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We present a systematic study of bisimulation-up-to techniques for coalgebras. This

enhances the bisimulation proof method for a large class of state based systems,

including labelled transition systems but also stream systems and weighted automata.

Our approach allows for compositional reasoning about the soundness of enhancements.

Applications include the soundness of bisimulation up to bisimilarity, up to equivalence

and up to congruence. All in all, this gives a powerful and modular framework for

simplified coinductive proofs of equivalence.

1. Introduction

In the quest for good models of computation, the challenge of finding canonical notions of

equivalence and corresponding proof methods has occupied the mind of many researchers.

The pioneering work of Milner and Park (Milner, 1980; Park, 1981) on bisimulation has

resulted in a vast amount of follow-up notions and improvements. Milner himself has pro-

posed a powerful technique for modular reasoning about bisimilarity – bisimulation-up-to

– which allows the re-use of existing bisimulation proofs and the construction of smaller

relations to prove equivalence (Milner, 1983). Sangiorgi (Sangiorgi, 1998) has followed up

on Milner’s idea and proposed many enhancements to the theory of bisimulation-up-to

for labelled transition systems. The gain of using bisimulations-up-to lies in the fact that

they are smaller relations than usual bisimulations, thereby in many cases substantially

reducing the amount of work and thus making the method more efficient. Bisimulation

up to context is an example of an enhanced technique in which one can use the algebraic

structure (syntax) of processes. Other examples are the notions of bisimulation up to

union and bisimulation up to equivalence as well as combinations of any of these, which
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enable compositional, succinct reasoning on equivalence, combining both inductive and

coinductive techniques.

In fact, some of the most useful up-to techniques are based on combinations of other

enhancements. One of the difficulties in proving such up-to techniques to be sound is that

the combination of sound enhancements is not necessarily sound. The first systematic

study which addressed the issue of when such techniques can be safely combined is due

to Sangiorgi (Sangiorgi, 1998). While this work focused on labelled transition systems,

a more general, abstract algebra of enhancements in terms of lattices and monotone

functions has been introduced by Pous and Sangiorgi (Pous, 2007; Pous and Sangiorgi,

2012). An important feature there is the notion of compatible functions, defining a class

of sound enhancements that is closed under composition.

Enhancements of the bisimulation proof method are interesting not only for labelled

transition systems but also for other types of state-based systems; for example, recently

an efficient algorithm for checking equivalence of non-deterministic automata was intro-

duced, based on bisimulation up to congruence (Bonchi and Pous, 2013). Other recent

examples are the application of a different kind of up-to techniques for deterministic

automata to proving language equivalence (Rot et al., 2013b), and up-to techniques for

streams to facilitate coinductive definitions in Coq (Endrullis et al., 2013). Orthogonally

to enhancements of the bisimulation proof method there is the theory of coalgebra in

which the notion of bisimulation is extended to other models of computation, including

all kinds of infinite data types, automata, and dynamical systems from a unifying perspec-

tive. By generalizing the theory of bisimulation-up-to to coalgebras one can study these

techniques at a general level, with applications to many different types of state-based

systems.

In the present paper we establish the connection between coalgebraic bisimulation-up-

to and the algebra of enhancements by using the characterization of bisimulation in terms

of monotone functions. This allows us to reason compositionally about the soundness of

enhancements at the level of coalgebras. By showing that an up-to-technique is compat-

ible one can now safely compose it with other compatible enhancements of coalgebraic

bisimulation. We show that the most important enhancements are compatible.

In general many important instances of bisimulation-up-to, such as bisimulation up to

equivalence and bisimulation up to bisimilarity, are not sound at the general level of coal-

gebras. We address this problem by a restriction to coalgebras for functors which preserve

weak pullbacks; we prove the compatibility of such composition-based enhancements by

using the theory of relators (Trnková, 1980; Rutten, 1998).

We show that bisimulation up to context is compatible whenever the system under con-

sideration is a so-called λ-bialgebra for a distributive law λ (see, e.g., (Turi and Plotkin,

1997; Bartels, 2004; Klin, 2011)). Examples of such λ-bialgebras include non-deterministic

and weighted automata but also operational models of specifications adhering to the ab-

stract GSOS format (Turi and Plotkin, 1997), which generalizes the well-known GSOS

format (Bloom et al., 1995) for labelled transition systems. So even in the more classi-

cal case of labelled transition systems this generalizes the result of Sangiorgi (Sangiorgi,

1998), who proved compatibility for the strictly less expressive De Simone format. Ex-
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amples of operations which are expressible in GSOS but not in De Simone are the Kleene

star and the priority operator (Aceto et al., 2001).

Most coalgebras considered in practice, such as labelled transition systems, stream

systems and (non)-deterministic automata, are modeled by type functors which preserve

weak pullbacks. However there are important instances where this is not the case, includ-

ing certain weighted transition systems (Gumm and Schröder, 2001; Klin, 2009; Bonchi

et al., 2012). In such cases one can consider behavioural equivalence, which is a weaker

notion of equivalence. To accommodate proofs of behavioural equivalence, in this paper

we additionally introduce a compositional theory of up-to techniques for behavioural

equivalence, most of which are sound independently of the type functor.

Related work. The first account of bisimulation-up-to at the level of coalgebras was

given by Lenisa (Lenisa, 1999; Lenisa et al., 2000). In (Lenisa, 1999), Lenisa considers

a set-theoretic notion of coinduction and coinduction-up-to for abstract monotone op-

erators, working in the direction of (Pous and Sangiorgi, 2012), and defines coalgebraic

bisimulation-up-to-T for a monad T . However, in (Lenisa, 1999, page 22) the treatment

of instances such as bisimulation up to bisimilarity are explicitly mentioned as an open

problem. Interestingly, she conjectured that “the theory of functors and relators could

shed some light on this problem” which is indeed precisely the successful approach taken

in the present work.

The up-to-context technique for coalgebraic bisimulation was later derived as a special

case of so-called λ-coinduction (Bartels, 2004). However, (Bartels, 2004, pages 126, 129)

mentions already that it would be ideal to combine the up-to-context technique with

other enhancements. Indeed, combining up-to-context with up-to-bisimilarity or up-to-

equivalence yields powerful proof techniques (see, e.g., (Pous and Sangiorgi, 2012) and

this paper for examples). In this paper we strengthen the soundness result of (Bartels,

2004) to compatibility of up-to-context, allowing for such combinations.

The recent paper (Zhou et al., 2010) introduces bisimulation-up-to where the notion

of bisimulation is based on a specification language for polynomial functors (which does

not include, for example, labelled transition systems). In contrast, we base our work

on the standard notion of bisimulation, and only need to restrict to weak pullback pre-

serving functors to obtain our soundness results. In the paper (Luo, 2006) coalgebraic

bisimulation-up-to techniques are studied based on relation lifting. There, a concrete

coalgebraic notion of compatibility, based on the notion of consistency proposed by San-

giorgi (Sangiorgi, 1998) is introduced, and it is used to prove soundness of bisimulation

up to context and of bisimulation up to bisimilarity (the latter is actually false in general,

as we show in this paper). However, in (Luo, 2006) combinations of enhancements are

not considered.

A new generalization of bisimulation-up-to to coalgebras was introduced by a subset

of the authors in (Rot et al., 2013a). In the present paper we take this generalization

as our starting point. The solution of (Rot et al., 2013a) to the problem of unsound-

ness of bisimulation up to bisimilarity was, similarly to the present paper, to restrict to

functors which preserve weak pullbacks. For such systems, bisimulation coincides with

behavioural equivalence, and for the latter, the problematic up-to techniques were shown
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to be sound. In (Rot et al., 2013a), the soundness of each of the enhancements and of

their combinations had to be shown separately. Indeed, the problem of compositionality

of enhancements, which we solve in this paper, was left as the main open problem.

Recently, a more abstract view on up-to techniques was introduced (Bonchi et al.,

2014), in the setting of fibrations. The results there can be instantiated to obtain up-to

techniques for coinductive predicates other than bisimilarity.

Outline. In Section 2 we recall coalgebras and bisimulations. Then in Section 3 we intro-

duce bisimulation-up-to, together with the main instances and a number of examples. In

Section 4 we recall the algebra of enhancements; Section 5 then presents bisimulation-

up-to in terms of this theory. In Section 6 we prove compatibility results for the instances

of bisimulation-up-to introduced in Section 3. Section 7 contains a similar development

of up-to techniques for behavioural equivalence, and we present concluding remarks in

Section 8.

Notation. Let Set be the category of sets and functions. Sets are denoted by capital

letters X,Y, . . . and functions by lower case f, g, . . .. We write id for the identity function

and g ◦ f for function composition, defined by (g ◦ f)(x) = g(f(x)). We write f [S], for

a function f : X → Y and a set S ⊆ X, to denote the image of S under f . Given sets

X and Y , X × Y is the Cartesian product of X and Y (with the usual projection maps

π1 and π2), XY is the set of functions f : Y → X and P(X) is the set of subsets of X.

These operations, defined on sets, can analogously be defined on functions, yielding (bi-

)functors. We write 2 for the two elements set 2 = {0, 1}, ω for the set of natural numbers

and R for the set of real numbers. By RXω we denote the set of functions f : X → R with

finite support, i.e., such that f(x) 6= 0 for finitely many elements x. We will write the

elements v of RXω as a formal sum v = f(x1)x1 + · · ·+f(xn)xn. RXω carries a vector space

structure where sum and scalar product (denoted by + and ·) are defined pointwise: we

call it the free vector space generated by X.

We denote the category of sets and relations by Rel. Relations are denoted by capital

letters R,S, . . . We write ∆ for the identity relation and R ◦ S for relation composition,

defined as usual: R ◦ S = {(x, z) ∈ X × Z | ∃y s.t. xRy and ySz}.

2. Coalgebra and bisimulation

We recall coalgebras and bisimulations, and make explicit the underlying notion of pro-

gression, which we need in the sequel. A coalgebra for a functor F : Set → Set is a pair

(X,α) consisting of a set X and a function α : X → FX. A function f : X → Y is an

(F -coalgebra) homomorphism between (X,α) and (Y, β) if Ff ◦ α = β ◦ f .

Definition 1. For a coalgebra α : X → FX and relations R,S ⊆ X × X, we say R

progresses to S, denoted R � S, if there exists a γ : R → FS making the following
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diagram commute:

X

α

��

R
π1oo

γ

��

π2 // X

α

��

FX FS
Fπ1oo

Fπ2 // FX

A bisimulation is a relation R such that R� R.

Bisimulations are usually defined between two different systems, which however can be

reduced to bisimulations on a single system by using coproducts (c.f., Appendix A).

We use bisimulations on single systems for technical convenience and notational clarity.

Bisimilarity, denoted by ∼, is defined as the largest bisimulation. Bisimulations can be

seen as a proof technique for bisimilarity: for any two states x, y ∈ X, in order to prove

that x ∼ y it suffices to exhibit a bisimulation R such that x R y.

Example 1. Deterministic automata on the alphabet A are coalgebras for the functor

FX = 2 × XA. Indeed, a deterministic automaton is a pair (X, 〈o, t〉), where X is a

set of states and 〈o, t〉 : X → 2 ×XA is a function with two components: o, the output

function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and t, the transition

function, returns for each input letter a ∈ A the next state. Bisimilarity coincides with

the standard notion of language equivalence, which can thus be proved by providing a

suitable bisimulation. Unfolding the definition, a relation R ⊆ X ×X is a bisimulation

provided that for all (x, y) ∈ R: o(x) = o(y) and, for all a ∈ A, (t(x)(a), t(y)(a)) ∈ R.

As an example consider the automaton below, with final states y, z, v, w and transitions

given by the solid arrows. The relation given by the four dashed lines together with the

dotted line is a bisimulation.

x
a,b

//

�
�
�
�
� y

a,b
//

�
�
� z a,bdd

�
�
�

v
v

v
v

v
v

v

a,b
**
w

a,b
oo

u

a 44iiiiiiiii b

77

Example 2. Labelled transition systems over a set of labels A are coalgebras for the

functor FX = P(A × X). An F -coalgebra (X,α) consists of a set of states X and a

function α : X → P(A×X) that maps each state x ∈ X into a set of possible transitions

(a, x′), where a is the label and x′ is the arriving state. We write x
a→ x′ iff (a, x′) ∈

α(x). Bisimilarity and bisimulation instantiate to the classical notions by Milner and

Park (Milner, 1980; Park, 1981). A relation R ⊆ X×X is called a bisimulation provided

that for all (x, y) ∈ R: if x
a→ x′ then there exists a state y′ such that y

a→ y′ and

(x′, y′) ∈ R, and vice versa.

Example 3. A weighted automaton with input alphabet A is a pair (X, 〈o, t〉), where

X is a set of states, o : X → R is an output function associating to each state its output

weight and t : X → (RXω )A is the transition relation that associates a weight to each
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transition. We shall use the following notation: x
a,r→ y means that t(x)(a)(y) = r. Weight

0 means no transition.

Every weighted automaton induces a coalgebra for the functor FX = R×XA that is

defined as (RXω , 〈o], t]〉) where RXω is the free vector space generated by X and o] : RXω →
R and t] : RXω → (RXω )A are the linear extensions of o and t. For a detailed explanation

see (Bonchi et al., 2012, Section 3).

For example, consider the weighted automaton (X, 〈o, t〉) depicted below (1), where

we use x↓r to denote o(x) = r and, as usual, arrows represent transitions. Part of the

infinite corresponding F -coalgebra is depicted in (2). Note that now states are vectors in

RXω and that transitions are only labeled by symbols in A: the vector v = 1
2y1 + 1

2y2 ∈ RXω
goes with a into t]( 1

2y1 + 1
2y2)(a) = 1

2 t(y1)(a) + 1
2 t(y2)(a) = 1

4y1 + 1
4y2 + 1

2y2.

In (Bonchi et al., 2012) it is shown that bisimilarity on (RXω , 〈o], t]〉) coincides with stan-

dard weighted language equivalence (Salomaa and Soittola, 1978; Berstel and Reutenauer,

1988) which can therefore be proved by means of bisimulations. A relation R ⊆ RXω ×RXω
is a bisimulation provided that for all (v, w) ∈ R: o](v) = o](w) and, for all a ∈ A,

(t](v)(a), t](w)(a)) ∈ R. For example, consider the weighted automaton below.

x3↓0 a,b,1
pp

x0↓0
a,1

//

b,1
66

x1↓1 a, 12pp

a,b, 12
��

b, 12

OO

x2↓1 a,b,1
pp

y3↓0 a,b,1
oo

y0↓0
a, 12 //

b,1
66

a, 12 ((

y1↓1 a, 12oo

a, 12
��

b,1

OO

y2↓1 a,b,1
oo

(1)

The states x0 and y0 are weighted language equivalent. To formally prove it we exhibit

a bisimulation R ⊆ RXω × RXω such that (x0, y0) ∈ R. Note that this relation is infinite

since it must contain at least all the pairs given by the dotted lines below.

x0↓0
a // x1↓1

a // 1
2x1 + 1

2x2↓1
a // 1

4x1 + 3
4x2↓1

a // . . .

y0↓0
a // 1

2y1 + 1
2y2↓1

a // 1
4y1 + 3

4y2↓1
a // 1

8y1 + 7
8y2↓1

a // . . .

(2)

In Section 3 we will show that there exists a finite bisimulation up to context proving

that x0 and y0 are bisimilar and therefore language equivalent.

Example 4. The notion of weighted automata from Example 3 can be generalized by

replacing the field of reals R with any commutative semiring S. As discussed in (Bonchi

et al., 2012), the coalgebraic characterization can be easily extended by taking the free

semi-module SXω rather than the free vector space RXω .

We now exhibit an example of a weighted automaton for the tropical semiring T =

〈R∪{∞},min,∞,+, 0〉. In this semiring, the addition operation is given by the function

min having ∞ as neutral element. The multiplication is given by the function + having

0 as neutral element.
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The weighted automaton (X, 〈o, t〉) below

x↓0
a,2

++

a,3

99
y↓0

a,2

kk z↓0
a,2

oo u↓0 a,2
kk (3)

induces the coalgebra (TXω , 〈o], t]〉) which is partially depicted below.

x↓0 a // min(2 + y, 3 + z)↓2 a // min(4 + x, 5 + y)↓4 a // . . .

u↓0 a // (2 + u)↓2 a // (4 + u)↓4 a // . . .

(4)

The states x and u are weighted language equivalent. To prove it we would need an infinite

bisimulation, since it should relate all the pairs of states linked by the dotted lines in the

above figure. In Section 3, we will exhibit a finite bisimulation up to congruence proving

that x and u are language equivalent.

Example 5. We now consider stream systems (over the reals), which are coalgebras for

the functor FX = R ×X. At first, we take the set Rω = {σ | σ : ω → R} of all streams

(infinite sequences) of elements of R and we define the initial value (−)0 : Rω → R and

the derivative (−)′ : Rω → Rω function as (σ)0 = σ(0), returning the first element or

head of the stream, and (σ)′(n) = σ(n + 1), which returns the tail of the stream. The

F -coalgebra (Rω, 〈(−)0, (−)′〉) is called final, which means that from any F -coalgebra

there exists a unique homomorphism into it (Rutten, 2000).

Then, we define operations on Rω by means of behavioural differential equations (Rut-

ten, 2003), in which an operation is defined by specifying its initial value (−)0 and its

derivative (−)′. These operations will become relevant in the examples in Section 3.

Differential equation Initial value Name

(σ + τ)′ = σ′ + τ ′ (σ + τ)0 = σ0 + τ0 sum

(σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ (σ ⊗ τ)0 = σ0 × τ0 shuffle product

(σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) (σ−1)0 = (σ0)−1 shuffle inverse

In the second column, the operations +, × and (−)−1 on the right of the equations are

the standard operations on R. The inverse is only defined on streams σ for which σ0 6= 0.

With every real number r we associate a stream r = (r, 0, 0, 0, . . .), and we abbreviate

(−1)⊗ σ by −σ. The set of terms T (Rω) is defined by the grammar

t :: = σ | t1 + t2 | t1 ⊗ t2 | t−1
1

where σ ranges over Rω. We call a term well-formed if the inverse is never applied to

a subterm with initial value 0; this notion can be straightforwardly defined by induc-

tion. We can turn the set Twf (Rω) of well-formed terms into a stream system, that

is, an F -coalgebra S = (Twf (Rω), 〈(−)0, (−)′〉) by defining (−)0 : Twf (Rω) → R and

(−)′ : Twf (Rω)→ Twf (Rω) by induction on the structure of terms, using the above spec-
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ification. For the base case, σ ∈ Rω, we just use the final coalgebra structure given above

by the initial value and derivative functions.

In (Rutten, 2003) it is shown that every term t ∈ Twf (Rω) denotes a stream in Rω
and that two terms t1 and t2 denote the same stream iff t1 ∼ t2. As a result, in order

to prove that two terms denote the same stream it is enough to exhibit a bisimulation

relating them. A relation R ⊆ Twf (Rω)× Twf (Rω) is called a bisimulation provided that

for all (t1, t2) ∈ R it holds that (t1)0 = (t2)0 and ((t1)′, (t2)′) ∈ R.

3. Bisimulation-up-to

The following definition generalizes the notion of bisimulation-up-to (Sangiorgi, 1998;

Pous, 2007; Pous and Sangiorgi, 2012) from labelled transition systems to coalgebras.

Definition 2. Let (X,α) be a coalgebra and f : P(X ×X)→ P(X ×X) be a function

on relations. A bisimulation up to f is a relation R such that R� f(R). We say that f

is sound if R ⊆ ∼ for all R such that R� f(R).

If a function f is sound then giving a bisimulation up to f relating two states x and

y is enough to prove that x ∼ y. We now exhibit some functions that we will prove to

be sound, under certain conditions, in Section 6. These conditions are satisfied in all the

examples presented in this section.

Up-to-equivalence. Consider the function e mapping a relation R to its equivalence clo-

sure e(R). A bisimulation up to e is called a bisimulation up to equivalence. Similarly one

can define up-to-transitivity and up-to-symmetry.

Example 6. The relation R denoted by the four dashed lines in the automaton of

Example 1 is not a bisimulation, since ((t(x)(b), t(u)(b)) = (y, w) 6∈ R. However R is

a bisimulation up to equivalence, since the pair (y, w) is in e(R). Hopcroft and Karp’s

algorithm (Hopcroft and Karp, 1971) exploits this technique for checking equivalence of

deterministic automata: rather than exploring n2 pairs of states (where n is the number

of states), the algorithm visits at most n pairs (that is the number of equivalence classes).

Up-to-union. For a fixed relation S ⊆ X ×X consider the function uS(R) = R ∪ S. We

call a bisimulation up to uS a bisimulation up to union with S. Intuitively the successor

states may be related either by R again or by S.

Up-to-union-and-equivalence. By composing the above functions e and uS we obtain a

new interesting up-to technique. If R is a bisimulation up to e ◦ uS then we say R is a

bisimulation up to S-union and equivalence.

Example 7. Recall Example 5 and suppose that we want to prove that the stream

1 = (1, 0, 0, . . .) is the unit for the shuffle product ⊗, that is, σ ⊗ 1 ∼ σ. We make

use of the relation R = {(σ ⊗ 1, σ) | σ ∈ Twf (Rω)}. For any σ ∈ Twf (Rω), we have

(σ⊗ 1)0 = σ0× 10 = σ0. Further (σ⊗ 1)′ = σ′⊗ 1+ σ⊗ 1′ = σ′⊗ 1+ σ⊗ 0; this element

is not in relation with σ′, so R is not a bisimulation. However given some basic laws of
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stream calculus, in particular σ ⊗ 0 ∼ 0, σ + 0 ∼ σ and the fact that ∼ is a congruence,

we obtain

σ′ ⊗ 1 + σ ⊗ 0 ∼ σ′ ⊗ 1 + 0 ∼ σ′ ⊗ 1 R σ′

so R is a bisimulation up to ∼-union and equivalence and it proves that σ ⊗ 1 ∼ σ.

Up-to-bisimilarity. Consider the function b(R) =∼◦R◦∼ which composes a relation on

both sides with bisimilarity. A bisimulation up to b corresponds to the well-known concept

of bisimulation up to bisimilarity, in which derivatives (i.e., the arriving states) do not

need to be related directly but may be bisimilar to elements that are. Notice that every

bisimulation up to bisimilarity is also a bisimulation up to ∼-union and equivalence. Since

∼ is transitive on stream systems, the relation R in Example 7 is also a bisimulation up

to bisimilarity.

Up-to-context. When the state space of a coalgebra carries some kind of algebraic struc-

ture (as it is the case, for instance, with process algebras and regular expressions) it can

be interesting to consider bisimulation up to context.

A T -algebra for an endofunctor T is a pair (X,β) where X is a set and β : TX → X

is a function. For a T -algebra (X,β), the contextual closure of a relation R ⊆ X ×X is

defined as

cβ(R) = 〈β ◦ Tπ1, β ◦ Tπ2〉[TR] = {(β ◦ Tπ1(t), β ◦ Tπ2(t)) | t ∈ TR}

Whenever β is clear from the context we simply write c(R). If R is a bisimulation up to

c then we call R a bisimulation up to context.

Example 8. Given a signature Σ, i.e., a set of operations with associated arities, we

consider the free TΣ-algebra µ : TΣTΣX → TΣX. Intuitively, TΣX consists of all Σ-terms

with variables in X. Now, given a relation R ⊆ TΣX×TΣX on these terms, the contextual

closure c(R) ⊆ TΣX×TΣX can be inductively characterized by the following rules, where

g is any operator of Σ with arity n.

s R t

s c(R) t

si c(R) ti i = 1 . . . n

g(s1, . . . , sn) c(R) g(t1, . . . , tn)

This slightly differs from the definition in (Pous and Sangiorgi, 2012) where the contextual

closure is defined as

c′(R) = {(C[s1, . . . sn], C[t1, . . . tn]) | C a context and for all i: (si, ti) ∈ R}

(a context C is a term with n ≥ 0 holes [·]i in it). In our case c′ can be obtained as c ◦ r,
i.e., by precomposing c with the reflexive closure function r.

Example 9. Recall from Example 3 that every weighted automaton (X, 〈o, t〉) induces

a coalgebra whose state space is the free vector space RXω , that is, an algebra for the

monad R−ω . Given a relation R ⊆ RXω × RXω its contextual closure c(R) ⊆ RXω × RXω can
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be inductively characterized by the following rules.

v R w

v c(R) w

−
0 c(R) 0

v1 c(R) w1 v2 c(R) w2

v1 + v2 c(R) w1 + w2

v c(R) w r ∈ R
r · v c(R) r · w

With the above characterization, it is easy to introduce bisimulation up to context for

weighted automata: a relation R ⊆ RXω ×RXω is a bisimulation up to context provided that

for all (v, w) ∈ R it holds that o]1(v) = o]2(w) and for all a ∈ A, (t]1(v)(a), t]2(w)(a)) ∈ c(R).

As an example consider the weighted automaton in (1). It is easy to see that the

relation R = {(x2, y2), (x3, y3), (x1,
1
2y1 + 1

2y2), (x0, y0)} is a bisimulation up to context:

consider (x1,
1
2y1 + 1

2y2) (the other pairs are trivial) and observe that

x1
a //

R

1
2x1 + 1

2x2

c(R)

1
2y1 + 1

2y2 a
// 1
4y1 + 3

4y2

x1
b //

R

1
2x3 + 1

2x2

c(R)

1
2y1 + 1

2y2
b

// 1
2y3 + 1

2y2

It is worth noting that the above bisimulation up to context is finite, while one would

need an infinite bisimulation to prove the equivalence of x0 and y0.

Example 10 ((Rot et al., 2013b)). The set P(A∗) of all languages forms a deter-

ministic automaton as follows: the set of states is precisely the set of languages P(A∗)

itself; a state L ∈ P(A∗) is accepting, i.e., o(L) = 1, if and only if the empty word ε is

in L, and for every a ∈ A, the next state after an a-transition is given by the language

derivative t(L)(a) = {w | aw ∈ L}. One can readily show that the language accepted

by a state L is precisely L itself, and so whenever two languages L and K are bisimilar,

they are in fact equal. The operations of language union +, composition · and Kleene

star ∗, defined as usual, define an algebra on P(A∗). We have the following properties of

derivatives of these operations due to Brzozowski; we formulate this in terms of languages

(e.g., (Conway, 1971, page 41)):

t(0)(a) = 0 o(0) = 0

t(1)(a) = 0 o(1) = 1

t(b)(a) =

{
1 if b = a

0 otherwise
o(b) = 0

t(L+K)(a) = t(L)(a) + t(K)(a) o(L+K) = o(L) ∨ o(K)

t(L ·K)(a) = t(L)(a) ·K + [o(L)] · t(K)(a) o(L ·K) = o(L) ∧ o(K)

t(L∗)(a) = t(L)(a) · L∗ o(L∗) = 1

for any languages L,K. Here, 0 denotes the empty language and 1 the language {ε}.
Given b ∈ 2 we define [b] ∈ P(A∗) as [0] = 0 and [1] = 1.

Arden’s rule states that if L = KL+M for some languages L,K and M , and K does

not contain the empty word, then L = K∗M . In order to prove its validity coinductively,

let L,K,M be languages such that ε 6∈ K and L = KL+M , and let R = {(L,K∗M)}.
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Then o(K) = 0 since by assumption ε 6∈ K, so

o(L) = o(KL+M) = (o(K) ∧ o(L)) ∨ o(M) = (0 ∧ o(L)) ∨ o(M)

= o(M) = 1 ∧ o(M) = o(K∗) ∧ o(M) = o(K∗M)

and for any a ∈ A:

t(L)(a) = t(KL+M)(a) = t(K)(a) · L+ [o(K)] · t(L)(a) + t(M)(a)

= t(K)(a) · L+ t(M)(a) c(R) t(K)(a) ·K∗M + t(M)(a) = t(K∗M)(a)

So R is a bisimulation up to context, where the contextual closure is taken with respect

to the operators of union and composition.

Up-to-congruence. By composing the functions e, c and r described above, we obtain

another interesting up to technique. A bisimulation up to e ◦ c ◦ r is called a bisimulation

up to congruence. A recently introduced algorithm (Bonchi and Pous, 2013), for checking

the equivalence of non-deterministic automata, exploits this technique. The bisimulations

up to congruence built by this algorithm can be exponentially smaller than bisimulation

up to context. This is due to the use of transitivity.

Example 11. Recall from Example 4 the tropical semiring T. Given a relation R ⊆
TXω ×TXω , its congruence closure can be inductively characterized by the following rules.

v R w

v ecr(R) w

−
v ecr(R) v

v ecr(R) w

w ecr(R) v

u ecr(R) v ecr(R) w

u ecr(R) w

v1 ecr(R) w1 v2 c(R) w2

min(v1, v2) ecr(R) min(w1, w2)

v ecr(R) w r ∈ R ∪ {∞}
r + v ecr(R) r + w

For an example of bisimulation up to congruence consider the weighted automaton de-

picted in (3) and the relation R = {(x, u), (min(2+y, 3+z), 2+u)}. To prove that R is a

bisimulation up to congruence we only have to show that (min(4+x, 5+y), 4+u) ∈ ecr(R):

min(4 + x, 5 + y) ecr(R) min(4 + u, 5 + y) ((x, u) ∈ R)

ecr(R) min(min(4 + y, 5 + z), 5 + y) ((min(2 + y, 3 + z), 2 + u) ∈ R)

= 2 + min(2 + y, 3 + z)

ecr(R) 4 + u ((min(2 + y, 3 + z), 2 + u) ∈ R)

Note that R is not a bisimulation up to context, since (min(4 + x, 5 + y), 4 + u) /∈ c(R).

Here transitivity is really needed.

Up-to-union-context-and-equivalence. A bisimulation up to e ◦ c ◦ uS is called a bisimu-

lation up to S-union, context and equivalence. This is an important extension of bisimu-

lation up to context because the equivalence closure allows us to relate derivatives of R

using c(R ∪ S) in “multiple steps”, similar to the case of up-to-congruence.

Example 12. Recall the operations of shuffle product and inverse from Example 5 and

suppose that we want to prove that the inverse operation is really the inverse of shuffle



Rot, Bonchi, Bonsangue, Pous, Rutten, Silva 12

product, that is, σ⊗σ−1 ∼ 1 for all σ ∈ Twf (Rω) such that σ0 6= 0. Suppose we are given

that ⊗ is associative and commutative (so σ ⊗ τ ∼ τ ⊗ σ, etc.) and that σ + (−σ) ∼ 0

(note that these assumptions actually hold in general (Rutten, 2003)). Let

R = {(σ ⊗ σ−1, 1) | σ ∈ Twf (Rω), σ0 6= 0} .

We can now establish that R is a bisimulation up to ∼-union, context and equivalence.

First consider the initial values:

(σ ⊗ σ−1)0 = σ0 × (σ−1)0 = σ0 × (σ0)−1 = 1 = 10

Next, we relate the derivatives by e(c(R ∪ ∼)):

(σ ⊗ σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (σ−1)′

= σ′ ⊗ σ−1 + σ ⊗ (−σ′ ⊗ (σ−1 ⊗ σ−1))

t(c(∼)) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ (σ ⊗ σ−1))

c(R ∪ ∼) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ 1)

t(c(∼)) 0 = 1′

where t(c(∼)) denotes the transitive closure of c(∼); in the above we apply multiple

substitutions of terms for bisimilar terms. Since t(c(∼)) ⊆ e(c(R ∪ ∼)) and c(R ∪ ∼) ⊆
e(c(R ∪ ∼)) we may conclude that R is a bisimulation up to ∼-union, context, and

equivalence. Notice that R is not a bisimulation; establishing that it is a bisimulation-

up-to is much easier than finding a bisimulation which contains R.

In the above, rather than c(R ∪ ∼) we could have used c(r(R)). Moreover, since in

this example ∼ = t(c(∼)), the above is also an example of bisimulation up to context,

reflexivity and bisimilarity, that is, a bisimulation up to b ◦ c ◦ r. (Any bisimulation up

to context, reflexivity and bisimilarity is also a bisimulation up to ∼-union, context and

equivalence.)

4. An algebra of enhancements

The above examples illustrate the large range of enhancements available for bisimilarity,

and the need to combine such enhancements. For instance, up-to-union is rarely used

on its own: it needs to be combined with up-to-equivalence or up-to-context. However,

the soundness of such a combination does not necessarily follow from the soundness

of its basic constituents, and it can be hard to prove it from scratch. This calls for a

theory of enhancements which would allow one to freely combine them. Such a theory

was developed at the rather abstract level of complete lattices (Pous, 2007; Pous and

Sangiorgi, 2012). We rephrase it here at the level of binary relations, for the sake of clarity.

We instantiate it in the following sections to obtain our general theory of coalgebraic

bisimulations and behavioural equivalences up-to.

Let b be a monotone function on binary relations. By the Knaster-Tarski theorem

b has a greatest fixpoint, denoted by gfp(b), which is also the greatest post-fixpoint:

gfp(b) =
⋃
{R | R ⊆ b(R)}. The intuition is that by choosing b in an appropriate way,

gfp(b) will be the desired notion of bisimilarity. This motivates the following terminology:
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— A b-simulation is a relation R such that R ⊆ b(R).

— b-similarity is the greatest b-simulation, i.e., gfp(b).

The bisimulation proof method can now be rephrased as follows: to prove that some

states x, y are b-similar it suffices to exhibit a b-simulation R such that x R y. Enhance-

ments of the bisimulation proof method allow one to weaken the requirement that R is

a b-simulation: rather than checking R ⊆ b(R), we would like to check R ⊆ b(S) for a

relation S which is possibly larger than R. The key idea consists in using a function f to

obtain this larger relation out of R: S = f(R).

Definition 3. Let f be a function on binary relations.

— A b-simulation up to f is a relation R such that R ⊆ b(f(R)).

— f is b-sound if all b-simulations up to f are contained in b-similarity.

— f is b-compatible if it is monotone and f ◦ b ⊆ b ◦ f .

The notion of b-compatible function is introduced to get around the fact that b-sound

functions cannot easily be composed: b-compatible functions are b-sound and they enjoy

nice compositionality properties:

Theorem 1. All b-compatible functions are b-sound.

Proof. Suppose that R is a b-simulation up to f , i.e., that R ⊆ b(f(R)). Using compat-

ibility of f and by a simple induction on n, we get ∀n, fn(R) ⊆ b(fn+1(R)). Therefore,

we have ⋃
n

fn(R) ⊆
⋃
n

b(fn(R)) ⊆ b

(⋃
n

fn(R)

)
.

(The second inclusion holds by monotonicity of b.) In other words, fω(R) =
⋃
n f

n(R) is

a b-simulation. This latter relation trivially contains R, by taking n = 0, so that we can

conclude that R is contained in b-similarity.

Proposition 1. The following functions are b-compatible:

1 id — the identity function;

2 conS — the constant-to-S function, for any b-simulation S;

3 f ◦ g for any b-compatible functions f and g;

4
⋃
F for any set F of b-compatible functions.

The last two items allow one to freely combine b-compatible functions using functional

composition and pointwise union. There is a third way of combining two functions f, g

on relations, using relational composition: f • g(R) = f(R) ◦ g(R). This composition

operator does not always preserve b-compatible functions; the following lemma gives a

sufficient condition:

Proposition 2. If b satisfies the following condition:

for all relations R,S, b(R) ◦ b(S) ⊆ b(R ◦ S) , (†)

then f • g is b-compatible for all b-compatible functions f and g.
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We show in the following section that for all functors F there exists a function ϕ such

that the F -bisimulations are the ϕ-simulations. Any such function is monotone and the

property (†) holds iff the functor F preserves weak pullbacks.

We conclude this section with two lemmas which will be useful in the sequel: the first

one gives an alternative characterisation of b-compatible functions; the second one shows

that b-similarity is closed under any b-compatible function.

Lemma 1. A monotone function f is b-compatible iff for all relations R,S, R ⊆ b(S)

implies f(R) ⊆ b(f(S)).

Lemma 2. For all b-compatible functions f , f(gfp(b)) ⊆ gfp(b).

5. Bisimulation and ϕ-simulation

In this section we show how to characterize bisimulation and bisimulation-up-to in terms

of monotone functions. This allows us to study bisimulation-up-to, as introduced in

Section 3, in terms of the abstract framework of Section 4.

Let (X,α) be an F -coalgebra. We define an endofunction ϕα on the complete lattice

of relations on X ordered by inclusion (P(X × X),⊆) as follows, based on relation

lifting (Rutten, 1998; Hermida and Jacobs, 1998):

ϕα(R) = {(x, y) | (α(x), α(y)) ∈ F (πR1 )−1 ◦ F (πR2 )}
= {(x, y) | ∃z ∈ FR s.t. F (πR1 )(z) = α(x) and F (πR2 )(z) = α(y)}

We write ϕ instead of ϕα if α is clear from the context.

Example 13. We describe ϕ for several concrete types of systems.

1 For deterministic automata, ϕ corresponds to the classical functional exploited by the

Hopcroft minimization algorithm:

ϕ(R) = {(x, y) | o(x) = o(y) and, for all a ∈ A, (t(x)(a), t(y)(a)) ∈ R}

2 In the case of labelled transition systems, ϕ corresponds to the well-known functional

of bisimilarity (e.g., (Sangiorgi, 2012)):

ϕ(R) = {(x, y) | if x
a−→ x′ then there exists y′ s.t. y

a−→ y′ and x′Ry′, and

if y
a−→ y′ then there exists x′ s.t. x

a−→ x′ and x′Ry′}

3 For stream systems, i.e., coalgebras for the functor FX = R × X, ϕ instantiates to

ϕ(R) = {(x, y) | x0 = y0 and x′Ry′}.

Notice that ϕ can be characterized as a pullback (e.g., (Staton, 2011)):

ϕ(R)� _

��

// F (πR1 )−1 ◦ F (πR2 )� _

��

X ×X
α×α

// FX × FX

Lemma 3. For any coalgebra (X,α): ϕα is monotone.
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The following lemma establishes the connection of the above monotone functions to

bisimulation and bisimulation-up-to.

Lemma 4. For any coalgebra (X,α) and for any relations R,S ⊆ X ×X :

R ⊆ ϕα(S) iff R� S.

Proof. Follows easily from the second characterization of ϕ as given above.

From the above lemma we directly obtain the following known result (Rutten, 1998):

Corollary 1. For any coalgebra (X,α): R is a bisimulation iff R ⊆ ϕα(R).

In other words, a ϕ-simulation (Section 4) is the same as a bisimulation. Thus, the

greatest fixpoint of ϕ is precisely ∼. Lemma 4 also establishes a tight connection between

bisimulation-up-to and ϕ-simulation-up-to.

Corollary 2. Let f : P(X ×X)→ P(X ×X) be monotone. For any coalgebra (X,α):

1 R ⊆ X ×X is a bisimulation up to f iff it is a ϕα-simulation up to f ;

2 If f is ϕα-compatible (Def. 3), then f is sound (Def. 2).

Proof.

1 Follows directly from Lemma 4: R ⊆ ϕ(f(R)) iff R� f(R).

2 Suppose R � f(R); then R ⊆ ϕ(f(R)) by (1). If f is ϕ-compatible, then by Theo-

rem 1 it is ϕ-sound. So R ⊆ gfp(ϕ) =∼.

Via the above results we can apply the general theory of Section 4 to reason about

coalgebraic bisimulation-up-to.

6. Compatibility

In this section we study the ϕ-compatibility of the instances of bisimulation-up-to intro-

duced in Section 3. By proving the compatibility of a function f we obtain the soundness

of bisimulation up to f and we can compose it to other compatible functions, knowing

that the result is again compatible.

Theorem 2. Let (X,α) be a coalgebra for a functor F . The following functions are

ϕα-compatible:

1 r — the reflexive closure;

2 s — the symmetric closure;

3 uS — union with S (for a bisimulation S);

If F preserves weak pullbacks, then the following are ϕα-compatible:

4. t — the transitive closure;

5. e — the equivalence closure;

6. b — bisimilarity;

7. e ◦ uS — S-union and equivalence (for a bisimulation S).
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The functions exploiting the contextual closure c will be considered later (Section 6.1).

We will prove the above theorem below. But first, notice that for the compatibility of

several functions we require the functor to preserve weak pullbacks. Indeed, bisimulation

up to bisimilarity and bisimulation up to equivalence are not sound in general, and

consequently not compatible either. This is illustrated by the following example, which

is strongly inspired by an example from (Aczel and Mendler, 1989).

Example 14. Define the functor F : Set→ Set as

FX = {(x1, x2, x3) ∈ X3 | |{x1, x2, x3}| ≤ 2}
F (f)(x1, x2, x3) = (f(x1), f(x2), f(x3))

Consider the F -coalgebra with states X = {0, 1, 2, 0̃, 1̃} and transition structure

0 7→ (0, 1, 0) 0̃ 7→ (0, 0, 0) 2 7→ (2, 2, 2)

1 7→ (0, 0, 1) 1̃ 7→ (1, 1, 1)

Then 0 6∼ 1. To see this, note that in order for the pair (0, 1) to be contained in a

bisimulation R, there must be a transition structure on this relation which maps (0, 1) to

((0, 0), (1, 0), (0, 1)). But this triple can not be in FR, because it contains three different

elements. However, it is easy to show that 0 ∼ 2 and 1 ∼ 2: the relation {(0, 2), (1, 2)} is

a bisimulation.

Now consider the relation S = {(0̃, 1̃), (2, 2)}. S is not a bisimulation, since for that

there should be a function from S to FS mapping the elements as follows:

(0̃, 1̃) 7→ ((0, 1), (0, 1), (0, 1)) (2, 2) 7→ ((2, 2), (2, 2), (2, 2))

and neither ((0, 1), (0, 1), (0, 1)) nor ((2, 2), (2, 2), (2, 2)) are contained in FS. However,

since 0 ∼ 2 S 2 ∼ 1 (and 2 ∼ S ∼ 2), they are contained in F (∼ S ∼); so S is a

bisimulation up to bisimilarity. Thus if up-to-bisimilarity is sound, then S ⊆ ∼ so 0 ∼ 1,

which is a contradiction.

Below we will show that if the functor preserves weak pullbacks then ϕ-compatible

functions are closed under the operation • (defined in Section 4), which allows to prove

items 4,5,6 and 7. In order to proceed we recall some fundamental results relating preser-

vation of weak pullbacks to composition of relations.

Theorem 3. Let F : Set→ Set be a functor. The following are equivalent:

1 F preserves weak pullbacks.

2 F̃ : Rel→ Rel, defined as

F̃X = FX

F̃R = F (πR1 )−1 ◦ F (πR2 )

is a functor (i.e., F̃ preserves composition).

3 The composition of two F -bisimulations is again a bisimulation.

The equivalence of (1) and (2) is due to Trnková (Trnková, 1980). Notice that ϕ is in

fact defined in terms of the action of F̃ on relations: ϕα(R) = {(x, y) | (α(x), α(y)) ∈
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F̃R} (Rutten, 1998). Rutten (Rutten, 2000) established the implication from (1) to (3).

The reverse implication is due to Gumm and Schröder (Gumm and Schröder, 2000).

Their result is based on bisimulations on two coalgebras (X,α) and (Y, β) but for our

notion of bisimulation (restricted to one coalgebra) the implication still holds, as we show

in Appendix A.

Using Theorem 3 we show that preservation of weak pullbacks coincides precisely

with the property (†) of Section 4. Then by Proposition 2 we obtain that ϕ-compatible

functions are closed under • in the case of a functor which preserves weak pullbacks.

Proposition 3. F preserves weak pullbacks iff for any F -coalgebra (X,α), ϕα satis-

fies (†), i.e., for all relations R,S : ϕα(R) ◦ ϕα(S) ⊆ ϕα(R ◦ S).

Proof. Suppose F preserves weak pullbacks. Let (X,α) be an F -coalgebra, R,S ⊆
X×X relations, and (x, z) ∈ ϕα(R) ◦ϕα(S), so there is some y such that (x, y) ∈ ϕα(R)

and (y, z) ∈ ϕα(S). Then (α(x), α(y)) ∈ F̃ (R) and (α(y), α(z)) ∈ F̃ (S), so (α(x), α(z)) ∈
F̃ (R) ◦ F̃ (S). But by assumption and Theorem 3 F̃ is functorial, so F̃ (R) ◦ F̃ (S) =

F̃ (R ◦ S). Consequently (x, z) ∈ ϕα(R ◦ S) as desired.

Conversely, suppose that (†) holds; then by Proposition 2, compatible functions are

closed under •. Let R,S be bisimulations, so conR and conS are compatible by Proposi-

tion 1. By assumption conR•conS is compatible, so by Lemma 1 we have R◦S ⊆ ϕ(R◦S).

Now by Corollary 1, R◦S is a bisimulation. From Theorem 3 we conclude that F preserves

weak pullbacks.

The inverse function is compatible as well, which will be useful to prove compatibility

of the equivalence closure:

Proposition 4. For any coalgebra (X,α): the inverse map i(R) = R−1 is ϕα-compatible.

Proof. Suppose R ⊆ ϕ(S), and let (x, y) ∈ R−1, so (y, x) ∈ R. Then (α(y), α(x)) ∈
(F (πS1 ))−1 ◦ F (πS2 ). But πS1 = πS

−1

2 and πS2 = πS
−1

1 , so (α(y), α(x)) ∈ (F (πS
−1

2 ))−1 ◦
F (πS

−1

1 ). Consequently

(α(x), α(y)) ∈ ((F (πS
−1

2 ))−1 ◦ F (πS
−1

1 ))−1 = (F (πS
−1

1 ))−1 ◦ F (πS
−1

2 )

so x, y ∈ ϕ(S−1). By Lemma 1, i is ϕ-compatible.

We proceed with the proof of Theorem 2. Below we use the general compatibility

results of Proposition 1 without further reference.

1 The identity relation ∆ is a bisimulation (Rutten, 2000) and thus, by Proposition 1,

con∆ is compatible and thus r = id ∪ con∆ is compatible.

2 The inverse function is compatible by Proposition 4. Compatibility of s = id ∪ i then

follows directly.

3 uS = id ∪ conS is compatible for a bisimulation S, since conS is compatible.

4 First, we define (−)n as (−)1 = id and (−)n+1 = id•(−)n. We prove that for all n ≥ 1,

(−)n is compatible, by induction on n. For the base case, notice that id is compatible.

Now suppose (−)n is compatible. Then, by Proposition 3 and Proposition 2, (−)n+1 =

id • (−)n is also compatible. Now notice that t =
⋃
n≥1(−)n; so the function t is
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the (infinite) union of compatible functions, and consequently by Proposition 1 it is

compatible.

5 e = t ◦ s ◦ r is compatible, since r, s, and t are compatible.

6 con∼ is compatible since ∼ is a bisimulation. By Proposition 3 and Proposition 2,

the function b = con∼ • id • con∼ is compatible.

7 e ◦ uS is compatible since e and uS are compatible.

6.1. Bisimulation up to context

In order to define the contextual closure c, we need a T -algebra β : TX → X on the

states of an F -coalgebra (X,α). For compatibility of c one might expect that it is enough

to know that bisimilarity is a congruence with respect to this algebra; however, it is

known that this is not even enough for soundness of bisimulation up to context (Pous

and Sangiorgi, 2012). As we will show below, in order to prove that c is compatible, it

is sufficient to assume that (X,β, α) is a λ-bialgebra for some distributive law between

T and F : a natural transformation λ : TF ⇒ FT . We refer to (Klin, 2011) for a nice

overview on λ-bialgebras and report their formal definition below.

Definition 4. Let T, F be endofunctors on Set.

— An (F, T )-bialgebra is a triple (X,β, α) where X is a set, (X,β) is a T -algebra and

(X,α) is an F -coalgebra.

— Given a natural transformation λ : TF ⇒ FT we say (X,β, α) is a λ-bialgebra if

α ◦ β = Fβ ◦ λX ◦ Tα.

For example, the coalgebra (RXω , 〈o], t]〉) induced by a weighted automaton (Example

3) is a λ-bialgebra, where λ is a certain distributive law of the (underlying functor of

the) free vector space monad R−ω over the functor FX = R × XA. Other important

examples include certain types of process algebras and stream coalgebras induced by be-

havioural differential equations as well as regular expressions, but these examples involve

a technicality treated in Section 6.2.

Theorem 4. Let (X,β, α) be a λ-bialgebra for λ : TF ⇒ FT . The contextual closure

function cβ is ϕα-compatible. If F preserves weak pullbacks then the following are ϕα-

compatible as well:

1 e ◦ cβ ◦ r — congruence;

2 e ◦ cβ ◦ uS — context, S-union and equivalence;

3 b ◦ cβ ◦ r — context, reflexivity and bisimilarity.
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Proof. We prove compatibility of c; then items 1,2 and 3 follow directly from Theorem 2

and Proposition 1. Suppose R ⊆ ϕ(S) for some R and S. Consider the following diagram:

X

α

��

TX
β

oo

Tα

��

TR
TπR

1oo

Tγ

��

TπR
2 // TX

Tα

��

β
// X

α

��

TFX

λX

��

TFS
TFπS

1oo

λS

��

TFπS
2 // TFX

λX

��

FX FTX
Fβ

oo FTS
FTπS

1oo
FTπS

2 // FTX
Fβ

// FX

The existence of γ and commutativity of the upper squares follow from Lemma 4 and an

application of T . The lower squares commute by naturality. Finally the outer rectangles

commute since (X,β, α) is a λ-bialgebra.

Let fR : TR → c(R) be the corestriction of 〈β ◦ TπR1 , β ◦ TπR2 〉 : TR → X ×X to its

range, so that fR[TR] = c(R). Let fS : TS → c(S) be defined analogously, and take f−1
R

to be any right inverse of fR. Then the following diagram commutes:

c(R)
π
c(R)
1

uukkkkkkkkkkkkkkkkkkk

f−1
R

��

π
c(R)
2

))SSSSSSSSSSSSSSSSSSS

X

α

��

TX
β

oo TR
TπR

1oo

fR

OO

λS◦Tγ
��

TπR
2 // TX

β
// X

α

��

FX FTX
Fβ

oo FTS
FTπS

1oo

F (fS)

��

FTπS
2 // FTX

Fβ
// FX

Fc(S)
Fπ

c(S)
1

iiSSSSSSSSSSSSSSSSS Fπ
c(S)
2

55kkkkkkkkkkkkkkkkk

So c(R) progresses to c(S), and consequently c(R) ⊆ ϕ(c(S)) by Lemma 4. By Lemma 1

we conclude that c is ϕ-compatible.

Remark 1. The greatest bisimulation on a λ-bialgebra is closed under the algebraic

operations. This was first shown by Turi and Plotkin (Turi and Plotkin, 1997) under the

assumption that F preserves weak pullbacks; Bartels (Bartels, 2004) showed that this

assumption is not necessary. We obtain the same result as a direct consequence of the

above theorem and Lemma 2.

6.2. Coalgebras for copointed functors

As was first shown by Turi and Plotkin (Turi and Plotkin, 1997) one can obtain process

algebras whose operational rules conform to the GSOS format (Bloom et al., 1995) as

λ-bialgebras. Every GSOS specification over some signature Σ induces an operational

model

TΣTΣ∅
β

// TΣ∅
α // Pf (A× TΣ∅)
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on closed terms, where β is the initial algebra and α is a transition structure induced by

the specification. However, in several concrete cases there is no natural transformation

λ such that (TΣ∅, β, α) is a λ-bialgebra. Instead, one needs to consider the bialgebra

(TΣ∅, β, 〈α, id〉); 〈α, id〉 now is a coalgebra for the so-called cofree copointed endofunctor

Pf (A × Id) × Id (see, e.g., (Klin, 2011)). Analogously, any (non-partial)† specification

of operations on streams in terms of behavioural differential equations (Rutten, 2003)

corresponds to a natural transformation involving not the functor FX = R × X but

the functor F × Id . Yet another example is given by the coalgebraic characterization

of context-free grammars as in (Winter et al., 2011); as discussed in (Bonsangue et al.,

2013), this construction involves a bialgebra which is a λ-bialgebra when the coalgebra

is paired with the identity function.

All of the above are examples of bialgebras (X,β, α) such that (X,β, 〈α, id〉) is a

λ-bialgebra. In such cases one wants to consider bisimulation(-up-to) on the coalgebra

α and not on 〈α, id〉. However, while Theorem 4 gives us ϕ〈α,id〉-compatibility of the

contextual closure cβ , it does not provide ϕα-compatibility. For the convenience of the

reader, we recall a counterexample from (Pous and Sangiorgi, 2012).

Example 15 ((Pous and Sangiorgi, 2012)). Consider the following specification of

the prefix and the replication operation on labelled transition systems:

a.x
a−→ x

x
a−→ x′

!x
a−→!x | x′

together with the standard definition of the parallel operator x | y, and the constant

0. This specification is in the GSOS format, and since the variable x occurs on the

right-hand side in the rule for replication, the use of a copointed functor is necessary

(e.g., (Klin, 2011)). While this is arguably not the best way to specify replication in the

context of CCS (Pous and Sangiorgi, 2012) it suffices for our purposes. This specification

induces a coalgebra on closed terms. Now consider the relations R = {(!a.b, !a.c)} and

S = {((!a.b) | b, (!a.c) | c)} (where b and c abbreviate b.0 and c.0 respectively). Then R

progresses to S, but c(R) does not progress to c(S). For example, (d.!a.b, d.!a.c) ∈ c(R)

but !a.b is not related to !a.c by c(S). Thus, by Lemma 1 the contextual closure c is not

ϕα-compatible.

The solution of (Pous and Sangiorgi, 2012) is to define a different function ϕ′ as

ϕ′(R) = ϕ(R) ∩R .

But ϕ′α = ϕ〈α,id〉 (a nice exercise in relation lifting), so in our framework this func-

tion arises naturally from the fact that one needs to consider a coalgebra for the cofree

copointed functor in order to obtain compatibility.

In terms of progressions, we have R ⊆ ϕ′(S) if and only if R progresses to S and R ⊆ S.

Thus if R progresses to f(R) for a function satisfying R ⊆ f(R), then R ⊆ ϕ′(f(R)).

But notice that for most functions f considered in Theorem 2 and Theorem 4 we have

† The partial specification of Example 5 can be completed by fixing the initial value of 0−1 to some

arbitrary constant.
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R ⊆ f(R)—an exception is the constant-to function. For the context closure function, a

sufficient condition is that the functor T is pointed, i.e., there is a natural transformation

η : Id ⇒ T , and β is an algebra for this pointed functor, meaning that β ◦η = id . In fact,

in all the examples considered in this paper, T has a stronger property: is the underlying

functor of a monad.

7. Behavioural equivalence-up-to

Whenever the functor F does not preserve weak pullbacks (as it is the case, for instance,

with certain types of weighted transition systems (Gumm and Schröder, 2001; Klin, 2009;

Bonchi et al., 2012)) one can consider behavioural equivalence, rather than bisimilarity.

Definition 5. For a coalgebra α : X → FX and relations R,S ⊆ X × X, we say R

progresses to S (with respect to behavioural equivalence), denoted R S, if the following

diagram commutes:

R
π1 //

π2

// X
α // FX

Fq
// F (X/e(S))

where q is the quotient map of e(S). If R R then R is called a behavioural equivalence.

Equivalently, R progresses to S if Fq ◦ α factors through the quotient map of e(R).

In particular, R is a behavioural equivalence iff the quotient map of R is a coalgebra

homomorphism.

The largest behavioural equivalence is denoted by ≈. An equivalent definition of ≈ is:

x ≈ y iff there exists some homomorphism f from (X,α) to some coalgebra (Y, β) such

that f(s) = f(t) (Gumm, 1999).

The relation R of Example 6 is a behavioural equivalence: note that, intuitively, be-

havioural equivalences are implicitly “up-to-equivalence”, since the arriving states can

be related by e(R). Note also that in (Aczel and Mendler, 1989) behavioural equivalences

are called pre-congruences.

Definition 6. If R f(R) for a function f : P(X×X)→ P(X×X) then we say R is a

behavioural equivalence up to f . We say that f is sound (w.r.t. behavioural equivalence)

if R ⊆ ≈ for all R such that R f(R).

We proceed with a similar development as for bisimulation-up-to: first, we characterize

behavioural equivalence as a fixed point of a monotone function, as done already in (Aczel

and Mendler, 1989). Define the function ψα : P(X ×X)→ P(X ×X) as

ψα(R) = {(x, y) | Fq ◦ α(x) = Fq ◦ α(y)}

i.e., as the kernel of Fq ◦ α, where q : X → X/e(R) is the quotient map of e(R). Notice

that we can also define q as the coequalizer of R and its projection maps, and ψα as the

pullback of Fq ◦ α along itself.

Lemma 5. For any coalgebra (X,α): ψα is monotone.
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The correspondence between progression and functions ψ is given by the following

lemma:

Lemma 6. For any coalgebra (X,α) and for any relations R,S ⊆ X ×X:

R ⊆ ψ(S) iff R S .

Consequently, behavioural equivalence up to any ψ-compatible function is sound. Un-

fortunately, the property (†) does not hold for ψ, that is, in general it does not hold that

ψ(R) ◦ ψ(S) ⊆ ψ(R ◦ S). This is shown by the following example:

Example 16. Consider the identity functor FX = X and the F -coalgebra with states

{x, y} and transitions x 7→ x and y 7→ y. Let R = {(x, y)}. Then ψ(∅) = {(x, x), (y, y)}
and ψ(R) = {(x, x), (y, y), (x, y), (y, x)}. Now ψ(R) ◦ ψ(∅) = {(x, x), (y, y), (x, y), (y, x)},
whereas ψ(R ◦ ∅) = ψ(∅) = {(x, x), (y, y)}. So ψ(R) ◦ ψ(∅) is not included in ψ(R ◦ ∅).

This motivates to prove the compatibility of the equivalence closure e directly, which is

in fact quite easy in the case of behavioural equivalence.

Theorem 5. Let (X,α) be any coalgebra. The following are ψα-compatible:

1 r — the reflexive closure;

2 e — the equivalence closure;

3 uS — union with S (for a behavioural equivalence S);

Proof. Items 1 and 3 are analogous to the case of ϕ-compatibility in Theorem 2. We

proceed with the compatibility of the equivalence closure. First, notice that e◦ψ = ψ since

ψ(R) is an equivalence relation for any relation R. Second, since e(R) = e(e(R)) for any

R, the quotient maps in the definition of ψ(R) and ψ(e(R)) are equal, so ψ(R) = ψ(e(R)).

Thus e ◦ ψ = ψ = ψ ◦ e.

Notice that the ψ-compatibility of the equivalence closure does not require any assump-

tions on the functor.

In order to proceed recall that a monad is a triple (T, µ, η) where T is an endofunctor,

µ : TT ⇒ T and η : Id ⇒ T are natural transformations such that µ ◦ Tη = id = µ ◦ ηT
and µ ◦ µT = µ ◦ Tµ. A (T, µ, η)-algebra is T -algebra (X,β) such that β ◦ ηX = id and

β ◦ µX = β ◦ Tβ.

For the compatibility of context closure a λ-bialgebra is required, similar to the case of

bisimulation in Theorem 4. However, in the case of behavioural equivalence, we require

an algebra for a monad, although λ is still only required to be a distributive law between

functors, that is, a plain natural transformation. Further, in the proof we need to assume

preservation of reflexive coequalizers‡, which is a non-trivial condition in Set; see (Adámek

et al., 2000, page 538) for a counterexample. It is sufficient to restrict to finitary monads,

that is, monads where the underlying functor preserves filtered colimits. For a free monad

over a signature, this means that each operation has finite arity (but there may be

‡ A reflexive coequalizer is a coequalizer of a reflexive pair, that is, a pair of functions f, g : X → Y
such that there is a function h : Y → X with f ◦ h = g ◦ h = id .
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infinitely many operations). Other examples include the free vector space monad and the

finite powerset monad.

Lemma 7. If (T, η, µ) is a finitary Set monad then it preserves reflexive coequalizers.

Now we are ready to prove compatibility of up-to-context. However, notice that the above

results depend on the relations being reflexive; thus we will directly prove compatibility

of c ◦ r instead of c.

Theorem 6. Let (X,β, α) be a λ-bialgebra for a distributive law λ : TF ⇒ FT (between

functors), where β is an algebra for a finitary monad (T, η, µ). The following are ψα-

compatible:

1 cβ ◦ r — contextual closure;

2 e ◦ cβ ◦ r — congruence;

3 e ◦ cβ ◦ r ◦ uS — context, S-union, reflexivity and equivalence;

4 b ◦ cβ ◦ r — context, reflexivity and bisimilarity.

Proof. We only need to prove ψ-compatibility of cβ ◦ r. Suppose R ⊆ ψα(S) for some

relations R,S ⊆ X×X. By Theorem 5, r is ψα-compatible, so r(R) ⊆ ψα ◦ r(S). Further

r(S) ⊆ cβ ◦ r(S), using the fact that we have a pointed functor (T, η). Therefore

r(R) ⊆ ψα ◦ cβ ◦ r(S) . (5)

Let q : X → X ′ be the quotient map of e ◦ cβ ◦ r(S) and its projections, or, equivalently,

the coequalizer of the two composite arrows β◦Tπ1, β◦Tπ2 in the bottom of the diagram

below:

TT (r(S))
TTπ1,TTπ2 //

µr(S)

��

TTX
Tβ

//

µX

��

TX
Tq

//

β

��

TX ′

β′

��
�
�
�
�
�

T (r(S))
Tπ1,Tπ2 // TX

β
// X

q
// X ′

(6)

The left square commutes (for Tπ1 and Tπ2 separately) by naturality, and the middle

since β is an algebra for the monad. Since T is finitary, it preserves reflexive coequalizers,

so Tq is a coequalizer. The map β′ making the right square commute arises by its universal

property.

Now consider the following diagram:

T (r(R))
Tπ1 //

Tπ2

// TX

β

��

Tα // TFX

λX

��

TFq
// TFX ′

λX′

��

FTX

Fβ

��

FTq
// FTX ′

Fβ′

��

X
α // FX

Fq
// FX ′

The top horizontal paths commute by (5) and functoriality. The rectangle commutes by
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the assumption that (X,β, α) is a λ-bialgebra. The upper square commutes by naturality

of λ, and the lower square by (6) and functoriality. Thus we have Fq ◦ α ◦ β ◦ Tπ1 =

Fq ◦ α ◦ β ◦ Tπ2, and consequently

cβ(r(R))
π1 //

π2

// X
α // FX

Fq
// FX ′

commutes, which means cβ ◦ r(R)  cβ ◦ r(S). Thus cβ ◦ r(R) ⊆ ψα ◦ cβ ◦ r(S) by

Lemma 6, and by Lemma 1 now cβ ◦ r is ψα-compatible.

For compatibility of the contextual closure function for coalgebras which are (part of)

λ-bialgebras when paired with the identity function, we can perform a similar develop-

ment as in Section 6.2, by defining ψ′(R) = ψ(R) ∩R.

Example 17. For an example of behavioural equivalence up-to, we consider the “general

process algebra with transitions costs” (GPA) from (Buchholz and Kemper, 2001). GPA

processes are defined for a given set of labels A and a semiring S which, for this example,

we fix to be the semiring of reals R. The operational semantics of GPA is expressed in

terms of weighted transition systems which are coalgebras for the functor (R−ω )A where

R−ω : Set→ Set is defined as follows:

— For each set X, RXω is the set of functions from X to R with finite support (see the

Notation paragraph in the introduction).
— For each function h : X → Y , Rhω : RXω → RYω is the function mapping each ϕ ∈ RXω

into ϕh ∈ RYω defined, for all y ∈ Y , by

ϕh(y) =
∑

x′∈h−1(y)

ϕ(x′)

In a nutshell, a weighted transition system is a weighted automaton without output in

the states. Formally, it is a pair (X, t) where X is a set of states and t : X → (RXω )A

is the transition relation that associates a weight to each transition. We use the same

notation of weighted automata: x
a,r→ y means that t(x)(a)(y) = r and r 6= 0.

As shown in Section 2.3 of (Bonchi et al., 2012), the functor (R−ω )A does not preserve

weak pullbacks and therefore bisimulations up-to cannot be used in this context. However,

thanks to Theorems 5 and 6 we can use behavioural equivalence up-to. First observe that,

by instantiating the definition of ψ above to an (R−ω )A-coalgebra (X, t), one obtains the

function ψt : P(X ×X)→ P(X ×X) defined for all relations R ⊆ X ×X as

ψt(R) = {(x1, x2) | ∀a ∈ A, y ∈ X,
∑

y′∈[y]R

t(x1)(a)(y′) =
∑

y′∈[y]R

t(x2)(a)(y′)}

where [y]R denotes the equivalence class of y w.r.t. R. With this explicit definition,

it is easy to see that our notion of behavioural equivalence coincides with the one of

bisimulation in (Buchholz and Kemper, 2001).

In order to illustrate our example is enough to consider a small fragment of GPA. The

set P of basic GPA processes is defined by

p :: = 0 | p+ p | (a, r).p
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where a ∈ A, r ∈ R. The operational semantics of basic GPA processes is given by the

coalgebra t : P → (RP )A defined for all a′ ∈ A and p′ ∈ P as follows:

t(0)(a′)(p′) = 0

t((a, r).p)(a′)(p′) =

{
r if a = a′, p = p′

0 otherwise

t(p1 + p2)(a′)(p′) = t(p1)(a′)(p′) + t(p2)(a′)(p′)

Equivalently, it is described by the following rules:

r 6= 0

(a, r).p
a,r→ p

p1
a,r→ p′ r 6= 0

p1 + p2
a,s→ p′

p2
a,r→ p′ r 6= 0

p1 + p2
a,s→ p′

where s = t(p1)(a)(p′)+ t(p2)(a)(p′). For instance, the operational semantics of (a, 1).0+

(a,−1).(a, 0).0 is depicted below.

0

(a, 1).0 + (a,−1).(a, 0).0

a,1
44iiiiiiiiiiii

a,−1 **TTTTTTTTTT

(a, 0).0

Since 0 ≈ (a, 0).0, we have that (a, 1).0 + (a,−1).(a, 0).0 ≈ 0. More generally, it holds

that for all a ∈ A, r ∈ R, p1 and p2 ∈ P ,

if p1 ≈ p2 then 0 ≈ (a, r).p1 + (a,−r).p2. (7)

We are going to prove (7) by means of behavioural equivalence up to union with ≈
(Theorem 5). To this end, consider the relation

R = {(0, (a, r).p1 + (a,−r).p2) | p1 ≈ p2}

and note that R is not a behavioural equivalence by taking p1 = 0 and p2 = (a, 0).0

(namely, R 6⊆ ψt(R)). However R is a behavioural equivalence up to u≈: to see that

R ⊆ ψt(R∪ ≈), fix p = (a, r).p1 + (a,−r).p2 and observe that for all processes q ∈ P∑
y′∈[q]R∪≈

t(0)(a)(y′) = 0 =
∑

y′∈[q]R∪≈

t(p)(a)(y′).

The leftmost equality comes from the semantics of the process 0. For the rightmost, we

have that either q 6≈ p1 or q ≈ p1. In the first case, the above rightmost equivalence is

obvious. In the second case,∑
y′∈[q]R∪≈

t(p)(a)(y′) = t(p)(a)(p1) + t(p)(a)(p2) = r − r = 0

since p1 ∈ [q]R∪≈ and p2 ∈ [q]R∪≈.
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8. Conclusions

Coalgebraic bisimulation-up-to enhances the proof method for bisimilarity, allowing for

smaller proofs and equational reasoning on bisimulation equivalence for a large class

of state-based systems and calculi. We presented a compositional framework for up-to-

techniques and showed the compatibility (and thus the soundness) of the more common

techniques: any novel compatible enhancements could be combined with these as well,

without the necessity of re-proving soundness.

While showing this we also obtained interesting side results, such as Proposition 3,

which provides a novel characterization of weak pullback preservation. This result is

based on a definition of relational lifting for weak pullback preserving functors. We leave

as future work the study of either a more broadly applicable notion of bisimulation, as

in (Goŕın and Schröder, 2013), or a more general definition of relation lifting, which

applies to arbitrary functors on Set, as in (Marti and Venema, 2012). While in our

work relators must preserve binary composition, in (Levy, 2011) a framework has been

developed which only laxly preserves composition. The combination of this theory with

our framework would allow for a study of up-to-techniques for simulations, rather than

bisimulations.
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Appendix A. Bisimulations on different systems

The validity of the implication (3)⇒ (1) of Theorem 3 is shown in (Gumm and Schröder,

2000), based on the standard notion of bisimulation on different systems: given F -

coalgebras (X,αX) and (Y, αY ) a relation R ⊆ X × Y is a bisimulation if there exists a

transition structure γ : R→ FR such that the following diagram commutes:

X

αX

��

R
π1oo

γ

��

π2 // Y

αY

��

FX FR
Fπ1

oo
Fπ2

// FY

The notion of bisimulation which we adopted in this paper is based on single systems,

i.e., where (X,αX) = (Y, αY ). We proceed to show that in Set, if bisimulations on single

systems are closed under composition, then bisimulations on different systems are closed

under composition as well; this proves that the implication from (3) to (1) of Theorem 3

holds in our setting as well.

We denote a coproduct by X + Y and the associated injections by iX and iY .

Proposition 5. Let (X,αX) and (Y, αY ) be F -coalgebras (F is a Set endofunctor) and

R ⊆ X × Y a relation. Then R is a bisimulation on X and Y iff (iX × iY )[R] is a

bisimulation on X + Y .

Proof. Let R ⊆ X×Y . The cases X = ∅ or Y = ∅ are trivial, so we may assume X 6= ∅
and Y 6= ∅. Let (X + Y, αX+Y ) be the coproduct coalgebra (Rutten, 2000). So in the

diagram below, the outer two squares commute. Suppose R is a bisimulation on X and

Y ; then there exists a γ such that the middle squares of the diagram below commute:

X + Y

αX+Y

��

X
iXoo

αX

��

R
π1oo

γ

��

π2 // Y

αY

��

iY // X + Y

αX+Y

��

F (X + Y ) X
FiXoo FR

Fπ1oo
Fπ2 // FY

FiY // F (X + Y )
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which means the entire diagram commutes and (iX × iY )(R) is a bisimulation on X+Y .

Conversely suppose ((iX × iY )[R], γ) is a bisimulation on X + Y for some relation

R ⊆ X×Y ; so in the above diagram, the outer rectangles commute (i.e., αX+Y ◦iX ◦π1 =

FiX ◦ Fπ1 ◦ γ and similarly for Y ). Now since iX is mono, X is nonempty, and F is a

Set functor, FiX is mono as well (see, e.g., (Rutten, 2000)). Further FiX ◦ αX ◦ π1 =

αX+Y ◦iX ◦π1 = FiX ◦Fπ1◦γ, and since FiX is mono we may conclude αX ◦π1 = Fπ1◦γ.

Similarly we derive αY ◦ π2 = Fπ2 ◦ γ. So R is a bisimulation on X and Y .

Proposition 6. Let (X,αX) and (Y, αY ) be F -coalgebras, and R ⊆ X ×X a relation.

Then R is a bisimulation on X iff (iX × iY )[R] is a bisimulation on X + Y .

Proof. Similar to that of Proposition 5.

From the above two propositions, one can deduce the following:

Corollary 3. Let F be a Set endofunctor. Suppose F -bisimulations on single systems

(i.e., of type R ⊆ X×X) are closed under composition. Then F -bisimulations on different

coalgebras (i.e., of type R ⊆ X × Y ) are closed under composition as well.

Proof. The outline of the proof is as follows. Let R ⊆ X × Y and S ⊆ Y × Z be

bisimulations. Then by applying first Proposition 5 and then Proposition 6 we can turn

both into bisimulations on X+Y +Z. The composition of these two then is a bisimulation

by assumption; and applying Proposition 6 and Proposition 5 in the other direction again

we obtain that R ◦ S is a bisimulation on X and Z.


