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SUMMARY

Classification with small samples of high-dimensional datais important in many areas. Quan-
tile classifiers are distance-based classifiers that require a single parameter, regardless of the10

dimension, and classify observations according to a sum of weighted component-wise distances
of the components of an observation to the within-class quantiles. An optimal percentage for
the quantiles can be chosen by minimizing the misclassification error in the training sample. It
is shown that this choice is consistent for the classification rule with the asymptotically optimal
quantile, and that, under some assumptions, when the numberof variables goes to infinity, the 15

probability of correct classification converges to unity. The role of skewness of the distributions
of the predictor variables is discussed. The optimal quantile classifier gives low misclassification
rates in a comprehensive simulation study and a real data set.

Some key words: high-dimensional data; median-based classifier; misclassification rate; skewness.

1. INTRODUCTION 20

Supervised classification has received wide interest in thescientific literature. Classification
methods can be broadly divided into parametric methods, which make distributional assumptions
(e.g., Hastie & Tibishirani, 1996; Bensmail & Celeux, 1996;Fraley & Raftery, 2002; Hand &
Yu, 2001), and nonparametric methods, which concentrate onthe local vicinity of the point to
be classified (e.g., Cover & Hart, 1967; Mika et al., 1999). Implementing classification methods25

in high dimensions can be computationally demanding, because of the curse of dimensionality
(Bellman, 1961). A way to address this problem is to rely on portions of the conditional distribu-
tion of the features given the class labels. Distance-basedclassifiers use the partial information of
the class conditional distributions: centroid-based methods have been successfully used for gene
expression data (Tibshirani et al., 2002; Dudoit et al., 2002; Dabney, 2005; Fan & Fan, 2008), 30

and median-based classifiers (Jörnsten, 2004; Ghosh & Chaudhuri, 2005) represent a more ro-
bust alternative when distributions have heavy tails. Hallet al. (2009) proposed a component-
wise median-based classifier that works well in high dimensions, by assigning a new observed
vector to the class from which it has the smallestL1-distance in the training set. All these meth-
ods consider the distance from the core of a distribution to be the major source of discriminatory 35

information, but other quantities may contain informationrelevant for classification.
In this work we define and explore classifiers based on the quantiles of the class conditional

distributions. More specifically, by defining a natural distance for quantiles, which includes the
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L1-distance to the component-wise median as special case, we will obtain the quantile classifier
dependent on theθ quantile,θ ∈ [0, 1]. The optimalθ chosen in the training set will define the40

empirically optimal quantile classifier. We establish the consistency of this choice for theθ that
yields the optimal true correct classification probabilityas the sample sizen → ∞. We show that
under certain assumptions the correct classification probability converges to unity as the number
of variablesp increases with the sample size, as Hall et al. (2009) did for the median classifier.

2. THE CLASSIFICATION RULE45

2·1. Distance-based classifiers
We consider constructing a quantile distance-based discriminant rule for classifying new ob-

servations into one of two populations or classes. LetΠ0 and Π1 be populations described
by the random variablesX and Y with probability densitiesP0 and P1 on R

pd. Distance-
based classifiers (Jörnsten, 2004; Tibshirani et al., 2003; Hall et al., 2009) assign a new datum50

z = (z1, . . . , zp) to the population to which it is closest. More specifically, the decision rule
allocatesz to Π0 if

p
∑

j=1

{d(zj , ξY )− d(zj , ξX)} > 0, (1)

whereξX = (ξX1, . . . , ξXp) andξY = (ξY 1, . . . , ξY p) arep-variate moments of populationsΠ0

andΠ1 andd(·) denotes a specific distance measure. The rule in (1) includescentroid classi-
fiers (Tibshirani et al., 2002, 2003; Wang & Zhu, 2007), for which ξX = {E(X1), . . . , E(Xp)},55

ξY = {E(Y1), . . . , E(Yp)}, andd(·) is the squared difference, so that the sum is the squared
L2-distance betweenz and the mean vector, and the median-based classifier (Hall etal., 2009)
defined by choosingξX , ξY as the component-wise medians ofP0 andP1, respectively, and
d(·) as the absolute value, so that the sum is theL1-distance betweenz and the component-
wise median. These definitions are population-based. For finite samples, population quantities60

are replaced by sample analogues.
The choice of the metricL1 for medians, instead ofL2, is motivated by the fact that the mean

vector is the statistic that minimizes the sum ofL2-distances of points to the centroid, whereas
the median minimizes the sum of the correspondingL1-distances.

2·2. The quantile classifier65

We now introduce a family of the quantile classifiers that includes the median classifier as
special case. By definition, theθ-quantile of a univariate random variable, sayU , with probabil-
ity distribution functionFU , denoted byqU(θ), solves the equationqU (θ) = F−1

U (θ) = inf{u :
FU (u) ≥ θ}, with θ ∈ [0, 1]. Theθ-quantile ofFU is the valueq that minimizes

θ

∫

u>q

|u− q|dFU (u) + (1− θ)

∫

u<q

|u− q|dFU (u), (2)

where| · | denotes absolute value. Equation (2) takes its minimum forFU (q) = θ. For observa-70

tionsu1, . . . , un, the empiricalθ-quantile ofU minimizes the sample counterpart of (2):

θ
∑

ui>q

|ui − q|+ (1− θ)
∑

ui≤q

|ui − q| =

n
∑

i=1

{

θ + (1− 2θ)1(ui≤q)

}

|ui − q|, (3)
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where the indicator function1(ui≤q) is unity if ui ≤ q and zero otherwise. Expression (3) is used
to define the quantile-based classifier. Let

Φkj(z, θ) =
[

θ + {1− 2θ}1{zj≤qkj(θ)}

]

|zj − qkj(θ)|, j = 1, . . . , p, k = 0, 1,

Φj(z, θ, q) =
{

θ + (1− 2θ)1(zj≤q)

}

|zj − q|,

whereq0j(θ), q1j(θ) are the marginal quantile functions ofP0, P1 evaluated atθ. Given two
sets of observations from the two populationsΠ0 andΠ1, x1, . . . , xn0

andy1, . . . , yn1
and a new 75

observationz = (z1, . . . , zp) ∈ R
p, let

s(z, θ) =

p
∑

j=1

{Φ1j(z, θ)− Φ0j(z, θ)} . (4)

Thenz is assigned toΠ0 if s(z, θ) > 0 and toΠ1 otherwise.

Remark1. The application of (4) to more thang = 2 classes is straightforward. The quantile
classifier rule for allocating an observationz to one ofg populationsΠ1, . . . ,Πg is to allocatez
to the population which gives the lowest quantile distance

∑p
j=1Φkj(z, θ), (k = 1, . . . , g). 80

Remark2. Expression (4) coincides with the median classifier forθ = 0·5.

Given the two populations,Π0 andΠ1 with prior probabilitiesπ0 andπ1, respectively, the prob-
ability of correct classification of the quantile classifier, based on the true quantiles, is

Ψ(θ) = π0

∫

1{s(z,θ)>0}dP0(z) + π1

∫

1{s(z,θ)≤0}dP1(z). (5)

In the Supplementary Material we show that there is a straightforward formula to compute (5) for
p = 1, and that withθ maximizing (5) the quantile classifier equals the optimal Bayes classifier 85

in many cases. Figure 1 shows a number of univariate examplesfor how the theoretical misclas-
sification rates1−Ψ(θ) change withθ, assumingπ0 = π1 = 0·5. The valueθ = 0·5 is optimal
for symmetric distributions of equal shape, but in case of distributions of different shapes or with
skewness, other values ofθ improve the misclassification rate. Experiments show that the shapes
of the curves on the right hand side of Figure 1, including thelocation of the minimum, can be 90

estimated fairly accurately by misclassification probabilities within the training sample ifn is
large enough.

2·3. The empirically optimal quantile classifier
We address the choice of the quantile value in the family of possible quantile classifiers by

selecting the optimumθ based on misclassification rates in the training sample. 95

Let (Z1, C1), (Z2, C2), . . . be R
p × {0, 1}-valued independent and identically distributed

random variables. LetZ1 be distributed according to a two-component mixture of distribu-
tionsP0 = L(Z1 | C1 = 0) andP1 = L(Z1 | C1 = 1). Let π0 = pr(C1 = 0) andπ1 = π0. Let
P01, . . . , P0p denote the marginal distributions ofP0, analogouslyP11, . . . , P1p. For arbitrar-
ily small 0 < τ < 1/2 defineT = [τ, 1 − τ ]. For θ ∈ [0, 1] (j = 1, . . . , p; k = 0, 1) let qkj(θ) 100

denote theθ-quantile ofPkj. For given(Z1, C1), . . . , (Zn, Cn) let q̂kjn(θ) be the empiricalθ-
quantile for the subsample defined byCi = k (i = 1, . . . , n). The notationΦkj(z, θ) is used for
Φj{z, θ, qkj(θ)} andΦkjn(z, θ) is used forΦj{z, θ, q̂kjn(θ)}.
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Fig. 1. Theoretical misclassification rates in four different
scenarios with equal class prior probabilities. First panel:
probability density functions of two location-shifted Gaus-
sians and the corresponding misclassification rates as func-
tion of θ. Second panel: two location-shifted chi-squared
distributions and the corresponding misclassification func-
tion. Third panel: misclassification rates for two location-
shifted exponentials. Forth panel: misclassification rates

for a Gaussian vs a chi-squared distribution.

The empirically optimal quantile classifier is defined by assigningZ to Π0 if

sn(Z, θ̂n) =

p
∑

j=1

{Φ1jn(Z, θ̂n)−Φ0jn(Z, θ̂n)} > 0, (6)

where θ̂n = argmax
θ∈T

Ψn(θ) is the estimated optimalθ from (Z1, C1), . . . , (Zn, Cn); if the105

argmax is not unique, any maximizer can be chosen. The observed rate of correct classification
for θ in data(z1, c1), . . . , (zn, cn) is

Ψn(θ) =
1

n

[

∑

i: ci=0

1{sn(Z,θ)>0} +
∑

i: ci=1

1{sn(Z,θ)≤0}

]

·

We look for the optimal value ofθ in T , a closed interval not containing zero. In practice, a small
nonzeroτ needs to be chosen, andΨn(θ) is evaluated on a grid of equispaced values betweenτ
and1− τ , whereτ should be chosen large enough that there is sufficient information to estimate110

theτ -quantile. The parameterτ should not be seen as a crucial tuning parameter of the method;
we recommend to choose it as small as possible in order to find the empirical optimum ofθ,
while ensuring that the estimatedτ -quantile still is of some use.
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In case of equal misclassification rates for different values of θ, which can arise for data sets
with smalln, we recommend fitting a square polynomial to the misclassification rate as function 115

of θ and choosing the optimumθ by evaluating this polynomial at the empirically optimal values
of θ.

3. ASYMPTOTIC THEORY

3·1. Consistency of the quantile classifier
The asymptotic probability of correct classification of thequantile classifier is defined in (5).120

Let θ̃ = argmax
θ∈T

Ψ(θ) be the optimalθ regarding the true model. We make the following as-

sumptions.

A1. For allj = 1, . . . , p andk = 0, 1 let qkj be a continuous function ofθ ∈ T ;

A2. For allθ ∈ T , pr
[

∑p
j=1{Φ1j(Z, θ)− Φ0j(Z, θ)} = 0

]

= 0.

THEOREM 1. Under A1 and A2, for anyǫ > 0, 125

lim
n→∞

pr{|Ψ(θ̃)−Ψ(θ̂n)| > ǫ} = 0. (7)

This means that in large samples the empirically optimalθ̂n in the quantile classifier achieves
the true correct classification probability for the true optimal θ, and is therefore at least as good
as the median classifier. Proofs are given in the Supplementary Material.

3·2. A result forp → ∞

Theorem 1 refers ton → ∞ for fixed finitep. In many modern applicationsp is larger thann, 130

so that results forp → ∞ seem more appealing.
Hall et al. (2009) proved under certain conditions that the misclassification probability of the

median classifier converges to zero forn, p → ∞. Their proof adapts in a more or less straight-
forward manner to classifiers based on any fixed quantile. Theresult presented here requires the
assumptions of Hall et al. (2009) to hold uniformly for a range of quantiles. This is stronger than135

in Hall et al. (2009), and reflects the fact that the quantile classifier is more difficult theoretically
than the median classifier. The arguments of Hall et al. (2009) then carry over to classifiers based
on whatever quantile selection rule is chosen, including selecting the empirically optimal one.
In this sense, regardingp → ∞, we only establish that the quantile classifier is as good as the
median classifier, under stronger conditions. For finiten it can improve on the median classifier,140

as shown empirically in the simulation and in Theorem 1.
Again letT = [τ, 1− τ ] for arbitrarily small0 < τ < 1/2. Let U = (U1, U2, . . .) denote an

infinite sequence of random variables, eachUi with θ-quantilesqi(θ) for all θ ∈ T and me-
dian zero. Assume that there is at most one valuex with FUi

(x) = θ for all θ ∈ T . For infi-
nite sequences of constants(νX1,

1

2

, νX2,
1

2

, . . .), (νY1,
1

2

, νY2,
1

2

, . . .), assume that for eachp, the 145

p-vectorsX1, . . . ,Xm are identically distributed as(νX1,
1

2

+ U1, . . . , νXp,
1

2

+ Up), and thep-

vectorsY1, . . . , Yn are identically distributed as(νY1,
1

2

+ U1, . . . , νYp,
1

2

+ Up). For i ≥ 1 define

the quantilesνXi,θ = νXi,
1

2

+ qi(θ), νYi,θ = νYi,
1

2

+ qi(θ). LetC be a[0, 1]-valued random vari-
able and assume Z to be distributed asX1 if C = 0 and asY1 if C = 1, andX1, . . . ,Xm,
Y1, . . . , Yn and(Z,C) as totally independent. 150

The following assumptions are needed:

B1. limλ→∞ supk≥1E{|Uk|1(|Uk|>λ)} = 0;
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B2. for eachc > 0,

inf
k≥1

inf
|x|≥c

inf
θ∈T

(E[Φk{U, θ, qk(θ) + x}]− E[Φk{U, θ, qk(θ)}]) > 0;

B3. for eachǫ > 0,

inf
k≥1

inf
θ∈T

(min[θ − pr{Uk ≤ qk(θ)− ǫ}, 1 − θ − pr{Uk ≥ qk(θ) + ǫ}]) > 0;

B4. withB denoting the class of Borel subsets of the real line,

lim
k→∞

sup
k1,k2: |k1−k2|≥k

sup
B1,B2∈B

|pr(Uk1 ∈ B1, Uk2 ∈ B2)− pr(Uk1 ∈ B1)pr(Uk2 ∈ B2)| = 0;

B5. the differences|νXk,θ − νY k,θ| are uniformly bounded; and
B6. for sufficiently smallǫ > 0, the proportion of valuesk ∈ [1, p] for which |νXk,θ − νY k,θ| >155

ǫ for all θ ∈ T is bounded away from zero asp diverges.

Assumptions B1 and B4 are identical to (4.1) and (4.4) in Hallet al. (2009). Assumptions B2,
B3, B5 and B6 are (4.2), (4.3), (4.5), (4.6) in Hall et al. (2009), enforced uniformly forθ ∈ T .
Assumption B4 is a standardα-mixing condition, which implies that variables with very different
index numbers are approximately independent, and B6 implies that there is an infinite amount of160

variables relevant for telling the classes apart. Assumptions B1 and B5 are needed, given B6, to
prevent classification from being dominated by a single or a finite number of variables, and B2
and B3 concern uniform continuity and well-definedness of the quantiles. See Hall et al. (2009)
for further discussion.

LetR : N 7→ T be any quantile selection rule. LetRm,n,i (i ∈ N) be the sequence of{0, 1}-165

valuedR(i)-quantile classifiers computed from{(X1, 0), . . . , (Xm, 0), (Y1, 1), . . . , (Yn, 1)}.

THEOREM 2. Assume B1–B6 hold and that bothn and m diverge asp → ∞. Then, with
probability converging to 1 asp increases, the classifierRm,n,p makes the correct decision, i.e.,

pr{Rm,n,p(Z) = 1 | C = 0} + pr{Rm,n,p(Z) = 0 | C = 1} → 0. (8)

4. SOME ISSUES AND EXTENSIONS

4·1. Standardization170

Like other classifiers, the quantile classifier depends on the scaling of the variables. This
dependence can be removed by standardizing them. Standardization can be seen as implicit
reweighting of the variables. Optimally, variables are treated in such a way that their relative
weights reflect their relative information content for classification.

In practice standardization may be inadvisable when variables have the same measurement175

units and there are reasons to expect that the information content of the variables for classification
may be indicated by their variation. This will play a role in the example in Section 5·2. Cross-
validation could also help to decide if standardization is beneficial.

Where variables are standardized, transformation to unit pooled within-class variance as es-
timated from the training data can be expected to improve classification performance compared180

with the overall variance, because the separation between classes may contribute strongly to
the overall variance. Thus variables with a strong separation between classes and hence a large
amount of classification information will be implicitly downweighted, whereas standardization
to unit pooled within-class variance will downweight variables for which the classes are hetero-
geneous and which are therefore not so useful for classification.185
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4·2. Individual treatment of variables
The empirically optimal quantile classifier is based on a singleθ that is optimal for all variables

simultaneously. We tried out ways to choose individualθ-values for each variable, but none of
these improved on the quantile classifier based on a singleθ on independent test data. However,
we found a simple method to increase adaptation to the individual variables, which led to a 190

clear improvement in some situations while not making things clearly worse elsewhere. As in
the univariate setting, the optimalθ depends on the skewness of the distributions involved. In
practice, a set ofp > 1 measurements could be skewed in different directions, giving conflicting
messages about what values ofθ are to be preferred. In order to overcome this, we recommend
changing the direction of skewness of variables by applyingsign changes so that all the variables195

have the same direction of skewness.
More specifically, compute a skewness measure separately for each variable, such as the con-

ventional third standardized empirical moment or, alternatively, a measure from the family of the
robust quantile-based quantities (Hinkley, 1975),

τ(u) =
F−1(u) + F−1(1− u)− 2F−1(1/2)

F−1(u)− F−1(1− u)
,

whereF denotes the marginal cumulative distribution function andu a fixed value in the interval 200

[0·5, 1]. Whenu = 3/4, this corresponds to Galton’s skewness measure, andu = 0·1 gives the
less robust Kelley skewness measure (Johnson et al., 1994).Evaluate the amount of skewness
of each variable separately within classes, and then summarize by averaging all the within-class
measures with equal weights. The signs of variables with negative aggregated within-class skew-
ness are then changed, so that finally the variables used for the quantile estimator all have positive205

skewness. The adjustment takes into account the individuality of the variables in a rather rough
and only empirically founded way. In general, the connection between skewness and optimal
θ is not straightforward, so there is little hope of employingskewness in a more sophisticated
way. The results in Sections 3·1 and 3·2 carry over if the skewness of all variables is estimated
correctly with probability 1 for large enoughn. 210

4·3. Asymmetric loss functions
In many applications of supervised classification, different losses are associated with mis-

classifications from or into different classes. The currentwork focuses on the misclassification
probability with symmetric loss, i.e., equal loss for all types of misclassification, but can be
adapted to other loss functions. 215

One approach is to choose the optimal quantile minimizing the appropriate within-sample
loss. A better option may be to choose the decision boundary different from 0, i.e.,sn(Z, θ̂n) > c

instead ofsn(Z, θ̂n) > 0 in (6), after having chosen̂θn to optimize the misclassification rate with
symmetric loss.

The latter approach seems reasonable because the boundarysn(Z, θ̂n) > 0 implicitly treats 220

the two classes symmetrically. The role ofθ̂n is to account for the distributional shapes, whereas
c accounts for asymmetric loss. Preliminary simulations show that under asymmetric loss the
quantile classifier with this approach competes with other methods as well as in the simulations
in Section 5·1.

4·4. Dependence 225

Distance-based classifiers defined according to (1), including the quantile classifier, aggregate
information from the variables without taking dependence between them into account. The sim-
ulations in Section 5·1 show that there can be good classification results in case ofdependence.
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Distance-based classifiers do not require independence, but only that the information that sepa-
rates the classes can be picked up from the original variables. Using marginal information from230

all variables is a way to avoid overfitting with high-dimensional data different from dimension
reduction. This strategy is superior to dimension-reduction approaches in some situations and
inferior in others; no classifier can be expected to be universally optimal. In situations in which
the classification information is poorly represented in theoriginal variables, one could apply the
quantile classifier to principal components or independentcomponents (Hyvärinen et al., 2001).235

Preliminary simulations show that using principal components may improve results with approx-
imately normal distributions, but may give unstable results for high-dimensional data with skew
or heavy-tailed marginal distributions.

5. NUMERICAL RESULTS

5·1. Simulation study240

We evaluated the performance of the quantile classifier by simulation. We generatedp vectors
from g = 2 populations in four scenarios. In the first scenario we considered symmetric Student
t-distributed variablesWj (j = 1, . . . , p) with 3 degrees of freedom. We simulated two location-
shifted populations fromWj asXj ∼ Wj andYj ∼ Wj + 0·5. In the second scenario we tested
the behavior of the classifiers in highly skewed data, by generating identically distributed vectors245

Wj (j = 1, . . . , p) from a multivariate Gaussian distribution, transformingthem using the expo-
nential function,Xj ∼ exp(Wj) andYj ∼ exp(Wj) + 0·2. In the third scenario we considered
different distributions for thep variables. We first generatedWj from a multivariate Gaussian
distribution and then we splitp in 5 balanced blocks to which we applied different transfor-
mations: (a)Xj ∼ Wj andYj ∼ Wj + 0·2, (b) Xj ∼ exp(Wj) andYj ∼ exp(Wj) + 0·2, (c)250

Xj ∼ log |Wj| andYj ∼ log |Wj|+ 0·2, (d) Xj ∼ W 2
j andYj ∼ W 2

j + 0·2, (e) Xj ∼ |Wj |
0·5

andYj ∼ |Wj |
0·5 + 0·2· In the fourth scenario we simulated different distributional shapes and

levels of skewness even for different classes within the same variable. Within each class, data
were generated according to Beta distributions with parametersa andb in the interval (0·1, 10)
randomly generated for each class within each variable. Within each class data were centered255

about 0, so that information about class differences was only in the distributional shape.
For each of the four scenarios we evaluated the combination of p = 50, 100, 500, n =

50, 100, 500, different percentages of relevant variables for classification, i.e., 100%, 50%, and
10%, independent or dependent variables, and, in the fourthscenario, balanced and unbalanced
classes, with class weights0·25 and 0·75, for a total of 216 different settings. The depen-260

dence structure between the variables was introduced by generating varying correlated vari-
ablesW1, . . . ,Wp from a Gaussian distribution with random correlation matrix based on the
method proposed by Joe (2006), so that correlation matricesare uniformly distributed over the
space of positive definite correlation matrices, with each correlation marginally distributed as
Beta(p/2,p/2) on (−1, 1). The irrelevant noise variables were generated independently of each265

other from a Gaussian distribution. Variables were standardized to unit within-class pooled vari-
ance in the third scenario but not standardized in the three others, because in the third scenario
the scales of the variables seem incompatible, whereas in for datasets like those from the other
scenarios the reasons against standardization given in Section 4·1 may apply. For each setting we
simulated 100 data sets as training sets and 100 test sets. Inthe case of balanced classes, the pairs270

of data sets were split into the two populations with sample sizen/2 each; in the fourth scenario
we also considered the unbalanced setting withn/4 and3n/4 observations in each class.
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Fig. 2. Relative performance of the classifiers with respect
to the quantile classifier with Galton skewness correction.
The x-axis labels refer to different methods: LDA denotes
linear discriminant analysis, knn is thek-nearest neighbor,
SVM refers to support vector machines, NSC to the nearest
shrunken centroid, PLog Regr to the penalized logistic re-
gression and rpart to regression trees. The four panels show
the distribution of the misclassification rates for (a) identi-
cally distributed symmetric variables, (b) asymmetric vari-
ables, (c) different distributions of variables and (d) differ-
ent distributions of classes within variables in balanced and

unbalanced populations.

The quantile based classifier has been implemented in the R packagequantileDA, avail-
able from CRAN. Data were preprocessed by the skewness correction discussed in Section 4·2
using the conventional skewness measure and Galton’s measure. In each setting we evaluated the275

classifier on a grid of equispaced valuesθ in T = [τ, 1− τ ] with τ = 0·02. In practice,τ could
be tuned to the sample sizen as, say,τ = 5/n. The optimalθ was chosen in each training set.

We compared the quantile classifier’s misclassification rates with those for nine other classi-
fiers: the centroid and the median classifier, Fisher’s linear discriminant, thek-nearest neighbor
classifier (Cover & Hart, 1967), the naive Bayes classifier (Hand & Yu, 2001), the support vector280

machine (Cortes & Vapnik, 1995; Wang et al., 2008), the nearest shrunken centroid method (Tib-
shirani et al., 2002), penalized logistic regression (Park& Hastie, 2008), and classification trees
(Breiman et al., 1984). Details about the implementation and parameter tuning of these methods
are in the Supplementary Material. This includes results for the median classifier on Box–Cox
transformed data in order to deal with skewness, which did not improve the median classifier’s285

results by much. We computed the relative performance of each classifier with respect to the
Galton quantile classifier’s misclassification rates. Morespecifically, we evaluated the misclas-
sification rates of each classifier as error rate minus the Galton quantile error rate divided by the
average error rate in the given setting. The aggregated distribution of these rescaled results for
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different choices ofp, n, dependence/independence and the percentage of relevant variables is290

represented in the boxplots of Figure 2; see also the Supplementary Material.
For all methods, the misclassification rates decrease as thesample size increases. With ref-

erence to the quantile classifier, the the choice of the optimal θ appears more consistent as the
sample size increases, and consequently the discriminative power of the method increases. Not
surprisingly, classification performance worsens as the number of irrelevant variables increases.295

For fixed sample size and percentage of relevant variables, the methods seem to perform better
asp increases in almost all settings.

The quantile classifier performs very well in most situations compared to the other classifiers.
In the scenarios with equal distributional shapes and symmetric variables, the performance of the
quantile classifiers is similar to those of the centroid and the median classifiers. The chosen opti-300

mal value ofθ is on average close to the midpoint0·5. Penalized logistic regression and support
vector machines outperform the other methods in this scenario. In the settings with equal distri-
butional shapes and asymmetric variables, the quantile classifiers outperform all other methods
clearly and more or less uniformly. Here, the skewness correction according to the conventional
third standardized moment seems to produce a slightly better classification performance com-305

pared to the Galton correction. However, the Galton skewness correction is preferable when
analyzing real data more sensitive to outliers, as will be shown in Section 5·2. With different
distributions of variables, the quantile classifiers againshow excellent results. The overall results
of support vector machines, nearest shrunken centroid, andpenalized logistic regression are not
much worse than those of the quantile classifier, but they arerarely significantly better and some-310

times clearly worse. The fourth scenario with Beta distributions differing between variables and
classes within variables is again generally dominated by the quantile classifiers, with only the
naive Bayes classifier achieving better results overall. Overall, the methods that compete well
with the quantile classifiers in one or two scenarios fall clearly behind in some others. Generally,
the rankings of the methods do not strongly change with dependence, and the quantile classifier315

is still best where it was best under independence, althoughk-nearest neighbor, support vec-
tor machines, nearest shrunken centroid and penalized logistic regression are less affected by
dependence.

5·2. Real data example
For illustration, we apply the quantile classifier to data collected testing a new method to detect320

bioaerosol particles based on gaseous plasma electrochemistry. The presence of such particles
in air has a big impact on health, but monitoring bioaerosolsposes great technical challenges.
Sarantaridis et al. (2012) attempted to tell several different bioaerosols apart based on voltage
changes over time on eight different electrodes when particles passed a premixed laminar hy-
drogen/oxygen/nitrogen flame. The resulting data are eighttime series with 301 observations325

for each particle. Sarantaridis et al. (2012) discussed howthe relevant information in every time
series can be summarized in six characteristic features, namely maximum voltage in series, min-
imum voltage in series, maximum voltage change caused by electrode, difference between final
and initial voltage, length of positive change caused by theelectrode, length of negative change
caused by the electrode. A seventh variable used in Sarantaridis et al. (2012) is omitted here330

based on recommendation of the chemists. We are therefore left with 48 variables.
We apply a variable standardization scheme driven by subject knowledge, which is motivated

by the expectation of the chemists that the size of variationin voltage and length of effect is
informative and that electrodes and variables for which theelectrode causes stronger variation
are actually more important for discrimination. The first four variables related to voltage on one335

hand and the variables related to the lengths on the other hand do not have comparable measure-
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Table 1.Leave-one-out cross-validated misclassification rates (%) of the bioaerosol particle
data. In brackets are standard errors.

Method Misclassification rates
Quantile Classifier (no skewness correction) 13·3 (4·4)
Quantile Classifier (Galton correction) 3·3 (2·3)
Quantile Classifier (Skewness correction) 11·7 (4·2)
Centroid Classifier 21·7 (5·4)
Median Classifier 26·7 (5·8)
Linear Discriminant Analysis 6·7 (3·2)
k-nearest neighbor 15·0 (4·6)
Naive Bayes 15·0 (4·6)
Support vector machines 10·0 (3·9)
Nearest shrunken centroid 26·7 (5·8)
Penalized logistic regression 10·0 (3·9)
Classification trees 40·0 (6·4)

ment units. Therefore we computed one standard deviation from all 8× 4 voltage variables and
standardized all these variables by the same standard deviation. The8× 2 effect length variables
were also standardized by the standard deviation computed from all of them combined.

We confine ourselves to distinguishing between two bioaerosols, Bermuda Smut Spores and340

Black Walnut Pollen, with data from 30 particles. The quantile classifier has been applied on
non-preprocessed data and on data with sign adjustments according to the conventional and Gal-
ton skewness. We used leave-one-out cross-validation to assess the performance of the classifier.
Within each fold we selected the optimalθ in the training set. Table 1 contains the misclassifica-
tion rates of the quantile classifier according to the different preprocessing strategies, and of the345

discriminant methods of Section 5·1. The quantile classifier with Galton skewness correction is
particularly effective for classifying the two bioaerosols. Only two particles are misclassified.

The sign adjustment preprocessing step is particularly relevant here. Without sign adjustment,
the choice of the optimal quantile value is more variable across the cross validated sets and
closer to the midpoint on average because of the possible different directions of skewness in350

the observed variables. In this case, when data are preprocessed using Galton skewness, the
selected optimalθ across the cross-validated sets is always very small, with average0·04, so
more discriminant information between the two bioaerosolsis contained in the left tail of the
distributions than in their core.

SUPPLEMENTARY MATERIAL 355

Proofs and detailed simulation results can be found in the Supplementary Material for this
paper.
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