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Abstract—In PET imaging, attenuation and scatter corrections
are an essential requirement to accurately quantify the radionu-
clide uptake. In the context of PET/MR scanners, obtaining the
attenuation information can be challenging. Various authors have
quantified the effect of an imprecise attenuation map on the
reconstructed PET image but its influence on scatter correction
has usually been ignored.

In this paper, we investigate the effects of imperfect attenuation
maps (µmaps) on the scatter correction in a simulation setting.
We focused our study on three µmaps: the reference µmap
derived from a CT image, and two MR-based methods. Two
scatter estimation strategies were implemented: a µmap-specific
scatter estimation and an ideal scatter estimation relying only on
the reference CT µmap. The scatter estimation used the Single
Scatter Simulation algorithm with tail-fitting.

The results show that, for FDG brain PET, regardless of the
µmap used in the reconstruction, the difference on PET images
between µmap-specific and ideal scatter estimations is small (less
than 1%). More importantly, the relative error between attenua-
tion correction methods does not change depending on the scatter
estimation method included in the simulation and reconstruction
process. This means that the effect of errors in the µmap on the
PET image is dominated by the attenuation correction, while the
scatter estimate is relatively unaffected. Therefore, while scatter
correction improves reconstruction accuracy, it is unnecessary
to include scatter in the simulation when comparing different
attenuation correction methods for brain PET/MR.

I. INTRODUCTION

IN Positron Emission Tomography (PET) imaging, correct-
ing for photon attenuation is an essential requirement to ac-

curately quantify the radionuclide uptake. For PET/MR imag-
ing, in the absence of a transmission source or Computed To-
mography (CT) image, alternative Magnetic Resonance (MR)-
based methods are being developed. Due to the challenge of
delineating bone in MR images, these attenuation maps can be
inaccurate and lead in some cases to a strong spatial bias of the
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PET activity, as shown for instance in [1]. Scatter correction
is another key component for the quantitative analysis of
PET images. Various authors have quantified the effect of
an imprecise attenuation map on the final reconstructed PET
image, but its influence on scatter correction has usually been
ignored.

Compton scattering is the main interaction of 511-keV
photons, emitted following annihilation between a positron and
an electron, with tissue. Compton effect leads to two phenom-
ena: attenuation and scatter, both a consequence of the same
physical process. Photons undergoing Compton scattering will
deviate from their original path. As a result, they might not be
detected (attenuation) or they might still be detected but their
annihilation site will be wrongly located (scatter). In order to
accurately quantify the radionuclide uptake, the emission data
need to be corrected for both attenuation and scatter.

In combined PET/CT systems, the attenuation information
is derived from a CT image as the Hounsfield unit scale is
a linear transformation of the linear attenuation coefficients.
Regarding PET/MR scanners, as MRI image intensities do
not reflect the electron densities, new methods have to be
developed [2]. These methods can be classified in two main
categories: segmentation and registration-based approaches.
The segmentation-based strategy consists of assigning uniform
linear attenuation coefficients to tissue classes obtained by
segmenting an MRI image. In registration-based methods,
an attenuation map template, derived from pre-acquired CT
or transmission images, is deformed to match the patient’s
anatomy.

Several methods exist to correct for scatter [3]. They include
using multiple energy windows, fitting a curve to data outside
the patient, and calculating scatter from the emission and
attenuation data using a model or Monte Carlo simulation.

In this paper, we propose to investigate, using simulations,
the effect of imperfect attenuation maps (µmaps) on the
scatter correction. We focus on three µmaps: a µmap derived
from a CT image, considered as the reference, and two MR-
based methods: a segmentation-based approach [4] and a
registration-based approach developed by [5].

II. METHOD

A. MR-based Attenuation Correction

1) Segmentation-based Approach: The UTE-based method,
a prototype version implemented on the first software versions
of the Siemens Biograph mMR hybrid PET/MR scanners, is
based on the segmentation of a Ultrashort-Echo-Time (UTE)



Simulation:
Input: True emission image ET , true µmap µT
Output: Simulated PET sinogram S

1: Forward project ET
2: Simulate attenuation from µT
3: Simulate scatter with SSS from µT and ET
4: Combine to obtain simulated PET sinogram S

Reconstruction:
Input: Simulated PET sinogram S and other µmap µO
Output: Reconstructed PET image

1: Estimate attenuation from µO
2: Estimate scatter from S and µO
3: Run OSEM using S and the output of 1 and 2

Fig. 1. PET simulation and reconstruction process with µmap-specific scatter
estimation.

MRI sequence which enables the differentiation of three tissue
classes (bone, air and soft tissue). Predefined attenuation
coefficients are then assigned to each tissue class.

2) Registration-based Approach: The multi-atlas CT syn-
thesis method developed by Burgos et al. [5] relies on a pre-
acquired set of aligned MRI/CT image pairs from multiple
subjects forming an MRI-CT database. To generate the CT
from a target MRI, each MRI image from the database is
deformed to the target MRI using affine followed by non-rigid
registration. The CT images in the database are then mapped
using the same transformation to the target MRI image. A local
image similarity measure between the target MRI and the set
of registered MRIs from the database is used as a surrogate of
the underlying morphological similarity, under the assumption
that if two MRIs are similar at a certain spatial location, the
two CTs will also be similar at this location. Finally, the set of
registered CTs is fused using a voxel-wise weighting scheme,
generating a pseudo CT (pCT). To obtain the µmap, the CT
values expressed in HU are converted to linear attenuation
coefficients in cm−1 by a piecewise linear transformation.

B. Scatter Correction

In this work, scatter was estimated using a Single Scatter
Simulation (SSS) algorithm [6] and scaled using a tail-fitting
strategy, as implemented in STIR [7]. The SSS algorithm
consists of using the emission and attenuation information
to model single Compton scattering. The estimated scatter is
then scaled to fit the tails of the sinogram, obtained from the
attenuation map, where it is assumed that the signal is only
coming from scattered events. Finally, the scatter estimation
and image reconstruction steps are combined in an iterative
process as follows:

1) Reconstruction of an initial estimate of the emission
data.

2) Single scatter estimation using the SSS algorithm.
3) Tail-fitting.
4) Correction of emission data: the estimated scatter is

subtracted from the emission data.
5) Reconstruction of the emission data, and back to step 2.

Simulation:
Input: True emission image ET , true µmap µT
Output: Simulated PET sinogram S′

1: Forward project ET
2: Simulate attenuation from µT
3: Combine to obtain simulated PET sinogram S′

Reconstruction:
Input: Simulated PET sinogram S′ and other µmap µO
Output: Reconstructed PET image

1: Estimate attenuation from µO
2: Run OSEM using S′ and the output of 1

Fig. 2. PET simulation and reconstruction process with ideal scatter
estimation.

C. PET Simulation and Reconstruction

PET images were reconstructed with different µmaps fol-
lowing a projection/reconstruction technique similar to [5]. To
assess the effect of imperfect µmaps on the scatter correction,
a reference PET image with accurate scatter correction is
required. The ideal scatter correction is obtained from the
PET/CT scanner and relies on the reference CT µmap. We
detail a first simulation and reconstruction process where the
scatter is estimated from the different µmaps and a second
process where the scatter is estimated from the reference CT
µmap in the PET/CT scanner.

1) Process with µmap-specific Scatter Correction: As input
for the simulations, we used the CT and reconstructed PET
images provided by a PET/CT scanner. The PET simulation
and reconstruction process with µmap-specific scatter correc-
tion (SCµmap) is detailed in Fig. 1. The non-corrected PET
sinogram S, equivalent to the measured data, was obtained
by removing the attenuation and scatter corrections from the
original simulated PET sinogram. PET images were then
reconstructed using the CT, pCT or UTE µmap to correct for
attenuation and scatter, i.e. the scatter was computed from the
PET sinogram and the estimated µmap.

Image reconstruction was performed using an Ordered
Subsets Expectation Maximisation (OSEM) algorithm with 3
iterations of 21 subsets using the STIR package [7]. The scatter
estimate was incorporated as a background term in the forward
model, i.e. in the denominator of the OSEM update. Effects of
PSF and randoms were not included and post-reconstruction
smoothing was not applied.

2) Process with Ideal Scatter Correction: For the second
strategy, the same process was followed but without scatter
in both the simulation and reconstruction. These images can
be interpreted as being reconstructed with perfect scatter
elimination, but an approximate attenuation map. The PET
simulation and reconstruction process with ideal scatter cor-
rection (SCideal) is summarised in Fig. 2. The simulated PET
sinogram S′ was produced by removing only the attenuation
correction from the original PET sinogram. PET images were
then reconstructed using the different µmaps to correct for
attenuation only.



TABLE I
FOR 41 SUBJECTS: AVERAGE AND SD OF THE RMAE AND RME BETWEEN
SCµmap AND SCideal PET IMAGES, FOR IMAGES RECONSTRUCTED WITH

3 ATTENUATION MAPS, IN THE FULL HEAD AND BRAIN REGIONS.

Head Brain
CT pCT UTE CT pCT UTE

rMAE (%)
Average 1.27 1.37 1.45 0.81 0.85 0.88

SD 0.14 0.15 0.16 0.07 0.08 0.08

rME (%)
Average -0.92 -0.91 -0.81 -0.58 -0.59 -0.54

SD 0.12 0.15 0.14 0.06 0.08 0.08

III. RESULTS

Data: 41 brain T1-w MRIs, CTs, UTE-derived µmaps and
reconstructed PETs were used. The T1-w MRIs (3.0 T; TE/TR/TI,
2.63 ms/1700 ms/900 ms; flip angle 9◦; voxel size 0.53 × 0.53
× 1.1 mm3) and UTE µmaps (voxel size 1.562 × 1.562 ×
1.562 mm3) were acquired on a Siemens Biograph mMR hybrid
PET/MR scanner; the CTs (voxel size 0.586 × 0.586 × 1.25 mm3,
120 kVp, 300 mA) and reconstructed PETs (radiopharmaceutical:
FDG; voxel size 1.953 × 1.953 × 3.27 mm3) on a GE Discovery
ST PET/CT scanner.

For the three µmaps considered (CT, pCT and UTE-based),
PET images were obtained using the simulation and recon-
struction processes with both the µmap-specific and ideal
scatter corrections.

A. Effect of Wrong µmap on Scatter Correction

In a first instance, we analysed, for the three µmaps, the
difference between PET images simulated and reconstructed
following the ideal scatter estimation process and PET images
simulated and reconstructed following the µmap-specific scat-
ter process. To do so, the relative mean absolute error, defined
as rMAE = 100∗

∑
~v |I~v − J~v|/

∑
~v J~v , and the relative mean

error, rME = 100 ∗
∑
~v (I~v − J~v)/

∑
~v J~v , were computed

between the SCµmap PET (I) and SCideal PET (J) images.
Results obtained in the head and brain regions are shown in
Table I. Regardless of the µmap used, the rMAE between
SCµmap and SCideal PET images is small (less than 1% in
the brain). Examples of µmaps and PET images are presented
in Fig. 3 for a representative subject.

For this representative subject, profiles of the true scatter,
obtained from the SCµmap simulation, and of the scatter
estimates, obtained from the simulated sinogram S and the CT,
pCT and UTE µmaps, were analysed (Fig. 4). We note that
the difference between true and estimated scatter, regardless
of the µmap, is small, which agrees with the results obtained
when comparing SCideal and SCµmap PET images.

To localise the effects of the attenuation and scatter cor-
rections, the PET images from the 41 subjects were mapped
to a common space via a CT-based groupwise registration [8].
Fig. 5 presents the difference, averaged across the 41 subjects,
between SCµmap and SCideal PET images, for the CT, pCT
and UTE µmaps. These images confirmed the results presented
in Table I.

µmap PETSCideal
PETSCµmap Difference map

CT

pCT

UTE

Fig. 3. Example of µmap, PET image obtained with ideal (SCideal) and
µmap-specific (SCµmap) scatter estimation and difference between SCideal

and SCµmap PETs (PETSCideal
− PETSCµmap ), for the ground truth CT

µmap (top), the pseudo CT µmap (middle) and the UTE µmap (bottom).
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Fig. 4. Profiles of the true scatter obtained from the SCµmap simulation and
of the scatter estimated with three µmaps (top); difference between estimated
and true scatter (bottom).



(a) µmap PETSCideal
PETSCµmap

CT

pCT

pCT - CT

(b) µmap PETSCideal
PETSCµmap

CT

UTE

UTE - CT

Fig. 6. Examples of MR-based µmaps (pCT (a) and UTE (b)), PET images corrected for attenuation using the CT µmap, PET images corrected for attenuation
using the MR-based µmap and differences between CT and MR-based PET images, for the µmap-specific scatter estimation and the ideal scatter estimation.

CT pseudo CT UTE

Fig. 5. Difference, averaged over 41 subjects, between the PETs reconstructed
with the ideal scatter correction and the PETs reconstructed with the µmap-
specific scatter correction, for three attenuation maps.

B. Effect of Including Scatter when Comparing µmaps

In a second instance, we studied the effect of differ-
ent scatter estimation processes when comparing MR-based
µmaps to the reference CT µmap. The rMAE and rME were
calculated for every subject between the gold standard PET
(J), reconstructed using the CT µmap, and the PET images
reconstructed using the pCT and UTE µmaps (I), for the head
and brain regions. Results are shown in Table II. Regardless
of the scatter correction, the average rMAE obtained in the
brain using the pCT µmap is 4 times smaller than the error
obtained using the UTE µmap.

For the subject shown in Fig. 3, we computed the difference
between the CT and UTE PET images and between the CT
and pCT PET images for both scatter estimation processes.
The images are displayed in Fig. 6.

Using the groupwise analysis described in the previous

TABLE II
FOR 41 SUBJECTS: AVERAGE AND SD OF THE RMAE AND RME

BETWEEN THE GOLD STANDARD CT PET AND BOTH THE PSEUDO CT AND
UTE PETS, FOR THE µMAP-SPECIFIC AND IDEAL SCATTER PROCESSES, IN

THE FULL HEAD AND BRAIN REGIONS.

Head Brain
SCµmap SCideal SCµmap SCideal

pCT UTE pCT UTE pCT UTE pCT UTE

rMAE (%)
Average 5.60 14.67 5.77 14.73 2.89 11.86 2.95 11.85

SD 1.69 1.98 1.68 1.95 0.91 2.09 0.88 2.08

rME (%)
Average -1.07 -13.71 -1.09 -13.61 0.15 -11.78 0.14 -11.74

SD 2.58 2.15 2.52 2.14 2.12 2.13 2.10 2.13

pseudo CT UTE

SCµmap SCideal SCµmap SCideal

Fig. 7. Average over 41 subjects of the difference between the PETs
reconstructed with the ground truth CT µmap and the PETs reconstructed
with the pCT µmap (left) or the UTE µmap (right), for both µmap-specific
and ideal scatter estimation, in the whole head (top) and brain region (bottom).

section, averaged difference maps were computed between the
gold standard PETs and the PETs reconstructed with the pCT
and UTE µmaps, for both scatter estimation processes (Fig 7).
As expected, regardless of the scatter estimation method, the
difference between the gold standard and pCT PETs is lower
than between the gold standard and UTE PETs, as the pCT-
based attenuation provides more realistic µmaps.



IV. CONCLUSION

This paper presents an analysis of the effects of imperfect
attenuation maps on the scatter correction. Regardless of the
µmap used in the reconstruction, the difference on PET images
between µmap-specific and ideal scatter estimation is small,
particularly in the brain region (maximum average difference
of 0.88% for the worst method). More importantly, the relative
error between attenuation correction methods does not change
depending on the scatter estimation method included in the
simulation and reconstruction process. This means that the
effect of errors in the µmap on the PET image is dominated
by the attenuation correction, while the scatter estimate is rela-
tively unaffected. Therefore, while scatter correction improves
reconstruction accuracy, it is unnecessary to include scatter in
the simulation when comparing different attenuation correction
methods.

The current analysis used FDG brain images. The conclu-
sions could be different for tracers such as F-DOPA with
uptake in specific regions, or for the thorax.
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