measuring the BP related to lower limb movements in PD 

(Vidailhet, Atchison, 1995, Vidailhet, Stocchi, 1993), which is understandable 

considering the fact that it is much easier to record and also to interpret MRPs related 

to upper limb movements. Nevertheless, MRPs while performing lower limb 

movements deserve greater attention and may help unravel the mechanisms of 

phenomena such as festination or freezing of gait which reflect an interaction between 

cognitive and motor deficits of PD. 

In conclusion, MRPs have considerably improved our knowledge in 

understanding the physiology and pathophysiology of motor processes in general 

(Jahanshahi and Hallett, 2002) and also in PD as reviewed here. However, even more 
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than 50 years after the first description of the BP (Deecke, Scheid, 1969) there are still 

many outstanding questions that need to be addressed in future studies.  
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Figure Legends 

 

Fig. 1. Bereitschaftspotential (BP) averaged across 14 normal subjects during 

execution of voluntary, self-paced middle-finger movements. The early BP merges 

into the late BP at the point of steeper amplitude increase, in this case at around 500 

ms. The averaged EMG recording is shown at the bottom part of the figure; the 

movements starts at 0 ms. The horizontal axis represents time in milliseconds (ms); 

from Shibasaki et al. (1980), adapted with permission.  

 

Fig. 2. Bereitschaftspotential (BP) recordings before (a, c) and after three months (b, 

d) of levodopa treatment in PD in two patients with PD (DN3 and DN6), at one 

centimeter anterior to C4 (C4’), Cz and one centimeter anterior to C3 (C3’); NS = 

negative slope, corresponding to the late BP, RWF = right wrist flexion. Black 

triangles indicate the onset of early BP, white triangles indicate the onset of late BP. 

Chronic administration of levodopa increases late BP, but not early BP amplitudes; 

from Feve, Bathien (1992), reproduced with permission.  

 

Fig. 3. Grand averages of MRPs preceding self-initiated movements (A) and 

externally triggered movements (B) for the normal subjects (continuous line) and the 

patients with Parkinson's disease (broken line). While the  amplitude of the late 

negativities triggered by anticipation of the regular presentation of the stimulus do not 

differ between PD patients and controls when movements are externally triggered, PD 

patients show attenuated early and late BP amplitudes preceding self-initiated 

movements; from Jahanshahi, Jenkins (1995), reproduced with permission. 
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Fig. 4. Mean CNV amplitude for PD patients with STN DBS on (thick line) and STN 

DBS off (thin line). Potentials are shown from 200 ms before the warning stimulus 

until 600 ms after the imperative stimulus (total duration of 2.8 s). CNV amplitudes 

are higher on compared to off STN DBS; from Gerschlager, Alesch (1999), 

reproduced with permission.  

 

Fig. 5. Lateralized readiness potentials (LRPs) recorded when a cue provided 

information about the response side (continuous line) and when a cue was non-

informative (dashed line). No differences in LRP onset latency was observed between 

PD patients and controls, from Praamstra, Meyer (1996) reproduced with permission. 
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Table 1. Studies on the Bereitschaftspotential reviewed in the paper. Only studies discussed in detail in the paper are listed here; other studies are 

cited in text.  

 

 

Bereitschaftspotential  
 

Reference Number of participants Other methodological issues Main findings 

Brown et al. (1999) 6 PD GPi DBS and 6 PD 

STN DBS  

Patients tested OFF DM, SRT, CRT, 

pegboard, tapping task, flex task 

No difference in early or late BP after GPi or STN 

DBS 

Barrett et al. (1986) 10 PD patients compared to 

HC from previous studies  

Patients tested OFF DM No differences in MRPs between PD and HC 

Cunnington et al. (1995) 21 PD patients, 21 HC Patients tested OFF DM, External cues vs. 

no cues conditions 

Reduced early MRP in PD compared to HC, 

reduced early MRP reduction in both PD and HC 

Dick et al. (1987) 14 PD patients, 13 HC  PD patients tested ON and OFF DM; HC 

tested on L-dopa and dopamine 

antagonists; Self-paced upper limb 

movements 

L-dopa induces increase of the early BP in PD and 

HC, dopamine antagonists induce decrease of early 

BP in HC; no effect of L-dopa and antagonist on 

late BP, no difference in the peak BP (and late BP) 

between PD OFF DM and HC 

Dick et al. (1989) 14 PD patients, 12 HC Patients tested OFF DM; Self-paced upper 

limb movements 

Lower early and higher late BP in PD OFF DM 

Feve et al. (1992) 8 de novo, and 8 already 

treated PD patients  

Both group of patients tested ON and OFF 

DM; Self-paced upper limb movements 

After 3 months of L-dopa treatment, late BP 

increased in de novo PD; in already treated PD on 

L-dopa late BP was higher than off L-dopa 

Filipović et al. (1997) 15 PD patients Drug naïve patients, SRT, CRT A negative correlation between the amplitude of 

the early BP the difference in response latency 

between (CRT-SRT), suggesting reduced 

movement pre-programming in PD 

Filipović et al. (2001) 16 (8 depressed, 8 non-

depressed) PD patients, 8 HC 

Patients tested OFF DM Smaller BP in PD patients than HC, no difference 

between depressed and non-depressed patients 

Fumuro et al. (2013) 10 PD patients, 22 HC Patients tested OFF DM; NFB for slow PD patients lower early BP than HC, NFB 
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 EEG potentials increased the early BP in both PD and HC in good 

NFB performers 

Jahanshahi et al. (1995) 6 PD patients, 6 HC  Patients tested ON DM; Self initiated vs. 

externally guided upper limb movements; 

EEG-PET study 

Early and peak BP lower in PD patients than HC 

in self-initiated movements, no difference in MRPs 

between groups for externally triggered 

movements; for PD and HC lower early and peak 

BP for externally triggered movements; lower 

activation of SMA (PET) in PD associated with in 

lower BP compared in PD 

Limousin et al. (1999) 27 pallidotomy PD patients Patients tested OFF DM, before and 3 

months after surgery, self initiated hand 

movements, + SRT/CRT, pegboard and 

finger tapping 

Increase of late BP contralateral to pallidotomy-> 

pallidotomy improves mainly the later stages of 

movement preparation and the execution of 

proximal movements with the contralesional limb 

Paradiso et al. (2002) 13 STN DSB PD patients Patients tested ON DM; Self-paced brisk 

movements, patients tested on-DBS only 

MRP activity with an onset not significantly 

different than the scalp recorded MRP -> the STN 

or nearby structures are active before self-paced 

movements? 

Vidailhet et al. (1993) 10 PD patients, 10 HC Patients ON DM, Standing-stepping and 

sitting-foot movements while sitting 

BP preceding standing-stepping movements higher 

than sitting-foot movement in HC, but not in PD, 

suggesting impaired preparation and assembly of 

the complex sequences of movement necessary to 

initiate walking 

Vidailhet et al. (1995) 4 patients with gait ignition 

failure 

Standing stepping and sitting-foot 

movement 

Increase of BP on standing-stepping compared to 

sitting-foot movements in isolated gait ignition 

failure, suggesting different mechanisms of 

isolated gait ignition failure compared to ignition 

failure in PD 
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BP = Bereitschaftspotential; CPT = Continuous Performance Task; CRT = Choice Reaction Time Task; DBS=Deep Brain Stimulation; DM=Dopaminergic 

Medication; HC = Healthy control; GPi=Globus pallidus interna; MRP=Movement Related Potentials; SRT=Simple Reaction Time Task, STN=Subthalamic 

Nucleus; PET=Positron Emission Tomography; PD = Parkinson’s disease; RT = Reaction Time; SRT= Simple Reaction Time Task 
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Table 2. Studies on the Contingent Negative Variation reviewed in the paper. Only studies discussed in detail in the paper are listed here; more 

studies are cited in text.  

 

 

Contingent Negative Variation 
 

Reference Number of participants Other methodological issues  Main findings 

Amabile et al. (1986) 47 PD patients Patients OFF DM, (after a wash-out 

period of 7 days), and then 15 and 30 days 

after the re-start of dopaminergic 

medication 

Higher CNV amplitude after reintroduction of 

dopaminergic medication 

Bötzel et al. (1995) 12 PD patients, 12 HC – young 

and older 

Patients OFF DM, SRT and CRT Clear CNV in young HC, small in older HC and 

absent in PD 

Cunnington et al. (2001) 14 PD patients, 15 HC Patients OFF DM, Go/NoGo task Reduced CNV amplitude shifted frontally in PD 

compared to HC 

Gerschlager et al. (1999) 10 PD patients, 10 HC Patients OFF DM, ON and OFF STN 

DBS, Go/NoGo CRT 

CNV amplitude for STN DBS ON higher than 

OFF stimulation; in HC higher than in PD OFF 

stimulation 

Gironell et al. (2002)  

 

8 PD patients Patients OFF DM, Before and after 

unilateral pallidotomy; self-paced finger 

movements for BP; Go/NoGo for CNV 

Increase of late BP contralateral to pallidotomy, no 

change in CNV, suggesting neurophysiological 

changes after pallidotomy mainly in the later 

stages of movement preparation and execution 

Ikeda et al. (1997) 13 patients with parkinsonism 

(9 PD and 4 PSP), 10 HC 

Patients tested ON DM In patients with mild symptoms BP and CNV were 

not different than HC; in patients with severe 

symptoms BP was the same as in HC, late CNV 

was very small or absent and it was smaller than 

HC 

Kuoppamäki et al. (2005) 

 

A case study, bilateral 

posterolateral accidental 

MRI, RT task, pegboard and finger 

tapping tasks, flex and squeeze tasks, self 

Early BP and CNV were absent prior to 

movements, suggesting difficulties in preparing 
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pallidotomy resulting in 

secondary parkinsonism  

initiated movements for BP and ready-Go 

task for CNV 

and maintaining preparation for a forthcoming 

movement 

Oishi et al. (1995) 10 PD patients, 10 vascular 

parkinsonism (VP) and 10 HC  

Patients tested OFF DM, and after 

administration of L-dopa i.v.; BP and 

CNV recorded  

Early CNV and BP amplitude lower in PD and VP 

than HC; latency of early and late BP was longer 

in PD and VP than HC, L-dopa improved these 

differences 

Pulvermüller et al. (1996) 

 

18 PD patients, 14 HC  Patients tested ON DM, CPT Go/NoGo 

paradigm 

Lower CNV amplitude in PD 

Renfroe et al. (2016) 18 PD patients, 15 HC Patients tested ON DM Reduced CNV in PD, no difference between PD 

and HC when emotional incentives were added 

Wascher et al. (1997) 

 

15 PD patients, 15 HC Patients tested OFF DM, Clock cued 

CRT, CNV and LRP 

Lower CNV amplitude and force in PD, no 

difference in LRP, suggesting reduced activation 

of movement preparation, but unimpaired response 

selection 

Wright et al. (1993) 20 PD patients, 30 HC Patients tested ON DM, SRT PD had diminished CNV amplitudes compared to 

HC 

 

BP = Bereitschaftspotential; CPT = Continuous Performance Task; CRT = Choice Reaction Time Task; DBS=Deep Brain Stimulation; DM=Dopaminergic 

Medication; HC = Healthy control; LRP=Lateralized Readiness Potential; MRP=Movement Related Potentials; SRT=Simple Reaction Time Task, 

STN=Subthalamic Nucleus; PD = Parkinson’s disease; RT = Reaction Time; SRT= Simple Reaction Time Task  
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Table 3. Studies on Lateralized Readiness Potential reviewed in the paper. Only studies discussed in detail in the paper are listed here; but other 

studies are also cited in text.  

 
 

Lateralized Readiness Potential 
 

Reference Number of participants Other methodological issues  Main findings 

Falkenstein et al. (2006) 15 PD patients, 15 HC Patients tested ON DM, Eriksen flanker 

task 

Lower incorrect early LRP and earlier negative 

LRP onsets on incongruent trials in PD patients 

PD than in HC 

Low et al. (2002) 12 PD patients, 12 HC Patients tested ON DM, CRT Longer RT and delayed onset of LRP in PD 

compared to HC, suggesting motor and premotor 

slowing in PD 

Praamstra et al. (1996) 10 PD patients, 10 HC  Patients tested ON DM, visual CNV 

paradigm 

Lower CNV amplitude in PD; No difference in the 

latency between groups; LRP extended more 

frontally in PD, more focal in HC, suggesting 

different cortical organization of movement 

preparation in PD 

Praamstra et al. (1998) 7 PD patients, 7 HC Patients tested OFF DM, Flanker task PD patients showed higher amplitude of the initial 

positive LRP deflection, suggesting incorrect 

response tendency in PD 

Praamstra et al. (2001) 8 PD patients, 8 HC,  Patients tested OFF DM, Spatial S-R 

compatibility task (Simon’s task) 

Higher LRP amplitude in compatible and 

incompatible trials in PD, no difference in latency 

compared to HC 

Rustmanov et al. (2013) 20 PD patients, 20 HC Patients tested ON DM, Flanker task Similar initial positive LRP deflection (amplitude 

and latency) 

Seiss et al. (2014) 12 PD, 12 age-matched and 10 

young HC 

Patients tested ON DM, PD patients on 

medication, masked subliminal 

presentation visual stimuli task. 

No difference in overall LRP amplitude between 

groups, higher scaled LRP amplitude in PD 

compared to HC as a result of the higher 
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compatibility effect in PD. Latency was longer in 

older PD and HC 

 

CRT = Choice Reaction Time Task; DM=Dopamine Medication; HC = Healthy control; LRP=Lateralized Readiness Potential; S-R=Stimulus-Response 

Task; SRT=Simple Reaction Time Task, PD = Parkinson’s disease; RT = Reaction Time.  
 




