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Abstract 
 
 

 
Ovarian cancer is a lethal gynaecological malignancy which is known as the silent 

killer. It has a poor prognosis due to the lack of major symptoms in early stage 

disease and hence its late detection. Cancer antigen-125, the most widely used 

biomarker for ovarian cancer detection, lacks appropriate sensitivity and specificity. 

Thus, early biomarkers of the disease are urgently required. Proteomic analysis of 

human serum promises to be a valuable approach for the discovery of putative 

biomarkers for human malignancies like ovarian cancer, which could be developed 

into non-invasive blood tests. In this study, serum samples from a pilot study for 

ovarian cancer screening which were collected prior to diagnosis were processed at 

Memorial Sloan Kettering Cancer Research Centre, in collaboration with Prof. 

Tempst’s group, who had developed a novel mass spectrometry (MS)-based 

technology platform for the high-throughput extraction and measurement of serum 

peptides. Several marker peaks were identified, which when used in combination with 

the ovarian cancer biomarker CA-125, assisted in the discrimination of case versus 

healthy samples at an earlier point prior to diagnosis. Work then involved the 

establishment and optimisation of a similar serum profiling platform at UCL. This 

involved the optimisation of a liquid-handling robot to provide semi-automated high-

throughput sample purification and spotting, and optimisation of spectral acquisition 

and processing. The reproducibility of the platform was tested and the effects of 

different sample handling conditions on peptide profiles examined. The method was 

then used to search for putative markers of ovarian cancer, using identically 

processed samples from women diagnosed with malignant or benign ovarian cancer 

and healthy controls. Finally, as a complementary approach to discover protein 

biomarkers, the same samples were profiled using 2D Difference Gel Electrophoresis, 

employing different fractionation strategies to overcome the very large dynamic range 

of protein expression in serum. Mass spectrometry was used to identify several 

previously reported and some novel putative biomarkers of ovarian cancer, which 

warrant further validation. 
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abbreviations are subdivided into four categories: General; Chemicals: Mass 

spectrometry and separation techniques and Proteins. The meaning of the 

abbreviation is also given the first time used. 

 
 
General 
AJCC  American Joint Committee on Cancer  
CA-125  Cancer antigen 125  
CEA   Carcinoembryonic antigen  
Da  Dalton 
FIGO  International Federation of Gynaecology and Obstetrics 
HMR  High Mass Range 4–15 kDa m/z 
HNPCC  Hereditary non-polyposis colorectal cancer syndrome 
k-NN  K-nearest neighbours classification algorithm 
Laser  Light Amplification by Stimulated Emission of Radiation 
LMR  Low Mass Range 700-4000Da m/z  
MARS  Multiple Affinity Removal System  
Mw  Molecular Weight 
mmu  Millimass units 
pI  Isoelectric point   
ppm  parts per million 
PSA  Prostate-specific antigen 
RPM  Revolution Per Minute 
RT  Room Temperature 
SVM  Support Vector Machine  
TNM   Classification of Malignant Tumours cancer staging system 
UKCTOCS United Kingdom Collaborative Trial of Ovarian Cancer Screening 
UKOPS United Kingdom Ovarian cancer Population Study 
UV  Ultra Violet 
 
 
Chemicals 
α-CCA  Alpha cyano 4-hydroxy-cinnamic acid 
AmBic  Ammonium bicarbonate (NH4HCO3) 
ACN  Acetonitrile 
APS  Ammonium Persulphate 
BPB   Bromophenol Blue 
C8  Octyl silane material 
C18  Octadecyl silane material 
CCB  Colloidal Coomassie Blue 
CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) 
Cy2  3-(4-carboxymethyl)phenylmethyl)-3’-ethyloxacarbocyanine halide N-

hydroxy-succinimidyl ester  
Cy3  1-(5-carboxypentyl)-1’-propylindocarbocyanine halide N-hydroxy-

succinimidyl ester  
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Cy5 1-(5-carboxypentyl)-1’-methylindodicarbocyanine halide N-hydroxy-
succinimidyl 

DTT  dithiothreitol 
IAM  Iodoacetamide 
SDS   Sodium Dodecyl Sulphate 
TEMED N,N,N’,N’-Tetramethylethylenediamine 
TFA  Trifluoroacetic Acid 
Tris  Tris-(hydroxymethyl) aminomethane 
NHS-ester  N-hydroxy-succinimidyl  
PBS  Phosphate-buffered saline 
 
Mass spectrometry and separation techniques 
1DE  One-Dimensional Gel Electrophoresis 
2DE  Two-Dimensional Gel Electrophoresis 
2D-LC  Two-Dimensional Liquid Chromatography 
BVA  Biological Variation Analysis 
DE  Delayed Extraction 
DIA  Differential In-gel Analysis 
DIGE  Difference gel electrophoresis 
ESI  Electrospray Ionisation 
HPLC  High Performance Liquid Chromatography 
IEF   Isoelectrical focusing 
IPG  Immobilised pH Gradient 
LC  Liquid Chromatography 
LC-MS Liquid Chromatography coupled online with Mass Spectrometry 
MALDI  Matrix-Assisted-Laser-Desorption/Ionisation  
m/z   mass-to-charge ratio 
MS  Mass spectrometry  
MS/MS Tandem mass spectrometry 
TOF  Time of Flight 
PAGE   Polyacrylamide gel electrophoresis  
RP   Reverse phase  
 
 
Proteins 
ALB   Albumin  
APO   Apolipoproteins 
HP  Haptoglobin  
IgA   Immunoglobulin A 
IgG  Immunoglobulin G  
SERPIN Serine protease inhibitor (Antitrypsin) 
TF  Transferrin  
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Chapter 1 Introduction 
 

1.1 Overview of cancer 
 

Cancer is a disease which can affect people of all nationalities and age groups. A 

number of cancer types are sex specific, such as cervical, uterine sarcoma and ovarian 

cancer in females and prostate cancer in males. More than 100 distinct types of human 

cancer have been described, and subtypes of tumours can be found within specific 

organs [Grizzi and Chiriva-Internati, 2006]. It is theorised that all cancers start with a 

mutation in a single cell in the body. Although in rare cases a single mutation may be 

enough, cancer is typically an accumulation of mutations that irreversibly transforms a 

normal cell into a cancerous one over a prolonged period of time.  
 

Human cancer is predominately a disease of the various cell surface and glandular 

epithelia [Cairns, 1975; Grizzi and Chiriva-Internati, 2006; Grizzi et al., 2006]. It is a 

multistage process involving dynamic changes in the genome with alterations in 

different families of the cell cycle regulatory mechanisms. For example, the 

production of oncogenes with dominant gain of function and tumour suppressor genes 

with recessive loss of function as shown in Figure 1.1 [Hanahan and Weinberg, 2000]. 

Essentially, cancers arise through clonal selection, an evolutionary process promoting 

proliferation of mutated cells as a result of gene expression changes which also confer 

a survival advantage. These gene expression changes may manifest as the appearance 

of new proteins, differences in the amount of expressed proteins, and/or changes in 

post-translational modifications [Bell, 2005; Hanahan and Weinberg, 2000].   

 

Figure 1.1 The acquired capabilities of cancer cells. Adapted from Hanahan & Weinberg 
(2000). 
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The majority of cancer cell genotypes are believed to be a manifestation of six 

essential alterations in the cell physiology that collectively dictate malignant growth. 

These alterations include evading apoptosis, self-sufficiency in growth signals,  

insensitivity to anti-growth signals, limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis [Hanahan and Weinberg, 2000]. Only 

10% of cancers are the result of inherited genetic susceptibility. Thus, a 90% risk of 

developing cancer is attributed to a combination of environment, diet, cultural and 

lifestyle factors [Bell, 2005; Hanahan and Weinberg, 2000]. 

 

A diagnosis of cancer can be a very stressful event for the patients and their families. 

Patients, partners and other family members can suffer from clinical levels of 

depression and severe levels of anxiety and stress reactions [Steck et al., 2007]. 

However, cancer does not have to be terminal and treatment can be very successful for 

example treatment of prostate and some breast cancers. Successful treatment is 

invariably dependent on early detection. In the case of late detection where advanced 

metastatic disease has already developed, there is an extremely poor prognosis. For 

example, pancreatic and ovarian cancers, while relatively uncommon, have extremely 

poor prognoses which are directly attributable to their late diagnosis. Thus, early stage 

disease biomarkers are urgently needed.    

 

 

 

1.1.1 Overview of ovarian cancer 

 

Ovarian cancers are one of the most lethal gynaecological malignancies worldwide. 

The tumours range from benign to aggressive malignant including an intermediate 

class referred to as borderline carcinomas. Ovarian cancers arise in the ovaries which 

are responsible for hormone and egg production. As Figure 1.2 shows they lie in the 

pelvis either side of the uterus. Like other cancers, ovarian tumours are believed to 

arise through clonal selection of a mutated cell.  
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Figure 1.2 Schematic illustration of the female reproductive system and position of the 
ovaries  

(Copyright EMIS and PiP 2008, as distributed on www.patient.co.uk, reproduced with 

permission.) 

 

There are three types of ovarian cancer named according to the cell type from which 

the tumour originates. The most common are epithelial cancers (carcinomas), which 

arise in the ovarian surface epithelium (OSE) and account for 90% of diagnosed 

cases. Epithelial carcinomas can be histologically classified depending on their 

microscopic appearance and site; namely, endometrioid, mucinous, serous, clear cell, 

and undifferentiated carcinomas, [Rosenthal et al., 2006].  

 

The second type is malignant germ cell tumours that form in the part of the ovary 

responsible for egg production; overall they account for approximately 5% of ovarian 

cancers. The third type comprises malignant sex-cord/stromal tumours. These arise in 

the connective tissue and hormone producing parts of the ovary and also account for 

5% of malignant ovarian tumours.  

 

1.1.2 Ovarian cancer aetiology and risk factors 

 

In around 90% of ovarian cancer cases, there is no identifiable cause. However, 

family history plays an important role in ovarian cancer. Ovarian cancer has been 

linked with several hereditary syndromes including: breast-ovarian cancer syndrome, 

hereditary non-polyposis colorectal cancer syndrome, site-specific ovarian cancer 
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syndrome, Li-Fraumeni syndrome and Cowden’s syndrome. All of these are within 

the 10% of cases that have known identifiable hereditary causes of ovarian cancer. 

 

Breast-ovarian cancer syndrome is characterised by a hereditary mutation in the 

BRCA1 gene, which has been linked to increased risk of both breast and ovarian 

cancer. About 30-40% of women who have this mutation develop ovarian cancer. A 

mutation of the BRCA2 gene also increases the risk of ovarian cancer, but to a lesser 

degree. Clues that may indicate the presence of these mutations include family 

members who have ovarian cancer or breast cancer or both, especially those who are 

diagnosed with breast cancer when younger than 50 years. Ashkenazi Jews 

demonstrate increased frequency of BRCA1 and BRCA2 gene mutations [Ramus et 

al., 2007; King et al., 2003].  

 

Hereditary non-polyposis colorectal cancer (HNPCC) syndrome (also known as 

Lynch syndrome II) is a genetic syndrome that is also caused by inherited gene 

mutations that reduce the body's ability to repair damage to its DNA. This results in a 

greatly increased risk for colorectal, endometrial and ovarian cancer. HNPCC is 

predominately associated with colon cancer developing in people younger than 50 

years. The risk for ovarian cancer with HNPCC syndrome is much less than that 

associated with BRCA1 or BRCA2 and probably causes about 1% of all ovarian 

epithelial cancers. Other organs that can be involved include the breast, stomach, and 

pancreas. Germline mutations in one of five mismatch repair genes are responsible 

for this syndrome. These are MSH2 (chromosome 2q), MLH1 (chromosome 3p), 

PMS1 (chromosome 2q) PMS2 (chromosome7p) and MSH6 (chromosome 2p) 

[Zweemer, 2002].  

 

Li-Fraumeni syndrome is a rare, hereditary cancer syndrome that is linked to an 

inherited mutation in the p53 gene, which normally prevents cells with DNA damage 

from replicating. Cancers in Li-Fraumeni families typically occur between the ages of 

15 and 44 [Fallows et al., 2001]. Cowden’s syndrome or multiple hamartoma 

syndrome is an inherited genetic disease caused again by mutations in the PTEN 

tumour suppressor gene. These mutations prevent the PTEN protein from effectively 

regulating cell survival and division, which can lead to the formation of tumours. 
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Cowden syndrome is one of several inherited diseases caused by mutations in the 

PTEN gene. This syndrome primarily affects women, causing skin rashes, tiny wart-

like bumps, thyroid disease, and severe benign fibrocystic disease. By age 40, 50-

75% of women with Cowden’s syndrome develop breast or ovarian cancer. Cowden’s 

syndrome can also be associated with kidney, Merkel cell skin and thyroid cancers 

[Wright and Whitney, 2006; 2005].  

 

Other factors that increase ovarian cancer risk include age greater than 50 years; 50% 

of all ovarian cancers are found in women over the age of 63. Studies have indicated 

a relationship between the number of menstrual cycles in a woman's lifetime and her 

risk of developing ovarian cancer. Nulliparity (no pregnancies) can also contribute to 

the risk of developing ovarian cancer. Some studies have shown that the use of 

fertility drugs also increases the risk of ovarian cancer, such as the prolonged use of 

the fertility drug clomiphene citrate, especially without achieving pregnancy, may 

increase the risk for developing ovarian tumours, particularly a type known as low 

malignant potential or borderline tumours. However, results have not been consistent 

[Ayhan et al., 2004]. Furthermore, Ashkenazi Jewish heritage (by virtue of an 

increased frequency of BRCA1 and BRCA2 gene mutations) or European heritage 

also increases ovarian cancer risk. As some studies have shown that white women are 

much more likely to have ovarian cancer than African American women, although 

this may due to better detection in more developed countries [Ness et al., 2000]. In 

addition, some studies suggest that the use of estrogen replacement therapy may 

promote ovarian cancer in women who have been through menopause [Moorman et 

al., 2005]. The risk among women who used ERT for longer than 10 years was 

almost double that of women who had never used it and the risk among those who 

used it for 20 years or more was tripled. For normal healthy women the average 

lifetime risk for developing ovarian cancer is about 2% [Moorman et al., 2005]. 

 

In contrast, factors that inhibit ovulation seem to protect against the development of 

ovarian cancer. This may be because ovulation disrupts the epithelial layer of the 

ovary. As cells divide to repair the damage, mutations may occur, increasing the risk 

of developing cancer (the “incessant ovulation theory”) [Purdie et al., 2003; 

Holschneider and Berek, 2000]. For example, higher numbers of full-term 



Chapter 1 

 19

pregnancies (>37 weeks gestation) also significantly reduces the risk of ovarian 

cancer as does the use of oral contraceptives. This may be through a combination of 

ovulation suppression and induction of apoptosis by progestagens [Holschneider and 

Berek, 2000]. Furthermore, surgery involving tubal ligation to prevent pregnancy, or 

having a hysterectomy, also lowers the risk of ovarian cancer as does breastfeeding 

[Tung et al., 2005].  Finally, the removal of the ovaries before cancer occurs reduces 

the risk to zero. This may be an option for women with a strong family history of the 

disease, a known mutation in BRCA1 or 2, or in women over 45 years old undergoing 

abdominal surgery for other reasons. 

 

1.1.3 Staging of ovarian cancers 
 

All ovarian cancers are classified according to the terms of the staging scheme 

developed by the International Federation of Gynecology and Obstetrics (FIGO 

system) and the classification system developed by the American Joint Committee on 

Cancer (AJCC, TNM system), which indicate likely prognosis and help to define 

treatment (Table 1.1). Once an ovarian cancer is assigned a stage, the classification 

does not change, even if the cancer recurs or metastasizes to other sites within the 

body. Ovarian cancer treatment ultimately depends upon such staging. In general, the 

lower the stage, the more favourable is the prognosis.  
 

Stage Criteria 

I Confined to one (IA) or both (IB) ovaries. The tumour may be on the surface of the 

ovaries, the tumour may have ruptured, or malignant cells are found in peritoneal fluid 

or washings (IC). 

II Found outside the ovary and has spread to the uterus or fallopian tubes (IIA) or other 

areas in the pelvis (IIB). A stage II tumour may involve the capsule of the ovary, or 

peritoneal fluid or washings contain malignant cells (IIC). 

III Spread to abdominal organs and/or lymph nodes. Microscopic deposits of tumour are on 

abdominal peritoneal surfaces (IIIA), or small (<2cm) implants of tumour on abdominal 

peritoneal surfaces (IIIB). Abdominal implants may be larger (>2cm) or pelvic or 

retroperitoneal abdominal lymph nodes may be involved (IIIC). 

IV Spread outside the abdominal cavity (e.g. malignant cells are found in the fluid 

surrounding the lungs), or cancer has spread within the intra-abdominal organs (e.g. 

liver, spleen)  

Table 1.1 Staging in ovarian cancer according to the International Federation of 
Gynaecology and Obstetrics (FIGO) staging system. 
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Ovarian cancers are typically diagnosed at a late stage. This probably reflects the 

absence of major symptoms in early stage disease, due to the anatomic position of the 

ovaries, which results in minimal interference with surrounding structures until the 

ovarian enlargement is considerable, or metastatic disease supervenes. When 

symptoms do occur, they are frequently nonspecific, often requiring multiple 

consultations with a primary care physician before further investigation is prompted.  

Thus, the prognosis is typically poor [Rosenthal et al., 2006]. 

 

There are three main forms of treatment for ovarian cancer which include surgery to 

remove cancerous tissue, chemotherapy to destroy cancer cells using strong anti-

cancer drugs and radiotherapy to destroy cancer cells by high-energy radiation 

exposure. There are also many combinations of these treatment methods. The success 

of the treatment depends upon a number of factors (e.g., stage and grade of the 

disease, the histopathologic type, and the patient's age and overall health). Surgery 

usually is required to treat ovarian cancer. Most patients undergo surgery in addition 

to another form of treatment (e.g., chemotherapy and/or radiotherapy). Surgery helps 

the physician to accurately stage the tumour, make a diagnosis, and perform 

debulking (removal of as much tumour mass as possible). Debulking surgery is 

especially important in ovarian cancer because aggressive removal of cancerous 

tissue is associated with improved survival. Once ovarian cancer is confirmed, a total 

hysterectomy (removal of the uterus), bilateral salpingo-oophorectomy (removal of 

the fallopian tubes and ovaries on both sides), omentectomy (removal of the fatty 

tissue that covers the bowels), lymphadenectomy (removal of one or more lymph 

nodes) may be performed. Tissue removed during debulking is sent for 

histopathological examination.  Patients with no residual tumour mass or tumour 

masses that measure less than 1 cm have the best survival rate. Modified 

("conservative") surgery that leaves tumour-free reproductive organs intact may be 

conducted in women who still wish to still have children if (a) the tumour is confined 

(usually not serous or endometriotic in type, which tend to be bilateral tumours), and 

(b) wedge biopsy of the opposite ovary shows no evidence for disease involvement. 

Such a procedure carries an increased risk of relapse, therefore, total hysterectomy 

and salpingo-oophorectomy is recommended immediately after childbearing is 

complete. 
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1.1.4 The rationale for ovarian cancer screening & novel biomarker discovery 

 

In developed countries, ovarian cancer remains a highly lethal disease. The American 

Cancer Society estimates that about 22,430 new cases of ovarian cancer were 

diagnosed in the United States during 2007. In the UK nearly 7,000 cases of ovarian 

cancer are diagnosed resulting in more than 4,400 deaths each year. Ovarian cancer 

accounts for about 3% of all cancers in women. The ovarian cancer incidence rate has 

increased by about 0.5% per year since 1975 (Figure 1.3). Ovarian cancer is 

predominantly a disease of older, post-menopausal women with almost 85% of cases 

being diagnosed in women over 50 years. There is a steep increase in incidence after 

the usual age of the menopause [Breedlove and Busenhart, 2005]. As a result of the 

advances in surgical management and chemotherapeutic options over the last few 

decades, the medium term survival for ovarian cancer patients has improved. 

However, overall long-term survival has not been significantly improved. Poor 

survival rates are mainly attributable to late diagnosis of the disease as most suffers of 

ovarian cancer do not show specific symptoms until the later stages of disease 

[Rosenthal et al., 2006]. 
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Figure 1.3 Age-standardised (to only include women over the age of 50) ovarian cancer 
incidence and mortality rates, Great Britain (1975-2005).  
(Reproduced with permission from Cancer Research UK, May 2008 
http://info.cancerresearchuk.org/cancerstats/types/ovary/incidence/) 
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The overall 5-year survival rate for ovarian cancer is 15% to 30%, whereas the 5-year 

survival rate of women with stage I at the time of diagnosis can be as high as 95%.  

However, there is no recommended screening method for women considered to be at 

low risk of ovarian cancer due to a lack of evidence of a long-term survival benefit, 

the lack of accurate and sensitive markers and the risks of false positive screening 

results i.e. unnecessary anxiety and surgery [Breedlove and Busenhart, 2005].  

    

Current screening techniques such as transvaginal sonography and the serum cancer 

antigen 125 (CA-125) assay are only recommended for women with known strong 

risk factors. However, both transvaginal sonography and serum CA-125 are currently 

of unproven diagnostic use. CA-125, the most widely used biomarker for ovarian 

cancer detection, is a celomic epithelium–related glycoprotein protein that is secreted 

into the bloodstream by ovarian cells. A CA-125 test result of greater than 35 U/ml is 

generally accepted as being elevated. The CA-125 test has an 80% chance of 

returning true positive results from stage II, III, and IV ovarian cancer patients. The 

other 20% of ovarian cancer patients do not show any increase in CA-125 

concentrations. The CA-125 test only returns true positive results for about 50% of 

stage I ovarian cancer patients. Thus, the CA-125 test is not an adequate early 

detection tool when used alone [Bosse et al., 2006]. CA-125 is also produced by other 

mesothelium-derived tissues (e.g. the peritoneum) and consequently may be elevated 

in many benign gynaecologic diseases and other types of cancer, leading to false 

positive results. For example, 70% of people with cirrhosis, 60% of people with 

pancreatic cancer and 20%-25% of people with other malignancies have elevated 

levels of CA-125. The CA-125 test also has a lower specificity in pre-menopausal 

women than post-menopausal women [Bosse et al., 2006]. Furthermore, because 

ultrasound cannot determine the histology of any mass detected, an ovary that looks 

suspicious on ultrasound may need to be removed surgically in order to exclude the 

diagnosis of cancer, creating a burden on the health service.  

 

Although a large randomised trial of ovarian cancer screening in the general 

population is already underway to evaluate the use of an algorithm incorporating rate 

of change of CA-125 over time, to increase sensitivity and specificity, there is still 
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only preliminary evidence that such a screening technique will reduce the mortality 

from ovarian cancer [Jacobs et al., 1999; Rosenthal et al., 2006]. 

 

There is thus an urgent need to find new biomarkers of ovarian cancer amenable to 

mass screening with high sensitivity and specificity for early-stage ovarian cancer 

detection and diagnosis that would enable early diagnosis, so that surgical therapy can 

be offered to all patients rather than a select few. This would ultimately decrease the 

morbidity and mortality rates from this disease [Bast, Jr. et al., 1998; 2002].  Ideally, 

for large-scale screening biomarkers would be detectable in the blood, facilitating the 

development of relatively non-invasive collection and assays. 
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1.2 Human Serum  

 

Human serum is the clear yellowish fluid obtained upon separating whole blood into 

its solid and liquid components after it has been allowed to clot. Serum is a complex 

bodily fluid that contains approximately 60 to 80 mg of protein per mL in addition to 

various small molecules including salts, lipids, amino acids and sugars. The major 

protein constituents of serum include albumin (ALB), immunoglobulins (IgG, IgA), 

transferrin (TF), antitrypsin (SERPIN), haptoglobin (HP), complement proteins and 

lipoproteins (APO). Twenty-two of these abundant proteins make up 99% of the total 

protein content (Figure 1.4). It is estimated that 1000s of relatively low abundances 

proteins and peptides may be commonly present in serum [Fusaro and Stone, 2003]. 

In addition to the major protein constituents, serum contains any other proteins that 

are actively synthesized and secreted, or shed from cells and tissues throughout the 

body. As serum constantly perfuses tissues in their microenvironment, it potentially 

holds an archive of histological information. Therefore, the background matrix of 

serum represents a complex milieu in which unique disease-specific biomarkers may 

be found in extremely low abundance. 

 

However, while the easily obtainable nature and the high protein content of serum 

deem it a valuable specimen for biomarker determination, human serum is one of the 

most complex proteomes known and there are still numerous hurdles to overcome 

when analysing it. For example, albumin is the most abundant protein in serum and 

may be 10 or more orders of magnitude higher in concentration than the scarcest of 

proteins [Fusaro and Stone, 2003]. In addition, many serum proteins have similar 

molecular weight and overall charge, making protein separation difficult. Therefore, 

biomarkers for disease at low concentrations in serum may be hidden by more 

abundant proteins with similar biophysical characteristics. As such, the reliable 

proteomic characterisation of serum and identification of biomarkers could be 

dramatically improved by reducing the complexity of the serum proteome through 

additional fractionation.  
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Figure 1.4 The relative contribution of proteins within serum. It is hypothesized that 

putative biomarkers will be found in the 1% portion of serum proteins  [Fusaro and Stone, 

2003]. 

 

 

 

1.2.1 Serum protein biomarkers 

 

A biomarker can be broadly defined as any characteristic that can be objectively 

measured and evaluated as an indicator of normal biological or pathological 

processes. Serum protein biomarkers are produced by tissues or tumours. When 

detected in higher or lower amounts in blood, they can be suggestive of the presence 

of a tumour.   

 

Tests based on biomarkers have been around for more than half a century, but interest 

in their application for diagnostics and for clinical screening has increased 

remarkably since the beginning of the 21st century [Baker, 2005]. Biomarkers have 

the potential to have a tremendous impact in clinical oncology by facilitating the 

identification of individuals at risk for developing cancer, assisting in the preclinical 

detection of cancer and ultimately allowing real-time monitoring of therapeutic 

responses. Several serological markers are already routinely used for a number of 

cancers (Table 1.2).  
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One example of a serum biomarker is cancer antigen 125 (CA-125). As previously 

mentioned, CA-125 is used as a biomarker for measuring the risk of ovarian cancer or 

as an indicator of malignancy. However, evidence suggests CA-125 lacks the 

sensitivity and specificity for general screening as it can be elevated in other 

malignant cancers, including those originating in the endometrium, fallopian tubes, 

lungs, breast and gastrointestinal tract. CA-125 may also be elevated in a number of 

relatively benign conditions, such as endometriosis, several diseases of the ovary, and 

pregnancy. Hence, there is a need to find putative markers for ovarian cancer which 

can be used in combination with CA-125 levels to offer non-invasive screening which 

is robust, highly sensitive and disease-specific. Examples of existing serum markers 

for ovarian cancer include carcinoembryonic antigen, ovarian cystadenocarcinoma 

antigen, lipid-associated sialic acid, NB/70K, TAG 72.3 as well as CA-125.  

 

Biomarker Cancer type Specificity Example of non-cancer pathology Primary clinical use
α-fetoprotein Hepatocellular, non-

seminomatous testicular
Moderate Prostatitis Staging

Human chorionic 
gonadotropin-β

Testicular, ovarian Low Pregnancy Staging

CA-15-3 Breast Poor Cirrhosis, benign diseases of 
ovaries and breast

Disease monitoring

CA19-9 Gastro, pancreatic, 
stomach

Poor Gastritis Disease monitoring

CA-125 Ovarian, cervical, uterine, 
fallopian tube

Moderate Pancreatitis, kidney or liver 
disease

Disease monitoring

CA27-29 Breast Not known Not known Disease monitoring
CEA Colorectal, pancreas, 

lung, breast, medullary 
thyroid

Low Non-malignant disorders Disease monitoring

Epidermal growth 
factor receptor

Colon, non-small cell lung 
cancer

Low Non-malignant disorders e.g. 
benign prostatic hyperplasia

Selection of therapy

Her2/Neu Breast, ovarian Moderate Benign breast disease Disease monitoring; 
selection of therapy

PSA Prostate High Benign prostatic hyperplasia Screening; disease 
monitoring

Thyroglobulin Thyroid Poor Grave's disease thyroiditis Disease monitoring
CA: Cancer anitgen; CEA Carcinoembryonic antigen; PSA: Prostate-specific antigen  
 

Table 1.2 Common serum cancer markers used in primary care. Adapted from aoui-

Jamali & Xu (2006). 
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1.2.2 Serum proteomics in cancer biomarker discovery 

 

In recent years there has been immense interest in applying proteomics to the 

development of new serological biomarker platforms for early diagnosis of chronic 

diseases such as cancer. Proteomics can be defined as the qualitative and quantitative 

comparison of proteomes (PROTEin complement of a genOME) under different 

conditions to further unravel biological processes. Since at least the 1950s there has 

been support for the idea that plasma/serum protein patterns might provide important 

insight into the presence and activity of disease. Undeniably, extracellular fluids such 

as serum represent a major link among all cells, tissues and organs of an organism 

and contain a complex collection of peptides, proteins and protein fragments that are 

produced in the entire body. Thus, the analysis of human serum has great potential for 

novel putative biomarker discovery. Indeed assays to measure > 100 different 

proteins in blood have been developed and are in routine use in clinical chemistry 

laboratories today. The fibrinogen functional turbidimetric assay is an example of a 

blood-based assay which has a diagnostic value in pathology-disseminated 

intravascular coagulation and in assessing risk for atherothrombosis [Stief, 2008].  

 

Conventionally, differential two-dimensional polyacrylamide gel electrophoresis (2D-

PAGE) was the mainstay of proteomic biomarker discovery [Anderson and 

Anderson, 2002; Anderson et al., 2004]. However, as a result of improvements in the 

sensitivity and accuracy of mass spectrometry (MS), proteomics has become 

increasingly popular for the analysis of complex protein samples such as human 

plasma and serum. This has led to the identification of more than 1500 different gene 

products in the serum/plasma of healthy donors [Villanueva et al., 2006].  In addition 

to proteomic studies looking for biomarkers of cancer in serum [Villanueva et al., 

2006; Zimmerman et al., 2005; Zhang et al., 2004], several cancer specific proteins 

have been identified in the urine of patients with visceral cancers, such as lung 

[Tantipaiboonwong et al., 2005], ovarian cancer [Chambers and Vanderhyden, 2006] 

and breast cancer [Roy et al., 2004]. These studies support the view that bodily fluids 

like plasma, serum and urine have the potential to be a valuable source of diagnostic 

and prognostic markers of disease [Mor et al., 2005; Liotta and Petricoin, 2006].  
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It has been hypothesised that proteolysis activity within the tissue microenvironment 

generates protein fragments that passively diffuse into the circulation. Diagnostic 

peptides can also be generated ex vivo by circulating enzymes derived from the 

diseased tissue microenvironment acting on exodogenously derived protein fragments 

produced by during the clotting process as shown in Figure 1.5 [Villanueva et al., 

2006].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Proteases generate surrogate biomarker fragments. Circulating proteins 

generated in the diseased tissue microenvironment may serve as diagnostic protein markers. 

[Villanueva et al., 2006].  

 

 

Numerous groups have identified a number of putative cancer biomarkers using mass 

spectrometry-based proteomics tools which could be potentially useful for diagnosis 

(Table 1.3) [aoui-Jamali and Xu, 2006]. This may have the added benefit of 

increasing our understanding of the pathways involved in the initiation and 

progression of cancer as well as for identifying key cancer biomarkers [Ransohoff, 

2005; Robbins et al., 2005].  
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Biomarker Cancer type References
Apolipoprotein A1 Ovarian, pancreatic Zhang et al., 2004; Kozak et al., 2005
Haptoglobin α-subunit Ovarian, pancreatic, lung Ye et al., 2003
Transthyretin fragment Ovarian Kozak et al., 2005
Inter-alpha-trypsin inhibitor 
fragment

Ovarian, pancreatic Zhang et al., 2004

Vitamin D-binding protein Prostate, breast Corder et al.,1993; Pawlik et al., 2006

Serum amyloid A Nasopharyngeal, pancreatic, 
ovarian

Orchekowski et al., 2005; Moshkovskii et al.,2005; 
Helleman et al., 2007

α1-antitrypsin and α1-
antichymotrypsin

Pancreatic Orchekowski et al., 2005: Yu et al., 2005

Haemoglobin-alpha & -beta 
subunits 

Ovarian Woong-Shick et al., 2005

EPCA-2 Prostate Leman et al,. 2007
Afamin Ovarian Jackson et al., 2007  
Table 1.3 Examples of putative serum biomarkers. Adapted from aoui-Jamali et al. 

(2006). 

 

The use of mass spectrometry for the direct analysis of proteins and peptides from 

biological fluids, i.e. human serum, for putative disease biomarker discovery was first 

reported in 2002. Using peak pattern discrimination several groups reported on the 

correct classification of (a) ovarian cancer [Petricoin et al., 2002] (b) prostate cancer 

[Adam et al., 2002; Qu et al., 2002] and (c) breast cancer [Li et al., 2002]. As such, 

proposals for a blood test-based on MS pattern-recognition of human serum proteins 

for detecting cancer were put to the U.S. Food and Drug Administration. Subsequent 

to this commercial laboratories planned to market a blood test for ovarian cancer in 

late 2003 or early 2004 [Pan et al., 2005; Petricoin and Liotta, 2002; Petricoin et al., 

2002; Petricoin, III et al., 2002; Rodland, 2004; Villanueva et al., 2006; Yu et al., 

2003; Zhang et al., 2004; Zimmerman et al., 2005]. However, questions were raised 

about whether the technology’s results were reproducible and reliable enough for 

application in practice [Baggerly et al., 2004; Baggerly et al., 2005]. Important 

limitations were found in the design of serum proteomics analysis by MS. Bias and 

chance (or overfitting of data) were considered as probable explanations of the 

misinterpretation of data. Hence, plans for the blood test were delayed by the U.S. 

Food and Drug Administration. 

 

While serum proteomics may offer a non-invasive method for population-based 

screening programmes, the technology has several draw backs and is highly sensitive 

to pre- and post-analytical variations. Bias is encountered from inherent properties of 

the samples studied. Many intrinsic specimen characteristics may have no 
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relationship with the disease in question, but are introduced by any number of factors 

dependent on logistics of sample collection or selection of subjects included in the 

study [Drake et al., 2004; Timms et al., 2007; Villanueva et al., 2005]. Strict 

adherence to standard operating protocols of specimen collection and appropriate 

matching of case versus control subjects are essential to minimise such sources of 

error. Collection of case and control specimens by the same site(s) is preferred as 

each collection site will unavoidably introduce its own bias into how samples are 

collected [Villanueva et al., 2005; Rai et al., 2005; Drake et al., 2004; Timms et al., 

2007; West-Nielsen et al., 2005]. The controversy sparked by the reports in 2002 

stimulated improvements in many areas of serum proteomics, from sample collection 

and serum preparation to the development of new bioinformatics tools to analyse and 

compare large numbers of data points that are typical of mass spectrometry.  

 

However, another major drawback to MS-based serum profiling is the limitation of 

this technology to effectively analyse highly complex protein mixtures. Detection of 

ionized molecules using time-of-flight platforms is inversely related to molecular size 

such that peptides and small proteins are more readily detected by MS. This places a 

significant limitation on MS proteomic profiling. Blood protein levels range from 

nearly millimolar down to femtomolar concentrations. Typical cancer biomarkers are 

found in the pico- to subnanomolar range. Although MS is highly sensitive, its 

application to serum profiling has demonstrated the ability to identify proteins at low 

to submicromolar concentrations. As a result of the complexity of the serum 

proteome and the limited detection range of MS-based platforms several pre-

fractionation techniques have become popular. Another drawback to using MS 

profiling of the serum proteome is the difficulty of standardising and calibrating 

instrumentation across multiple sites in order to directly compare findings from 

different laboratories.  

 

Furthermore, most proteomic studies published to date have identified relatively 

abundant host response (acute-phase) proteins as candidate biomarkers [Fung et al., 

2005].  Host response proteins, e.g. haptoglobin, serum amyloid A, α-1-antitrypsin, α-

1-antichymotrypsin, inter-α-trypsin inhibitor and the apolipoproteins, are often 

dismissed because of an apparent lack of specificity. However, it is hypothesized that 
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the peptide/protein changes comprising the diagnostic patterns in MS based analysis 

are derived (directly or indirectly) from the molecular state of the tumour–host 

microenvironment. The proteomic pattern that originates from this microenvironment 

may signal the presence of an early-stage lesion. Under this hypothesis, the 

discriminatory markers are likely to be metabolic products, enzymatic fragments, 

modified proteins, peptides, or cytokines that could be highly specific for the 

microenvironment of the lesion [Liotta and Petricoin, 2006]. 

  

There are several examples of host response proteins which have been identified as 

markers for ovarian cancer. Recently, three ‘host-response’ proteins, apolipoprotein 

A1 (down-regulated in cancer), a truncated form of transthyretin (down-regulated) 

and a cleavage fragment of inter-α-trypsin inhibitor heavy chain H4 (up-regulated) 

were also identified as putative markers for ovarian cancer using a proteomics based 

approach [Zhang et al., 2004]. Furthermore, apolipoprotein A1 (Apo A1), transferrin 

(TF) and transthyretin (TTR) are also reported as a panel of markers for ovarian 

cancer [Nossov et al., 2008]. However, attempts to independently validate these 

proteins were unsuccessful. Furthermore, these proteins may not be specific for 

ovarian cancer.  
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1.3 Sample fractionation and protein separation methods 

 

To overcome the problems posed by the large dynamic range of the serum proteome 

and the interference of the abundant proteins, sample fractionation has become a 

prerequisite for MS-based serum profiling. Extensive fractionation is thought to 

improve protein coverage, but adds to the cost of throughput and affects method 

reproducibility.  

 

1.3.1 Magnetic bead-based peptide extraction 

 

As a result of the complexity of serum and the presence of salts a polypeptide 

extraction and desalting step is almost always necessary prior to MS-based protein 

profiling. Methods such as magnetic bead extraction have been combined with 

MALDI-TOF MS for mass spectral profiling of serum peptides and proteins, often 

using automated extraction to improve sample throughput and reproducibility 

[Villanueva et al., 2004; Villanueva, 2006]. Fractionation simplifies complex samples 

and separates peptides and proteins from non-protein species hence removing 

contaminants and improving the detection limits for serum peptide ions. The high 

sensitivity of modern mass spectrometers, combined with advanced bioinformatics 

makes this technique ideally suited for proteome profiling and protein identification. 

Other available techniques for serum profiling include Surface-enhanced laser 

desorption/ionization (SELDI) MS. SELDI is a variation of matrix-assisted laser 

desorption/ionization (MALDI) MS that uses a target modified to achieve 

biochemical affinity with the analyte compound. In MALDI-MS, a protein or peptide 

sample is mixed with the matrix molecule in solution and small amounts of the 

mixture are deposited on a surface and allowed to co-crystallize as the solvent 

evaporates. While in SELDI-MS the protein mixture is spotted on a surface modified 

with a chemical functionality. Binding to the SELDI surface acts as a separation step 

and the subset of proteins that bind to the surface are easier to analyse. Common 

surfaces include CM10 (weak-positive ion exchange), H50 (hydrophobic surface, 

similar to C6-C12 reverse phase columns), IMAC30 (metal-binding surface), and 

Q10 (strong anion exchanger). Surfaces can also be functionalized with antibodies, 

other proteins, or DNA. 
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Within the published literature there is an overall lack of consensus over the optimal 

method for serum peptide extraction. Different papers detail the use of different types 

of stationary phases and co-ordinating ligands and employ different conditions for 

polypeptide binding, washing and elution. The lack of agreement between published 

protocols, combined with the widespread reports of low inter-laboratory 

reproducibility highlights the need for method development of a generalised protocol 

targeted at mass spectrometry [Baumann et al., 2005; de Noo et al., 2005; Martorella 

and Robbins, 2007; Villanueva et al., 2004].   

 

The most commonly used resins for serum extraction are reverse phase (RP) beads 

that have modified alkyl groups and can be made of a polymer shell with an iron core. 

These beads are superparamagnetic, which means that the beads exhibit magnetic 

properties in a magnetic field, with no residual magnetism once removed (Figure 1.6). 

The beads separate gently and no columns or centrifugation steps are necessary. They 

are spherical in shape and have defined surface chemistry minimising chemical 

agglutination and non-specific binding. This allows uniformity (co-efficient of 

variance (CV) <3%) of size, shape and surface area provides optimal accessibility and 

reaction kinetics, for rapid and efficient binding, batch-to-batch consistency (typically 

within 5%) improving the reproducibility across different runs. A typical MS-based 

serum profiling workflow is shown in Figure 1.7. 

 

 

 
 

Figure 1.6 Superparamagnetic beads used for serum extraction 
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Figure 1.7 Basic principles of proteomics-based serum profiling. Blood samples from 

volunteers are collected and processed using a standardised protocol. Samples are then 

fractionated to extract peptide and proteins for analysis by mass spectrometry coupled with 

bioinformatics tools to mine for differentially expressed peaks between cases and controls.  

 

 

1.3.2 Serum Depletion 

 

Albumin constitutes anywhere from 55% to 75% of the total protein content of 

human serum and consequently, is an overwhelming signal in separation and 

detection assays. Even following albumin removal, serum still contains other high-

abundance proteins, the most abundant being IgG, IgA, transferrin, haptoglobin, 

fibrinogen and antitrypsin. Collectively, these seven proteins constitute ~90% of the 

total protein in serum. Therefore, their removal represents a fundamental 

improvement toward characterisation of the lower abundant serum proteins. 

Classically, Cibacron Blue and protein A/G chromatography methods have been used 

to deplete serum of albumin and the immunoglobulins. However, an increasing 

number of methods for the removal of high-abundance proteins from serum are 

becoming commercially available, making serum analysis a more routine laboratory 

procedure. The work presented in this thesis has involved the use of two recently 

commercialised enrichment strategies including the Multiple Affinity Removal 

System (MARS, Agilent) and the ProteoMiner protein enrichment kit (BioRad). 
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1.3.3 The Multiple Affinity Removal System (MARS) 

 

MARS consists of a reusable high-capacity affinity liquid chromatography column 

containing polyclonal antibodies for the removal of the top seven abundant proteins 

from human serum. It is designed to bind and remove 85-90% of albumin, IgG, 

transferrin, haptoglobin, IgA, antitrypsin & fibrinogen which constitutes 90% of the 

total protein amount in serum. Thus, it facilitates the downstream expression profiling 

of lower abundant protein species in the flow through (Figure 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Schematic illustration of the MARS column. The “top-seven” abundant 

proteins are captured by affinity binding to antibodies and removed from serum. This 

facilitates the analysis of the lower abundant protein fraction for putative biomarker 

discovery. 
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1.3.4 ProteoMiner technology 

 

The ProteoMiner technology is a sample preparation tool used for the compression of 

the dynamic range of protein concentrations. It is based on treatment of complex 

protein samples with a large, highly diverse library of hexa-peptides bound to 

chromatographic supports in a spin column. In theory, the library contains binding 

sites for all protein sequences in the sample. Since the bead capacity limits binding 

capacity, high-abundance proteins quickly saturate their binding sites and excess 

protein is washed out during the procedure. In contrast, low-abundance proteins are 

concentrated on their specific ligands, thereby decreasing the dynamic range of 

protein expression in the sample. When analysed in downstream applications, the 

number of proteins detected dramatically increases (Figure 1.9) [Guerrier et al. 2006; 

Guerrier et al. 2008; Boschetti et al. 2008]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Schematic illustration of the ProteoMiner protein enrichment strategy. An 

‘equalised’ amount of all serum proteins are captured by the combinatorial peptide ligands.  

 

 

 

 

Dynamic Range Compression with ProteoMiner

Diverse Ligand Library

94 Yellow
5 Blue
3 Green
1 Red
1 Pink

Bind

Wash

Elute

4 Yellow
4 Blue
3 Green
1 Red
1 Pink



Chapter 1 

 37

1.3.5 High performance two-dimensional gel electrophoresis 

 

In 1975 O'Farrell, Klose, and Scheele almost simultaneously published methods 

based on isoelectrical focusing (IEF) of proteins in the first dimension and SDS-poly-

acrylamide gel electrophoresis (SDS-PAGE) in the second. This marked the 

introduction of two-dimensional electrophoresis (2-DE) for proteins separation and 

the beginning of the proteomics era [Scheele, 1975; O'Farrell, 1975; Klose, 1975].  

 

In general, 2-DE sorts proteins in two dimensions based on protein charge and 

molecular weight. In the first dimension, proteins are separated by IEF in a pH 

gradient, where proteins become focused at their isoelectric points (pI) when they 

reach zero net charge [Righetti, 1989; Righetti et al., 1988]. The three dimensional 

configuration of the proteins does not play a role as the protein is assumed to be 

completely denatured because of the chaotropic chemicals used in the solubilisation 

buffer. Post-translational modifications (PTMs), such as phosphorylation or 

glycosylation may influence the net charge of a protein, and can be visualised as spot 

trains on the gel. Isoelectric focusing is in principle an end point method.  

 

Furthermore, a major development to overcome the problems of pH gradient 

instability and irreproducibility was the introduction of immobilized pH gradients 

(IPG) for IEF [Bjellqvist et al., 1982]. IPGs are based on the principle that the pH 

gradient is generated by a limited number (6-8) of well-defined chemicals (the 

‘Immobilines’) which are co-polymerized with the acrylamide matrix. Thus cathodic 

drift is eliminated, reproducibility enhanced and pattern matching and inter-laboratory 

comparisons were simplified. IPGs allow the generation of pH gradients of any 

desired range (broad, narrow or ultra-narrow) between pH 3 and 12. Since the sample 

loading capacity of IPG-IEF is also higher than with CA-IEF, especially in 

combination with narrow (1 pH unit) or ultra-narrow (0.1 pH unit) IPGs, 2D-PAGE 

with IPGs is the method of choice for micropreparative separation and spot 

identification. 

 

Following IEF, IPG strips are equilibrated for the second dimension. This treatment 

has three functions; reduction and alkylation of disulfide bonds, acetylation and SDS 
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treatment. In order to maintain solubilisation in the second dimension, disulphide 

bonds are once more reduced with dithiothreitol (DTT) according to reaction (1) and 

alkylated with iodoacetamide according to reaction (2). Alkylation prevents the 

formation of new disulfide bonds.  

 

R-CH2-S-S-CH2-R + C4-H10O2S2 → 2 R-CH2-SH + C4H8O2S2 (1) 

R-CH2-SH + ICH2CONH2 → R-CH2-S-CH2-CO-NH2 + HI (2) 

 

In the second dimension, proteins are separated according to their relative molecular 

weight (Mw) by conventional SDS-PAGE. The detergent SDS binds to the proteins at 

a ratio of about one SDS molecule per two amino acid residues in such a way that all 

proteins have the same net negative charge density and thus migrate in an electrical 

field according to their relative molecular mass. The strips are transferred to second 

dimension polyacrylamide gels. An electric field is applied and the proteins migrate 

towards the anode due to their negative charge and the sieving effects of cross-linked 

gels. 

 

The 2D electrophoretic mobility of a protein is reasonably specific thus allowing 

accurate comparison of protein amounts in different samples analysed on distinct 

gels. Usually each spot on the resolving 2D gel corresponds to a single protein 

species of the sample, however, in certain cases more than one protein can be found 

in a single spot on a gel.  This happens when proteins present in the same spot have 

the same pI and Mw. 2-DE allows separation of thousands of different proteins as 

well as providing protein information such as the protein pI, Mw, PTM and the 

amount of each protein. At present, there are no other techniques that are capable of 

simultaneously resolving thousands of proteins in one separation procedure. 

However, there are some drawbacks of 2-DE (i.e. poor resolution of high and low 

molecular weight proteins and hydrophobic and basic proteins, low gel-to-gel 

reproducibility in different experimental runs; it is also a labour intensive and 

expensive technique) that have limited its application in some proteomics studies. 

 

An important step made in the 2-DE strategy for protein study was the introduction of 

protein labelling and detection in order to further define quantitative and qualitative 
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profiles of complex protein samples. The sensitivity and specificity of protein stains 

has always been the major factor influencing the amount of information that can be 

extracted from 2D gels. In addition, the most significant breakthrough in proteomics 

has been the mass spectrometric identification of gel-separated proteins, which has 

extended analyses beyond the mere display of proteins. Mass spectrometry is very 

sensitive, can deal with a mixture of proteins and is amenable to high-throughput 

operation. In the last decade, the sensitivity of analysis and accuracy of results for 

protein identification by MS have increased by several orders of magnitude, and 

nowadays it is estimated that proteins in the femtomolar range can be identified from 

complex samples if appropriate fractionation strategies are applied. 

 

Several reviews have outlined the different methods of choice for detection of gel 

separated proteins [Patton, 2000; Rabilloud, 2002]. Most strategies for protein 

detection in 2D gels use post-electrophoretic protein staining and a multitude of 

different methods have been described which differ in their sensitivity, specificity, 

linear dynamic range and compatibility with downstream identification mainly by 

mass spectrometry. Common post-electrophoretic protein stains employed for protein 

detection before MS include: i) Colloidal Coomassie Blue G-250, which has a linear 

detection range of 100ng-10µg, is simple to use and is compatible with MS [Neuhoff 

et al., 1988]; ii) Silver stains have a higher sensitive range of detection, typically 2-4 

ng of protein per spot. Some silver-staining methods are incompatible with MS, 

because the aldehyde-based cross-linkers used in the sensitisation steps can cross-link 

proteins, and because the silver ions can interfere with mass spectrometric data 

analysis. Silver staining is only linear over a small dynamic range and can also stain 

differently based on the protein post-translational modifications and amino acid 

composition. This makes silver staining a poor choice for quantitation of protein 

expression.  iii) fluorescent stains, such as the ruthenium-based fluorescent dyes 

SYPRO Ruby SYPRO Orange and Deep purple (Molecular Probes). SYPRO Ruby is 

a transition metal organic complex that binds directly to proteins by electrostatic 

interactions. It provides sensitivity similar to that of classical silver staining (1-2 ng 

of protein/spot) but without the complex methodology, limitation on linear dynamic 

range, or the problems with MS compatibility. However, fluorescent dyes are 

expensive and require fluorescent scanners for analysis. v) Phosphoprotein stains are 
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becoming increasingly important because of the growing interest in studying 

phosphorylation, an important post-translational modification that influences and 

determines the function of proteins. Pro-Q Diamond (Molecular Probes, Eugene, OR, 

USA) has been introduced as a fluorescence detection method for gel separated 

phosphoproteins with a detection limit of 1-2 ng. However, it was shown that this dye 

is not highly specific and it can label non phosphorylated proteins. Several reviews 

have outlined the different methods of choice for detection of gel separated proteins 

[Schulenberg et al., 2003; Steinberg et al., 2003]. 

 

 

 

1.3.6 Two-dimensional Difference Gel Electrophoresis (2D-DIGE) 

 

Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a 2-DE 

gel-based proteomics technique that provides a sensitive, rapid and quantitative 

analysis of differential protein expression between two or more biological samples. 

Developed by Unlu et al. in 1997, the technique utilizes charge- and mass- matched 

chemical derivatives of spectrally distinct fluorescent cyanine dyes which are used to 

covalently label lysine residues in different samples prior to mixing and separating on 

the same 2-DE gel [Unlu et al., 1997]. In this way, the labelled samples would be 

subjected to identical electrophoretic conditions to generate directly superimposable 

images for relative quantification. Cyanine dyes were first described by Mujumdar et 

al. [Mujumdar et al., 1989; Mujumdar et al., 1993]. These fluorophors have a 

structure which can be modified to create a panel of reactive fluorescent tags. Unlu et 

al., (1997) developed the N-hydroxy-succinimidyl (NHS)-ester derivatives of the 

fluorescent cyanines 3 and 5 (NHS-propyl-Cy3 and NHS-methyl-Cy5). These dyes 

and a third cyanine dye, NHS-Cy2, are now commercially available from GE 

Healthcare (Figure 1.10). All 3 dyes possess a single net charge of +1, thus 

maintaining the charge of the lysine residue which they modify. 
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Figure 1.10 Characteristics of the NHS-Cy-dyes.  A) Structure of the NHS-Cyanine dyes. 

Cy2, 3-(4-carboxymethyl-phenylmethyl)-3’-ethyloxacarbocyanine halide N-hydroxy-

succinimidyl ester; Cy3, 1-(5-carboxypentyl)-1’-propylindocarbocyanine halide N-

hydroxysuccinimidyl ester; Cy5; 1-(5-carboxypentyl)-1’-methylindodicarbocyanine halide N-

hydroxysuccinimidyl. Each dye has a similar molecular weight and single positive charge 

matching the charge of the modified primary amino group. B) Each dye displays distinct 

emission spectra enabling the individual detection of differentially labelled proteins at the 

appropriate wavelength without overlap of signals. C) The dyes have an N-

hydroxysuccinimidyl ester reactive group triggering covalent interaction with the primary 

amine groups of lysine residues or the N-terminus.   
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Initially, the NHS Cy3 and Cy5 dyes were used to label different protein samples 

prior to mixing and running them on the same 2-DE  [Unlu et al., 1997]. This allowed 

the samples to run under identical electrophoretic conditions in a type of differential 

display format. Theoretically, to compare the same proteins derived from two 

differently labelled samples, the dyes should be mass and charge matched and the dye 

modifications should not perturb the electrophoretic mobility of labelled proteins. For 

this reason, the size of the aliphatic chain (Figure 1.10A) was originally modulated to 

maintain a similar molecular weight between each dye and the dyes possess a positive 

charge which matches the positively charged amino groups they modify.  

 

The advantage of using lysine labelling is that almost all proteins contain at least one 

lysine residue and it contains a reactive amino group. For expression profiling the 

dyes are typically used under conditions of minimal stoichiometrical labelling. 

Ideally, just a single lysine residue is labelled in around 5% of the molecules of a 

particular protein. This helps to keep protein soluble and limits the shift in Mw of the 

labelled versus unlabelled population of proteins during SDS-PAGE run, whilst 

keeping the sensitivity of detection high. The reported sensitivity of DIGE labelling is 

~1ng protein per spot. The method of using the three Cy dyes was originally 

evaluated and applied by Tonge et al. and Gharbi et al. [Tonge et al., 2001; Gharbi et 

al., 2002] and further optimised and commercialised by GE Healthcare.  

 

For quantification, one of the dyes (usually Cy2) is used to label an internal standard 

sample which is run on all gels and usually comprises an equal pool of proteins from 

all samples under investigation [Gharbi et al., 2002]. Thus, the Cy2 labelled pool is 

used for normalisation of data across gels, thereby reducing experimental variation 

and increasing the accuracy of quantitation and statistical confidence of protein 

expression differences. Since fluorescence detection also provides a superior linear 

dynamic range of detection and sensitivity compared to visible staining methods 

[Patton, 2000], this technology is suited to the analysis of biological samples with 

their large dynamic ranges of protein abundance. As shown in Figure 1.11 this 

labelling strategy is also compatible with downstream identification of gel spots by 

mass spectrometry (MS) [Tonge et al., 2001; Gharbi et al., 2002]. 
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For protein expression profiling, gels are converted to digital images using scanning 

devices and these are processed to detect the protein features. Spot volumes are 

quantified and spot patterns matched across different gels. Statistical methods are 

then employed to detect protein spots with statistically significant changes in 

expression. This kind of image analysis is usually performed with dedicated software 

programmes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Schematic representation of 2D-DIGE protocol for minimal lysine labelling 
and using an internal standard for normalization. 
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1.4 Mass Spectrometry 

 

1.4.1 Biological Mass Spectrometry 

 

Mass spectrometry (MS) is a powerful analytical technique used for the accurate 

measurement of the mass-to-charge ratio (m/z) of molecules. The development of the 

first mass spectrometer is attributed to J.J. Thomson, who at the beginning of the 20th 

century measured the m/z ratios of several atoms and small molecules. In the first half 

of the 20th century, developments in ionisation methods and analysers occurred with 

the parallel application of mass spectrometry in the field of organic chemistry for the 

elucidation of chemical structures. It was not until the beginning of the 1990’s 

however, that the field of biological mass spectrometry became significant. This was 

due to the introduction of soft ionisation methods, e.g. Matrix-Assisted-Laser-

Desorption/Ionisation (MALDI) by Tanaka, and Karas and Hillenkamp, and Electron 

Spray Ionisation (ESI) by Fenn that allowed for the ionisation of macromolecules 

such as proteins and peptides [Lin et al., 2003; Zhang et al., 2004]. In recognition of 

the development of ESI and for the development of soft laser desorption (SLD) Fenn 

and Tanaka received the Nobel Prize for Chemistry in 2002. 

 

A mass spectrometer can be defined as an instrument capable of measuring the mass-

to-charge ratio of molecules. Mass spectrometers generally couple three devices, 

namely i) an ionisation device, ii) a mass analyser and iii) a detector. In addition, 

sample inlet and data output recorders are needed, but they are not part of the mass 

spectrometer as such. There are many different kinds of mass spectrometers described 

generally by the types of ionisation sources, mass analysers, and detectors that are 

used. In all MS methods, analyte molecules must be converted into gaseous ions 

using an ionisation source. The most commonly used ionisation sources for biological 

molecules are MALDI. The other most used ionisation source is ESI. Other ionisation 

methods include Fast Atom Bombardment (FAB), Chemical Ionisation (CI), Thermal 

Ionisation (TIMS), Secondary Ionisation (SIMS) and Plasma Desorption (PD). 

 

An electric or magnetic field can deflect charged particles, and since the kinetic 

energy imparted by motion through an electric field gives the particles an inertia 
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dependent on the particle’s mass, the mass analyser can use this to steer certain ions 

to a detector based on their m/z ratio by varying the electrical or magnetic field. It can 

be used to select a narrow mass range (i.e. to select peptides of interest for tandem 

mass spectrometry (MS/MS)) or to scan through a range of masses to catalogue the 

ions present (survey scan). Examples of mass analysers are quadrupole mass 

analysers, time-of-flight (TOF), ion trap (IT), ion cyclotron resonance (ICR), orbitrap 

and magnetic sector instruments. There are numerous combinations of mass analysers 

in so called hybrid instruments. The first three are the most commonly used analysers 

in biological mass spectrometry.  

 

There are several ways to detect ions. Routinely these are recorded when an ion hits a 

detector plate such as Multi Channel Plates, or MCP. As ions hit the plate a cascade 

of electrons is released, amplifying the single ion detection. This flow is called image 

current and can be detected and amplified. When a scan is conducted in the mass 

analyser, the charge induced in the detector during the course of the scan will produce 

a mass spectrum, a record of the m/z values at which ions are present and their 

intensities. 
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1.4.2 Ionisation methods 

 

Biological mass spectrometry has been and is being developed at a rapid pace since 

the development of the soft ionisation techniques MALDI and ESI.  

 

 

1.4.2.1 Matrix Assisted Laser Desorption Ionisation (MALDI) 

 

MALDI was first introduced by Karas & Hillenkamp and Tanaka in 1988  as a ‘soft’ 

ionisation method with which relatively large macromolecules could be ionised and 

analysed in the gaseous phase [Karas and Hillenkamp, 1988; Hoffmann, 2002].  In 

this ionisation method the sample is mixed with an excess of matrix molecules and 

allowed to crystallise and then a laser is used to excite and ionize analytes from the 

solid to the gas phase. The matrices used in MALDI are typically acidic compounds 

(e.g. carboxylic acids) with an absorption in the region of the laser wavelength. The 

most commonly used matrices for protein/peptide analysis are 2,5-dihydroxybenzoic 

acid (DHB) and α-cyano-4-hydroxycinnamic acid (α-CCA) (Figure 1.12).  

 

 

 

 

 

 

 

 

Figure 1.12 Examples of commonly used MALDI matrices. Two commonly used matrices 

used for protein/peptide analysis are A) 2,5-dihydroxybenzoic acid (DHB) and B) α-cyano-4-

hydroxycinnamic acid (α-CCA). DHB forms a crystal rim and ‘hot spots’ of crystallised 

peptides, and is relatively salt tolerant, α-CCA forms semi-homogenous spots which makes it 

more amenable for automated spectral acquisition. 
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1.4.2.1.1 Principles of the MALDI process 
 

(i) The Formation of a 'Solid Sample'  

The analyte sample is mixed with a suitable matrix compound at a 1-10 times molar 

excess and allowed to co-crystallise with the evaporation of the solvent. The number 

of matrix molecules exceeds those of the analyte, separating its molecules and 

thereby preventing the formation of sample clusters, which inhibit the appearance of 

molecular ions. The incorporation of the sample molecules into the lattice structure of 

the matrix is a pre-condition of the functioning of the laser desorption/ionisation 

process. The matrix serves to minimise sample damage from the laser pulse by 

absorbing most of the incident energy and increases the efficiency of energy transfer 

from the laser to the analyte. As such, the sensitivity is increased. 

 

(ii)  Matrix Excitation 

This step involves ablation of portions of the solid solution by pulses of laser energy 

for a short duration. Some of the laser energy incident on the co-crystallised sample is 

absorbed by the matrix, causing rapid vibrational excitation, bringing about localised 

disintegration of the solid solution forming clusters made up of a single analyte 

molecule surrounded by neutral and excited matrix molecules. The matrix molecules 

evaporate away from these clusters to leave the excited analyte molecule.  

 

(iii)  Analyte Ionisation  

The analyte molecules become ionised by simple protonation by the photo-excited 

matrix, leading to the formation of the typical [M+X]+ type species (where X= H, Li, 

Na, K, etc.). Some multiply charged species, dimers and trimers can also be formed. 

Negative ions are formed from reactions involving deprotonation of the analyte by the 

matrix to form [M-H]- and from interactions with photoelectrons to form the [M]-˙ 
radical molecular ions [Dreisewerd, 2003]. These ionisation reactions occur in the 

first tens of nanoseconds after irradiation, and within the initial desorbing 

matrix/analyte plume. These ions are then accelerate through an electrical field 

toward a mass analyser. It is important to note that these principles are hypothetical 

since some aspects of the MALDI process are not yet fully understood (Figure 1.13).  
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Figure 1.13 The MALDI process. Analyte molecules are co-crystallised with an excess of 

matrix molecules. A hypothesis to account for ion formation by MALDI is that irradiation of 

these crystals with a laser beam desorbs matrix-analyte ion clusters, which undergo gas phase 

reactions. As a result such clusters dissociate to leave free analyte ions and matrix ions. These 

ions are then accelerated through an electrical field toward a mass analyser.  
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1.4.2.2 Electrospray Ionisation 

 

In contrast to MALDI, ESI ionises analytes from a liquid phase. The analyte is 

dissolved in an organic solvent mixture, typically methanol or acetonitrile, containing 

a small concentration of acid (e.g. formic acid 0.1-1%). The introduction of the 

sample into the mass spectrometer can be carried out by a number of methods. In the 

simplest case, sample is directly infused through a syringe and a narrow transfer 

capillary. Another example is the so-called nano-spray sample delivery method. In 

this system, a small amount of sample is placed into a needle, which has a very small 

tapered opening on one side. Sample is forced out because of capillary forces and 

high voltage is applied to the needle. The most commonly used method is the 

coupling of the electrospray directly with reverse phase chromatography. In this setup 

the capillary end of the chromatographic system is connected to the needle to which 

the voltage is applied. Typical flow rates of 200 to 500 nL min-1 (nanospray) are used 

for the chromatography. A fine spray of charged droplets emerges from the capillary 

and is directed into the vacuum chamber of the mass spectrometer through a small 

orifice. An electrostatic field is formed between the capillary and the walls of the 

mass spectrometer, and as the droplets travel they evaporate resulting in the formation 

of gas-phase ions. The magnitude of the charge-repulsion effect becomes more 

significant, and at a certain charge/solvent composition (termed the Rayleigh limit), 

Coulomb explosion of the analyte-solvent clusters occurs. The clusters become 

smaller and more highly charged within the skimmer region until single molecular 

ions are formed either by further explosion of clusters or by desorption of molecular 

ions from the clusters. The charged ions are accelerated through the analyser towards 

the detector. These ions can then be analysed according to their mass-to-charge ratio 

(Figure1.14) [Mann and Wilm, 1995]. 
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Figure 1.14 Schematic representation of electrospray ionisation. This figure shows the 

schematic representation of the ESI process. Sample is delivered through a capillary (a) and a 

tapered needle (b). Through a high voltage, droplets are extracted (c). Due to the evaporation 

of solvent, the charge repulsion reaches a critical value (d The Rayleigh limit), when droplets 

explode (Coulomb explosion), creating multiply charged ions. These enter the mass 

spectrometer (e) under the applied electrical field (f). 
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1.4.2 Mass analysers 

 

1.4.2.1 Time-of-Flight (TOF)  

 

Due to the pulsed nature of MALDI ionisation, it is most commonly used in 

combination with a time-of-flight (TOF) analyser. The TOF mass spectrometer was 

introduced commercially more than 40 years ago, yet only recently its high mass 

range and high sensitivity multichannel recording capabilities have been realised, 

making this type of spectrometer an attractive instrument in biological research. The 

TOF mass spectrometer is the simplest type of mass analyser and has a very high 

sensitivity over a virtually unlimited mass range (Figure 1.15). The sample ions are 

generated in the source zone (s), and are expelled in bundles that are produced by the 

laser desorption on the source-focusing lenses. A potential, (Vs - the source 

extraction) is applied across the source to extract ions which accelerate from the 

source into the field-free 'drift' zone of the instrument (d).  

 

TOF is a measure of the duration of time required for ionised proteins and peptides to 

travel through the MS chamber to the detector plate. As Figure 1.15 illustrates, the 

fundamental principle that permits MS to separate analytes is the fact that small ions 

fly faster than larger ones. The ions’ m/z ratios may be calculated from the time that 

each one requires to reach the detector plate. The flight time is proportional to the 

square root of the mass to charge ratio. Knowing the acceleration voltage and the 

length of the drift region the m/z ratio can be determined by measuring the flight 

time. The range of typical MALDI flight times is between a few µs and some 100µs. 

The drift regions are typically 1-4m long. Differences in TOF and thus m/z ratios 

allow the distinction and, in many cases, the identification of different proteins and 

peptides. Calibration of the instrument is performed with known reference masses. 
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Figure 1.15 Schematic diagram of the process of time-of-flight mass spectrometry 

 

 

Once the ions produced in the ion source have been separated by the mass analyser 

they are commonly detected using an electron multiplier detection device. The signal 

is sent to a computer, which records incoming signals and displays them graphically 

in a chromatograph or mass spectrum. Thus, the final product of this kind of analysis 

is a list of m/z ratios that represent a peptide mass map, also called a peptide mass 

fingerprint [Mann et al., 1993; Pappin et al., 1993]. 

 

 

1.4.2.2 Quadrupole analysers 

 

ESI sources are typically coupled with ion traps and quadrupole analysers or hybrid 

instruments combining different analysers in tandem such as Q-TOF, triple Q, IT-

Orbitrap and IT-FT-ICR. Protein identification of samples presented in this thesis 

were analysed with a Q-TOF instrument. The quadrupole analysers consist of four 

parallel metal rods. Each opposing rod pair is connected together and a radio 

frequency (RF) voltage is applied between each pair. A current voltage is then 

directly superimposed on the RF voltage. Ions travel down the quadrupole in between 

the rods. Only ions of a certain m/z are able to reach the detector for a given ratio of 

voltages, while other ions have unstable trajectories and will collide with the rods. 

This allows selection of particular ion, or scanning by varying the voltages.  

 

A triple quadrupole mass spectrometer has a linear series of three quadrupoles. The 

first (Q1) and the third (Q3) quadrupoles act as mass filters, while the middle (Q2) 

Length = 1s Length = 1d 

Source, s 

Es=Vs/1s

Field-free drift zone, d Detector

Ed= 0

Source extraction=Vs
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quadrupole is employed as a collision cell. The collision cell is an RF only 

quadrupole and uses Ar or He gas to induce collisional dissociation of selected parent 

ions from Q1. Subsequent fragments (daughter or product ions) are passed through to 

Q3 or a TOF where they may be filtered or scanned fully, generating a collision-

induced dissociation (CID) spectrum. Peptide fragmentation caused by collision 

mainly occurs at the lowest energy amide bonds of peptides. When the charge is 

retained by the amino terminal fragment, a, b, and c type ions are formed, while x, y 

and z type ions are formed when the charge is retained by the carboxy-terminal 

fragments (Figure 1.16). The mass difference between sequential b- and y- ions thus 

corresponds to the mass of the amino acids in the sequence. The nomenclature was 

proposed by Roepstroff et al. in 1984 (Figure 1.16; Roepstorff and Fohlman, 1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Schematic representation of peptide fragment ions nomenclature. The 

overview of the possible fragmentation on the peptide backbone and the nomenclature of the 

resulting fragment ions are shown. Different amino acids are distinguished by the side group 

displayed in red (R). The nomenclature was proposed by Roepstroff et al. in 1984 [Roepstorff 

and Fohlman, 1984]. When the charge is retained on the C-terminal side of the product ions, 

fragments are named x, y and z, while when the charge is retained on the N-terminal side a, b 

and c type ions are formed. The resulting ions are dependent on many factors, such as the 

type of fragmentation method used, analyser principle and primary sequence dependency. 

Also fragmentation of the side chains is possible. These ions are indicated as v and w ions 

(not shown in this figure). 
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1.5 Aims and scope 

 

The primary aim of this study was to set up a separation and analysis scheme to 

rigorously investigate the serum proteome using mass spectrometry as a central 

technique. As discussed, the serum proteome contains an archive of histological 

information. Ovarian cancer is a lethal gynaecological malignancy that has an urgent 

need for new biomarkers. The serum of ovarian cancer patients has been investigated 

for several decades, yet, only a handful of putative markers have been identified. In 

this work several strategies have been employed to address the complexity of the 

human serum proteome and to identify putative biomarkers of ovarian cancer. 

Chapter three is concerned with the analysis of serum samples pre-dating diagnosis of 

ovarian cancer using a previously established magnetic bead-based and MALDI-TOF 

MS technology platform focussing on the serum peptidome. The hypothesis here is 

that tumour-specific exopeptidase activities generate surrogate markers during the 

blood clotting process. 

 

Chapter four describes the establishment and optimisation of this technology platform 

in the host laboratory at UCL. The main focus of this chapter is the reproducibility of 

the technology platform. Chapter five describes the analysis of serum samples from 

the UKOPS collection to discovery statistically significant MS peaks which could 

discriminate case versus control samples. As a complementary approach Chapter six 

shows the analysis of these samples using MARS and ProteoMiner protein 

enrichment strategies coupled with 2D-DIGE based separation and identification of 

differentially expressed protein features followed by MALDI-TOF PMF and LC-

MS/MS protein identification. 

 

 

 

 

 

 

 

 



Chapter 2 

 55

Chapter 2: Materials and Methods 

 

2.1  Serum samples and sample collections 

 

In this study serial serum samples collected from women later diagnosed with ovarian 

cancer and matched healthy controls from a UKCTOCS (United Kingdom 

Collaborative Trial for Ovarian Cancer Screening) pilot study were also used for 

proteomic analysis using the platform developed in the laboratory of Professor Paul 

Tempst at the Memorial Sloan Kettering Cancer Centre (MSKCC) in New York USA 

(Chapter 3) [Villanueva et al., 2004]. Volunteers were selected using criteria which 

ensured volunteers had no previous history of ovarian cancer upon recruitment and in 

total 22,000 women were recruited.  

 

Serum samples were taken every year from 1996/1997 up to and including 2001. All 

cases and controls satisfied the following criteria: (a) age ≥ 50 years, and (b) > 12 

months amenorrhoea following a natural or surgical menopause or > 12 months of 

hormone replacement therapy commenced for menopausal symptoms.  The exclusion 

criteria were: (a) a history of bilateral oophorectomy, (b) active malignancy (women 

with a past history of non-ovarian cancer malignancy were eligible if they had no 

documented persistent or recurrent disease), (c) increased risk of ovarian cancer due 

to familial predisposition – exclusion criteria were entry criteria for the UK Familial 

Ovarian Cancer Screening Study and (d) a previous history of ovarian cancer.  

Information on reproductive history, family history of cancer and hormone 

replacement therapy use was obtained from all women prior to the start of screening. 

These volunteers underwent annual screening for 2-6 years.  

 

From this sample collection, a subset consisting of 92 samples from 19 women, 

which pre-dated a diagnosis of ovarian or fallopian tube cancer from < 1 to 6 years 

was analysed at the MSKCC (Figure 2.1). The matched controls for this set of 

samples came from 183 healthy volunteers (from the general population) with no 

previous history of cancer and no incidence of cancer as far as known since 

recruitment onto the pilot study. The general procedure for selecting controls was 

based on using sera that reached the laboratory, and were processed on the same day 
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and placed in the same sample freezer rack as the case sample. If it was not possible 

to find a match using this method then preceding samples were chosen. Matching was 

also done based on age (within 5 yrs) and HRT use. Each case sample had two 

matched controls except for one sample which only had one. 
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Figure 2.1 Scatter plot illustrating the timescale of serial serum samples collected from 

women predating a diagnosis of ovarian cancer. A total of 92 serial samples from 19 

volunteers were collected and analysed using a MALDI-TOF MS-based proteomic profiling 

platform. ‘0’ on the x-axis represents time of diagnosis. 
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Serum samples from the UK Collaborative Trial of Ovarian Cancer Screening 

(UKCTOCS) study were used for the protocol comparison study (Chapter 4). The 

UKCTOCS trial involves just over 200,000 apparently healthy postmenopausal 

women aged 50-74 years of age. All participants provide a serum sample at 

registration and 50,000 participants provide additional samples annually for 6 years. 

All participants are followed up using data from the Office of National Statistics 

which provides information on cancer diagnoses and cause of death in this cohort. In 

addition, all the participants are sent health questionnaires 3 and 7 years after 

recruitment to the study. 

 

Serum samples from the United Kingdom Ovarian Cancer Population Study 

(UKOPS) collection were also used (Chapters 5 & 6). UKOPS is a multi-centre study 

set up by the Institute for Women’s Health at University College London (UCL) that 

aims to predict which women in the population are at greatest risk of getting ovarian 

cancer. The study aims to recruit 1,000 women from the UK who have been 

diagnosed with ovarian cancer. This includes women undergoing surgery for possible 

ovarian cancer or benign tumours or who have had a previous diagnosis, and 2000 

healthy women who act as controls for the study.  

 

Finally, commercial serum (Human Sera S7023-1 Sigma-Aldrich) was used for the 

platform optimisation and as a quality control (QC) in all profiling experiments. 
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2.1.1  Sample collection and handling procedures 

 

All UKOPS serum samples were collected according to a previously established 

protocol outlined by Villanueva et al. who used an optimised magnetic bead peptide 

extraction method coupled with MALDI-TOF MS to profile low mass serum peptides 

and proteins from healthy and diseased serum samples [Villanueva et al., 2004]. 

Venous blood was collected into BD Vacutainer SST tubes, (Becton Dickinson # 

367988). The tube was gently inverted 5 times to mix clot activator with blood. The 

blood was then allowed to clot for 1 hour at room temp (RT) in a vertical position. 

The SST tubes were placed on wet ice in a vertical position prior to centrifugation at 

2,000 x g for 10 min at RT. The serum (upper phase) was then aliquoted into Falcon 

tubes and frozen at -80 °C. Samples were then shipped on dry ice to the collection 

laboratory where they were thawed, aliquoted (500 µL) into bar-coded straws, heat 

sealed and stored at -80 °C.  

 

All UKCTOCS samples used in this study were collected in Greiner gel tubes. These 

samples had been allowed to clot, centrifuged at room temperature (RT) then divided 

into aliquots in straws that were heat sealed and stored at -80°C. The time from 

venipuncture to centrifugation was 30 hours for each sample (protocol 1; Green; GN). 

Additionally, for the handling protocol comparison study, samples from the same 25 

UKCTOCS volunteers were collected in Becton Dickinson red-top tubes, allowed to 

clot at RT for 60 minutes. These samples were then placed on wet ice for 2 hours 

before centrifugation. Following this samples were transferred to straws and stored at 

-80°C (protocol 2; Yellow; YE). A third protocol used a 5 minute clotting time at RT, 

followed by incubation on wet ice for 3 hours before centrifugation. This set of 

samples was also transferred to straws for storage at -80°C (protocol 3; Gray; GY). 

Three variants of protocol 3 were also prepared where samples were stored in 

cryovials at -80° instead of straws (protocol 4; Cryovial; CR); were placed on wet ice 

for 6 hours instead of 3 hours (protocol 5; Orange; OR); were incubated for 3 hours at 

RT instead of on wet ice (protocol 6; White; WH). These protocols were chosen to 

assess the effects of different transfer times, temperatures, clotting times and storage 

tubes on the serum proteome in the context of clinically feasible collection protocols. 
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From 1995-2001 the pre-UKCTOCS samples (Pilot study) were collected in Becton 

Dickinson red-top tubes. All samples were transported to the central laboratory by 

courier at ambient temperature. All samples had recorded transit times of less than 48 

hours. Upon reaching the central laboratory, samples were immediately centrifuged 

and aliquoted into storage tubes with plastic push-on caps, which were stored at -

20°C. In 2004 all samples were moved to a -80°C freezer. For the analysis performed 

at the MSKCC, a 100 µL aliquot of each of these samples was shipped on dry ice. 

Upon arrival at the MSKCC samples were thawed and further aliquoted (50 µL) and 

stored at -80°C. Samples were thawed before processing on the MSKCC automated 

platform and analysed by MALDI-TOF MS. 

 

 

2.2 Automated magnetic bead-based serum peptide extraction 

 

2.2.1 Preparation of calibrant mixture for automated runs 

 

For instrument and spectral calibration, a calibrant mixture was spotted beside sample 

spots on the MALDI targets. The calibrant mixture was prepared fresh before each 

run. A standard peptide mixture was purchased from Bruker and resuspended in 125 

µL of 0.1% TFA as per the manufacturer’s instructions. 20 µL of this mixture was 

then diluted 1:3 with 50% (v/v) acetonitrile (ACN). Synthetic peptide 782 was 

prepared at a concentration of 2 µg/µL, then diluted 1:25 with 0.1% TFA followed by 

a 1:10 dilution with 50% (v/v) ACN. 20 µL of both the diluted standard peptide 

mixture and the synthetic peptide 782 were combined and diluted a further 1:5 in 50% 

(v/v) ACN and labelled ‘peptide mix’ (Table 2.1). Protein mixture 1 was also 

purchased from Bruker and resuspended as per the manufacturer’s instructions. 10 µL 

of the resuspended protein mixture was diluted 1:1 in 50% (v/v) ACN and labelled 

‘protein mix’ (Table 2.1). To prepare a master mix for 96 calibrant spots, 102 µL of 

peptide mix was mixed with 17 µL of protein mix and 17 µL of 50% (v/v) ACN was 

added for a final volume of 136 µL. All the preparations were kept on ice until they 

were placed in a cooled rack in the robot for mixing with pre-made α-cyano-4-

hydroxycinnamic acid (α-CCA) MALDI matrix and automated spotting. The final 

amounts on target were 30 fmol of each peptide and 500 fmol of each protein.  
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Calibrant m/z
Peptide mix
Peptide 782 782.04
Angiotensin II 1,047.20
Angiotensin I 1,297.51
Substance P 1,348.66
Bombesin 1,620.88
ACTH fragment 1-17 2,094.46
ACTH fragment 18-39 2,466.73
Protein mix
Insulin 5,734.56
Ubiquitin 8,565.89
Cytochrome C 12,361.09
Myoglobin 8,476.77  

 

Table 2.1 Calibrants used for MALDI-TOF spectral calibration. The final amounts on 

target were 30 fmol for each peptide and 500 fmol for each protein. All m/z values are 

calculated for singly charged ions except myoglobin which was doubly charged. 

 

 

2.2.2 Automated liquid handling protocol for bead-based serum peptide 

extraction 

 

A Tecan Genesis Freedom liquid handling workstation with 1 mL syringes was used 

for all steps of automated serum peptide bead-based extraction and MALDI target 

spotting. The robot was set up during the morning of the day of the runs by cleaning 

the liquid handler, degassing the water used for the runs, ensuring the waste container 

had enough room to receive discarded liquids and ensuring that the fixed robot tips 

were clean and accurately aligned. The system was also flushed twice with degassed 

water to ensure there were no air bubbles in the system. 

 

Serum sample plates were removed from the -80°C freezer and allowed to thaw at 

room temperature for approximately 10 min before each run. Samples were assigned 

randomised positions in the 96-well plates. C18 Dynabeads at 2 µg/µL stock were 

prepared by washing 320 µL of Dynabead slurry twice in 200 µL of deionised water 

and then resuspending in 320 µL of deionised water. This was done to remove 

ethanol from the stock solution.  
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The Dynabeads were gently mixed by aspiration and dispersal for 5 min until 

completely re-suspended and 40 µL was added to each tube of a strip of eight 0.2 mL 

thin-wall tubes and placed in a holder on the robot deck. Fresh 0.1% TFA was added 

to the TFA trough on the robot before each run. Next, a 96-well skirted microtiter 

plate was prepared with 75 µL of 50% (v/v) acetonitrile in each well of the first 

column and 95 µL of pre-prepared α-CCA matrix solution in each well of the second 

column. The third column contained 65 µL of calibrant mix in row A and 70 µL of 

matrix solution in row B. The wells of the plate were tightly then sealed with self-

adhesive foil using a rubber roller. The plate was then attached to a cooler rack with a 

piece of Parafilm wrapped around the microtiter plate and the inner part of the cooler 

rack to ensure that the plate would remain in place when the robot tips pierced the 

foil. Adhesive tape was used to secure the cooling rack to the robot deck. The cooler 

rack had been chilled at -20 °C for several hours before use. A cleaned MALDI target 

plate was placed in its position on the robot deck. 

 

The magnetic bead-based reversed-phase extraction protocol adopted for this project 

was previously outlined by Villanueva et al. [Villanueva et al., 2004]. However, some 

modifications of the published protocol were made before it was adopted at the host 

laboratory. These were mostly used to minimise bead loss and carry-over during the 

processing steps. These modifications are highlighted below. 

 

First the magnetic beads in the thin-wall tubes were re-suspended by pipetting up and 

down 10 times. A measured volume of bead suspension (12.5 µL) was transferred to 

the well of a 96-well microtiter plate (Starlab 1402-9700) containing an aliquot of 

serum (50 µL). Magnetic beads and serum were then mixed by aspirating and 

dispensing 10 times, incubated for 2 minute to allow sufficient binding of serum 

polypeptides to the beads. Next, the beads were pulled to the side of each well using 

magnetic force (Jancox Metal Products Inc. REL033-01) and the supernatant was 

removed and discarded. Then 200 µL of washing solution (0.1 % trifluoroacetic acid, 

TFA) was added, the beads were pulled five times from left to right and back on the 

side magnets and then were allowed to settle on one side of the tube wall for 30 

seconds. The washing solution (200 µL) was removed. This washing step was 

repeated once more, however during the second wash only 120 µL of washing 



Chapter 2 

 62

solution was initially removed. At the conclusion of the washing step, beads were 

further re-suspended in the remaining 80 µL of washing solution and then pulled to 

the tip of the wells by magnets positioned beneath the plate. A further 60 µL of 

supernatant was removed, the sample plate was then moved to the side magnet and 

the remaining 20 µL of washing solution was removed. In the original protocol the 

removal of the remaining washing solution was performed while the beads were at 

the tip of the wells. However, in our laboratory, bead loss was noted at this step and 

so beads were therefore moved to the side magnet to prevent contact of the fixed tips 

with the magnetic beads.  

 

For elution, 10 µL of elution solvent 50% (v/v) acetonitrile was added to the bead 

pellet. Beads were mixed with elution solution by moving the plate back and forth on 

the side magnets 5 times. The beads were then allowed to settle on one side of the 

tube and a 5 µL fraction of the eluate transferred to another well. In the original 

protocol elution solution was added while beads were at the tip of the wells and 

mixing was done with the fixed tips. However, bead carry-over and losses were 

noted. Thus, modifications were made to enable elution and mixing on the side 

magnet. Finally, 5 µL of pre-made α-CCA matrix solution (Agilent Technologies, 

UK) was added to the eluate and mixed, and 1 µL aliquots were deposited in 

replicates onto a stainless steel MALDI target in every other column of the 384-spot 

layout. Spots were allowed to dry at room temperature prior to MS profiling (Figure 

2.2) 
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Figure 2.2 Schematic illustration of the magnetic bead-based extraction of serum 

peptides. Briefly, magnetic bead pellets are re-suspended, a measured volume of bead 

suspension is transferred to a tube containing an aliquot of serum and the magnetic beads and 

serum are mixed. Beads are pulled to the side by magnetic force and supernatant is removed 

and discarded. Washing solution is added, beads are pulled five times from left to right and 

back, beads are pulled to the side and washing solution removed. At the conclusion of the 

washing step, beads are further re-suspended, pulled to the tip of the tube by magnets 

positioned underneath, and the supernatant removed. An elution solvent is mixed with the 

bead pellet and beads are pulled to the side and a fraction of the eluate transferred to another 

tube. Matrix solution is added to the eluate and mixed and 1 µL is spotted onto a MALDI 

target. 
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2.2.3 MALDI-TOF MS serum profiling 

 

2.2.3.1 Autoflex MALDI-TOF MS at MSKCC 

 

Serum polypeptide profiles were generated in two mass ranges; low mass range 

(LMR) 700-4000Da m/z segment and high mass range (HMR) 4–15 kDa m/z 

segment using the ‘AutoXecute’ function of the software on an Autoflex  MALDI-

TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany). For spectral 

acquisition a sum of 400 laser shots, delivered in four sets of 100 shots (at 50 Hz) to 

each of four different locations on the surface of the matrix spot were acquired in 

linear mode geometry under 20 kV (18.6 kV during delayed extraction) of ion 

acceleration and -1.3 kV multiplier potentials, and with suppression of mass ions set 

to m/z <400. Delayed extraction was maintained for 80 ns ( ≤ 4 kDa) or 50 ns for ( ≥ 

4 kDa) to give appropriate time-lag focusing after each laser shot.  

 

2.2.3.2 Ultraflex MALDI-TOF MS at UCL 

 

MALDI-TOF MS at UCL was performed using an Ultraflex MALDI-TOF/TOF 

instrument (Bruker Daltonics, Bremen, Germany). In the LMR a sum of 400 laser 

shots, delivered in eight sets of 50 shots (at 10 Hz) to each of eight different locations 

on the surface of the matrix spot were acquired in linear mode geometry under 20 kV 

(18.6 kV during delayed extraction) of ion acceleration and -1.3 kV multiplier 

potential, and with suppression of mass ions set to m/z <400. Delayed extraction was 

maintained for 80 ns to give appropriate time-lag focusing after each laser shot. 

 

For acquisition of the HMR 4–15 kDa m/z segment a sum of 500 laser shots were 

acquired in linear mode with suppression of mass ions set to m/z <3,000. Delayed 

extraction was maintained for 50 ns to give appropriate time-lag focusing after each 

laser shot. The initial 100 shots for the HMR acquisition were delivered at the same 

location as the first 50 shots used for the LMR since the AutoXecute function 

requires a home position for each individual MALDI spot. Therefore, an extra 100 

shots were required for the HMR owing to the ablation of sample at the home 

position.  
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2.2.4 Data processing and analysis 

 

The MALDI-TOF MS data presented in this study were analysed with two different 

systems. 

 

2.2.4.1 Data processing and analysis 1  

 

Data collected at the MSKCC for the UKCTOCS pilot study (Chapter 3) was 

analysed in collaboration with the Computer Learning Centre at Royal Holloway, 

University of London, UK. The workflow used for spectral processing is shown in 

Figure 2.3 (MatLab script for each function can be found in Appendix 1). Spectra 

were externally calibrated using 13 calibrant peaks from the calibrant spots associated 

with each sample (Table 2.1). Smoothing was done by averaging the intensities 

within a moving window and baseline subtraction involved estimation of the baseline 

from the mass spectrum. Spectra were normalised by dividing each intensity value by 

the total ion count. The obtained values were then multiplied with a constant C (C = 

2*105). Peak definition/detection involved finding local peak maxima in the mass 

spectra with a signal-to-noise ratio exceeding an optimised threshold (set to 4 in this 

study). The noise level was defined as the average of the intensities at the m/z ratio 

within a moving window with a fixed size (e.g. 500 Da). Local maxima were located 

by finding the m/z ratios with the highest intensities among their neighbours. The 

peaks identified were quantified as the intensity at the local maximum. Peaks were 

then internally aligned across all spectra. At the peak alignment step, the peaks of 

multiple mass spectra within the mass error rate (100 ppm) were grouped together as 

a “peak group”. Since not all peaks occur in all spectra, a given number of peak 

points acted as unique anchors for alignment and every other sample was aligned with 

this ‘superset’. To this end, the superset was split into clusters which were defined in 

two steps. Firstly, all the intervals between neighbouring peak positions in the 

superset exceeding a mass resolution of 1500 ppm, were found. These intervals split 

the m/z into clusters of order 1. This was then checked to see that each sample had no 

more than 1 peak in a cluster. When more than one peak was found, the cluster was 

divided into smaller clusters to ensure only 1 peak per cluster. Thus, all peaks were 

aligned to certain clusters. Once peaks had been aligned spectra were then labelled 
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‘case’ or ‘control’. Two pattern recognition algorithms (the nearest neighbour 

algorithm and the support vector machine) were used to classify the samples in their 

respective groups. Pattern recognition algorithms construct decision rules on the basis 

of the training set of spectra used. Due to the limited number of ‘case’ samples the 

‘training’ and ‘test’ spectra were the same. The Monte-Carlo method was used to 

calculate the p-values for the errors made by the classification algorithm 

[Gammerman et al., 2008]. 
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Figure 2.3 Workflow used to process MS spectra. The MatLab scripts for each of these 

steps can be found in Appendix 1. 

 

 

 

 

 

Data Pre-processing (using MatLab) 

1) Resampling 
(Reduction of data points for faster processing, default = 50%) 

MALDI-TOF MS data 

Converted to ASCII files 

2) Smoothing  
(Removal of random noise using a moving m/z window, default values = m/z 5 and 3 for 

the number of repetitions of smoothing cycle) 

3) Baseline correction 
(Rough peak identification to bring each peak minima to the same baseline, default = 0.01, 

Cubic hermit spline interpolation)  

4) Normalisation  
(Each data point is divided by the total ion count, default = 107) 

5) Peak identification 
(Peaks are identified by first locating all local maxima and filtering out those with low 

signal and low signal-to-noise ratio, minimum intensity threshold (default = 250) 

6) Peak clustering and alignment
(Creating a general list of common peaks by clustering peaks that are close to one 

another and favouring the peak with the greatest height) 

7) Final peak list with peak intensities 
(The list of peaks is used to extract the intensity of the signal for each common peak from each 
spectrum. A matrix containing information on the peak from the spectra and includes detailed 
as follows: 1. Sample index. 2. Index for the peak in these spectra this information is kept in 

case of backwards compatibility requirements. 3. m/z value. 4. signal-to-noise ratio (intensity of 
the peak divided by the average intensity in the window). 5. Intensity) 

8) Classification based on pattern recognition and Monte-Carlo method used to calculate p-values 
(Statistical method used to calculate the random errors made by the classification algorithm when 

identifying ‘case’ spectra) 
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2.2.4.2 Data processing and analysis 2 

 

All data collected at UCL was processed and analysed using ClinProTools™ software 

(V2.0 & 2.2, Bruker Daltonics, Germany). Spectra were first subjected to a 0.80 level 

convex hull baseline subtraction. Following this the detection of peaks was based on 

the analysis of a smoothed first derivative where the smoothing was determined by 

the “resolution” parameter. Spectral settings were optimised using ‘400 and 200’ for 

the resolution parameter for the LMR and HMR respectively. 1 cycle of smoothing 

was done using the Savitsiky Golay algorithm with an m/z width of 1 for the LMR 

and 5 for the HMR. Once the peaks were detected, peak areas were calculated by 

integrating the intensities over the region of the peak (between the start and end 

positions) using the zero level integration function. Peak areas were then normalised 

to make the total signal equal in all spectra. These peak areas were given as arbitrary 

units (arb.u.). Spectral recalibration was done with a maximum peak shift of 0.3% 

and a 15% match of automatically selected internal calibrant peaks. Peak selection 

was done using a signal-to-noise ratio of 3 for the LMR and 5 for the HMR regions. 

When different classes of data e.g. groups of spectra generated on different days were 

loaded into the software, as part of the spectral pre-processing step p-values are 

automatically generated for all the identified peaks. It is important to note that 

ClinProTools requires at least 2 spectra in each class. In addition, a 2D peak 

distribution view is generated to show the distribution of the average peak area of two 

selected peaks which may be the top discriminatory peaks between two classes of 

samples (user defined). The peak statistics calculated by ClinProTools were used to 

calculate the co-efficient of variance.  

 

For classification of clinical samples, each condition was loaded as a separate class 

and the Support Vector Machine (SVM) algorithm available in the ClinProTools 

software was used. The optimised model used 1-25 peaks selected automatically by 

ClinProTools to include 3 k-nearest neighbours in both mass ranges. 
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2.3 Sample preparation for 1D and 2D SDS-PAGE analysis 

 

2.3.1 Unfractionated pooled serum 

 

Prior to 2D-DIGE analysis, unfractionated serum samples were pooled according to 

volume into healthy, benign or malignant groups. Pooled samples were then diluted 

1:100 for an accurate measure of protein concentration using the Pierce BCA protein 

assay, using BSA to generate a standard curve. Equal amounts of protein were 

labelled with each of the three Cy dyes for 2D-DIGE analysis (see section 2.4). 

 

2.3.2 Protocol for HPLC immunoaffinity depletion using the Multiple Affinity 

Removal System (MARS). 

 

As a complementary approach, the Multiple Affinity Removal System was used to 

facilitate the differential analysis of the pooled serum samples by allowing the 

removal of the 7 most abundant proteins in serum. The Multiple Affinity Removal 

System (MARS) is comprised of an affinity HPLC column (size: 4.6 x 50 mm, 

Agilent part number 5185-5984) packed with immobilised affinity-purified 

polyclonal antibodies for removal of albumin, transferrin, IgG, IgA, haptoglobin, 

antitrypsin and fibrinogen with high specificity and optimised mobile phases. All 

chromatographic steps were performed at 20°C on an Agilent 1100 HPLC system. 

 

From each pool, 30 µL of serum was diluted five times with MARS Buffer A 

containing protease inhibitors (COMPLETE™, Roche) and centrifuged at 16,000 x g 

at room temperature for 5 minutes to remove particulates. Automated sample 

injection was set up for 30 µL of diluted serum sample per injection in Buffer A at a 

flow rate of 0.25 mL/min for 9 min. Flow-through fractions, ~0.75 mL per injection, 

containing the lower abundant protein species were collected from each injection 

manually at 2-4 min into 0.5 mL Eppendorf tubes and stored at -20°C until further 

analysis. The bound fractions were eluted with 100% Buffer B at a flow rate of 1.0 

mL/min for 3.5 min. The column was regenerated by equilibrating with Buffer A for 

10 min. 
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2.3.3 Protein desalting and concentration  

 

In order to resolve proteins from depleted serum samples on 2D gels, flow-through 

fractions from five injections were pooled into a 5 mL Zeba™ desalting spin column 

(Pierce, Rockford, IL) and desalted. Desalted samples were concentrated to 0.5 mL 

using a spin concentrator with a 5 kDa Molecular Weight Cut-Off (MWCO) 

membrane; samples were spun at 4000 x g for approximately 1 hour at 10 °C. 

Concentrated retentates were transferred into fresh Eppendorf tubes and speed 

vacuumed to dryness. Samples were resuspended in 2D lysis buffer (8 M urea, 2 M 

thiourea, 4% CHAPS, 0.5% NP40 and 10 mM Tris pH 8.3). Protein content was 

estimated using the Pierce BCA protein assay using BSA to generate a standard 

curve. 

 

2.3.4 ProteoMiner Protein Enrichment Kit 

 

Pooled samples were applied to spin columns from the ProteoMiner Protein 

Enrichment Kit (BioRad Catalogue # 163-3000). The ProteoMiner Protein 

Enrichment Kit is comprised of several spin columns packed with a large, highly 

diverse bead-based library of combinatorial peptide ligands. It is considered to be a 

novel sample preparation tool used for the compression of the dynamic range of the 

protein concentration in complex biological samples. Best results are obtained with 

protein concentrations greater than 50 mg/mL. When complex biological samples 

(e.g. human serum) are applied to the beads, the high abundance proteins saturate 

their high affinity ligands and the excess protein is washed away. In contrast, the 

medium and low abundance proteins are concentrated on their specific affinity 

ligands. This reduces the dynamic range of protein concentrations, while maintaining 

representatives of all proteins within the original sample. 

 

First the spin columns (20% beads, 20% v/v aqueous EtOH, 0.5% v/v acetonitrile) 

were prepared by centrifugation at 1,000 x g for 2 min to remove the storage solution. 

The collected material was discarded.  The columns were then washed by adding 1 

mL deionised water and rotating them end-to-end over a 5 min period. Again the 

columns were centrifuged at 1,000 g for 2 min to remove the water and the collected 
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material was discarded. The wash steps were repeated twice using 1 mL wash buffer 

(PBS; 150 mM NaCl, 10 mM NaH2PO4, pH 7.4). At the final wash step columns 

were centrifuged again for an additional 1 min at 1,000g to remove any remaining 

buffer.  

 

Pooled serum samples were centrifuged at 10,000 x g for 10 min to remove 

particulates. 1 ml of serum (>50mg/mL), normalised for protein concentration was 

applied to the spin columns and incubated with the beads by rotation for 2 hr at room 

temperature. Columns were centrifuged at 1,000 x g for 2 min and the collected 

material was retained for analysis. The columns were centrifuged again at 1,000g to 

remove residual material. Next, 1 ml of wash buffer (PBS) was added to each column 

and the columns were rotated over a 5 min period. The columns were centrifuged at 

1,000 x g for 2 min and the collected material was discarded. Again the columns were 

centrifuged at 1,000 x g for an additional 1 min to remove any remaining material. 

This wash step was repeated twice and then a final wash step using deionised H2O 

was carried out. 

 

Bound proteins were eluted with 100 µL of 2D lysis buffer (8 M urea, 2 M thiourea, 

4% CHAPS, 0.5% NP40 and 10 mM Tris pH 8.3) by gentle vortexing over a 15 min 

period at ambient temperature and the eluate collected by centrifugation at 1,000 x g 

for 2 min to elute bound proteins. The elution step was repeated twice to ensure all 

bound material was collected. Protein concentration of the eluates was estimated 

using the Pierce BCA protein assay using BSA to generate a standard curve (632.4 µg 

recovered from healthy pool, 687.4 µg from benign and 786.8 µg from malignant 

pool). The eluted samples were stored at -20°C prior to downstream 2D-DIGE 

analysis. 

 

2.4 Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) 

 

Two-dimensional electrophoresis is a powerful and widely used method for the 

analysis of complex protein mixtures extracted from biological samples. This 

technique sorts proteins according to two independent properties in two discrete 

steps: the first dimension step, isoelectric focusing (IEF), separates proteins according 
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to their isoelectric points (pI) and the second-dimension step, SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE), separates proteins according to their molecular 

weights (Mr relative molecular weight). A few thousand different proteins can thus be 

separated, and information such as the protein pI, the apparent molecular weight, and 

the amount of each protein provided. Fluorescence two-dimensional difference gel 

electrophoresis (2D-DIGE) is a more recently developed 2D gel-based proteomics 

technique that provides a sensitive, rapid and quantitative analysis of differential 

protein expression between two or more biological samples (see below). 

 

2.4.1 Protein labelling with NHS-cyanine dyes (DIGE-labelling) 

 

The NHS-cyanine dye Cy2 was purchased from GE Healthcare, whilst NHS-Cy3 and 

NHS-Cy5 were synthesised “in-house” by Dr P. Gaffney [Chan et al., 2005]. Protein 

labelling and 2D-DIGE were performed according to Gharbi et al. [Gharbi et al., 

2002]. For this study, protein pools and fractions were labelled in triplicate with 

NHS-Cy3 or NHS-Cy5 at 4 pmol dye/µg protein on ice in the dark for 30 min. Equal 

amounts of protein from each clinical condition were also pooled together and 

labelled with NHS-Cy2 to create an internal standard which was run on all the gels 

against the Cy3- and Cy5-labelled samples to aid in spot matching and quantitation. 

Labelling reactions were quenched with a 20-fold molar excess of free L-lysine to 

dye and left on ice for 10 min. Equal amounts of proteins labelled with Cy3 and Cy5 

were mixed appropriately and the same amount of Cy2-labelled pool was added to 

each mixture.  

 

Samples were reduced by adding 1.3 M dithiothreitol (DTT) to a final concentration 

of 65 mM. Ampholine/Pharmalyte carriers (1:1 mix, pH 3-10), were added to a final 

concentration of 2% and bromophenol blue was added to each sample. The final 

volume of each sample was adjusted to 450 µL with 2D-DIGE lysis buffer plus DTT.  

For isoelectric focusing (IEF), 24 cm, non-linear pH 3-10 IPG strips (GE Healthcare) 

were rehydrated with Cy-dye labelled samples in a re-swelling tray overnight in the 

dark at RT, according to the manufacturer’s guidelines. The separation of the Cy-dye 

labelled proteins in the first dimension by IEF was carried out on a Multiphor II 

apparatus (GE Healthcare) for a total of 80 kVh at 18°C.  
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For protein separation in the second dimension, 1.5 mm 12% SDS-PAGE gels were 

cast between 24 cm low-fluorescence glass plates. The inner surface of one plate of 

each set was coated with Bind Silane solution (PlusOne, GE HealthCare) to bond the 

gels. This allowed easier handling of gels during scanning and protein post-staining, 

storage and spot excision. Fluorescent reference markers were placed at the edges of 

these bonded plates to facilitate the generation of coordinates for each protein feature 

in the final pick lists. The inner surface of the other plate was treated with Repel 

Silane (PlusOne, GE Healthcare) to ensure easy separation of plates after running. 

After IEF, IPG strips were equilibrated in equilibration buffer (6 M urea, 30 % (v/v) 

glycerol, 50 mM Tris-HCL pH 6.8 and 2% (w/v) SDS) in two steps for 15 minutes 

each with gentle rocking. In the first step, the equilibration buffer was supplemented 

with 65 mM DTT to reduce disulphide bonds, while in the second step 240 mM 

iodoacetamide (IAM) was added to the equilibration buffer to alkylate reduced thiol 

groups. IPG strips were then rinsed with Tris-Glycine-SDS electrophoresis buffer 

(Severn Biotech) and transferred onto the second dimension gels. Strips were overlaid 

with 0.5% (w/v) low-melting point agarose in Tris-Glycine-SDS electrophoresis 

buffer with bromphenol blue. Gels were run in an Ettan 12 apparatus (GE Healthcare)  

at 2 W per gel at 8°C until the dye front had run off, thereby avoiding the 

fluorescence signal from bromophenol blue and free dye. All steps were carried out in 

a dedicated clean room. 

 

 

2.4.2 Detection of Cy-Dye labelled proteins 

 

Gel images were obtained by scanning the gels between plates on a Typhoon™ 9400 

multiwavelength fluorescence scanner using ImageQuant software (both from GE 

Healthcare). Excitation and emission wavelengths for each dye used in this study are 

shown in Table 2.2. The photomultiplier tube voltage of the Typhoon scanner was 

adjusted for each channel (Cy2, Cy3, and Cy5) in preliminary low-resolution scans 

(1000 µm) to give maximum pixel values within 10% for each channel, but below the 

saturation level. These setting were then used for high-resolution (100 µm) scanning. 

Images were generated as .gel/TIFF files and exported to image analysis software for 

further analysis.  
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Dye Excitation (nm) Emission (nm)
Cy2 480 530
Cy3 540 590
Cy5 620 680
CCB 620 /  

 

Table 2.2 Excitation and emission wavelengths used to detect each of the Cy-dyes and 
Colloidal Coomasie Blue (CCB) post-staining. 

 

2.4.3 Image analysis 

 

Gel images were analysed using DeCyder™ image analysis software V5.0 (GE 

Healthcare). Firstly, images were analysed using the Differential In-Gel Analysis 

(DIA) module. DeCyder processes the three images derived for the three Cy dyes 

(Cy2, Cy3 and Cy5) representing profiles of each of the three samples run on a single 

gel. DIA performs automatic normalisation, spot detection, filtering and background 

subtraction and also quantifies protein spot abundance or volume on each image and 

expresses these values as ratios, indicating changes in expression levels by direct 

comparison of the corresponding spots on each gel. This ratio can be used to directly 

evaluate changes between two labelled protein samples run on a single gel and 

between the test samples and the same spot in the internal standard to give a standard 

spot volume that allows accurate inter-gel protein spot comparisons. Features 

resulting from non-protein sources (e.g. scratches on glass plates and dust particles) 

were filtered out.  

 

Subsequently, the Biological Variance Analysis (BVA) module of DeCyder was used 

for matching protein spots from different conditions across gels by matching to a user 

defined master gel image, which identified common protein spots across the sets of 

gels. User intervention was required at this stage to set landmarks on gels for accurate 

cross-gel matching. Standardised spot volumes were then averaged across replicate 

samples for each experimental condition and data plotted graphically within BVA. 

Statistical analysis was performed and spots displaying a ≥ 1.5 average-fold increase 

or ≤ 1.5 average-fold decrease in abundance between clinical conditions with P 

values <0.05 or <0.01 from a Student t-test were selected for spot picking and MS-

based identification.  
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2.4.4 Protein post-staining and spot excision 

 

Bonded 2D gels were post-electrophoretically stained with colloidal Coomassie Blue 

G-250 (CCB) to visualise proteins for accurate spot picking. Gels were stained 

according to a modified protocol by Neuhoff et al. 1988 [Neuhoff et al., 1988]. 

Briefly, bonded gels were fixed in 35% (v/v) ethanol with 2% (v/v) phosphoric acid 

for more than three hours on a shaking platform and then washed three times for 30 

min each in ddH2O. Gels were then incubated in 34% (v/v) methanol, 17% 

ammonium sulphate and 3% (v/v) phosphoric acid for one hour prior to the addition 

of 0.5 g/L Coomassie Blue G-250 (Merck Biosciences) and left to stain for two to 

three days. De-staining was not required. Post-stained gels were scanned on the 

Typhoon™ 9400 scanner using the red laser with no emission filter (Table 2.2).  Post-

stained images were imported into the BVA module of DeCyder and matched with 

the processed Cy-Dye images. Using the reference markers fixed onto the glass plates 

during gel casting, a pick list of coordinates (.txt file) for protein features that were 

differentially expressed was created for automated spot picking. An Ettan automated 

spot picker (GE Healthcare) was used with a 2 mm picking head, which excised 

protein features from gels submerged under 1-2 mm of ddH2O. Spots were collected 

in 96-well plates, drained and stored at -20°C prior to MS analysis. 

 

 

2.4.5 Protein in-gel digestion 

 

For protein sequence analysis by mass spectrometry, protein spots were subjected to 

trypsin digestion. Gel pieces were washed three times with 50% (v/v) acetonitrile, 

dried in a SpeedVac for 10 min, reduced with 10 mM DTT in 5 mM ammonium 

bicarbonate pH 8.0 (AmBic) for 45 min at 50°C and then alkylated with 50 mM 

iodoacetamide (IAM) in 5 mM AmBic for one hour in the dark at RT. Gel pieces 

were then washed three times in 50% (v/v) acetonitrile and vacuum-dried prior to re-

swelling with 50 ng of modified trypsin (Promega) in 5 mM AmBic pH 8.0. The gel 

pieces were then overlaid with 10 µL of 5 mM AmBic and digested for 16 hours at 

37°C. Supernatants were collected and trypsin digests were further extracted by 

washing the gel pieces twice with 5 % (v/v) trifluoroacetic acid in 50 % acetonitrile. 
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Peptide extracts from each gel piece were pooled, vacuum-dried and resuspended in 5 

µL of 0.1 % formic acid and stored at -20°C prior to MS analysis. 

 

 

2.4.6 Protein identification 

 

Protein identification was carried out using Matrix-Assisted Laser 

Desorption/Ionisation Time-of-Flight (MALDI-TOF) MS by peptide mass 

fingerprinting. For this, 0.75 µL of the trypsin digest was mixed with 0.5 µL of 

matrix solution (saturated aqueous 2,5-dihydroxybenzoic acid, DHB), and applied to 

a sample target plate and air dried. MALDI-TOF mass spectra were acquired using an 

externally calibrated UltraFlex mass spectrometer (Bruker Daltonics). Firstly, the 

mass spectrometer was calibrated using a standard mixture of peptides (calibration 

mixture 2 from the Sequazyme™ kit, Applied Biosystems). Then a sum of 200 laser 

shots, delivered in sets of 30 shots (at 6.7 Hz) to several locations on the surface of 

the matrix spot were acquired in the reflector, positive ion geometry under 25 kV for 

ion source 1, 21.2 kV for ion source 2, 73 kV on the lens, 26.1 kV on the first 

reflector and 14.9 kV on the second reflector. The reflector detector was set at 5.75 V, 

delayed extraction of ion acceleration was maintained for 150 ns to give appropriate 

time-lag focusing after ach laser shot and -1.3 kV multiplier potential, and with 

suppression of mass ions set to m/z <400. Internal calibration of each mass spectrum 

was performed using reference trypsin autolysis peaks 842.51 m/z and 2211.10 m/z. 

Prominent peaks in the mass range m/z 700-5000 were then used to generated a 

peptide mass fingerprint, which was searched against updated NCBI and IPI-Human 

databases using the Mascot search engine, version 2.0.02 (Matrix Sciences Ltd.). For 

the search criteria, carbamidomethylation of cysteines was selected as a fixed 

modification, while oxidation on methionine, N-acetylation and pyro-glutamate were 

selected as variable modifications. A positive identification was accepted when a 

minimum of 6 peptide masses matched a particular protein (mass error of ± 50 or 100 

ppm, allowing 1 missed cleavage), sequence coverage was >25%, MOWSE scores 

were higher than a threshold value where p=0.05 and the predicted protein mass 

agreed with the gel-based mass. When a protein ‘hit’ fulfilled the specified thresholds 

for identification, unmatched peptides were systematically re-submitted to the 
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database in a search for possible multiple proteins per gel piece and potential sites of 

post-translational modifications (e.g. phosphorylation or glycosylation). 

 

In addition, some identifications were made using nano-LC-electrospray ionization 

collision-induced dissociation tandem MS (LC-MS/MS). This was preformed on an 

ACQUITY Ultra performance LC system (Waters) with a PepMap C18 100-µm inner 

diameter column (LC Packings) at a flow rate of 400 nL/min, coupled to a 

Quadrupole Time-Of-Flight (QTOF Premier) mass spectrometer (Waters/Micromass, 

Manchester, UK). Spectra were processed using MassLynx software (Waters) and 

submitted to Mascot database search routines including +2 and +3 peptide charges, 

and a mass tolerance of ± 100 ppm. Positive identifications were accepted when at 

least two peptide sequences matched an entry with MOWSE scores above the p=0.05 

threshold value. 
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Chapter 3: MALDI-TOF MS analysis of serum samples pre-dating diagnosis 

of ovarian cancer 

 

 

3.1 Introduction 

 
 
One of the first reports on the use of magnetic beads for serum peptide and protein 

extraction coupled with MALDI-TOF MS profiling was published by Villanueva 

et al. [Villanueva et al., 2004]. The group described an automated technology 

platform for the simultaneous measurement of serum peptides that was simple, 

scalable and generated reproducible patterns. Peptides and proteins were captured 

and concentrated using reversed-phase (RP) batch processing on C8-coated 

magnetic beads in an automated format on a liquid handling robot followed by a 

MALDI-TOF mass spectrometric analysis. The optimised protocol was based on a 

detailed investigation of serum handling conditions, RP ligands, eluant selection, 

small-volume robotics design and spectral acquisition across a study set. The 

improved sensitivity and resolution allowed detection of approximately 400 

polypeptides (0.7-15 kDa range) from a single droplet (50 µL) of serum and 

almost 2,000 unique peptides in larger sample set [Villanueva et al., 2004]. The 

group also described a pilot study which indicated that sera from brain tumour 

patients could be distinguished from healthy controls based on a pattern of 274 

peptide masses. This in turn allowed the generation of a learning algorithm that 

correctly predicted 96.4% of the samples as either healthy or diseased [Villanueva 

et al., 2004].  

 

In summary, the system that they described and further optimised satisfied all 

criteria of MALDI-TOF compatibility, high resolution, reproducibility and 

throughput, and the limited application provided a proof-of-concept that sera from 

cancer patients with solid tumours contain peptides detectable by MALDI-TOF 

MS that reflect the activity of the cancer. They further identified these peptide 

peaks by tandem MS sequencing and database interrogation. In their study they 

found signature peptides that fell into several tight clusters or ‘ladders’ of serum 

protein–derived peptides such as C3F and FPA generated by a 2-step process 
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involving endoproteases such as kallikerins, thrombin and factor I as well as 

unknown exopeptidase activities that produce cancer type–specific differences 

which were superimposed on the proteolytic events of the ex vivo coagulation and 

complement degradation pathways. Thus, they went on to hypothesize that 

tumour-specific exopeptidase activities produce ‘surrogate’ markers from 

abundant polypeptides generated during the clotting stage, facilitating correct 

classification of diseased samples [Villanueva et al., 2004; Villanueva et al., 

2005].  Through collaboration, this platform was used at the MSKCC to analyse a 

set of samples from a pilot study designed to explore the possibility of using MS-

based pattern recognition to detect onset of ovarian cancer at an early stage. To 

this end, during a visit to the Memorial Sloan Kettering Cancer Centre, (MSKCC, 

New York, USA) in 2004/5, training was provided and reproducibility of the 

platform assessed, prior to analysis of the pilot study samples. 

 

The first aim of the study presented in this chapter was to assess the 

reproducibility of the automated bead-based serum peptide extraction protocol and 

MS-based profiling platform developed at the MSKCC. The second aim was to 

use this automated platform for the analysis of serum samples that pre-dated 

diagnosis of ovarian cancer and to determine whether the MALDI-TOF MS 

profiles obtained could be used to predict ovarian cancer and to compare this with 

the performance of serum cancer antigen CA-125. 
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3.2 Reproducibility of the automated platform at MSKCC 

 

As mentioned previously, critics have argued that the published results of serum 

profiling studies looking for cancer biomarkers do not demonstrate biomarker 

reproducibility. Reproducibility is a measure of the robustness of any technology 

and is vital for providing support for new and emerging platforms. Hence, the 

reproducibility of the platform developed by Villanueva et al. [Villanueva et al., 

2004] was evaluated using commercial serum from Sigma (Cat. No. S-7023 Lot. 

034K8937) as a quality control at the MSKCC. Four replicates of 10 µL of serum 

were each mixed with 5 µL of C8-coated magnetic beads (Chemicell) for peptide 

extraction following the protocol outlined in Chapter 2 (Materials and Methods 

section 2.2) and peptide profiles in the 0.7 to 15 kDa range were generated by 

MALDI-TOF-MS. The coefficient of variance for all peaks detected in the low 

mass range (LMR; 700-4000 Da) (average standard deviation divided by the 

average peak area) was calculated between the 4 samples as a measure of intra-

assay reproducibility. The preparation and analysis was then repeated once a day 

over 5 days to yield inter-assay reproducibility values. All data processing was 

performed using ClinProTools software (V2.0). The intra-assay reproducibility for 

all detected peaks varied across the runs from 12 ± 1.2% to 33.9 ± 6.9%, although 

this was < 20.11% when run 1 was excluded. Taking the average peak areas for 

all 5 runs (i.e. 20 samples processed together) the overall inter-assay CV value 

was 32.8 ± 6.4% (Table 3.1). 

 
Run Number Ave No. of peaks Ave peak area (arb. u.) peak area StdDev peak area CV (%)

1 78 28.81 6.9 33.9
2 70 30.06 4.0 18.3
3 117 22.01 1.2 12.0
4 92 26.73 2.7 17.9
5 116 20.71 2.5 20.1

Overall inter-assay 92 25.42 6.4 32.8  
 

Table 3.1 Intra/inter-assay reproducibility of MSKCC platform. The average 

standard deviation and coefficient of variance (Av. SD / Av. peak area) were calculated 

for all detected peaks using ClinProTools software (V2.0). Intra-assay reproducibility was 

calculated by running 4 samples per run, while inter-assay reproducibility was calculated 

by assessing the variation between 5 runs.  
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Spectral heat maps created in ClinProTools software (V2.0) showed some obvious 

peak area differences in the intra-assay comparisons (Figure 3.1). These 

differences, which could be the result of inconsistencies in the complex MALDI 

ionisation process, are likely to account for the seemingly high CV values. 

Furthermore, the average number of peaks obtained are comparable to the relative 

number of peaks previously reported [Villanueva et al., 2004]. The assay CVs are 

also considered acceptable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.1 Spectral comparisons across runs. Four replicates of 10 µL of serum each 

were mixed with 5 µL of C8 beads (Chemicell) for peptide extraction following the 

protocol outlined in Chapter 2 (Materials and Methods section) prior to MALDI-TOF MS 

analysis. Five replicate runs were then preformed on different days. Spectra were 

processed and displayed as heat maps using ClinProTools software (V2.0).  
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3.3 Analysis of serial samples pre-dating diagnosis of ovarian cancer 

 

Following the evaluation of the reproducibility of the platform, 92 serial serum 

samples from 19 women which pre-dated a diagnosis of ovarian cancer were 

analysed. The samples came from a pilot study of ~22,000 women which involved 

regular serum sample collection for cancer antigen CA-125 assay and following 

up volunteers for up to 7 years (1995-2001) prior to actually diagnosis. Each of 

the 19 volunteers who developed ovarian cancer (in one case, non-epithelial) had 

between 2 and 11 serial samples. Each case sample had 2 matched healthy 

controls which were taken and handled at approximately the same time as the case 

sample. In addition samples were matched on the use of hormone replacement 

therapy. Other information such as date of birth, CA125, the date samples were 

taken, the date samples were received at the laboratory and tube type used for 

serum collection was also available. It is hypothesised that during the clotting 

process tumour-specific proteases generate fragment ‘ladders’ of marker peptides 

in serum producing subtle changes in the MS profiles. These changes have been 

used to discriminate diseased sera from the sera of matched healthy controls 

which had been collected at the same centre at approximately the same time and 

thus handled and sorted in the same manner [Villanueva et al., 2004; Villanueva et 

al., 2005].  The main aim of the work presented in this chapter was to demonstrate 

that the information contained in mass spectra, in combination with the level of 

CA-125, is useful for early detection of ovarian cancer. 

 

The data presented in this chapter came from 80 samples from 18 volunteers as 

the non-epithelial ovarian cancer case, and samples which did not have both of the 

matched control samples were subsequently removed. The 240 samples were 

processed, extracted and spotted in duplicate for MALDI-TOF analysis. One 

spectrum was chosen from each pair at the data processing and analysis stage. 

Example spectra from serial samples of a healthy control and cancer case are 

shown in Figure 3.2. These show generally that many of the peaks detected were 

common across the sample sets, but that there was considerable variation in peak 

areas. A total of 240 spectra were analysed in collaboration with Professor Alex 

Gammerman’s group at the Computer Learning Research Centre, Royal 
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Holloway, University of London, who used this data to build class prediction 

algorithms [Gammerman et al., 2008]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Spectral comparisons across serial samples. MS profiles of six serial 

samples from (A) a healthy control and (B) a cancer case are overlaid for comparison. 

The data from the low and high mass range have been combined. 
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After spectral pre-processing, (described in Chapter 2 section 2.2.4), 7216 ‘non-

aligned peaks’ were identified in the 265 spectra, (including the non-epithelial 

cancer case plus controls). After peak alignment these peaks were clustered into 

402 peak groups. The peaks were ordered according to their frequency (i.e. the 

percentage of samples having the same peak). Overall, 20 peaks were found to 

exceed 40% frequency (Table 3.2 and Figure 3.3). The peak intensities of the 20 

most frequent peaks in each sample and the corresponding CA-125 measurement 

were then used to create a vector consisting of 21 numbers for a classification 

algorithm.  

 

 

1 3188.9 3185.3-3191.0 246 92.8
2 6646.1 6636.5-6652.8 245 92.5
3 3330.5 3325.2-3333.4 198 74.7
4 2004.1 2001.2-2005.3 190 71.7
5 1764.6 1762.0-1766.6 184 69.4
6 818.5 817.4-818.9 165 62.3
7 9307 9294.7-9319.7 154 58.1
8 2982.3 2978.8-2985.5 146 55.1
9 2020.9 2019.7-2021.9 144 54.3
10 4292.5 4288.0-4300.8 140 52.8
11 3280 32.76.2-3282.1 139 52.5
12 2548.2 2543.5-2550.2 137 51.7
13 2562.8 2561.4-2564.2 123 46.4
14 8942.2 8930.8-8955.3 118 44.5
15 3296.9 3294.3-3299.1 115 43.4
16 1888.8 1887.7-1889.7 114 43
17 899.9 898.6-901.0 113 42.6
18 3172.1 3169.1-3176.4 109 41.1
19 3229.8 3226.7-3234.2 109 41.1
20 5010.4 5004.0-5017.0 109 41.1
39 2016.8 2013.6-2019.6 56 21.1

% of totalNumber of samples 
having the peak

Peak number mean m/z m/z  range

 
 

Table 3.2 Top 20 peaks and peak 39. The top 20 peaks are those present in more than 

40% of the samples. Peak number 39 occurred more rarely but was found to be useful for 

case versus control discrimination. 
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Figure 3.3 Spectral views of peaks. After spectral pre-processing (described in Chapter 

2 section 2.2.4) 20 peaks were found to be common in over 40% of the samples. 

Representative peak profiles for peaks (A) 3188.9 m/z, (B) 6646.1 m/z, (C) 2004.1 m/z, 

(D) 1764.6 m/z, (E) 2562.8 m/z and (F) 2016.8 m/z, are shown here in blue for healthy 

and red for cancer case.  
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For classification, for each t (time) = 1-18, the null hypothesis was that the 

assignment of the label “case” within each triplet in St (start time) was random. 

For example, the correct identification of the ‘case’ labelled samples, the 240 

samples were divided into 80 triplets, each consisting of a case sample and the 

two matched control samples. The 80 triplets were further divided into 18 triplet 

groups corresponding to the 18 cases (with the size of the group varying between 

2 and 10 samples). Each triplet was assigned a non-negative value t, the time to 

diagnosis (months) for the case measurement in each triplet. For each t = 0, 1, 

2,…St (start time) was assigned to be the set of triplets taken t months before the 

diagnosis. As such the largest St (for t = 0, 1) contained 18 triplets, whereas the 

smallest St contained 14 triplets. The classification algorithm used a rather limited 

set of rules for the identification of the cancer ‘case’ labelled sample within each 

triplet. Each classification rule is described by three numbers, (p; w1; w2), which 

are a peak number p (1 – 20) and weights w1 (0; 1) and w2 (-1; 1). For each 

triplet, the classification rule was used to predict the sample with the largest (w1 

log C+w2 log P), where C was the CA-125 level and P is the area of peak p, 

labelled as “case”. The logarithms were taken to remove the arbitrary units of 

measurement of CA-125 and the peak area.  

 

The baseline rule in the classification algorithm used CA-125 measurements alone 

to classify the triplet samples. The output for the algorithms reported on the 

number of errors (E1), made on identifying the triplets in each St. Then another 

dimension was added using the top 20 peaks (E2) and finally the top 100 peaks 

(E3). The number of errors in E1 increased as the time to diagnosis increased, 

demonstrating that CA-125 measurements alone are insufficient for predicting 

ovarian cancer and for early diagnosis (Table 3.3). Using the top 20 peaks (E2) 

the number of errors also increased with time from diagnosis, but not to the same 

degree as E1, suggesting that early diagnosis information was present in the 

spectra.  

 

Results showed that the classification algorithm made the smallest numbers of 

errors when the top 100 peaks (E3) were used from each of the triplets sets (St) 

(Table 3.3). For example, in Table 3.3 the entry 2 corresponding to t = 6 means 
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that out of 15 cases with samples taken at least 6 months before diagnosis the best 

classification algorithm made 2 errors on the most recent of those samples. This is 

a very small number of errors. The Monte-Carlo method was used to calculate 

valid p-values and involved randomly reassigning “case” labels and counting the 

number of errors which were as good as or better than the number of errors 

obtained for the true labels (Q). The p-value was then estimated as the ratio of 

Q/N where N = 106. It should be noted that these results are heavily biased since 

the training set St included the test samples. However, the p-value of 0.012% for 7 

months prior to diagnosis is highly significant. Furthermore, peak number 10 

(4292.5 m/z) was the most frequent feature used in the classification algorithm.  

 

 

t |St| E 1 p-value 1 E 2 p 2 w 2 p-value 2 E 3 p 3 w 3 p-value 3
0 18 2 0.000001 1 -9 1 0.000001 1 -9 1 0.00006
1 18 2 0.000001 2 3 1 0.00002 1 -14 2 0.00001
2 15 4 0.0018 3 8 1 0.0094 2 18 2 0.0052
3 15 5 0.0086 3 8 1 0.0095 2 18 2 0.0056
4 15 6 0.031 3 8 1 0.0097 2 18 2 0.0056
5 15 6 0.031 3 -14 1 0.0017 2 -14 1 0.0047
6 15 7 0.088 2 -10 1 0.011 2 -10 0.5 0.0037
7 15 7 0.088 3 -10 1 0.011 2 -10 0.5 0.0037
8 14 8 0.31 3 -10 1 0.025 2 -39 1 0.021
9 14 7 0.15 3 -10 1 0.025 2 18 2 0.012
10 14 7 0.15 3 -10 1 0.025 2 18 2 0.012
11 14 7 0.15 3 -14 1 0.032 2 18 2 0.012
12 14 7 0.15 4 -10 1 0.13 2 18 2 0.012
13 14 8 0.31 3 -10 1 0.024 3 -10 1 0.063
14 14 9 0.52 4 -10 0 0.12 4 -10 0 0.29
15 14 9 0.52 5 -10 0 0.39 4 -60 0 0.51
18 14 10 0.74 4 -10 0 0.12 3 -60 0 0.15  

 

Table 3.3 Classification results. The columns are t, the time to diagnosis in months; |St|, 

the number of cases with measurements taken ≥ t months before diagnosis; E1, the 

number of errors when classifying the triplets in St with CA-125 alone; p-value 1, the 

corresponding p-value; E2, the minimal number of errors when classifying with CA-125 

plus one of the peaks 1-20; p2, the peak number with the best discriminative power, (the 

minus sign indicates an assigned weight of -1, otherwise +1); w2, is the value of weight 

assigned to CA-125 (0 or 1); p-value 2, the corresponding p-value; E3, the minimal 

number of errors when classifying with CA-125 and one of the peaks 1-100 (weight -1 or 

1); p3 and w3, the peak number and the value of the weights for CA125, respectively, 

attaining E3 errors; p-value 3, the corresponding p-values.  
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These results suggest that using a combined classification approach (CA-125 plus 

MS peaks) ovarian cancer can be detected up to 12 months prior to diagnosis at a 

significance level of <0.05.  Furthermore, when CA-125 and the 20 most frequent 

peaks were used in equal weight (E2), peak 10 (4292.5 m/z) was found to be the 

most discriminating feature. Peak 18 (3171.1 m/z) was also a significant 

discriminator when the 100 most frequent peaks were used. Interestingly, the 

changes in the area of peak 10 were complementary to changes in CA-125 levels 

in samples prior to the time of diagnosis (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Dynamics of peak 10 combined with CA-125. Results suggest that using a 

combined classification approach (CA-125 plus MS peaks) ovarian cancer can be 

detected up to 12 months prior to diagnosis at a significance level of < 0.05. Here the 

dynamics of A) peaks 10 in combination with CA-125 (solid line) and CA-125 alone 

(dashed line). B) Peaks 18 in combination with CA-125 (solid line) and CA-125 alone 

(dashed line) are shown on a logarithmic scale. Each plot essentially shows the deviation 

of the value taken by the corresponding classification rule on the cases from the values 

taken on the controls. The horizontal axis shows the time to diagnosis in months. 
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3.4 Discussion 

 

It is universally agreed that any technology platform for biomarker discovery 

needs to demonstrate high reproducibility and robustness. Analytical 

reproducibility is a significant challenge in protein profiling. A number of 

MALDI-TOF MS protein-profiling strategies have been developed for improved 

analytical performance. In particular, MALDI-TOF-MS protein profiling has been 

combined with advanced biostatistics to identify proteomic biomarker patterns for 

human diseases and improved reproducibility of the spectral output has been 

critical for avoiding false discoveries using this approach. 

 

The use of mass spectrometry (MS) for the direct analysis of proteins and peptides 

from human serum for disease biomarker discovery was first reported in 2002 

[Petricoin et al., 2002; Petricoin et al., 2002]. However, critics argued that the 

published results of serum profiling for diagnosis of ovarian cancer did not 

demonstrate reproducibility in independent subjects [Baggerly et al., 2004; 

Baggerly et al., 2005]. The apparent discrimination reported could be explained 

through the over-fitting of the data that occurs when multivariable models are 

used to fit a large number of possible predictors (such as mass spectrometry 

peaks) or by differences in sample handling of diseased and control samples to 

discriminate among a group of subjects with or without cancer [Petricoin and 

Liotta, 2004; Petricoin, III et al., 2002; Ransohoff, 2005].   

 

Previously reported intra experiment CVs of peak intensities vary greatly between 

individual peaks, and reported mean CVs of the peak area varies across studies 

from 4% to 26% [de Noo et al., 2005; West-Norager et al., 2007]. However, often, 

only the most abundant and stable peaks are considered. In biomarker research 

utilizing MALDI-TOF MS profiling, the aim is to identify peaks that show 

consistent differences in intensities (or peak areas) between case and control 

samples, and thus the reproducibility of peak areas is of highest importance.  

 

The data presented in this chapter was obtained through collaboration with a 

group at the MSKCC, who have previously established an automated magnetic 
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beads-based strategy for serum peptide and protein extraction coupled MALDI-

TOF MS-based profiling platform [Villanueva et al., 2004; Villanueva, 2006]. 

The work presented here assessed the reproducibility of the existing platform and 

found intra-assay reproducibility for the peaks to be below 20% (except run 1). 

However, significant inter-experiment variation was found (~33%) which is 

comparable to the CVs reported by others and thus considered acceptable. Run-to-

run variation is a well-known problem with these types of high-throughput 

profiling strategies. Inter-assay variation is often high because of differences in 

the numbers of peaks obtained and possibly due to other confounding factors such 

as temperature and humidity variation from day-to-day affecting matrix-analyte 

co-crystallisation prior to MS analysis. Results presented in this chapter 

demonstrate how the analysis of the same sample over several runs under identical 

conditions can yield different peak numbers.  

 

The matrix (co)crystallization and desorption/ionization steps in MALDI-TOF 

MS have been derived empirically, and the thermodynamic and physicochemical 

processes of phase transition and ionisation are poorly understood [Cohen and 

Chait, 1996]. Matrix molecules crystallize in different shapes and dimensions, 

proteins tend to accumulate at the droplet periphery, and the composition of the 

matrix solution and the rate of crystal growth influence the spectral output. These 

phenomena produce shot-to-shot variations, and are related to sampling different 

parts of the target surface and progressive sample ablation with repeated laser 

shots [Cohen and Chait, 1996]. Studies have also demonstrated ion suppression 

effects in MALDI-TOF MS. Ion suppression occurs when an ion suppresses the 

peak signal of other ions in the sample, and peptides with greater hydrophobicity 

show the greatest suppression effects. Peak area is thus associated with the 

concentration of the individual protein, to its primary structure, and to the 

complexity of the sample [Cohen and Chait, 1996]. In summary, peak area in 

MALDI-TOF MS profiling has significant analytical variation and is poorly 

understood.  

 

Following the initial assessment of platform reproducibility an analysis of serum 

samples that pre-dated diagnosis of ovarian cancer was performed. The results 
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presented here demonstrate that the predictive power of CA-125 alone was limited 

for early diagnosis. However, using a combined classification approach (CA-125 

plus MS peaks) ovarian cancer can be detected up to 12 months prior to diagnosis 

at a significance level of <0.05. Of the 20 most frequently occurring peaks, 

statistical analysis showed that the information provided by peak 10 (4292.5 m/z) 

was complementary to the information provided by serum CA-125 measurements 

and the majority of OC cases show either a tendency of serum CA-125 growth or 

a tendency of peak 10 to decrease, or both. Furthermore, peak 18 (3171.1 m/z) 

was also a significant discriminator when the 100 most frequent peaks were used. 

The identification of these two peaks would facilitate immune-based assay 

development for detailed validation of these findings.  

 

It is important to note that these conclusions are based on exploratory results 

(namely, the p-values obtained) and further work in needed to validate these 

findings. It can be speculated that these peaks maybe a fragments of host 

immune/acute phase proteins e.g. inter-α-trypsin inhibitor heavy chain (ITIH4) or 

Complement C3F, which are abundant serum proteins. These proteins have been 

shown to form peptide ‘ladders’ through tumour specific exopeptidase activity 

during the clotting process. Although, none of the peak masses matched those 

reported by Villanueva et al. it is important to note that the study involved an 

analysis of ovarian cancer samples, whereas previously, breast, bladder and 

prostate cancer samples were analysed [Villanueva et al., 2004; Villanueva, 

2006]. In addition, the sample collection which was not standardized, handling 

and data analysis procedures were also different to those used by the group at 

MSKCC. 

 

Finally, the technology platform was adapted in the host lab at UCL for the 

analysis of other cohorts of serum samples (following chapters).  
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Chapter 4: Optimisation of an automated magnetic bead-based extraction 

protocol for mass spectral profiling of human serum 

 

 

4.1 Introduction 

 

High-throughput sample preparation and protein profiling with MALDI-TOF MS 

analysis is a relatively new tool for diagnosis of human diseases. Indeed several 

groups have reported the use of peak pattern discrimination for the correct 

classification of ovarian cancer [Petricoin et al., 2002], prostate cancer [Adam et al., 

2002; Qu et al., 2002], breast cancer [Li et al., 2002] breast, prostate and bladder 

cancer [Villanueva et al., 2006], although, at present none of these are in clinical use.  

It is universally agreed that any new technology platform for biomarker discovery 

needs to demonstrate high reproducibility and robustness [Srinivas et al., 2002]. 

However, a major obstacle to reliably determining quantitative changes in protein 

expression is to overcome errors imposed by technical and biological variation 

[Molloy et al., 2003].  

 

A general mass spectrometry-compatible bead-based protocol for the extraction of 

serum peptides and proteins requires the optimisation of numerous experimental 

conditions. Factors to be considered include bead type used for peptide extraction, 

bead-to-serum ratio, pH, loading, washing, and elution conditions. Furthermore, the 

effects of pre-analytical variation from sample handling and storage need to be 

considered. Indeed the humidity, temperature, storage, and time for preparation of 

sera have all been shown to induce spectral changes [Timms et al., 2007; Villanueva 

et al., 2005; West-Norager et al., 2007].  

 

The aims of the studies presented in this chapter were to adapt and establish a 

previously reported bead-based peptide and protein extraction and MALDI-TOF MS 

serum profiling platform in the host laboratory at UCL.  The original protocol was 

optimised and adapted for MALDI-TOF MS analysis of human serum. The 

instrument used in the earlier studies was a Bruker Daltonics Autoflex TOF-TOF. 

However, in the host lab at UCL the available instrument was a Bruker Daltonics 
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Ultraflex TOF-TOF, thus mass spectral acquisition parameters were also optimised to 

establish a robust protocol at UCL. With respect to data processing and analysis 

ClinProTools software (Bruker) was used to evaluate the effects of modifications on 

the methods, since the ‘bespoke’ analysis methods developed at MSKCC were 

unavailable. In addition, the effects of different sample handling conditions on 

MALDI-TOF MS serum peptide profiles were also explored to determine a clinically 

feasible handling method for serum samples. 

 

 

4.2 Optimisation of MALDI-TOF MS spectral acquisition parameters 

 

 Initial experiments used a cocktail of commercially available peptides and proteins 

(Table 4.1) in combination with manually prepared commercial serum (Sigma-

Aldrich) to establish optimised spectral acquisition methods for the low (700-4000 

Da) and high mass ranges (4-15 kDa). Spectral acquisition was split into two mass 

ranges to minimise errors associated with data processing i.e. baseline subtraction and 

smoothing. The purpose of baseline subtraction is to remove the broad structures of a 

spectrum and to create a baseline for the accurate selection of peaks based on signal-

to-noise and intensity thresholds. Notably, noise levels increase in the high mass 

range and requires additional smoothing compared to the low mass range. Thus, it is 

advantageous to acquire and process spectral data in two separate mass ranges. 
Calibrant m/z
Peptide mix
Peptide 782 782.04
Angiotensin II 1,047.20
Angiotensin I 1,297.51
Substance P 1,348.66
Bombesin 1,620.88
ACTH fragment 1-17 2,094.46
ACTH fragment 18-39 2,466.73
Protein mix
Insulin 5,734.56
Ubiquitin 8,565.89
Cytochrome C 12,361.09
Myoglobin 8,476.77  

Table 4.1 Calibrants used for MALDI-TOF MS spectral acquisition optimisation and 

calibration. Calibrant mixture was freshly prepared on the day of each experiment according 

to the method outlined in Chapter 2. Briefly, peptide and proteins were diluted and mixed to a 

final concentration of 30 femtomoles per peptide and 500 fmol per protein. All m/z values are 

calculated for single-charged ions except for myoglobin which generated a doubly-charged 

ion. 



Chapter 4 

 94

For MALDI-TOF MS profiling of human serum a number of MS spectral acquisition 

parameters were tested and optimised. These included the voltages applied to the lens 

and ion source, laser energy being delivered to sample spots and the raster file 

associated with the laser firing pattern. This was necessary to facilitate optimised and 

accurate automated detection of the peptides and proteins in the sample eluates using 

the instruments ‘AutoXecute’ function. The mass-to-charge ratios of the reference 

calibrant peptides and proteins were used to make the necessary adjustments to the 

MS acquisition protocol to ensure the observed masses matched expected masses 

within a mass error of ± 10 ppm (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Mass spectral chromatographs illustrating acquired peaks from the calibrant 

mixture. A) Low mass range (700-4000Da) showing peptide calibrants and B) High mass 

range (4-15kDa) showing protein calibrants. Calibrants were freshly prepared according to 

the protocol described in Chapter 2 (Materials and Methods section) and spotted 1:1 (0.5 µL 

calibrant mix plus 0.5 µL α-CCA matrix) before MALDI-TOF MS analysis. MS parameters 

were adjusted to ensure accurate measurement of the peptide and protein m/z ratios with high 

intensity and low noise. 
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In parallel, to ensure efficient detection of serum peptides and proteins these 

adjustments were tested on serum eluates prepared using a manual bead extraction 

procedure. For this part of the study, C8 porous magnetic beads (Chemicell) used in 

the original study were used and were obtained from the MSKCC. This reagent is 

now no longer commercially available. MS spectra of two replicate samples were 

analysed in ClinProTools software to determine peak numbers. At this stage, an 

average of 143 and 109 serum peaks were detected in the LMR and HMR 

respectively (Figure 4.2). Overall average CVs were 18.7 % in the LMR and 19.4 % 

in the HMR. After the optimisation of the MS spectral acquisition parameters, the 

bead-based extraction protocol was optimised on a liquid handling robot for high-

throughput sample analysis (Chapter 2 section 2.2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Mass spectral chromatographs of commercial serum. Spectral profiles 

generated during MS spectral acquisition optimisation are shown. Serum samples were 

manually processed as described in Chapter 2 and spotted 1:1 (0.5 µL sample eluate plus 0.5 

µL α-CCA matrix) before MALDI-TOF MS analysis. Data was analysed in ClinProTools 

software A) Low mass range (700-4000 Da) and B) High mass range (4-15 kDa). 
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4.3 Optimisation of magnetic bead-based extraction protocol at host institute. 

 

One of the methods recently adopted for the extraction of peptides and proteins from 

human serum is reversed-phase (RP) capture on magnetic beads derivatised with a 

variety of binding chemistries. By using magnetic beads coated with these chemistries 

it is possible to automate the capture of peptides and proteins using liquid handling 

robotics thereby providing high throughput and reproducibility in sample processing. 

Indeed, the capture of peptides and proteins using RP batch processing in a magnetic 

bead-based format was previously automated at the MSKCC on a liquid handling 

robot allowing simultaneous processing of 100s of serum samples at a time 

[Villanueva et al., 2004; Villanueva et al., 2006]. The RP reagents utilised in the 

original study (C8-coated magnetic beads) were no longer commercially available 

therefore the performance of beads from alternative sources was investigated for the 

establishment of an automated serum profiling platform at UCL.  

 

The nature of the stationary phase is a vital factor in any chromatographic separation, 

since it determines the retention of specific ligands. For example, weak cation 

exchange beads carry negative surface charges which reversibly adsorb oppositely 

charged proteins and large peptides. Bound samples can be sequentially removed 

using a step-wise elution with increasing concentrations of salts, decreasing the pH or 

a combination of both. Reverse phase (RP) beads are usually coated with carbon 

chains for peptide and protein binding through hydrophobic interactions. Sequential 

removal is then achieved by increasing the concentrations of organic solvents such as 

acetonitrile. The length and deposition of carbon chains onto the bead surfaces affect 

the selectivity for peptide binding. Larger polypeptides are preferentially captured on 

less hydrophobic surfaces (C1-3), while smaller peptides are captured on more 

hydrophobic surfaces (C8-18). These chemistries have been applied to magnetic 

beads to facilitate batch-wise binding and elutions. 
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4.3.1 Optimisation of bead type and bead-to-serum ratio 

 

Initial experiments were performed to compare the number of peptide species 

captured by different commercially available magnetic beads. This was done to 

determine the most appropriate stationary phase and ‘bead-type’ for serum peptide 

and protein extraction. Three main types of RP magnetic beads are commercially 

available from a number of manufactures including BioClone, Bruker Daltonics and 

Invitrogen (Dynal beads). The polypeptide affinity of C4, C8 and C18 RP beads, as 

well as a combination of C4 and C18 beads from BioClone, Bruker Daltonics and 

Invitrogen (Dynal) were compared. In addition, differing bead slurry-to-serum 

volume ratios (1:1, 1:2, 1:4 and 1:8) were tested after equalisation of bead 

concentration (to 2µg/µL) to determine the optimal ratio for capturing and recovery of 

peptides and proteins. Since batch preparation methods were the most effective way 

to carry out cross-comparisons of multiple conditions concurrently, sample conditions 

were standardised by using 50 µL of Sigma serum for all comparisons. Each 

condition was run in triplicate on the robot and spotted in duplicate onto a MALDI 

target and the 6 spectra per condition were acquired using the MS parameters 

optimised in the previous section. The MALDI-TOF MS spectra were processed 

using ClinProTools software (V2.0) as described in Chapter 2 section 2.2.4, and the 

average spectra and peak statistics were compared. Overall, a similar number of peaks 

were detected in each bead type in both the LMR and HMR (Figures 4.3 and 4.4). 

However, C8 beads alone performed marginally better (more consistently) then C18 

beads alone in the high mass range-as expected. 
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Figure 4.3 MALDI-TOF spectra illustrating the average LMR (700-4000Da) serum 

peptide profiles used in the comparison of magnetic beads. Average spectra are shown for 

Sigma serum (n=6) extracted with equal amounts of (A) Dynal C4 and C18 RP bead slurry. 

(B) Dynal C18 beads. (C) Equal amounts of BioClone C4 and C18 RP bead slurry; (D) 

BioClone C18 beads; (E) BioClone C8 beads; (F) Bruker C8 beads. 12.5 µL of bead slurry 

was used for extraction of Sigma serum essentially as described in Chapter 2 section 2.2.2, 

eluate was mixed 1:1 with α-HCCA, and 1 µL was spotted in duplicate for MALDI-TOF MS 

analysis. Samples were run in triplicate and the average spectra generated by ClinProTools 

(V2.0) are presented here. 
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Generally for all bead types, a 25 µL bead slurry volume was found to capture the 

highest number of peptide peaks above an S/N ratio of 3 in the LMR and 5 in the 

HMR (Figure 4.4), although there were some fluctuations. This was perhaps 

surprising since one may expect more peptides to be detected at higher bead-to-serum 

ratios. This hints at ion suppression effects. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 MALDI-TOF comparison of the extraction of serum polypeptides using 

different coated magnetic beads. A volume of 50 µL of neat serum was mixed with 6.25 

µL, 12.5 µL, 25 µL and 50 µL of bead slurry (all equalised to 2 µg/µL). This mixture was 

incubated at room temperature for 2 minutes. Beads were then pulled side-to-side 10 times 

with a magnet and allowed to settle on one side of a PCR tube before supernatant was 

removed and discarded. Beads were then washed twice with 0.1% TFA. Bound peptides were 

eluted with 5 µL of 50% ACN. Eluate was mixed 1:1 in MALDI matrix α-HCCA and 1 µL 

was deposited on a normal stainless steel MALDI target for MS analysis. The number of 

peaks obtained for bead conditions were calculated for (A) LMR and (B) HMR using 

ClinProTools software (V2.0) and S/N cutoffs of 3 & 5, respectively. 
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Indeed, analysis of the changes in the spectra showed that increasing the bead amount 

led to a reduction in the peak area of lower mass range peaks (Figure 4.5). The high 

mass range peaks were relatively unaffected. Furthermore, there was some fluctuation 

in the number of peptide peaks detected using 12.5 µL versus 25 µL in the LMR 

(Table 4.2). This suggests that concentration of the eluate affects the low mass range 

signal possibly as a result of poor sample crystallisation and/or ion suppression which 

maybe due to ‘competitive’ binding of peptide and protein species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 MALDI-TOF spectral comparisons of extraction using different serum-to-

bead ratios. A-D show Low Mass Range (700-4000 Da) peptide profiling while E-H show 

High Mass Range (4-15 kDa). Results for Dynal C18 beads and representatives spectra of all 

bead slurry volumes tested are shown here. Data were processed using ClinProTools software 

(V2.0). 
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The reproducibility of each bead type was also investigated (Table 4.2). The overall 

coefficient of variance (CV) for all detected peaks in the LMR ranged varied from 

19.4% to 45.4% and 9.9% to 15.8% in the HMR. These CVs were subsequently 

improved through modifications of the robotic volume aspirations and dispension 

speeds which minimised bead loss during the washing steps. Apart from a few 

outliers reproducibility across the beads and dilutions was found to be similar. On 

comparison of the quality of spectra, Dynal C18 beads were found to be marginally 

better overall at capturing serum polypeptides. Dynal C18 beads also proved to be the 

most cost effective option. 

 
Bead type Slurry 

Vol. µL
Ave number of 

LMR peaks
Ave LMR peak 
area (arb. u.)

CV (%) Ave number of 
HMR peaks

Ave LMR peak 
area (arb. u.)

CV (%)

Dynal C4+ C18 6.25 142 21.30 30.59 111 75.02 12.95
12.50 118 28.76 20.43 66 98.60 12.50
25.00 132 24.49 20.14 99 92.31 11.73
50.00 124 27.17 20.27 104 56.71 12.06

Dynal C18 6.25 124 25.73 23.37 92 85.99 11.52
12.50 124 26.81 20.53 102 58.55 11.56
25.00 142 20.15 22.29 101 61.06 10.65
50.00 140 22.19 19.67 109 73.47 10.53

BioClone C4 + C18 6.25 134 25.37 20.06 95 82.11 9.87
12.50 111 30.92 19.37 106 70.71 11.63
25.00 131 17.78 20.98 63 103.39 12.54
50.00 129 26.13 20.21 103 79.93 11.50

BioClone C18 6.25 134 24.19 23.46 106 78.85 12.01
12.50 146 13.83 27.45 103 77.19 14.21
25.00 146 19.88 25.59 103 76.56 11.56
50.00 141 23.51 21.58 111 48.14 12.48

BioClone C8 6.25 147 22.32 30.15 111 75.95 15.80
12.50 143 23.80 22.06 111 73.86 13.83
25.00 150 20.95 20.57 117 58.05 10.37
50.00 131 25.39 23.76 99 82.53 12.20

Bruker C8 6.25 139 23.26 20.30 110 73.51 11.10
12.50 135 23.95 29.19 109 75.08 14.73
25.00 133 23.58 33.55 120 49.90 12.66
50.00 140 21.45 45.40 111 71.18 14.19  

 

Table 4.2 Intra-assay reproducibility for each bead type and condition. Spectra were 

analysed using ClinProTools software (V2.0). Resulting average peak areas were used to 

calculate co-efficients of variance. The overall average peak number, average peak area (arb. 

u.) and CV in the LMR (S/N > 3) and HMR (S/N > 5) are shown. 
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Dynal C18 beads are reported to have a binding capacity of 14 µg peptide per mg of 

beads. The concentration of protein, determined by Bradford assay in Sigma serum 

was 90 mg/mL and was therefore 3000 fold in excess of the bead binding capacity. It 

can be speculated that perhaps more non-specific binding occurs with an increase in 

the volume of the bead slurry. Furthermore, the presence of high abundant protein 

species may lead to suppression from signal of low abundant polypeptides. Indeed 

Figure 4.6 shows several high-abundant serum proteins can bind to C18 magnetic 

beads. Using larger bead volumes may also lead to poorer elution of bound peptides, 

as the large bead volume makes the removal of the entire elution fraction more 

difficult. Perhaps repeat elutions could overcome this problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 1D-gel view of C18 magnetic bead-extracted serum proteins. Lane 1 shows 

molecular weight markers, lane 2 and 3 10µg of Dynal C18 bead-extracted serum eluate and 

lanes 4 and 5 show 10µg of unfractionated serum. It is evident that C18 beads capture larger 

proteins such as human serum albumin (HSA), haptoglobin (HP) and immunoglobulin G 

(IgG). 
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Subsequent to this work, experiments showed that diluting eluates 1:5 with 50% ACN 

increased the signal and peptide peak numbers. This provided evidence for ion 

suppression with the dilution reducing the concentration of sample applied to the 

MALDI target, allowing for more effective detection of sample peptides by mass 

spectrometry. Furthermore, the MALDI-TOF analysis of eluates showed higher 

signal-to-noise ratios for peptide species detected from Dynal C18 beads. This 

increased ion signal may have been partially a result of stronger hydrophobic 

interactions and better compatibility with elution solvents. 

 

These initial experiments demonstrated that effective peptide capture could be 

achieved using all bead types, however, because of the quality of spectra and cost per 

assay, Dynal C18 were selected for further use. Although not optimal, for economical 

reasons 12.5 µL bead slurry volume was selected as being most reproducible during 

automated pipetting on the liquid handling robot.  
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4.3.2 Further investigation on the effects of altering serum volume 

 

In further experiments to define the optimal serum-to-bead volume ratio, 12.5 µL of 

50% Dynal C18 bead slurry (2 µg/µL) was manually mixed and incubated with 10, 20 

and 50 µL of commercial serum for 2 minutes (incubation time recommended in 

manufacturer’s instructions). The supernatants were removed and the beads were 

washed twice. After washing the bound polypeptides were eluted with 5 µL 50% 

ACN and mixed with matrix solution. The eluate/matrix mixture was applied directly 

to a MALDI target and left to air dry before MALDI-TOF MS analysis using the 

optimised acquisition parameters described in section 4.1. Results showed that similar 

numbers of peptides could be captured across the serum volume range, although 

overall the 50 µL volume gave the highest total number of peptides (Figures 4.7 & 

4.8). 
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Figure 4.7 Optimisation of serum volume. Serum peptides were extracted as described in 

the text above. Data was analysed using ClinProTools software (V2.0) to calculate the 

number of peaks detected in the LMR (S/N >3) and HMR (S/N >5). 
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Figure 4.8 MALDI-TOF spectral comparisons following extraction of peptides and 

proteins with varying serum volume. Serum samples were manually processed using 12.5 

µL of 50 % Dynal C18 bead slurry (2 µg/µL) using (A) 10 µL, (B) 20 µL and (C) 50 µL of 

commercial serum. Five µL elution solution (50% ACN) was added to each bead pellet, 

incubated, and the eluate transferred to a fresh tube. Eluate was mixed 1:1 with α-CCA 

matrix solution, 1 µL was spotted onto a MALDI plate and allowed to air dry before MALDI-

TOF MS analysis.  Data was analysed in ClinProTools software (V2.0) and the average 

spectra are shown here on the same scale. 
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B) 12.5 µL bead slurry + 20 µL serum
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To assess the reproducibility, the average CVs for the peak areas from all matched 

peaks across 8 spectra within each condition were compared (Table 4.3). A serum 

volume of 50 µL gave an average peak area CV of 11.1% ± 1.5 for the LMR and 10.8 

% ± 0.9 for the HMR. Results suggest that changing serum volume made little 

difference to the number of peaks detected and the peak CVs.  

 

Serum Volume LMR HMR
10µL 11.03 (+/-1.5) 9.54 (+/- 1.8)

20µL 10.14 (+/- 1.0) 11.24 (+/-2.4)

50µL 11.1 (+/- 1.5) 10.82 (+/- 0.9)

Ave peak CV (%)
Intra sample peak variability

 
Table 4.3 Intra-sample average peak area variability. Varying volumes of sigma serum 

samples were processed manually in quadruplicate and spotted in duplicate on a MALDI 

target before MALDI-TOF MS analysis. Data was analysed in ClinProTools software to 

calculate the average CVs for all peaks.  

 

 

 

4.4 Intra- and inter-assay reproducibility 

 

A major criticism of early MS-based serum profiling was the lack of experimental 

reproducibility of datasets within and between studies [Baggerly et al., 2004]. Many 

studies only report reproducibility based on a few of the most intense peaks. 

Following the platform optimisation studies discussed so far, C18 Dynabeads were 

selected to undergo a more thorough investigation of the robustness of the automated 

technology platform. Inter- and intra-assay reproducibility was evaluated using 50 µL 

commercial serum with 12.5 µL of C18 Dynabeads (2 µg/µL). Six aliquots of 

standard serum were processed in the same automated run, and the CVs were 

calculated for all the peak areas between the samples as a measure of the intra-assay 

reproducibility. The preparation and analysis was then repeated once a day over 7 

days to yield inter-assay reproducibility values (Figure 4.9).   
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Figure 4.9 Heat map representations of spectra from intra- and inter-assay 

reproducibility test. Over the course of 7 days, six aliquots of commercial serum were 

processed each day on the automated platform. Data was analysed by ClinProTools software 

(V2.0) to calculate intra-and inter assay reproducibility based on peak area.  
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The intra-assay reproducibility for all the peaks detected varied significantly across 

the runs. In the LMR an average number of 69 peaks with an average CV of all peak 

areas of 10.3% ± 1.6 were found in Run 1 compared to an average of 133 peaks with 

an average CV of 20.9% ± 17.3 in Run 4. In the HMR an average of 34 peaks with an 

average CV of 14.3% ± 3 was found in Run 1 compared to an average of 105 peaks 

with average CV of 11.4% ± 1.6 in Run 7. Taking the average peak statistics for all 7 

runs the overall inter-assay CV values were 28.4% ± 5.4 and 17.68% ± 3 for the LMR 

and HMR respectively (Table 4.4). The CV values are comparable to those previously 

reported in literature and in chapter 3. 

 

 

 

Run Number LMR HMR LMR HMR
1 69 34 10.3 ± 1.6 14.3 ± 3
2 75 89 12.8 ± 12.4 14.4 ± 5.4
3 93 79 20.9 ± 17.3 12.6 ± 3.6
4 133 74 24.1 ± 15 14.5 ± 3.4
5 73 59 24.4 ± 11.7 15.4 ± 5.4
6 79 42 12.5 ± 7.5 14.6 ± 3.3
7 87 105 16.1 ± 9.0 11.4 ± 1.6

Inter-assay 118 123 28.4 ± 5.4 17.7 ± 3

Ave number of peaks Overall Ave CV

 
Table 4.4 Intra/inter-assay reproducibility. The intra-assay reproducibility was calculated 

by running 6 samples per run, while inter-assay reproducibility was measured by assessing 

the variation between 7 runs. Average peak areas for the matched peaks were calculated using 

ClinProTools software and average co-efficient of variance (SD/peak area) were calculated 

for the areas of all peaks detected. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 109

4.5 Quantifying variations in serum polypeptide profiles under different 

sample handling conditions. 

 

Several factors termed pre-analytical variables have been reported to influence the 

observed serum proteome by affecting the stability of proteins [Rai et al., 2005]. 

These include the potential variations introduced during the actual blood collection 

and handling procedure. For example, variation in sample storage tube type, variable 

blood clotting times, transport conditions, time to centrifugation, storage conditions 

and freeze-thaw cycles may all affect the resulting profiles. Evidence also suggests 

disease specific exo-proteases are active during the clotting process which produce 

changes in protein degradation that are detectable by mass spectrometry [Villanueva 

et al., 2006]. Prolonged clotting times and repeated freeze thaw cycles could 

accelerate these complex break-down processes. As a result, peptides and proteins 

shed from tumours, typically low in abundance, could be lost in the background 

variance produced by inconsistencies in sample handling [Timms et al., 2007; 

Villanueva et al., 2005; West-Nielsen et al., 2005]. 
 

The effect of six different processing protocols on MALDI-TOF MS profiles was 

thus assessed using serum samples from 25 healthy volunteers from the UKCTOCS 

study. These women gave six blood samples that were processed as indicated in Table 

4.5. Changes in the protocol were made to test the effects of storage tube type, varied 

clotting time, transport conditions, time to centrifugation, storage conditions and 

freeze thaw cycles. These protocols were chosen to be clinically feasible for the 

collection and processing of multiple samples, possibly from different centres, and 

included the standard UKCTOCS protocol (Protocol 1, Green) and that used by the 

Tempst group at the MSKCC (Protocol 2, Yellow). 
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Protocol 
No.

Colour 
code Tube type Mixing Clotting Storage Time to 

centrifugation
Aliqouting & Stroage 

at -80°C

1 GN Greiner gel 
tubes

Slowly 
inverted 5x RT RT 30 hrs from 

collection Straws at RT

2 YE BD tiger top 
tubes

Slowly 
inverted 5x

RT-60'-vertical 
position

Wet ice-
vertical

3 hrs from 
collection Straws at RT

3 GY BD tiger top 
tubes

Slowly 
inverted 5x

RT-5'-vertical 
position

Wet ice-
vertical

3 hrs from 
collection Straws at RT

4 CR BD tiger top 
tubes

Slowly 
inverted 5x

RT-5'-vertical 
position

Wet ice-
vertical

3 hrs from 
collection

Cryovials one freeze
thaw

5 OR BD tiger top 
tubes

Slowly 
inverted 5x

RT-5'-vertical 
position

Wet ice-
vertical

6 hrs from 
collection Straws at RT

6 WH BD tiger top 
tubes

Slowly 
inverted 5x

RT-5'-vertical 
position RT 3 hrs from 

collection Straws at RT
 

Table 4.5 Protocol comparison using 25 healthy volunteer samples. The shaded boxes 

indicated where changes were introduced in each protocol.  

 

 

For variance analysis each volunteer sample was run in triplicate using 50 µL of 

serum, and 12.5 µL of Dynal C18 beads. The average number of peaks from each 

triplicate was first compared across the different handling methods using 

ClinProTools software V2.0, (optimised parameters for peak detection are outlined in 

Chapter 2 section 2.2.4.2). Briefly, spectra were first subjected to a 0.80 level 

baseline subtraction. Following this the detection of peaks was based on the analysis 

of a smoothed first derivative where the smoothing was determined by a given 

resolution parameter. Once the peaks were detected peaks were aligned and peak 

areas were calculated by integrating the intensities over the region of the peak. It was 

found that the number of peaks for each triplicate was protocol dependent (Table 4.6 

and Figure 4.10). Protocol 2 (YE) gave the highest average number of peaks in the 

low mass range, (LMR 700-4000 Da), closely followed by the protocol 1 (GN), while 

protocol 3 (GY) gave the highest number of peaks in the high mass range (HMR 4-15 

kDa).  
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Volunteer Ref GN-LMR GN-HMR YE-LMR YE-HMR GY-LMR GY-HMR CR-LMR CR-HMR OR-LMR OR-HMR WH-LMR WH-HMR
11005404 95 34 41 27 39 44 26 38 71 28 71 30
11006217 146 58 97 NA 96 26 118 35 97 42 61 34
11006440 65 30 40 38 36 40 102 26 74 76 68 41
11006863 70 30 169 33 63 36 59 30 62 55 90 32
11010114 98 28 167 35 88 57 92 54 41 31 57 46
11023647 134 44 61 49 33 19 88 49 31 26 73 56
11026386 64 45 82 30 62 36 23 40 92 30 80 32
11034276 142 35 80 30 47 44 131 38 121 40 38 31
11056019 50 29 50 33 104 27 41 NA 98 29 127 35
11068507 40 21 166 34 107 43 23 26 76 19 71 31
11074916 136 21 83 43 48 27 69 33 56 34 36 39
11084213 101 23 120 33 152 55 69 39 59 21 167 53
11093385 42 31 79 53 122 47 55 28 108 39 54 33
11099224 101 34 42 39 59 50 114 31 64 45 73 36
11099568 56 38 119 44 72 33 113 69 59 37 82 39
11101746 36 33 73 40 83 39 41 25 58 39 36 32
11101936 126 33 33 NA 47 47 60 37 76 36 66 33
11102206 54 37 105 42 76 44 83 37 34 24 53 26
11102296 109 46 164 29 40 37 41 28 96 33 116 35
11102557 66 29 67 37 79 27 42 35 106 26 71 61
11118143 84 47 52 58 68 31 112 33 63 33 52 38
11122713 36 42 148 32 154 39 71 38 47 35 72 39
11122791 95 36 53 44 107 55 62 42 93 41 168 48
11126095 96 28 14 53 61 44 118 35 73 45 135 34
11126328 42 35 101 43 134 45 130 37 106 36 52 16

Overall Average 83 35 88 39 79 40 75 37 74 36 79 37
SD 35 9 46 8 35 10 35 10 24 12 37 10  

Table 4.6 Average number of spectral peaks. The overall average peak numbers and SD 

were calculated by aligning the spectra from all 25 volunteers in ClinProTools. Average peak 

numbers by collection method and volunteer are shown.  
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Figure 4.10 Overall average numbers of peaks across all protocols. The average numbers 

of peaks from triplicate samples of 25 volunteers are shown for each protocol in each mass 

range; LMR (700-4000 Da) and HMR (4-15 kDa). Protocol 2 (YE) showed the highest 

number of peaks in the LMR, while protocol 3 (GY) gave a slightly higher number of peaks 

in the HMR. 
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Despite the high variance in the peak numbers, certain peaks were common to one or 

more of the protocols. The average variance of all the peaks detected was compared 

across the protocols. Overall average variance was ~ 12% in the LMR and ~ 11% in 

the HMR. No one protocol produced higher variance in all volunteers in either mass 

range (Figure 4.11). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Average peak area variance analyses. (A) Low mass range (700-4000Da), 

overall average CV (standard deviation/average peak area) of all peaks from 3 replicates of 

the same sample by protocol and volunteer, where GN is protocol 1, YE ; 2, GY ; 3, CR ; 4 

OR ; 5 & WH ; 6. (B) High mass range (4-15 kDa), average CV of all peaks by protocol and 

volunteer.  
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Heat maps were generated in ClinProTools software for peak profile analysis. The 

average peak areas from each individual, for each protocol were compared. This was 

done to assess which of the peaks could be directly attributed to differential sample 

preparation. Discriminatory peaks in several m/z regions from both mass ranges were 

found to discern protocol 1 (GN) from the other 5 protocols. In the LMR three peaks 

(1060, 1465 and 3198 m/z) were found to have lower peak areas in protocol 1 

compared to the other 5 protocols (Figure 4.12). In the HMR two peaks (5895 and 

12589 m/z) consistently had lower peak areas in protocol 1 and two peaks (4048 and 

8122 m/z) had higher peak areas (Figure 4.12). 
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Figure 4.12 Spectral comparisons across the protocols. Top panel (A) 300 low mass range 

(LMR) spectra from experimental replica 2 (25 volunteers had 2 spotting replicates for each 

of the 6 protocols) and (B) Several LMR m/z areas where clear differences between protocol 

1 (GN) and the other 5 protocols are shown.  Bottom panel (A) 300 high mass range (HMR) 

spectra (B) Several HMR m/z areas where clear difference between protocol 1 (GN) and the 

other 5 protocols are shown.   
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A principal component analysis (PCA) was performed to determine how samples 

would group together according to the preparation method. Protocol 1 (GN) was the 

most distinctive method, with most volunteer samples grouping together and away 

from samples handled using the other methods (Figure 4.13). This was true for both 

mass ranges. The most likely explanation for this separation trend is the extended 

transport/storage time used in this protocol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Protocol comparisons by principal component analysis. A PCA was 

performed using ClinProTools software (V2.2) to compare samples handled using the 

different protocols. In the example shown, peaks from replicate number 2 for all samples 

were used for analysis. The circles denote the clustering of most protocol 1 (GN) samples in 

(A) the low mass range samples and (B) high mass range and (C) the m/z values of the mass 

used for clustering. Please note that the colours in this figure differ from those used for 

protocol labelling.  
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A pairwise comparison of protocols by PCA more clearly showed this distinction 

between protocol 1 (GN), and the others (Figure 4.14).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Pair-wise protocol comparisons by principal component analysis. A PCA 

was performed using ClinProTools software (V2.2) to compare samples handled using pairs 

of protocols. A, B, C and D are the clustering results between pairs of protocols. Protocol 1 

(GN) is the most discriminatory protocol. 

 

Overall, 180 peaks (80 on average per protocol) were detected in the LMR (Table 

4.6). The peak which discriminated most between the protocols (3198.5 m/z) had an 

average peak area 3 times lower in protocol 1 (GN) compared to the other protocols. 

The ANOVA p-value was highly significant (p = 6.45E-32). The second most 

discriminatory peak (3822.7 m/z) showed a 1.5 times greater peak area in comparison 

to the other protocols (p = 3.85E-25, Table 4.7).  
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In the HMR, 91 peaks (35 on average per protocol) were detected in total (Table 4.6). 

The most discriminatory peak (4048.76 m/z) had an average peak area 2.5 times 

greater in protocol 1 (GN) compared to the other protocols. The ANOVA p-value was 

highly significant (p = 2.17E-24). This peak was also elevated in protocol 6 (WH). 

The second most discriminatory peak in the HMR (8122.05 m/z) showed a 2 times 

greater peak area in comparison to the other protocols (p = 3.85E-25, Table 4.7). 

 
A) LMR 

Peak 
number

Mass 
m/z

Diff in Ave 
peak area

ANOVA 
TEST

CR Ave 
peak 
area 

GN Ave 
peak 
area

GY Ave 
peak 
area

OR Ave 
peak 
area

WH Ave 
peak 
area

YE Ave 
peak 
area

CR 
CV

GN 
CV

GY 
CV

OR 
CV

WH 
CV

YE 
CV

1 3198.54 31.2 6.45E-32 40.76 15.43 42.55 46.63 38.9 42.4 70 34 58 29 40 58
2 3822.66 14.89 3.85E-25 22.54 35.49 21.41 22.21 20.61 21.34 31 16 32 27 28 27
3 2939.13 23.81 1.46E-23 37.4 18.83 36.66 42.64 35.97 35.52 61 24 52 34 43 52
4 3033.47 3.26 8.64E-23 5.43 8.45 5.32 5.24 5.19 5.29 31 17 28 24 25 27
5 2580.49 4.51 1.09E-22 10.1 13.75 9.26 9.57 9.24 9.82 28 13 24 24 22 29
6 1793.73 2.54 4.11E-20 3.58 5.55 3.29 3.21 3.01 3.37 28 21 33 31 35 24
7 2956.98 21.57 4.93E-20 32.66 18.55 40.12 36.47 40.07 36.86 46 30 67 46 40 53
8 3274.89 40.84 6.68E-20 78.61 43.12 82.98 83.97 76.49 83.62 55 30 57 29 42 61
9 2770.88 10.93 1.32E-19 22.69 12.97 21.6 23.9 22.26 21.2 43 19 43 41 38 59
10 1030.62 2.79 5.06E-16 3.99 5.79 3.01 3 3.2 3.31 44 30 24 23 41 28
11 1954.19 3.71 1.54E-15 8.87 11.57 7.86 8.26 7.92 9.18 28 15 38 31 33 30
12 1741.47 11.53 1.56E-15 22.7 11.17 21.91 22.38 15.74 18.1 59 28 58 48 37 45
13 1172.34 2.65 1.80E-15 5.08 6.3 4.3 3.64 3.79 4.34 42 24 38 26 38 38
14 1704.79 2.38 1.83E-15 2.86 5.12 2.92 2.9 2.74 3 30 27 35 35 39 30
15 4071.12 114.41 2.94E-15 55.46 157.69 46.71 43.28 78.76 52.81 55 50 39 54 51 46
16 1281.44 1.71 6.71E-15 3.26 4.05 2.47 2.33 2.76 3.15 42 23 43 30 54 61
17 1060.7 89.04 1.35E-14 85.06 49.5 119.13 109.34 138.54 105.1 76 42 73 64 69 65
18 4050.61 6.02 1.48E-14 9.27 14.66 8.64 9.21 9.57 10.09 35 22 39 48 27 45
19 2492 2.78 1.74E-14 5.39 7.36 4.58 4.96 5.04 5.41 29 20 38 28 24 33
20 1076.28 11.47 1.75E-14 11.49 6.37 14.63 14.11 17.84 12.01 68 31 74 60 87 65

B) HMR 
Peak 

number

Mass 
m/z

Diff in Ave 
peak area

ANOVA 
TEST

CR Ave 
peak 
area 

GN Ave 
peak 
area

GY Ave 
peak 
area

OR Ave 
peak 
area

WH Ave 
peak 
area

YE Ave 
peak 
area

CR 
CV

GN 
CV

GY 
CV

OR 
CV

WH 
CV

YE 
CV

1 4048.76 180.87 2.17E-24 102.76 283.63 108.73 108.94 155.04 117.97 35 30 41 39 38 46
2 8122.05 68.13 1.38E-22 62.5 115.16 47.03 49.95 49.52 54.1 41 30 19 36 29 33
3 5330.18 129.09 6.20E-20 237.3 115.89 212.27 244.98 204.48 181.69 55 24 51 45 45 50
4 12589.6 50.56 1.25E-19 97.77 47.21 75.69 83.1 49.13 57.03 49 25 30 37 22 52
5 5895.89 593.99 6.76E-19 717.23 338.36 797.95 864.4 932.34 713.6 67 59 56 49 45 60
6 9276.3 382.25 5.76E-18 375.96 738.72 362.54 356.46 622.91 522.86 53 33 35 57 38 47
7 7754.93 49.91 8.29E-16 139.01 148.02 98.1 98.94 138.67 122 23 27 23 29 36 26
8 5061.09 57.12 2.81E-15 105.79 84.19 103.73 117.9 136.79 141.31 41 29 36 46 35 25
9 4957.46 88.21 5.08E-14 67.93 146.62 58.4 65.24 125.01 65.23 26 56 27 29 51 42
10 5744.65 36.31 1.59E-11 78.32 72.22 65.67 70.3 84.27 101.98 28 19 27 31 26 25
11 6790.14 32.38 8.79E-11 65.12 88.2 56.02 55.83 61.53 59.66 25 29 21 25 24 20
12 4086.28 34.9 4.14E-10 99.35 75.7 110.6 106.89 105.5 98.55 29 29 26 25 22 25
13 4999 61.4 6.81E-10 65.38 38.56 94.78 99.96 52.38 56.86 64 33 91 82 76 64
14 4637.14 80.8 4.85E-09 152.04 225.11 151.04 144.31 197.93 176.56 41 32 36 46 24 44
15 5244.9 15.31 6.71E-08 52.48 54.16 38.85 41.59 43.25 47.73 45 20 31 50 33 41
16 7221.34 9.87 6.71E-08 44.87 43.82 35 38.12 36.28 42.71 36 18 19 34 23 29
17 5586.37 11.73 4.79E-07 42.31 38.61 30.58 33.46 35.91 39.48 45 18 23 32 25 31
18 7913.92 13.87 7.34E-07 50.15 44.17 36.27 39.39 38.89 44.16 45 16 18 41 23 38
19 12431.06 16.17 1.14E-06 47.18 42.19 33.39 36.81 31.01 35.25 55 21 26 43 39 49
20 7003.11 9.5 2.64E-06 51.54 51.33 42.04 43.74 44.14 48.06 34 16 19 30 23 26  

Table 4.7 Comparisons of average peak areas by protocol. Peak areas from A) LMR and 

B) HMR were compared by loading all protocols against each other in ClinProTools software 

(V2.0). Peaks were sorted by ANOVA test p-values. The most discriminatory peak is listed 

first (only the top 20 are shown here). To avoid exceeding the software’s memory capacity 

only samples from experimental replicate 2 were used. 
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A Wilcoxon test was also used to find the most discriminatory peaks between pairs of 

protocols and an overlap between the m/z values of the most discriminating peaks 

between protocol 1 (GN) and protocol 2 (YE), protocol 3 (GY) and protocol 4 (CY) 

(3034 m/z p=0.000001) was found (Table 4.8). Furthermore, a peak at 4071 m/z was 

also found to discriminate protocols 6 (WH) from 2 (YE p=0.023), 3 (GY 

p=0.000701), 4 (CR p=0.000701) and 5 (OR p=0.000252). These peaks had a higher 

average peak area in the samples from protocol 1 (GN) suggesting they are likely to 

be protein degradation products which become more abundant with prolonged 

clotting times at room temperature.  

 

Moreover, several peaks in the LMR had lower peak areas in protocol 1 (GN) 

compared with the other 5 protocols. For example, in table 4.7 peak number 1 

3198.58 m/z had an average peak area almost 3 times lower in GN compared with the 

other protocols. Peaks 2939.13 m/z and 2956.98 m/z also had average peak areas 2 

times lower in the GN protocol versus the others. This supports the hypothesis that 

prolonged clotting times could also lead to protein degradation and loss of signal, and 

highlights the importance of consistent sample handling. 
 

Protocol GN YE GY CR OR WH

GN m/z 3034.12 
p=0.000001 

m/z 3034.23 
p=0.000001 

m/z 3034.26 
p=0.000001 

m/z 2273.59 
p=0.00713

m/z 3823.1 
p=0.000001 

YE m/z 3034.12 
p=0.000001 

m/z 2023.78 
p=0.00785

m/z 3435.71 
p=0.0122

m/z 2273.59 
p=0.00713

m/z 4071.06 
p=0.023

GY m/z 3034.23 
p=0.000001 

m/z 2023.78 
p=0.00785

m/z 1030.61 
p=0.0397

m/z 3322.77 
p=0.0069

m/z 4071 
p=0.023

CR m/z 3034.26 
p=0.000001 

m/z 3435.71 
p=0.0122

m/z 1030.61 
p=0.0397

m/z 1015.6 
p=0.00989

m/z 4071.04 
p=0.000701

OR m/z 3197.33 
p=0.000001 

m/z 2273.59 
p=0.00713

m/z 3322.77 
p=0.0069

m/z 1015.6 
p=0.00989

m/z 4070.99 
p=0.000252

WH m/z 3823.1 
p=0.000001 

m/z 4071.06 
p=0.023

m/z 4071.04 
p=0.000701

m/z 4071.04 
p=0.000701

m/z 4070.99 
p=0.000252  

Table 4.8 Protocol comparisons based on Wilcoxon test p-values for the most 

discriminating peaks. The Wilcoxon test p-values were calculated for pairs of protocols 

using average peak area values. 
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4.6 Discussion 

 

Ideally, for comprehensive serum proteome analysis, universal pre-analytical 

processing and data handling standards are essential for the discovery of novel protein 

biomarkers. Furthermore, appropriate biomarker-based tests should be minimally 

invasive and reproducible. In cancer a simple blood or urine test that detects 

molecules specific to tumour tissues would be ideal. In addition, the screening 

technology must be sufficiently sensitive to detect early cancers, but specific enough 

to classify individuals without cancer as being free of malignancies. The potential use 

of mass spectrometry (MS) based methods for analysing proteins and peptides from 

biological fluids for potential biomarker discovery was demonstrated in 2002 [Pearl, 

2002; Petricoin et al., 2002]. However, these initial studies were severally criticized 

on the experimental design and method-induced variability [Baggerly et al., 2004]. 

Subsequent to this, improvements in many areas of blood-based proteomics studies 

have been made. As a result, a pool of knowledge about the effect of different 

variables on MS-based proteome analyses has been generated. Pre-analytical 

variation from sample handling and storage leading to artefacts and the influences of 

humidity, temperature, and time for preparation of sera on spectral changes has been 

evaluated by several groups [Timms et al., 2007; Villanueva et al., 2005; West-

Norager et al., 2007].  

 

The aim of the work presented in this chapter was to establish an optimal workflow 

for the high-throughput analysis of low abundant serum polypeptides. This high-

throughput screening platform coupling magnetic bead-based serum polypeptide 

extraction with mass spectrometry and bioinformatics tools for data analysis would 

facilitate the discovery of putative ovarian cancer serum markers. This aim was 

tackled by adapting and modifying a previously established bead-based semi-

automated serum peptide extraction protocol and optimising it in the host laboratory 

at UCL.  

 

Firstly, the automated liquid handling robot was programmed for optimal 

performance. Various other factors were investigated including the specific beads to 

be used for peptide extraction, bead-to-serum volume ratio, and intra/inter-assay 
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reproducibility. Finally different sample collection protocols were examined to aid in 

determining the most reproducible and clinically feasible method for sample 

handling.  

 

In order to adapt the automated platform established by Villanueva et al. at the 

MSKCC the initial experiments involved the use of a cocktail of commercially 

available peptides and proteins in combination with manually extracted commercial 

serum to establish optimised spectral acquisition methods in the low mass range 

(LMR 700–4000 Da) and high mass range (HMR 4-15 kDa). Results from the 

optimised MS method showed an average of 143 and 109 serum peaks were detected 

in the LMR and HMR respectively with an overall average CVs were 18.7% and 

19.4%. 

 

As previously mentioned, the magnetic beads used in the original study by Villanueva 

et al. (2004) were no longer commercially available, thus, a comparison of different 

coated magnetic beads from alternative vendors was performed. Results showed that 

although spectral profiles of commercially available serum did not differ greatly 

when peptides and proteins were extracted with different beads, Dynal C18 beads did 

on average capture more peptide and protein peaks in both mass ranges and were 

cheaper. Moreover, the efficiency of C18 Dynal beads has been reported and they 

have been recommended for use by the MSKCC group [Villanueva, 2006].  

 

Investigations into the bead-to-serum volume ratio using Dynal C18 beads 

demonstrated that a lower volume of bead slurry was optimal for the capture and 

analysis of serum peptides and low mass proteins. However, to avoid bead loss during 

the automated peptide extraction process, the next higher bead slurry volume (12.5 

µL prepared at 2 µg/µL) was selected for use in subsequent experiments. It can be 

hypothesised that high bead slurry volumes lead to the non-specific capture of larger 

molecular weight serum peptides and proteins leading to crystallisation and ionisation 

competition during the MALDI process. As a result of the inconsistencies in the 

initial MALDI process (i.e. discrepancies in ionisation of peptides and proteins 

caused by temporal and spatial variations), not all ions receive the same charge and 

thus, do not reach the linear detector at the same time. Therefore, not all peptides and 
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proteins are detectable to the same degree. Moreover, the resolution of ions is also 

limited in the linear mode as charged states cannot be determined. This may also 

explain the high CVs found during reproducibility analysis of each bead type. 

 

Intra-and inter-assay reproducibility experiments were preformed using Dynal C18 

beads and commercial serum. They showed that the automated technology platform 

was robust and reproducible. Average inter-assay CV values for all peaks were 28.4% 

and 17.7% for the LMR and HMR, respectively. This supports our view that the 

optimised protocol is applicable to serum screening for putative biomarker discovery. 

Inconsistencies in automated sample spotting and crystallisation are likely to be 

accountable for the inherent variability of the assay platform. Intra-assay variances of 

14-23% have been reported by others using a similar profiling strategy [de Noo et al., 

2005]. one report used 10 major peaks to report CV values of 18% from MALDI-

TOF MS measurement, with variance of 14% from sample preparation and 26% 

variance in inter-day runs [Zhang et al., 2004]. Other studies reported accumulated 

CVs of 30% in a time/temperature study and 15-36% for normalised intensity of 3 

serum peaks in an intra-and inter laboratory reproducibility tests, respectively [West-

Norager et al., 2007; Semmes et al., 2005].  It is important to note these studies only 

report CV values for a few common and relatively higher abundance peaks, without 

reporting peaks that may show higher variability. Presenting the CVs for all peaks 

detected in each data set provides a better overview of the robustness of the 

technology platform. 

 

There are several factors here that can affect the assay reproducibility, including 

liquid handling errors especially when using organic solvents. Evaporation and 

crystallisation can be affected by fluctuations in the ambient temperature and relative 

humidity of the area where the samples are processed and left to air dry before MS 

analysis. Indeed several groups have reported the influences of humidity on the 

reproducibility of serum profiles [de Noo et al., 2005; Villanueva et al., 2005; West-

Norager et al., 2007]. It is therefore important to establish the assay reproducibility 

and identify the experimental factors which affect it before trying to distinguish 

between these and disease-specific peaks in the pursuit of putative biomarkers. 
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A protocol comparison study using different sample collection and handling methods 

compatible with the optimised workflow was used for selecting a method for a large 

scale case-control study which would be practical for both clinical collection and 

protein profiling. Variance analysis showed that protocol number 2 (YE) gave the 

lowest overall variance when all peaks were considered and the highest average 

number of peaks, and therefore this method was selected as the preferred serum 

collection/handling protocol for the UKOPS serum collection. This method, whilst 

clinically feasible, does however require rapid processing of samples on ice in the 

collection centres. Therefore, dedicated staff are required for collection and 

processing. This method is also recommended by Villanueva et al. (2006) for 

assessing the effects of tumour specific protease activities in serum during the clotting 

process. No consistent effects on variance were evident between the various protocols 

where samples were placed on ice (GY, YE, CR, OR). This suggests that as long as 

samples are kept on ice, with a transport time less than 6 hours, then there is little 

effect on serum proteins profiles. Also, it appears that an extra freeze thaw cycle or 

storage tube has little effect on variance (CR protocol). 

 

Profiles from protocol number 1 (GN) were clearly different from the other protocols. 

In both mass ranges, several peaks were found to distinguish protocol 1 from the 

other protocols. PCA also found the greatest separation for protocol 1 over the other 

methods. Separation was representative for both mass ranges. Thus, although strict 

control on sample handling protocols has been proposed by many groups to reduce 

variability, the data shows that sample collection protocols can be more flexible. The 

critical issue is that all individual samples must be treated in exactly the same 

manner. This way protease activity can be better controlled and assessed for tumour-

specific activity. 

 

The results presented here also show that irrespective of transit/storage at ambient 

temperature for up to 30 hours, protocol 1 (GN) gave a relatively low overall 

variance. This finding is important for samples collected in older studies where longer 

transit times at ambient temperature have been used. Although again, one must ensure 

that case control samples for comparison have been handled identically. The finding 

that numerous peaks from both mass ranges had altered peak areas in protocol 1 
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compared to the other protocols may well be the result of proteolysis products 

appearing or substrates disappearing over time. Importantly this could make a 

difference if hypothesised tumour-specific exoprotease substrates have already been 

degraded [Villanueva et al., 2005]. For this reason, the more stringent protocol 2 (YE) 

was chosen for further biomarker discovery experiments. 

 

Having adapted and optimised a semi-automated bead-based extraction and MALDI-

TOF MS profiling platform and selected a clinically feasible protocol for sample 

collection and handling, case and healthy control serum samples from the UKOPS 

collection were analysed to look for potential markers of ovarian cancer and those 

which can discriminate malignant from benign samples. The results of this are 

presented in the next chapter.  
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Chapter 5: MALDI-TOF MS profiling of UKOPS ovarian cancer, benign cases 

and healthy control samples. 

 

 

5.1 Introduction 

 

The protocols set out and optimised in chapter 4 demonstrated that the technology 

platform developed herein for serum profiling is sufficiently reproducible. A natural 

progression from this point was to apply this platform to well-characterised clinical 

sample sets. The UKOPS sample set used contains 60 healthy volunteers, 43 and 22 

cases of benign and malignant ovarian cancer samples, respectively (Table 5.1).  

 

 

Group Number OC stage Ave CA125 
(U/mL)

H 60 N/A
B 43 50.16

Me 6 I/II 232.06
ML 16 III/IV 1895.3  

 

Table 5.1 Details for the clinical samples from the UKOPS collection. Sample details of 

each cohort including the number of volunteers, ovarian cancer stage (OC stage) and average 

CA-125 levels are shown. 

 

The collection of these samples was rigorously controlled with adherence to standard 

operation procedures to limit introduced variation and to maintain, as much as 

possible, the biological integrity of every sample. Importantly, all samples were 

identically collected and treated following a previously optimised protocol for 

MALDI-TOF MS-based profiling [Villanueva et al., 2006]. Briefly, samples were 

collected in Becton Dickinson tiger-top tubes and allowed to clot at RT for 60 mins. 

Samples were then stored on wet ice for 2 hours before centrifugation and then were 

transferred to straws for storage at -80°C until they were analysed. The sample 

handling was controlled to facilitate identification of tumour-specific exopeptidase-

generated peptides which could serve as putative markers for ovarian cancer. Thus, 

this collection represents a valuable resource ideally suited to high-throughput 

discovery of cancer biomarkers. 
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It is important to note that although standard procedures for sample collection and 

handling now exist, there are still no standards for donors. Biological variation caused 

by diet i.e. products of digestion from the intake of food before a sample is taken, and 

cyclic variations due to time of day could lead to variability in serum protein levels. 

The psychological stress suffered by donors especially those who have been 

diagnosed with cancer may also contribute to biological variation [Morita et al., 2005; 

Van et al., 1998]. For example, psychosocial factors have been shown to affect serum 

interleukin-6 levels among women with advanced ovarian cancer [Costanzo et al., 

2005]. Interleukin-6 is the chief stimulator of the production of most acute-phase 

proteins [Gabay and Kushner, 1999]. Moreover, biological variation in specific 

cytokine levels could also affect the rate of clotting and hence the degree of protein 

degradation. Indeed, many of the peptides previously identified as ‘surrogate’ cancer 

markers using the techniques described in this thesis, are derived from acute-phase 

proteins which maybe involved in the complex coagulation and complement 

pathways [Villanueva et al., 2006].  

 

Commercial serum was used as a quality control sample (QC) to establish baseline 

parameters for assessing the reproducibility of the technology platform and for 

optimising the Support Vector Machine (SVM) algorithm used to classify clinical 

samples. The aims of this chapter were to define experimental variation within the 

protocol using a previously analysed commercial serum sample (Sigma serum) and to 

establish a cut-off threshold for technical variance. In addition, to define potential 

biomarkers of ovarian cancer by analysis of healthy, benign and malignant ovarian 

cancer cases from the UKOPS collection, which is a tightly controlled case control 

serum sample collection. The sample processing and data analysis conditions, 

optimised as described in the previous chapter, were utilised to detect and statistically 

evaluate differentially expressed peaks generated using MALDI-TOF MS profiling 

and to determine if these peaks could be used for the discrimination of ovarian cancer 

samples and for stage classification. 
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5.2 Spectral analysis of QC samples 

 

To assess the technical variability caused by automated polypeptide spotting, spot-to-

spot inconsistencies in crystallisation and the inherent variability in the MALDI-TOF 

ionisation process, (discussed in the previous chapter), the intra-assay reproducibility 

was assessed using Sigma serum samples (QC). The QC samples (n=13) were 

randomly assigned positions in the assay plates and processed in parallel to the 

clinical samples.  

 

Following the automated extraction on Dynal C18 magnetic beads, the 13 QC 

samples were spotted in duplicate onto a MALDI-target plate and a total of 26 MS 

spectra were acquired in each mass range. Data from all QC samples were analysed in 

ClinProTools software using the parameters defined in Chapter 2 (section 2.2.4.2) to 

generate a set of normalised peak areas for each spectrum. The spotted QC replicates 

were loaded into the analysis software in 13 pairs, the software then generated an 

average spectrum for each pair. The averaged spectra were aligned and average peak 

areas for matching peaks were calculated. Thus, for each averaged spectrum the same 

number of peak areas was obtained. This then allowed the calculation of an overall 

average spectrum. From this a total of 101 common peaks were detected in the LMR 

and 59 peaks were detected in the HMR (Figure 5.1).  
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Figure 5.1 MALDI-TOF profiles of QC serum. The averaged spectral profiles from 13 

Sigma serum samples and 26 individual spectra in the A) LMR and B) HMR are shown. 
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Heat maps were used to visualise peak profiles from each QC sample pair to quantify 

possible spot-to-spot variation. The spectral heat maps showed that several regions in 

the peak profiles did indeed indicate spot-to-spot variation for the same sample 

preparations, as well as across the 13 QC samples (Figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Heap map representations of spectra from QC serum samples. Each of the 13 

QC samples processed was spotted in duplicate. Spot-to-spot variation is apparent in both 

mass ranges with several peaks showing discrepancies in peak area between spotting 

duplicates. The top panel shows the heat map peak profiles from the LMR and HMR and the 

bottom panel shows expanded sections of several areas where difference were obvious. 
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The intra-assay reproducibility was assessed by measuring the co-efficient of variance 

for averaged peak areas across the 13 QC samples (from spotting duplicates). The co-

efficient of variance for all peaks ranged from 8.1% in QC sample 10 to 23.9% in QC 

sample 1 in the LMR and from 8.6% in QC sample 9 to 19.0% in QC sample 10 in 

the HMR (Figures 5.3). In the LMR, 85% of all peaks were found have CVs below 

15% and in the HMR 75% of all peaks fell below this level of variance. The average 

co-efficient of variance (CV) of all the peaks ranged from 3.7-21.4% and 4.5-23.9% 

in the LMR and HMR, respectively. Thus, any changes in peak area in the clinical 

samples would need to exceed a 1.24 fold change to be considered as true biological 

differences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 LMR and HMR intra-assay reproducibility. The CVs of the average peak area 

of all peaks from the 13 randomly assayed QC serum samples in the LMR (700-4000 Da top 

panel) and HMR (4-15kDa bottom panel). The error bars indicate the standard deviation of 

the average CV values. 
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The QC samples were distributed across two MALDI plates. The inter-plate variation 

was found to be the similar across the two plates. In the LMR, the overall average 

peak area of QC samples was 30 (arb. u.) ± 2.42 (CV=8.1%) and 28 (arb. u.) ± 2.42 

(CV=8.6%) on plate 1 and plate 2, respectively. In the HMR, the overall average peak 

area of was 122.28 ± 18.9 (CV 15.4%) and 116.17 ± 16.93 (CV 14.57%) on plate 1 

and plate 2, respectively. Together these results demonstrate that the platform 

reproducibility was close to 80% with 20% technical variance. As discussed in the 

previous chapter, several factors can affect the assay reproducibility including 

fluctuation in the ambient temperature and relative humidity of the area where the 

samples are processed and left to air dry which can result in changes in the 

evaporation rate of the organic solvents used. This in turn affects the co-

crystallisation and hence the ionisation of peptides during MALDI. Subsequent 

studies in the host laboratory have shown that diluting the sample eluates 1:5 

significantly improves the intra-assay variability. It is fair to say that highly variable 

peaks are likely to be poor biomarkers. 

 

 

5.3 Spectral analysis of clinical samples 

 

Clinical samples from healthy controls, benign and ovarian cancer cases from the 

UKOPS collection were processed on the automated bead-based polypeptide 

extraction protocol followed by MALDI-TOF MS analysis (detailed in Chapter 2). As 

with the QC samples, each clinical sample was spotted in duplicate on to one of the 

two MALDI targets and spectra (average of 400 laser shots over 8 locations around 

the spot) for each spot were acquired in each mass range. 

 

 

5.3.1 Intra-condition variation 

 

To assess the variation within each clinical group, spectra from the duplicate spots 

were analysed in ClinProTools. For both mass ranges each pair belonging to the same 

sample were loaded into the analysis software as a separate condition. These were 

then averaged and peak statistics were generated. In the LMR, a total of 174 peaks 
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were detected in the aligned and averaged healthy (H) spectrum (n = 60), 166 in the 

benign (B) spectrum (n = 43), 171 in the malignant early stage (Me) spectrum (n = 6) 

and 183 in the malignant late stage (Ml) spectrum (n = 16). In the HMR, a total of 99 

peaks were detected in the averaged healthy spectrum, 108 in the benign, 98 in the 

malignant early stage and 73 in the malignant late stage (Figure 5.4A & B). The 

difference in peak numbers is likely to be the result of better peak recognition in one 

condition compared with another. 

 

The co-efficient of variance for the average peak area across the samples in the 

healthy condition ranged from 7.5% to 29.7% in the LMR and 9.0% to 45.1% in the 

HMR. While in the benign condition, the variance in average peak area ranged from 

7.6% to 40.4% and 9.0% to 29.5% in the LMR and HMR, respectively. In the 

malignant early stage condition, the variance in average peak area ranged from 8.2% 

to 30.1% and 11.8% to 28.8% in the LMR and HMR, respectively. Finally, in the 

malignant late stage condition, the variance in average peak area ranged from 8.2% to 

18.4% and 9.5% to 20.2% in the LMR and HMR, respectively. The high CVs are 

likely to be reflective of intra-condition biological variation. 
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Figure 5.4A Average LMR spectrum of the clinical samples from the UKOPS collection. 

Serum peptides were extracted using the automated bead-based extraction protocol, subjected 

to MALDI-TOF MS profiling and data processed using ClinProTools. The average spectrum 

for each clinical condition is shown A) Healthy, B) Benign, C) Malignant early stage and D) 

Malignant late stage. A total of 174 peaks were detected in the average healthy spectra, 166 

in the benign, 183 in the malignant early stage and 171 in the malignant late stage.  
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Figure 5.4B Average HMR spectrum of the clinical samples from the UKOPS collection. 

The average spectrum for each clinical condition is shown A) Healthy, B) Benign, C) 

Malignant early stage and D) Malignant late stage. A total of 99 peaks were detected in the 

average healthy spectra, 108 in the benign, 73 in the malignant early stage and 98 in the 

malignant late stage.  
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5.3.2 Comparison of QC and clinical samples 

 

Heat maps were generated to compare spectral peak profiles from QC samples with 

UKOPS clinical samples. The peak profiles of QC samples were clearly different 

from UKOPS clinical samples in both mass ranges. For example, prominent peaks at 

1779.7 m/z, 2021.8 m/z and 5060 m/z in the QC samples were less apparent in the 

clinical samples, whilst prominent peaks at 3250 m/z, 4205 m/z and 5950 m/z in the 

clinical samples were of much reduced intensity in the QC samples (Figure 5.5). The 

QC sample is a pool of 10 donors’ serum and no other details of handling were 

available from the suppliers. Thus, the differences are likely to be caused by 

differences in sample handling leading to differential proteolysis rather than 

differences in the proteomes of the donors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Heat maps of peak profiles for all samples. The peak profiles of QC samples 

were compared with UKOPS clinical samples using ClinProTools software in A) LMR and 

B) HMR. 
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Peak distribution analysis of the QC and clinical samples confirmed these differences. 

The ellipses represent the standard deviation of the average peak area. A cluster 

representing the QC samples grouped away from the clinical samples in both mass 

ranges (Figure 5.6).  

 

 
Figure 5.6 2D peak distributions of the top two discriminatory peaks. The distribution of 

peak areas from the top two discriminatory peaks in the A) LMR and B) HMR from the 

healthy (gold), benign (blue), malignant early (green), malignant late (red) and QC samples 

(purple) are shown.  
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5.3.3 Discriminatory peak analysis for clinical samples 

 

For discriminatory peak analysis, spectra from the first duplicate spot on the MALDI 

target were assigned to a training set (‘set01’) which was used to determine 

statistically significant discriminatory peaks and to create classification models. 

Spectra from the second duplicate spot were assigned to a test set (‘set02’), which 

were later used to test the classification algorithm’s ability to correctly assign spectra 

to each of the clinical conditions. Comparison of all four conditions was performed 

using 179 common peaks (S/N > 3) in the LMR and peak data was sorted according 

to Wilcoxon T-test p-values (Table 5.2). Results demonstrated that seven peaks had a 

statistically significant difference in the average peak area between the clinical 

conditions using a cut-off of p=0.05. The peak at 2905 m/z had an average peak area 

of 9.31 (arb. u.) in the healthy condition, 10.43 in benign, 9.04 in malignant early and 

25.42 in malignant late stage condition. The greatest difference in peak area was 

found between the malignant early and malignant late at conditions with ~2.5-fold 

increase in the average peak area (p = 0.0003). The second highest scoring peak at 

989.5 m/z (p = 0.0006) had a higher average peak area in the healthy condition and 

was similar in the benign, malignant early stage and malignant late stage samples. 

However, it is important to note that despite these peaks being statistically significant 

the CVs were rather high, a likely consequence of biological variation across the 

samples in each condition. Average spectra detailing the top 4 peaks are shown in 

Figure 5.7.  

 

Mass Greatest Difference 
in Ave Peak Area

Wilcoxon 
T-test Healthy Benign Mal Early Mal Late StdDev 

Healthy
StdDev 
Benign

StdDev 
Mal Early

StdDev 
Mal Late

CV 
Healthy

CV 
Benign

CV Mal 
Early

CV Mal 
Late

2905.44 16.38 0.000298 9.31 10.43 9.04 25.42 3.63 5.43 2.98 16.31 38.99 52.06 32.96 64.16
989.53 17.11 0.000628 39.27 22.82 25.06 22.15 26.46 11.9 9.32 16.03 67.38 52.15 37.19 72.37

1039.69 26.98 0.00118 60.51 39.61 41.21 33.53 28.06 14.85 8.91 16.15 46.37 37.49 21.62 48.17
2796.19 8.87 0.0114 12.03 13.9 9.85 18.72 3.79 5.77 1.96 7.42 31.50 41.51 19.90 39.64
1561.25 11.24 0.0114 15.9 19.44 27.14 19.95 5.98 6.26 8.87 4.97 37.61 32.20 32.68 24.91
1391.55 2.04 0.0147 7.07 7.69 8.68 9.11 1.45 1.7 1.98 1.76 20.51 22.11 22.81 19.32
1015.66 22.82 0.0148 75.47 56.19 58.4 52.65 28.84 19.75 10.59 14.98 38.21 35.15 18.13 28.45  

Table 5.2 Comparison of average peak areas in the LMR. Peak areas from the LMR were 

compared by loading all the conditions against each other in ClinProTools software. Peaks 

were sorted by the Wilcoxon T-test p-values. The most discriminatory peak is listed first 

(significant peaks (p<0.05) are shown). 
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Figure 5.7 MALDI-TOF spectral overlays illustrating the average LMR (700-4000 Da) 

peptide profiles. Clinical samples were processed using the automated bead-based extraction 

protocol followed by MALDI-TOF MS analysis. Data was analysed with ClinProTools 

software (V 2.0). Average spectra of healthy (gold), benign (blue), malignant early (green) 

and malignant late stage (red) samples are shown and representative discriminatory peaks 

have been enlarged to show the differences in peak area with error bars as standard deviation.   
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In the HMR, 94 common peaks (SN > 5) were compared between the four conditions 

(Table 5.3). The most discriminatory peak at 4049.54 m/z had an average peak area 

157.78 (arb. u.) in the healthy condition, 134.8 in the benign, 159.98 in the malignant 

early and 91.38 in the malignant late stage condition. The greatest difference was 

therefore found between malignant early stage and malignant late stage conditions 

where there was a difference of ~1.75 fold which was statistically significant at p = 

0.02. Using a cut-off of p=0.05 four discriminatory peaks were found in the HMR. 

The peak CVs were also high in the HMR, but lower than the LMR (Table 5.3 & 

Figure 5.8).  

 

 

Mass Difference in Ave 
Peak Area

Wilcoxon 
T-test Healthy Benign Mal Early Mal Late StdDev 

Healthy
StdDev 
Benign

StdDev 
Mal Early

StdDev 
Mal Late

CV 
Healthy

CV 
Benign

CV Mal 
Early

CV Mal 
Late

4049.54 68.6 0.0206 157.78 134.8 159.98 91.38 65.51 40.62 45.17 41.56 41.52 30.13 28.23 45.48
4204.56 451.51 0.0228 1015.34 1052.82 1250.23 798.72 338.93 170.68 178.33 226.22 33.38 16.21 14.26 28.32
6241.38 15.67 0.0228 45.75 40.25 39.07 54.73 13.67 10.88 7.6 20.02 29.88 27.03 19.45 36.58
4636.66 42.92 0.0245 135.78 157.15 152.2 114.24 40.77 41.86 37.5 33.2 30.03 26.64 24.64 29.06  

Table 5.3 Comparison of average peak areas in the HMR. Peak areas from the HMR were 

compared by loading all the conditions against each other in ClinProTools software. Peaks 

were sorted by Wilcoxon T-test p-values. The most discriminatory peak is listed first (only 

significant peaks (p <0.05) are shown here). 
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Figure 5.8 MALDI-TOF spectral overlays illustrating the average HMR (4-15 kDa) 

peptide profiles. Clinical samples were processed using the automated bead-based extraction 

protocol followed by MALDI-TOF MS analysis. Data was analysed with ClinProTools 

software (version 2.0). Average spectra of healthy (gold), benign (blue), malignant early 

(green) and malignant late stage (red) samples are shown and representative discriminatory 

peaks have been enlarged to show the differences in peak area with error bars representing 

the standard deviation.   
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Further analysis of the statistically significant discriminatory peaks suggested that 

fluctuations in the amount of these peptide masses could be related to proteolysis. For 

example, in the LMR peaks at 2905 m/z and 2796 m/z which showed a greater 

average peak area in the malignant late stage condition could be fragments of the 

same polypeptide. Peaks at 989.5 m/z, 1015.3 m/z and 1039.5 m/z which all showed a 

greater peak area in the healthy condition are approximately 25 Da apart and maybe 

modified fragments of the same peptide (Figure 5.9). In the HMR peaks at 4049.5 

m/z and 4204.5 m/z which showed a greater average peak area in the malignant early 

stage condition and are approximately 155 Da apart (the amino acid Arginine has a 

mass of 156 Da). These peaks may also be fragments of the same polypeptide (Figure 

5.10). 
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Figure 5.9 Comparison of discriminatory peaks in the LMR. Data analysis showed 

several peaks with differences in average peak area which discriminate clinical samples. 

Peaks with statistically significant difference (p<0.05) are shown here. 
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High mass range (4-15kDa)
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Figure 5.10 Comparison of discriminatory peaks in the HMR. Data analysis showed 

several peaks with differences in average peak area which discriminate clinical samples. 

Peaks with statistically significant difference (p<0.05) are shown here. 
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Despite this, a peak distribution analysis for pairs of discriminatory peaks revealed 

poor separation of the healthy, benign, malignant early stage and malignant late stage 

conditions. The ellipses in Figure 5.11 represent the standard deviation of the average 

peak area. 

 

 
Figure 5.11 2D peak distributions of the top two discriminatory peaks. The distribution 

of peak areas from two discriminatory peaks in the A) LMR and B) HMR from the healthy 

(gold), benign (blue), malignant early (green), malignant late (red) are shown.  
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Pair-wise comparisons using the Wilcoxon test between clinical conditions revealed a 

number of additional discriminatory peaks in both mass ranges. In the LMR, a peak at 

904.8 m/z had a 1.5-fold difference in average peak area between the healthy and 

benign conditions. This peak was significantly up-regulated in the benign condition 

(p=0.04). Peaks at 1203 m/z and 1064 m/z discriminated between the healthy and 

malignant late stage conditions. The peak at 1203 m/z was up-regulated by 1.4 fold in 

the malignant late stage condition (p=0.03), while the peak at 1064 m/z was up-

regulated by 1.5 fold in the healthy condition. In the LMR, the greatest number of 

differentially expressed peaks were found between the healthy and the malignant late 

stage conditions.  

 

In the HMR, a greater number of differences were found between the benign and the 

malignant late stage conditions. In addition to the 4 statistically significant peaks 

found in the four conditions comparison, peaks at 4086.6 m/z and 5062.6 m/z were 

found to discriminate between the benign and the malignant late stage conditions. 

Both peaks were up-regulated in the benign condition. The peak at 4086.6 m/z was 

up-regulated by approximately 1.3-fold (p=0.05), and the peak at 5062.6 m/z was up-

regulated by approximately 1.4-fold (p=0.01). 
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Peak distribution analysis was performed using pairs of discriminatory peaks (Figure 

5.12). In the LMR the ellipses representing the standard deviation for the average 

peak area for the two most discriminatory peaks showed the large spread of the data.  

 
 

Figure 5.12 2D peak distributions of clinical samples in the LMR. The distributions of the 

areas of the two most discriminatory peaks in the different clinical conditions are shown. The 

x-axis shows the peak areas of the most discriminatory peak and the y-axis the peak areas for 

the second most discriminatory peak. The ellipses represent the standard deviation of the 

average peak area. 
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Peak distribution analysis in the HMR showed that the malignant late stage condition 

separated reasonably well from the healthy, benign and malignant early stage 

conditions. There was no separation between the healthy, benign and malignant early 

stage conditions. 

 

 
 

Figure 5.13 2D peak distributions of clinical samples in the HMR. The distributions of the 

areas of the two most discriminatory peaks in the different clinical conditions are shown. The 

x-axis shows the peak areas of the most discriminatory peak and the y-axis the peak areas for 

the second most discriminatory peak. The ellipses represent the standard deviation of the 

average peak area. 
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5.4 Classification of clinical samples using SVM 

 

MS spectra consist of high dimensional data which can be used by classification 

algorithms to classify samples into their respective clinical groups. ClinProTools has 

a built in function for spectral classification. For the classification of UKOPS samples 

the Support Vector Machine (SVM) algorithm was chosen. The concept of the SVM 

was developed by Vladimir Vapnik [Vapnik, 1999]. It has fast become an established 

pattern recognition tool. In the simplest case, using sophisticated mathematical 

approaches, the SVM helps to determine an optimal hyperplane separating two clouds 

of data.  

 

Spectra from the first set of spotting replicates (‘set01’) were used as a ‘training set’ 

to create models. Several tests were done to optimise the recognition capabilities of 

the model, including the number of peaks used by the model and the number of k-

nearest neighbours. The k-nearest neighbours algorithm is amongst the simplest of all 

machine learning algorithms. Using this algorithm an object is classified by a 

majority vote of its neighbours, the object is then assigned to the class most common 

amongst its k nearest neighbors. For spectral recognition, 80% of spectra were used 

by the model and the remaining 20% were left out for cross-validation as a measure 

of the reliability of the calculated model (Tables 5.4 & 5.5). 
 

Model name Number of peaks Number of k-NN Recognition (%) Cross Validation (%)
SVM 1 auto 1-25 3 80.9 44.73
SVM 2 auto 1-25 5 67.25 46.7
SVM 3 50 peaks 3 74.11 49.31
SVM 4 50 peaks 5 60.16 49.74
SVM 5 100 peaks 3 68.75 45.92
SVM 6 100 peaks 5 58.27 46.85  

Table 5.4 Optimisation of the SVM’s parameters in the LMR. The recognition and cross 

validation capabilities of the SVM used for classification of clinical samples involved the 

optimisation of the number of peaks and k-nearest neighbours used as shown. 
 

Model name Number of peaks Number of k-NN Recognition (%) Cross Validation (%)
SVM 1 auto 1-25 3 79.86 73.23
SVM 2 auto 1-25 5 80.78 41.33
SVM 3 50 peaks 3 60.08 42.32
SVM 4 50 peaks 5 62.49 40.75
SVM 5 100 peaks 3 60.49 42.9
SVM 6 100 peaks 5 59.57 40.65  

Table 5.5 Optimisation of the SVM’s parameters in the HMR.  
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The SVM1 model gave the highest recognition and cross validation scores. This 

model was initially tested on spectral data which included the QC samples. In the 

LMR, the SVM algorithm automatically selected 24 discriminatory peaks and the 

results demonstrate that the overall recognition capability of the algorithm was 80.9% 

and 100% of QC spectra were recognised and cross-validated correctly (Table 5.6). 

 

 

A) Model Generation Classes
Class 1: MalignantLate\set01
Class 2: MalignantEarly\Set01
Class 3: Benign\set01
Class 4: Healthy\set01
Class 5: QC\set01

B) Recognition Capability
Overall: 80.90%
Class 1: 76.92%
Class 2: 50%
Class 3: 82.93%
Class 4: 94.64%
Class 5: 100%

C) Cross Validation
Percent Leave Out: 20%
Number of Iterations: 10
Overall: 44.73%
Class 1: 21.43%
Class 2: 7.14%
Class 3: 44.29%
Class 4: 50.81%
Class 5: 100%  

Table 5.6 ClinProTools SVM model generation for the LMR. A) Classes of the clinical 

conditions, B) the SVM’s recognition capability for 80% of spectra from the training set, C) 

the cross validation results for the remaining 20% of spectra. 
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Index Mass Start Mass End Mass Weight
1 708.48 704.89 711.06 0.97
5 742.06 737.45 745.85 1.02
7 771.72 766.89 774.05 0.87

22 921.53 915.64 931.04 0.94
32 1064.03 1050.6 1071.58 0.83
54 1391.49 1384.98 1396.63 1.22
71 1643.45 1637.1 1649.41 1.62
77 1724.82 1720.17 1730.94 1.2
87 1912.03 1906.86 1925 0.75
91 1985.93 1978.75 1993.59 1.29
95 2103.39 2094.57 2113.35 1.1
100 2194.48 2190.47 2204.74 0.85
109 2347.43 2339.11 2356.27 0.75
111 2381.07 2369.61 2393.16 0.74
112 2427.27 2412.5 2438.82 0.74
114 2465.08 2454.65 2469.76 1.03
118 2541.01 2531.82 2545.92 0.8
124 2666.82 2653.5 2677.85 0.83
126 2703.61 2697.63 2710.09 0.76
129 2774.16 2752.19 2789.64 0.86
130 2796.24 2789.64 2806.65 0.95
134 2869 2859.76 2877.93 0.9
135 2888.39 2877.93 2898.73 1.77
136 2905.47 2898.73 2915.9 2.77

D) Integration Regions used for Classification

 
 

Table 5.6 continued. ClinProTools SVM model generation for the LMR. D) The 

integration m/z regions of the 24 peaks automatically selected for classification, here the peak 

weight refers to the ranking of the peak which is dependent on the separation properties of the 

peak. Peaks with good separation properties are ranked highly and therefore had a greater 

weight. 
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In the HMR, the SVM algorithm automatically selected 23 discriminatory peaks and 

the results demonstrate that the overall recognition capability of the algorithm was 

80.24% all QC spectra were recognised and cross-validated correctly (Table 5.7). 

 

 

A) Model Generation Classes
Class 1: MalignantLate\set01
Class 2: MalignantEarly\set01
Class 3: Benign\set01
Class 4: Healthy\set01
Class 5: QC\set01

B) Recognition Capability
Overall: 80.24%
Class 1: 68.75%
Class 2: 66.67%
Class 3: 76.09%
Class 4: 89.71%
Class 5: 100%

C) Cross Validation
Percent Leave Out: 20%
Number of Iterations: 10
Overall: 44.77%
Class 1: 30.56%
Class 2: 0%
Class 3: 36.71%
Class 4: 56.58%
Class 5: 100%  

Table 5.7 ClinProTools SVM model generation for the HMR. A) Classes of the clinical 

conditions, B) the SVM’s recognition capability for 80% of spectra from the training set, C) 

the cross validation results of the remaining 20% of spectra.  
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D) Integration Regions used for Classification
Index Mass Start Mass End Mass Weight

1 4052.64 4023.84 4071.76 1.53
2 4085.21 4071.76 4108.98 0.77
3 4204.57 4146.51 4243.28 0.79
6 4460.16 4431.15 4498.18 0.74
7 4517.76 4498.18 4543.45 1.24
9 4636.69 4591.79 4667.16 1.82
13 4913.91 4905.28 4931.07 1.29
15 5061.92 5034.37 5113.05 2.13
20 5433.5 5396.42 5454.76 0.85
22 5586.23 5552.22 5607.79 1
24 5745.73 5698.63 5778.98 1
27 6080.9 6054.53 6120.97 0.83
29 6240.24 6213.51 6257.29 2.74
34 6626.33 6551.84 6680.79 1.11
36 6793.12 6756.81 6844.78 1.12
42 7217.61 7198.09 7256.2 0.84
47 7629.24 7617.61 7686.81 1.05
52 8227.55 8176.56 8239.04 1.06
53 8340.4 8306.8 8366.41 0.86
55 8585.3 8498.62 8647.2 0.98
57 8757.14 8718.24 8821.78 1.46
58 8916.4 8821.78 8986.36 0.78
66 9789 9752.14 9804.02 0.95  

 

Table 5.7 continued. ClinProTools SVM model generation for the HMR. D) The 

integration m/z regions of the 24 peaks automatically selected for classification, here the peak 

weight refers to the ranking of the peak which is dependent on the separation properties of the 

peak. Peaks with good separation properties are ranked highly and therefore had a greater 

weight. 

 

 

For the classification of clinical spectra (without the QC samples), the SVM 

algorithm automatically selected 24 peaks in the LMR, based on the T-test p-values to 

give 86% overall recognition capability for 80% of spectra from the training set and 

was able to correctly recognise 75%, 100%, 81.4% and 88.3% of the malignant late 

stage, malignant early stage, benign and healthy samples (Table 5.8). For cross-

validation the remaining 20% of the spectra were classified by the model giving an 

overall score of 29.39% which is considered poor. The algorithm was able to 

recognise more of the healthy spectra (61.9%) than either of the benign and malignant 

late stage spectra (33.8% and 21.9%; Table 5.8). Of the 24 peaks selected by the 

SVM model peaks at 1391.5 m/z, 2796 m/z and 2905 m/z were also reported in Table 

5.2 which showed peaks ranked according to Wilcoxon p-values. 

 



Chapter 5 

 151

 

Class 1: MalignantLate\set01
Class 2: MalignantEarly\set01
Class 3: Benign\set01
Class 4: Healthy\set01

Overall: 86.18%
Class 1: 75%
Class 2: 100%
Class 3: 81.40%
Class 4: 88.33%

Percent Leave Out: 20%
Number of Iterations: 10
Overall: 29.39%
Class 1: 21.88%
Class 2: 0%
Class 3: 33.77%
Class 4: 61.90%

A) Model Generation Classes

B) Recognition Capability

C) Cross Validation

 
Table 5.8 ClinProTools SVM model generation for the LMR. A) Classes of the clinical 

conditions, B) the SVM’s recognition capability for 80% of spectra from the training set, C) 

the cross validation results of the remaining 20% of spectra. 
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Index Mass Start Mass End Mass Weight
1 708.48 704.89 711.06 0.97
5 742.06 737.45 745.85 1.02
7 771.72 766.89 774.05 0.87

22 921.53 915.64 931.04 0.94
32 1064.03 1050.6 1071.58 0.83
54 1391.49 1384.98 1396.63 1.22
71 1643.45 1637.1 1649.41 1.62
77 1724.82 1720.17 1730.94 1.2
87 1912.03 1906.86 1925 0.75
91 1985.93 1978.75 1993.59 1.29
95 2103.39 2094.57 2113.35 1.1
100 2194.48 2190.47 2204.74 0.85
109 2347.43 2339.11 2356.27 0.75
111 2381.07 2369.61 2393.16 0.74
112 2427.27 2412.5 2438.82 0.74
114 2465.08 2454.65 2469.76 1.03
118 2541.01 2531.82 2545.92 0.8
124 2666.82 2653.5 2677.85 0.83
126 2703.61 2697.63 2710.09 0.76
129 2774.16 2752.19 2789.64 0.86
130 2796.24 2789.64 2806.65 0.95
134 2869 2859.76 2877.93 0.9
135 2888.39 2877.93 2898.73 1.77
136 2905.47 2898.73 2915.9 2.77

D) Integration Regions used for Classification

 
Table 5.8 continued. ClinProTools SVM model generation for the LMR. D) The 

integration m/z regions of the 24 peaks automatically selected for classification, here the peak 

weight refers to the ranking of the peak which is dependent on the separation properties of the 

peak.  
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In the HMR (without the QC samples), the SVM automatically selected 24 peaks 

based on the T-test p-values to give 76.29% overall recognition capability of 80% of 

the spectra from the training set. For cross-validation the remaining 20% of spectra 

were classified with an overall score of 32.97% (Table 5.9).  Of the 24 peaks selected 

by the SVM model, peaks at 4049.5 m/z, 4204.6 m/z, 4636.7 m/z and 6241.4 m/z 

were also reported in Table 5.3 where peaks were ranked according to Wilcoxon p-

values. 

 

 

Class 1: MalignantLate\set01
Class 2: MalignantEarly\set01
Class 3: Benign\set01
Class 4: Healthy\set01

Overall: 76.29%
Class 1: 56.25%
Class 2: 83.33%
Class 3: 78.26%
Class 4: 87.32%

Percent Leave Out: 20%
Number of Iterations: 10
Overall: 32.97%
Class 1: 14.29%
Class 2: 6.67%
Class 3: 46.25%
Class 4: 64.67%

A) Model Generation Classes

B) Recognition Capability

C) Cross Validation

 
 

Table 5.9 ClinProTools SVM model generation for the HMR. A) Classes of the clinical 

conditions, B) the SVM’s recognition capability for 80% of spectra from the training set, C) 

the cross validation results of the remaining 20% of spectra. 
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Index Mass Start Mass End Mass Weight
1 4049.54 4024.58 4068.91 1.69
2 4085.83 4068.91 4108.55 0.96
3 4204.56 4148.45 4243.37 0.97
4 4269.99 4244.24 4325.33 0.9
8 4520.07 4495.67 4544.24 1.27
10 4636.66 4590.98 4667.54 1.8
13 4884.69 4859.62 4904.08 0.93
14 4915.69 4904.08 4934.56 1.19
17 5061.53 5024.29 5107.07 2.27
18 5129.26 5109.12 5141.4 0.91
24 5481.79 5453.73 5503.71 0.75
25 5584.98 5555.3 5607.82 1.03
27 5745.26 5677.33 5779.39 0.96
32 6241.38 6203.12 6280.6 2.13
34 6426.38 6391.45 6472.98 0.73
36 6623.96 6552.53 6679.81 1.16
38 6792.77 6756.07 6843.53 0.94
50 7647.82 7620.49 7648.96 1.19
56 8231.32 8175.47 8238.88 1.04
57 8343.05 8307.01 8371.67 1
60 8586.01 8498.54 8644.07 1.19
62 8753.87 8717.49 8819.1 1.64
63 8913.51 8819.1 8976.27 0.77
70 9791.25 9746.89 9803.73 0.79

D) Integration Regions used for Classification

 
Table 5.9 continued. ClinProTools SVM model generation for the HMR. D) The 

integration regions of the 24 peaks automatically selected for classification. 
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The SVM algorithm was then used to classify a second set of data from the other 

duplicate spots. Results showed that for the LMR data 77% of the healthy, 51% of the 

benign, 16% of the malignant early stage and 31% of the malignant late stage spectra 

were classified correctly, this represents sensitivity of the algorithm. In the HMR 63% 

of the healthy, 67% of the benign, 0% of the malignant early stage and 63% of the 

malignant late stage spectra were classified correctly. In addition, 92% of QC spectra 

from both mass ranges were correctly classified (Table 5.10). 

 

Clinical condition LMR % of spectra 
classified correctly

HMR % of spectra 
classified correctly

Mal Late 31 63
Mal Early 16 0
Benign 51 67
Healthy 77 63
QC 92 92  

 

Table 5.10 SVM Classification results. The SVM algorithm was used to classify a ‘test-set’ 

of spectral data from all conditions. Results for the LMR and HMR are shown. 

 

 

During the initial model generation stage the SVM results showed that 100% of the 

QC data were recognised and cross-validated correctly. The SVM was then tested on 

a second data set from the duplicate spot and results showed that 92% of QC spectra 

in both the LMR and HMR were classified correctly. This suggests that the sensitivity 

of the algorithm is greater than 90%. Results from the clinical conditions suggest that 

the classification algorithm may have been limited by the number of spectra available 

and the relatively large variation across samples within the conditions. The overall 

scores for the healthy and benign conditions were better than the scores for the 

malignant stage conditions where there were fewer samples. In summary, this data 

shows that the spectra do not contain information for reliably predicting the clinical 

conditions under investigation. 
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5.5 Discussion 

 

The human serum proteome is an extremely complex biological sample containing 

information on numerous biological processes that takes place in the body. Cancer 

cells can release proteins into the extracellular fluid through secretion of intact or 

cleaved proteins in response to changes taking place in the cancer tissue 

microenvironment and due to cancer cell-host interactions. Many of these products 

will end up in the bloodstream and hence serve as potential serum biomarkers. 

Therefore, studying the serum proteomes of healthy, benign and malignant donors is 

the logical starting point for identifying diagnostic biomarkers and therapeutic targets 

for cancer [Grizzi and Chiriva-Internati, 2006; aoui-Jamali and Xu, 2006]. In recent 

years, many advances have been made in the field of proteomics. In particular, the 

use of high-throughput mass spectrometry methods for analysing complex proteomes 

(e.g. human serum) has become widespread.  

 

The aim of the work presented in this chapter was to analyse clinical samples from 

the UKOPS collection to determine statistically significant discriminatory 

peptide/protein peaks and to determine if these peaks could be used for the 

classification of ovarian cancer. This aim was tackled by processing samples 

collected in accordance with a standardised protocol on a semi-automated and 

optimised bead-based serum polypeptide extraction platform followed by MALDI-

TOF MS profiling. 

 

Firstly, the intra-assay reproducibility was calculated using QC samples which had 

been processed alongside the clinical samples. Results demonstrated that the intra-

assay reproducibility did not exceed 20% variance. In fact 85% of LMR peaks and 

75% of HMR peaks were found to be below a 15% threshold. Despite this, spot-to-

spot variations in peak profiles of the same sample were evident. Indeed, one of the 

major drawbacks in using MALDI-TOF MS for serum profiling is the inherent 

variability of the sample preparation process including automated sample spotting and 

inconsistencies in crystallisation [Cohen and Chait, 1996]. The co-crystallisation of 

the analyte with the matrix is a prerequisite for uniform ionisation of biomolecules.  
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A major issue is the non-homogeneous distribution of the analyte in the co-crystallite. 

To minimise the effects of non-homogeneous distribution of the analyte, spectra were 

generated by accumulating 400 laser shots over 8 different locations on the spots. The 

QC sample was included in the assay to across for the technical variability of the 

semi-automated platform at the time of clinical sample analysis. 

 

Herein the comparison of MALDI-TOF MS spectral peak profiles has shown that the 

intra-condition variation was relatively high (30-60%) which reflects the combination 

of technical error and the biological heterogeneity between samples. In the LMR, 

there were significant differences in the abundance of certain peaks between the 

healthy and malignant late stage, healthy and benign, and benign and malignant late 

stage conditions. Of these only one statistically significant peak was found to 

discriminate between the malignant early and late stage. However, no statistically 

significant peaks were found to discriminate the healthy and benign conditions from 

malignant early stage condition. In the HMR, no statistically significant peaks were 

found to discriminate the healthy condition from the benign or malignant early stage 

conditions, though 5 peaks were found to change significantly between the benign 

condition and the malignant late stage conditions.  

 

Interestingly, several peaks were found to be common in discriminating clinical 

conditions. In the LMR, peaks at 989 m/z and 2905 m/z were common discriminatory 

peaks between the clinical conditions. The average peak area of peak 989 m/z was 

higher in the healthy condition compared with benign and malignant conditions and 

the average peak area of 2905 m/z was higher in malignant late stage compared with 

the other conditions. However, the CVs of both these peaks were high. For the peak at 

989 m/z the CV of the average peak area ranged from 37% to 72% and for peak at 

2905 m/z from 33% to 64% between the clinical conditions. In the HMR, peaks at 

m/z 4050 and 4205 were found to be common discriminatory peaks and on average 

the peak areas of both of these peaks were lower in the malignant late stage condition. 

Again the CVs of the average peak area were high. For the peak at 4050 m/z the CV 

ranged from 28% to 46% and for peak at 4205 m/z from 14% to 33% between clinical 

conditions. The limited number of samples for the malignant conditions and the intra-

condition biological variation which was found to be highest in the healthy and 
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benign conditions in both mass ranges could explain the lack of discrimination 

between the conditions. 

 

Using a combination of peaks it was possible to classify spectra into their respective 

clinical groups. The results from the SVM analysis demonstrated that in the LMR 

77% of healthy, 51% benign, 17% malignant early stage and 31% malignant late 

stage spectra were classified correctly. In the HMR, 63% healthy, 67% benign, 0% 

malignant early stage and 63% malignant late stage spectra were classified correctly. 

These poor classification results could be attributed to the limited number of samples 

for the malignant conditions as well as a lack of robust discriminatory peaks. 

Interestingly, none of the benign and malignant early spectra were classified as 

malignant late stage and none of the malignant late stage as malignant early stage 

spectra. This was found to be true in both mass ranges.  

 

Results from the discriminatory peak and SVM analysis suggest that a panel of 

peptide masses at 989 m/z, 1064 m/z, 1392 m/z, 2796 m/z, 2905 m/z, 4049 m/z, 4205 

m/z, 4637 m/z, 5062 m/z and 6241 m/z could be potentially useful markers of 

disease, albeit with poorer performance relative to the existing marker CA125. For 

CA-125 sensitivities of 85% and specificities of 65% are reported. Combining the 

discriminatory peaks with CA-125 values could provide better sensitivities and 

specificities. The average peak area of these masses changed depending on clinical 

condition. Although not identified, these peaks are likely to be fragments of acute-

phase, complement and clotting proteins that are commonly found in serum. 

 

In conclusion, the results demonstrate the feasibility of the technology platform for 

discriminating clinical samples. However, the intra-condition variation was a major 

limitation. A larger sample set with more malignant samples would be needed to 

better validate test results. Standardised operating procedures for donors would also 

be required to minimise biological variation. Furthermore, direct mass spectrometric 

serum profiling has a limited dynamic range and difficulties in providing the 

identification of the distinctive peptides and proteins. It is most likely that the 

distinctive profiles may result from the differential expression of relatively abundant 

serum proteins and their fragments associated with the host response to tumours and 
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generated by exoproteases as previously reported by Villanueva et al. However, in the 

case of ovarian cancer, it appears that these surrogate markers are less informative 

than for other cancer types. This may be due to different or lower exopeptidase 

activities in ovarian cancer samples compared with breast, prostate and bladder 

cancer. 

 

Attempts to isolate masses of interest using 10kDa ultrafiltration devices followed by 

1D-SDS PAGE separation for identification of masses of interest were unsuccessful 

and only very low levels of peptides could be recovered. It is speculated that many  

low molecular weight peptides and proteins are bound to the high molecular weight 

and high abundance carrier proteins such as albumin [Lowenthal et al., 2005]. 

MALDI-QTOF MS analysis is a good alternative method for peptide identification as 

this allows direct MS/MS sequencing of discriminatory masses. Work is underway to 

identify these peaks using MALDI-QTOF, although it should be noted that the 

sensitivity of the technique is lower than that of MALDI-TOF MS with fewer 

peptides detected, and the observed mass range is reduced.  

 

Finally, MS-based peak pattern recognition is a useful tool for discovery phase 

research with target masses being identified and characterised prior to the possible 

translation to the clinic. MALDI-TOF protein profiling however, provides only a 

limited mass window for putative biomarker analysis. Sensitivity of detection and 

coverage in clinical proteomics can be effectively improved with extensive pre-

fractionation strategies to remove high abundant proteins which can mask the 

detection of lower abundance protein species. This is the main focus of the next 

chapter. 
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Chapter 6: Fluorescence Two-Dimensional Difference Gel Electrophoresis-based 

profiling of case-control sera for the identification of putative ovarian cancer 

biomarkers. 

 

 

6.1 Introduction 

 

Work from the previous chapter demonstrated that the direct analysis of human serum 

using MALDI-TOF MS profiling has several limitations. Firstly, for serum the 

method has a limited dynamic range of detection (10²-106). Secondly, only low mass 

polypeptides are sampled in the MS. Thirdly accuracy of quantification may be 

compromised by the inherent variability of the crystallisation and ionisation 

processes. Fourthly, it is difficult to directly identify discriminatory masses of interest 

without using online tandem MS which is inherently less sensitive. It is well 

documented that the serum proteome is an extremely complex protein mixture and 

conceivably contains all proteins (and fragments thereof) that are expressed in the 

cells and tissues of an organism. The serum proteome also has an exceptionally large 

dynamic range of protein expression with protein concentrations spanning 10 orders 

of magnitude [Liang and Chan, 2007]. For putative biomarker discovery it is 

imperative to employ separation techniques which will facilitate the analysis of 

differentially expressed proteins across a broad dynamic range. 

 

While two-dimensional electrophoresis (2-DE) is limited in the ability to detect low 

abundance and hydrophobic proteins, it still remains a valuable method for the 

separation and profiling of complex mixtures of proteins. Fluorescence two-

dimensional Difference Gel Electrophoresis (2D-DIGE) was developed for improved 

multiplex proteomic profiling based on the spectrally resolvable fluorescent dyes 

Cy2, Cy3 and Cy5 [Tonge et al., 2001; Gharbi et al., 2002]. Fluorescence 2D-DIGE 

was employed to complement the MALDI-TOF MS serum profiling work from the 

previous chapters by extending the mass range of proteins detected and hopefully to 

increase the dynamic range of detection of serum proteins. However, the complex 

nature of serum and the presence of a few proteins at very high concentration levels 

(mg/mL) makes detection of low-abundance proteins by 2-DE challenging, since the 
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sample loading capacity is limited and the presence of high-abundance proteins can 

mask the detection of low-abundance proteins [Song and Hanash, 2006]. 

Consequently, depletion and fractionation strategies have become popular for 

dividing the serum proteome into smaller and simpler subsets for the detection of as 

many proteins as possible, including those at lower abundance [Echan et al., 2005]. A 

highly promising first step for most analysis strategies of serum or plasma is to 

deplete the major proteins. Classically, Cibacron Blue and protein A/G 

chromatography methods have been used to deplete serum of albumin and the 

immunoglobulins respectively [Kim and Kim, 2007]. Ideally, for biomarker 

discovery it is desirable to deplete as many high-abundance proteins as possible while 

minimising incidental losses of non-targeted proteins. In recent years, a range of 

methods to deplete high-abundance proteins have been evaluated. For example, a 

recently commercialised HPLC polyclonal antibody column and its spin column 

version (MARS, Agilent Technologies) are very promising methods for depleting 

human serum or plasma samples. Polyclonal antibodies are more likely to deplete 

multiple structural forms of a protein and thus, these columns enabled 10- to 20-fold 

higher amounts of depleted serum samples to be applied to 2-D gels [Bjorhall et al., 

2004; Echan et al., 2005; Sriyam et al., 2007; Liu et al., 2006]. Alternatively, 

strategies for compressing the protein dynamic range have also been commercialised. 

An example of this is the ProteoMiner protein enrichment technology (BioRad), 

which is based on treatment of complex protein samples with a large, highly diverse 

library of hexa-peptides bound to chromatographic supports [Guerrier et al. 2006; 

Guerrier et al. 2008; Boschetti et al. 2008]. In theory, the hexa-peptides can bind to 

all unique protein sequences in the mixture. Because the bead volume limits binding 

capacity, high-abundance proteins quickly saturate their ligands and excess protein 

can be washed out. In contrast, low-abundance proteins are concentrated on their 

specific ligands, thereby decreasing the dynamic range of proteins in the sample. 

When analysed using downstream proteomic applications, the number of protein 

species detected is dramatically increased. 

 

The main focus of this chapter is the use of a 2D-DIGE based protein profiling 

strategy for the differential analysis of pooled clinical serum samples. Two different 

fractionation strategies were used to enrich the lower abundance proteins prior to 2D-
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DIGE including a commercialised HPLC column containing antibodies to seven of 

the most abundant serum proteins, and a protein enrichment kit for “dynamic range 

compression”. Each of these fractionation methods were compared with the analysis 

of unfractionated sera and case control samples (UKOPS) were compared for the 

discovery of putative biomarkers of ovarian cancer. Differentially expressed protein 

features were identified using MALDI-TOF peptide mass fingerprinting (PMF) and 

LC-MS/MS analysis. 
 

 

6.2 Pooled UKOPS clinical sera 
 

Due to the limited availability of clinical samples equal volumes of each serum 

sample from the UKOPS collection were pooled into their respective clinical groups. 

Thus, serum pools were created for the healthy, benign and malignant late stage 

conditions. In addition, since only a very limited number of malignant early stage 

samples (n=6) were available, this condition was excluded from the 2D-DIGE 

experiments. Pooling of biological samples is one method that can allow many 

samples to be studied simultaneously, while preventing false conclusions based on a 

limited number of individual samples. However, pooling strategies hide the 

underlying variation across sample sets and may reveal average data that is possibly 

skewed by outliers. The obvious advantage of pooling is to save time and money. 

Analysis of all samples individually could not be accomplished using 2D-DIGE.  

 

The protein concentration of each pool was determined using the Pierce BCA protein 

assay using BSA to generate a standard curve. For accurate measurement within the 

linear range of the assay, pooled sera from each clinical condition were diluted 1:100 

with HPLC grade deionised water. Results showed that the protein concentrations of 

the healthy, benign and malignant late stage pools were 93.9 mg/mL, 91.9 mg/mL 

and 85.3 mg/mL respectively. All pools were then equalised to 85.3 mg/mL with 

HPLC grade deionised water. 
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6.2.1 2D-DIGE analysis of pooled serum samples. 
 

The depletion of major proteins is typically accompanied with a significant loss of 

components of potential interest. For instance, the removal of serum albumin can 

result in the removal of a multitude of proteins and peptides bound to it, which might 

be valuable for diagnostic purposes [Granger et al., 2005]. With this in mind, a 6 gel 

experiment was initially performed to compare the number of differentially expressed 

protein features between the unfractionated clinical pools. 50µg of protein was 

labelled with Cy3 or Cy5. In addition, to avoid any protein-specific dye effects, dye 

swaps were performed and samples were run in quadruplicates as shown in Figure 

6.1. 

 
Figure 6.1 Experimental design of DIGE labelling to compare protein profiles across 

pools of unfractionated UKOPS serum samples. Clinical samples were pooled into 

healthy, benign and malignant groups and then prepared in NHS-lysis buffer. Equal amounts 

of protein (50 µg) were labelled with 200 pmol of Cy3 or Cy5 as shown. Cy3 and Cy5 

labelled samples were then mixed appropriately and run on six individual 2-D gels and 

fluorescence images captured. The figure shows the labelling strategy used for the 6 gels 

analysing unfractionated sera (50µg protein per dye) and superimposed images generated of 

each of the six gels (using Image Quant software). The same labelling strategy was later used 

for the 6 gel analyses of MARS fractionated sera. 
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Samples were diluted in a urea and CHAPS-based 2D-lysis buffer and subjected to 

2D-DIGE analysis, as described in Chapter 2. Briefly, equal amounts of protein (50 

µg) from each clinical condition were labelled with Cy3 and Cy5 in quadruplicates. 

The samples were mixed and run on 24 cm pH 3-10 non-linear IPG strips in the first 

dimension, followed by 12% SDS-PAGE in the second dimension. The gels were 

scanned at two different excitation/emission wavelength combinations generating two 

fluorescent images of proteins labelled with Cy3 and Cy5. Images were imported into 

DeCyder software for image analysis and quantitative comparison of differentially 

expressed proteins. Paired fluorescent images were processed using the differential 

in-gel analysis (DIA) module of the software; gel images were normalised and spot 

boundaries defined to calculate spot abundances and fold-ratios of abundance 

calculated between the superimposable paired images. The matched images were then 

imported into the biological variance analysis module (BVA), where protein features 

from a selected master gel were matched with the corresponding features across the 

other gel images. A representative superimposed image of two Cy dye images from 

the unfractionated pooled serum samples is shown in Figure 6.2.  

 

 

 
Figure 6.2 Gel image of unfractioned sera used as the ‘master’ gel in DeCyder image 

analysis. This figure represents the overlaid fluorescent images derived from the 

unfractionated pooled sera labelled with Cy3 (red-healthy) and Cy5 (blue-malignant). This 

figure was prepared using Adobe Photoshop. 
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A total of 934 protein features were detected in the master gel of the unfractionated 

sera. To keep the cost of the experiment to a minimum, no internal Cy2-labelled 

control was used. However, this made matching of protein features across the gels 

more difficult. Despite this, quantitative analysis showed that 39 protein features were 

up-regulated and 2 were down-regulated in the malignant condition versus the healthy 

condition (≥ 1.5 average fold-change in abundance, p <0.05, n = 4). Five protein 

features were found to be differentially expressed between the healthy and benign 

conditions with all 5 down-regulated in the benign condition. Eight protein features 

were differentially expressed between the benign and malignant conditions, all of 

which were up-regulated in the malignant condition. The number of differentially 

expressed protein features and overlap is represented in Figure 6.3. A total of 48 

differentially expressed protein features were found between the 3 conditions out of 

the 934 detected and matched features. Examples are shown in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Venn diagram showing the number of differentially expressed protein 

features and their overlap between the three clinical conditions. The ratio in abundance of 

each protein feature was calculated between each clinical condition). Pairwise comparisons of 

the clinical conditions were preformed i.e. healthy (H) / malignant (M), benign (B) / 

malignant (M) and healthy (H) / benign (B) and the numbers of differentially expressed spots 

that displayed a ≥ 1.5 average fold-change in abundance (p < 0.05) are shown. The numbers 

shown in red represent protein spots which overlap between the three comparisons. 
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Figure 6.4 Examples of protein features displaying clinical condition-dependent changes 

in expression from unfractionated samples. Protein spots 782 and 826 displayed clinical 

stage-dependant differential expression. The peptide mixtures of the trypsin digestion from 

each of these protein spots were analysed by LC-MS/MS and the experimental peptide 

fragment masses were searched against theoretical masses using Mascot. Both spots yielded 

multiple protein identities including haptoglobin (HP), albumin (ALB) and apolipoprotein 

AIV (APOA4). Graphs were derived from DeCyder image analysis and data points are shown 

for replicate measurements with lines joining the average values. 3D images of spots are 

shown for the benign and malignant conditions. 
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Gels were stained with CCB and protein spots were excised from gels and subjected 

to trypsin digestion. The peptide mixtures obtained from each trypsin digest were 

then subjected to PMF by MALDI-TOF MS. When MALDI-TOF PMF analysis and 

database searching did not return any significant “hits” for a sample, the peptide 

mixtures were additionally analysed by LC-MS/MS. Of the 48 differentially 

expressed protein features, 35 were identified with high confidence (Figure 6.5 & 

Table 6.1). Of the 13 unidentified protein features, most were of low abundance and 

gave poor spectra, and thus could not be identified from database searches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 An example of a differentially expressed protein feature identified by LC- 

MS/MS. The trypsin digested peptide mixture of spot number 826 from the unfractionated 

pooled sera experiment was analysed by LC-MS/MS. A) Apolipoprotein AIV was identified 

by two unique peptides, (highlighted in yellow in the protein sequence). B) The MS/MS 

spectrum of peptide NAEELKAR and C) table indicating the masses of identified fragment 

ions (data produced using Scaffold software, more examples are shown in Appendix 2). 
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Two protein features that were found to be differentially expressed between healthy 

and benign samples and also healthy and malignant samples were identified as 

immunoglobin heavy constant gamma 2 (IGHG2, spot 750 which also contains IGM 

and factor VII) and complement C3 precursor (spot 842). Three of the five protein 

features differentially expressed between healthy from malignant and benign and 

malignant were identified. Of these haptoglobin was identified in two spots (808 & 

822) and alpha-1-antichymotrypsin precursor (SERPINA3) and kininogen-1 

precursor (Alpha-2-thiol proteinase inhibitor KNG1) were both found in spot 611. 

The 2D gel migration of the identified differentially expressed protein features is 

shown in Figure 6.6. Notably, several spots yielded the same protein identification, 

revealing multiple isoforms of the same gene product.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Representative gel image displaying positions of differentially expressed 

proteins identified from the unfractionated samples. Differentially expressed protein 

features were identified by MS. The locations of several differentially expressed proteins 

including albumin (ALB), haptoglobin (HP), apolipoprotein AIV (APOA4), isoform 1 of 

alpha-1-antichymotrypsin (SERPINA3), alpha-2-HS-glycoprotein precursor (AHSG), 

immunoglobin heavy (IGHG1) and light chain (IGL), complement factor C4 (C4A;B) are 

shown. 
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It is apparent from these results that mostly very abundant serum proteins have been 

identified. Although of interest, these are unlikely to be specific markers of ovarian 

cancer. The detection of only high abundance proteins in the unfractionated sera is 

likely to mask lower abundance species and potential disease markers. Indeed, 

multiple isoforms of the proteins were detected in different spots. Moreover, 

numerous spots contained more than one protein. The identification of multiple 

proteins in a single spot makes it very difficult to attribute any changes in spot 

abundance to a specific protein this is a major drawback of the 2-DE technique. To 

probe deeper into the serum proteome, the removal of these high-abundance proteins 

is essential. 

 

 

 

6.2.2 Multiple Affinity Removal System (MARS)-based depletion of abundant 

proteins from pooled sera. 

 

It is known that twenty-two high abundance proteins constitute up to 99% of the total 

protein content of serum [Fusaro and Stone, 2003]. It is hypothesised that putative 

biomarkers of interest would be found in the remaining 1%. Thus, to mine deeper into 

the serum proteome the pooled clinical sera were fractionated with the MARS 

depletion column (Agilent Technologies), which comprises of polyclonal antibodies 

designed to effectively remove 85-90% of the top seven most abundant proteins 

(albumin, IgG, transferrin, haptoglobin, IgA, antitrypsin and fibrinogen) which hinder 

the detection of lower abundance proteins [Chromy et al., 2004; Echan et al., 2005]. 

The abundant proteins bind to the column and the unbound fraction of depleted serum 

was collected as the ‘flow through’. The bound fraction was also recovered by acid 

elution for analysis.  

 

Briefly, from each pool 30 µL of serum was diluted five times in Buffer A containing 

protease inhibitors (COMPLETE, Roche) and spun down at 16,000 x g at room 

temperature for 5 minutes. Automated multiple sample injection (2 per run) on an 

Agilent 1100 HPLC system was set up for 30 µL of diluted serum sample per 

injection in Buffer A at a flow rate of 0.25 ml/min for 9 min. Flow-through fractions 
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(~0.75 ml per injection) containing the unbound protein species were collected 

manually at 2-4 min into 1 ml Eppendorf tubes and stored at -20°C until further 

analysis. The bound fractions were eluted with 100% Buffer B at a flow rate of 1 

ml/min for 3.5 min. The column was regenerated by equilibrating with Buffer A for 

10 min as shown in Figure 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 HPLC chromatograph of MARS fractionated sera. An aliquot of pooled 

clinical sera was fractionated on a MARS HPLC column (Agilent Technologies). 30 µL of 

sample was injected at a flow rate of 0.25 mL/min in Buffer A. The unbound flow through 

was collected over 3 min (~0.75 ml) and stored at -20°C prior to downstream 2D-DIGE 

analysis. The bound proteins were eluted at 1ml/min in Buffer B and collected for 1D SDS-

PAGE analysis. 
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Once the abundant proteins had been removed from each pooled serum sample 

approximately 10-15% of the starting protein concentration remained in the flow-

through fraction. In order to obtain sufficient amounts of the depleted protein fraction 

for 2D-DIGE analysis, 10 aliquots of each clinical condition were fractionated with 

the MARS column. Overlaid traces of 3 representative runs from each condition 

analysed are shown in Figure 6.8. The MARS column was found to be highly 

reproducible. The variability seen in the flow-through peak can be attributed to 

inconsistencies in the automated injection on the Agilent 1100 HPLC system. 

 

 
 

Figure 6.8 HPLC chromatograph overlays. MARS depletion of pooled clinical sera was 

repeated 10 times. Representative overlays of 3 runs for A) healthy, B) benign and C) 

malignant late stage conditions are shown.  
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Prior to 2D-DIGE analysis, the unbound fractions from the repeated MARS runs were 

pooled into their respective clinical groups. The protein concentration was determined 

using the Pierce BCA assay. Concentrations of 1.02 mg/mL, 1.20 mg/mL and 1.01 

mg/mL were recovered for the healthy, benign and malignant conditions respectively. 

Fractionated samples were separated on a 1D gel to assess the depletion efficiency of 

the column. Briefly, equal amounts of protein (25 µg) from the unfractionated sera, 

unbound and bound fractions from the MARS column were separated on a 12% SDS-

PAGE gel. The 1D gel showed enrichment of numerous protein bands particularly 

above 40 kDa and a reduction in the intensity of the 66 kDa albumin band and 80kDa 

transferrin band as shown in Figure 6.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 1D SDS-PAGE comparison of MARS fractionated samples. 25µg of protein 

from unfractionated (U), flow-through (FT) and bound (B) fractions for each clinical 

condition were run on a 12% SDS PAGE gel which was then stained with CCB. Lane 1 

contained the MW marker (M). Gel bands A) transferrin, B) alpha-1-antitrypsin, C) albumin, 

D) IgG, E) and IgA and F) haptoglobin light chain. 
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Flow through fractions were desalted and concentrated and then subjected to 2D-

DIGE analysis in quadruplicate as previous unfractionated samples. A total of 797 

features were detected in the master gel (Figure 6.10). Quantitative analysis showed 4 

protein spots were up-regulated in the malignant samples versus the healthy and 3 

were down-regulated (≥ 1.5 average-fold change in abundance, p <0.05, n = 4). Only 

1 protein spot was differentially expressed between the healthy and benign conditions 

and this was up-regulated in the benign condition. Three protein spots were 

differentially expressed between the benign and malignant conditions. Of these, 1 was 

up-regulated in the malignant condition and 2 were down-regulated in the malignant 

condition versus the benign. In total 10 differentially expressed protein features were 

found between the 3 conditions (Figures 6.11 and 6.12).  

 

 

 
 

Figure 6.10 Gel image of MARS fractionated sera used as ‘master’ gel in DeCyder 

image analysis. This figure represents the overlaid fluorescent images derived from the 

MARS fractionated sera labelled with Cy3 Malignant (red) and Cy5 Healthy (blue). This 

image was prepared using Adobe Photoshop. 
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Figure 6.11 Venn diagram showing the number of differentially expressed protein 

features in MARS depleted sera. The number of protein features that displayed a ≥ 1.5 

average fold-change in abundance (p <0.05) and the overlap between the three clinical 

conditions is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Examples of proteins displaying clinical-stage dependent changes in the 

MARS fractionated samples. Protein spots 464 and 468 displayed differential expression 

between clinical conditions. Graphs were derived from DeCyder image analysis where the 

standardised abundance is the ratio of the volume of a gel feature from the healthy condition 

versus the volume of the corresponding gel feature in the malignant condition. Data points 

are shown for quadruplicate measurements with lines joining the average values. 3D images 

of spots are shown for the healthy and malignant conditions. 
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Differentially expressed spots were excised, trypsin digested and the peptide mixtures 

were analysed by MALDI-TOF PMF or LC-MS/MS. The list of peptide and fragment 

ions masses generated was then searched against the updated IPI Human database 

using Mascot. All of the 10 differentially expressed protein features yielded proteins 

hits of high confidence, although a number yielded more than 1 protein identification 

(Table 6.3). For example, as shown in Figure 6.12 spot 464 yielded hits for inter-

alpha-trypsin inhibitor heavy chain H4 precursor (ITIH4), histidine-rich glycoprotein 

precursor (HRG), alpha-1B-glycoprotein precursor (A1BG), afamin precursor 

(AFM), prothrombin precursor (F2 Fragment) and vitamin K-dependent protein S 

precursor (PROS1). All the differentially expressed protein spots were identified with 

high confidence (Table 6.2). Examples of MALDI-TOF PMF and LC-MS/MS based 

protein identifications are shown in Figure 6.13 and 6.14, respectively. 
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Figure 6.13B. An example of MALDI-TOF PMF protein identification. The trypsin 

digested peptides mixture from spot number 472 was analysed by MALDI-TOF PMF. The 

resulting spectrum was internally calibrated with trypsin autolysis peaks (842.51 & 2211.10). 

Prominent peaks in the mass range 700-4000 Da were used to generate a peptide mass 

fingerprint which was searched against the IPI-Human database using the Mascot search 

engine. A) Probability based Mowse score, B) RMS based error scores for the peptide mass 

in the PMF and C) details of the identified protein’s score and sequence including matched 

peptides are shown here (more examples are shown in Appendix 3).  
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Figure 6.14 An example of a differentially expressed protein feature from the MARS 

depleted sera identified by LC-MS/MS. The trypsin digested peptide mixture of spot 

number 464 from the MARS-depleted pooled sera 2D-DIGE experiment was analysed by 

LC-MS/MS. A) Afamin was identified by three unique peptides, (highlighted in yellow in the 

protein sequence). B) The MS/MS spectrum of peptide ESLLNHFLYEVAR with the y-ion 

series is shown in blue, b-ions in red and the immonium ions in green and C) table indicating 

the masses of identified fragment ions (data produced in Scaffold software). 
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6.2.3 Comparison of unfractionated sera and MARS-depleted sera 

 

The numbers of expressed features from the unfractionated clinical sera were 

compared with the MARS-fractionated sera. Results demonstrated that fewer (~100) 

protein features were detected in the MARS fractionated gels, suggesting that the 

depleted proteins exist as multiple isoforms or there is a loss of bound protein species. 

The removal of the high abundant proteins would be expected to result in an 

enrichment of lower abundance proteins by facilitating a higher load of these less 

abundant protein species for 2D-DIGE based analysis (Figure 6.15). However, results 

show that the number of lower abundant proteins identified was modest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Differentially expressed protein features from MARS-depleted and 

unfractionated pooled clinical sera. Quantitative analysis found 48 differentially expressed 

protein features in A) the unfractionated samples and 10 in B) the MARS depleted fractions. 

Cy-dye labelled gel images from the healthy and malignant conditions are shown, created 

using the DIA module of DeCyder.  
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6.2.4 ProteoMiner based dynamic range compression and protein enrichment. 

 

The ProteoMiner protein enrichment kit is designed to “compress” the serum protein 

dynamic range and is comprised of a highly diverse combinatorial peptide library 

immobilised on beads in a spin column format. Theoretically the library contains 

binding sites for most, if not all, proteins in a sample. The high abundance proteins 

saturate their affinity ligands and the excess protein is washed away. The medium and 

lower abundance proteins are concentrated on their specific affinity ligands. Thus, the 

dynamic range of protein concentrations is reduced, while representatives of all 

proteins within the original sample remain intact. Briefly, 1 mL of each pooled serum 

sample incubated with ProteoMiner beads and unbound material collected. The 

columns were then and the bound proteins were eluted with 100 µL of 2D lysis buffer 

(8 M urea, 2 M thiourea, 4% CHAPS, 0.5% NP40 and 10 mM Tris pH 8.3). The 

elution step was repeated twice to ensure all bound material was collected and the 

fractions pooled. Protein yields were 632.4 µg, 687.4 µg and 786.75µg for the 

healthy, benign and malignant pools respectively.  

 

Prior to 2D-DIGE analysis the ProteoMiner fractionated samples were separated on a 

1D SDS-PAGE gel to assess the enrichment efficiency. Briefly, equal amounts of 

protein (25 µg) from the unfractionated pooled sera, bound and unbound fractions 

from the ProteoMiner column were separated on a 12 % SDS-PAGE gel. The 1D gel 

showed enrichment of numerous protein bands particularly below 50 kDa and a 

reduction in the intensity of the 66 kDa albumin band (Figure 6.16).  
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Figure 6.16 1D SDS-PAGE comparison of ProteoMiner fractionated samples. 25µg of 

protein from unfractionated (U), flowthrough (FT) and bound (B) fractions for each clinical 

condition were run on a 12% SDS PAGE gel which was then stained with CCB. Lane 1 

contained the molecular weight marker (M). 
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2D-DIGE analysis of the ProteoMiner fractionated sera was performed in parallel 

with a repeat analysis of freshly prepared MARS-depleted fractions for comparison of 

the two strategies. To facilitate spot matching pools of fractionated sera were 

additionally labelled with Cy2 as an internal standard which was run on all gels as 

shown in Table 6.3. 

 

Gel No.
Cy dye
Cy 3 Malignant Benign Healthy Malignant Healthy -
Cy 5 Healthy Malignant Benign Benign Malignant -
Cy 2 Pool Pool Pool Pool Pool -

Gel No.
Cy dye
Cy 3 Healthy Healthy Malignant Benign Malignant Benign
Cy 5 Benign Malignant Benign Healthy Healthy Malignant
Cy 2 Pool Pool Pool Pool Pool Pool

Gel 03 Gel 04 Gel 05 Gel 06

A) ProteoMiner

B) MARS

Gel 05 Gel 06

Gel 01 Gel 02

Gel 01 Gel 02 Gel 03 Gel 04

 
 

Table 6.3 Experimental design for 2D-DIGE analysis of fractionated pooled clinical 

sera. A) 2D-DIGE based comparison of ProteoMiner fractionation of pooled clinical sera. 

The table shows the sequence of Cy3 and Cy5 labelled sample triplicates for the healthy and 

benign conditions and quadruplicates for the malignant condition run on each gel (120µg 

protein per dye), including the Cy2 labelled pool. B) 2D-DIGE based comparison of MARS 

fractionated pooled sera. The table shows the labelling of quadruplicate samples from each 

clinical condition with Cy3 or Cy5 (80µg protein per dye), including the Cy2 labelled pool 

run on each gel.  
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Image analysis was carried out using DeCyder software. Briefly, fluorescent images 

from the same 2D gel were automatically curated, normalised, matched and spot 

abundances calculated in the DIA module. Then, matching and comparison of protein 

features across different gels was performed in the BVA module using internal 

landmarks comprising abundant protein features present in all the Cy2 images. 

Examples of Cy2, Cy3 and Cy5 images from the ProteoMiner set are shown in Figure 

6.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Representative Cy2, Cy3 and Cy5 fluorescence gel images obtained from a 

single 2D gel in the ProteoMiner 2D-DIGE experiment. Equal amounts of Cy3 and Cy5 

labelled protein samples, derived from pooled clinical sera were mixed with an equal amount 

of Cy2-internal standard pool. Proteins were separated by 2D gel electrophoresis, and the gel 

was scanned at the appropriate excitation/emission wavelengths to generate the 

superimposable set of three images shown. 
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Statistical analysis was performed where the average abundances of protein features 

for each condition were compared. In the BVA analysis, 697 and 1468 protein 

features were found in the master gel of the ProteoMiner and MARS-fractionated 

samples respectively. However, the high number was due to streaking of gel spots 

leading to poorer spot definition. Protein features displaying a ≥ 1.5 average fold-

change in abundance, displaying reproducible changes (p < 0.01) and matching on all 

images, were selected for MS-based identification; These features are marked on the 

gel images in Figure 6.18 (the selection criteria were made more stringent in this 

experiment to reduce the number of false positives).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Representative gels displaying the position of differentially expressed 

proteins. Protein features displaying ≥ 1.5 average fold-change in abundance (p < 

0.01) are shown in yellow in A) ProteoMiner-fractionated and B) MARS-fractionated 

samples. 
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Individual analysis and statistical evaluation of differences between the ProteoMiner-

fractionated samples and the MARS-depleted samples revealed a total of 65 and 76 

differentially expressed protein features, respectively (Figure 6.19). There was 

considerable overlap in spot numbers in each pairwise comparison of clinical 

conditions, particularly for the MARS-fractionated samples. The inclusion of the Cy2 

labelled internal standard (pool of all samples) made spot matching across gels much 

easier and enabled the identification of a high number of differentially expressed 

proteins features which may have otherwise been missed. Gels were post-

electrophoretically stained with CCB and gel images matched to the fluorescent 

images. A pick list of proteins of interest was generated, spots were excised 

robotically, trypsin digested and subjected to MS-based protein identification 

(examples are shown in Appendix 4 and 5 for ProteoMiner and MARS 2, 

respectively).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Venn diagrams showing the number of differentially expressed protein 

spots in the fractionated samples and overlapping spots between the three clinical 

conditions. The average ratio in abundance of each matched protein feature was calculated 

between clinical conditions. Those displaying a ≥ 1.5 average fold-changes in abundance (p < 

0.01 n=3) were selected for identification. Numbers of spots are shown for A) ProteoMiner 

and B) MARS-fractionated samples with the number of overlapping spots are shown in red. 
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6.2.5 Protein identification by mass spectrometry 

 

Differentially expressed protein spots from the 2D-DIGE experiments were initially 

subjected to identification by MALDI-TOF MS peptide mass fingerprinting and 

MASCOT database searching (see Chapter 2). In cases where peptide mass 

fingerprints could not be confidently matched to available protein sequences, LC-

MS/MS was used to obtain peptide sequence information for identification.  Of the 65 

differentially expressed protein features from the ProteoMiner fractionation, 

confident protein hits were obtained for 53 of these (Table 6.4). Almost all the protein 

features yielded single protein identifications, except for 5 spots where 2 protein 

identifications had significant scores. Of the unidentified protein features, some were 

of low abundance and gave poor spectra, whilst the others stained well with CCB and 

gave spectra of good quality, but could not be identified from database searches. 
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Furthermore, several spots yielded the same protein identification suggesting multiple 

isoforms of the same gene product. The 2D gel migration of the identified 

differentially expressed protein features is shown in Figure 6.20. Abundant serum 

proteins including apolipoprotein AI, apolipoprotein AIV, apolipoprotein E, alpha-1-

antitrypsin precursor, antithrombin III variant, serotransferrin, serum albumin 

precursor, immunoglobin heavy and light chain, fibrinogen and several complement 

factors were identified as differentially expressed protein features in multiple 

locations. In addition, cellular proteins such as Pyruvate kinase L (PKLR), Vitamin 

D-binding protein and a fragment of uthrophin (UTRN) were also identified. 

Examples of several spots including yielding hits for apolipoprotein A4 (APOA4) are 

shown in Figure 6.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Representative gel image displaying positions of differentially expressed 

proteins from the ProteoMiner-fractionated samples. Differentially expressed protein 

features were identified by MS. The location of differentially expressed proteins including 

apolipoprotein AI (APOA1), apolipoprotein AIV (APOA4), apolipoprotein E (APOE), alpha-

1-antitrypsin precursor (SERPINA), antithrombin III variant (SERPINC), serotransferrin 

(TF), serum albumin precursor (ALB), the immunoglobin heavy (IGHG1) and light chain 

(IGL), fibrinogen (FGG), several complement factors (CFHR, C4A;B), pyruvate kinase L 

(PKLR), and utrophin (UTRN) are shown. 
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Figure 6.21 Examples of multiple spots displaying clinical-sample dependent changes in 

the ProteoMiner experiment. Several spots including A) 382, B) 405 and C) 435 yielded 

hits for Apolipoprotein A4 (APOA4). Differential analysis showed this protein was down-

regulated in the malignant condition verses the healthy condition. Graphs were derived from 

DeCyder image analysis where the standardised abundance is the ratio of the volume of a gel 

feature in the clinical condition versus the Cy2 standard. Data points are shown for triplicate 

measurements in the healthy and quadruplicate in the malignant with lines joining the 

average values. 3D images of spots are shown for the healthy and malignant conditions. 
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In the second set of MARS-depleted samples, 1468 protein features were detected in 

the master gel. Quantitative analysis showed 76 differentially expressed protein 

features (≥ 1.5 average fold-change in abundance, p < 0.01). In total, 32 of the 76 

differentially expressed protein features were identified with high confidence Table 

6.5 examples are shown in Figure 6.22 and MS-based protein identification results 

are shown in Appendix 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.22 Examples of multiple spots displaying clinical-sample dependent changes in 

the second MARS-fractionated samples. Protein spots 664 and 644 were both identified as 

alpha-1-antitrypsin (SERPINA) and displayed differential expression. Graphs were derived 

from DeCyder image and data points are shown for triplicate measurements for the healthy 

condition and quadruplicate for the malignant condition with lines joining the average values. 

3D images of spots are shown for the healthy and malignant conditions. 
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The 2D gel migration of the identified differentially expressed proteins in the second 

MARS experiment is shown in Figure 6.23. Again several abundant serum proteins 

including alpha-1-antitrypsin precursor (SERPINA), serotransferrin (TF), serum 

albumin (ALB), the immunoglobins (IGHA) and haptoglobin (HP) were identified in 

multiple locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Representative gel displaying position of differentially expressed proteins 

from the MARS-depleted samples. Differentially expressed protein features were identified 

by MS. The locations of serum albumin precursor (ALB), the immunoglobin heavy (IGHA1), 

serotransferrin (TF), haptoglobin (HP), apolipoprotein AIV (APOA4), alpha-1-antitrypsin 

precursor (SERPINA), alpha-1-antichymotrypsin (SERPINA3), alpha-1-acid glycoprotein 2 

precursor (AGP2) and  Haptoglobin-related protein precursor (HRP) identified as 

differentially expressed protein features are shown. 
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6.3 Comparison of 2D-DIGE experiments 

 

Results from the BVA analysis showed that a different number of protein features 

were detected in each of the 2D-DIGE experiments. The 2D gels showed better 

protein separation when only 240 µg of protein was loaded (80 µg per Cy dye, second 

MARS experiment). Indeed, in the second MARS experiment due to streaking 1468 

protein features were detected in the master gel used for spot matching. Poor 

resolution of some peaks e.g. albumin and serotransferrin made it difficult to 

determine an accurate number of protein features. Furthermore, accurate 

quantification was often compromised due to the partial co-migration of some protein 

features. 934 protein features were detected in the unfractionated experiment, while 

797 and 697 protein features were detected in the first MARS experiment and 

ProteoMiner experiments, respectively. Only 32 out of 76 of the differentially 

expressed features from the second MARS experiment yielded protein identifications 

compared with 35 out of 48 in the unfractionated, 10 out of 10 in the first MARS and 

53 out of 65 in the ProteoMiner experiment. This may be due to the lower protein 

load used in the second MARS experiment. In the ProteoMiner and second MARS 

experiments the selection criteria for differentially expressed protein features were 

made more stringent to reduce the number of false positives [Karp et al., 2007]. The 

difference in the number of protein features selected for identification using cut-offs 

of p < 0.05 and p < 0.01 was modest as shown in Table 6.6. 

 

A) ProteoMiner p < 0.05 p < 0.01
H v B 12 9
H v M 32 27
B v M 54 46
Total 74 65

B) MARS p < 0.05 p < 0.01
H v B 61 61
H v M 25 25
B v M 59 58
Total 77 76

Differentially expressed protein features

 
Table 6.6 Differentially expressed protein features in the ProteoMiner and second 

MARS experiments. The number of features displaying ≥ 1.5 average fold-changes in 

abundance at p < 0.05 and p < 0.01 are shown. 
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Results showed a total of 57 gene products were identified with confidence as shown 

in Table 6.7 which also shows the direction of regulations (up/down) between clinical 

conditions and the number of features where the protein was identified in each 

experiment. Ten proteins (AGP2, AHSG, CP, Factor VII, IGHA1, IGHG2, IGHG3, 

IGHM, IGL, KHG1) were found only in the unfractionated sample. Eight proteins 

(AFM, A1BG, A2M, CFB, ITIH4, F2 fragment and PROS) were found only in the 

first MARS-depleted samples. Thirteen proteins (inc; C4A;C4B, APOE, SERPINC1 

and Vitamin D binding protein) were only found in the ProteoMiner-fractionated 

samples and 7 proteins (AGP2, Phe RS, DAPLE, HRP, Rab-2B, TBX3 and VCL) 

were found only in the second set of MARS-depleted samples. Three proteins 

including isoform 1 of α-1-antitrypsin precursor (SERPINA1), apolipoprotein A-IV 

precursor (APOA4) and immunoglobulin heavy constant gamma 1 (IGHG1) were 

found to be commonly differentially expressed in the unfractionated, MARS2 and 

ProteoMiner fractionated samples. Of these SERPINA1 was up-regulated in the 

malignant condition versus healthy and benign conditions in all three experiments 

(Table 6.7). It is important to note that there are a number of multiple hits per spot 

which is one of the major drawbacks of the 2-DE technique making attribution of 

differential expression to a specific protein very difficult.  
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6.4 Discussion 

 

The human serum proteome is a complex biological mixture potentially containing an 

archive of patho-physiological information. Serum proteomics is being increasingly 

used to discover and characterise candidate biomarkers for disease diagnosis, 

prognosis and treatment response. The most important lesson that has been learned 

from protein expression profiling is the difficulty of handling the dynamic range of 

the serum proteome, which is 9-10 orders of magnitude and greater than the 

quantitative dynamic range of most analytical techniques [Fung et al., 2005].  

 

For the studies presented in this chapter sera from the UKOPS collection was pooled 

into clinical groups, since analysis of large numbers of samples individually by 2D-

DIGE was not possible. Pooling strategies hide the underlying variation within a 

group and may reveal average data that is skewed by outliers. By pooling larger 

numbers of samples this could be overcome [Pitteri and Hanash, 2007]. The dynamic 

range of the proteome was compressed using two complimentary fractionation 

strategies prior to fluorescence two dimensional difference gel electrophoresis-based 

profiling. The MARS depletion technique was used to enrich lower abundance 

protein species by depleting 7 of the most abundant proteins. Additionally, the 

ProteoMiner protein enrichment kit was used to reduce the dynamic range and 

capture ‘equalised’ amounts of all constituent proteins. Differentially expressed 

protein features from whole sera and fractionated sera were excised and trypsin 

digested. The resultant peptide mixtures were analysed by MALDI-TOF PMF and 

LC-MS/MS. One of the advantages of LC-MS/MS is that the tryptic peptides are 

further fragmented in the mass spectrometer (in the collision cell), allowing the 

determination of amino acid sequence and resulting in less ambiguous protein 

identifications compared with peptide mass fingerprinting [Koehn and Oehler, 2007]. 

 

The work carried out in this section showed that only a few protein species were 

consistently differentially expressed between the clinical conditions. The results 

indicate that some of the proteins are related to immuno-host cell defence responses 

(acute-phase proteins) and may be protein fragments, possibly produced by 
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proteolytic enzymes. In all experiments the majority of the differentially expressed 

features yielded hits for high abundance proteins. 

 

Proteins identified included SERPINA3 and APOA4, and both of these proteins were 

up-regulated in the malignant condition. SERPINA3 is an alpha globulin glycoprotein 

which is a member of the serine proteinase inhibitor (serpin) family. This enzyme is 

produced in the liver and is known to be an acute-phase protein that is induced during 

inflammation. SERPINA3 has been shown to be up-regulated in human leukocyte 

antigen (HLA)-positive tumours in cervical cancer [Kloth et al., 2008]. Gene 

expression profiling experiments have shown a 2-fold increase in the expression of 

SERPINA3 in mucinous ovarian cancers compared with normal ovarian surface 

epithelial cells and to other histotypes [Marquez et al., 2005]. In agreement with this 

results from both the unfractionation and second MARS experiments showed 

SERPINA3 was up-regulated in the malignant condition. APOA4 belongs to the 

apolipoprotein family and is primarily produced in the intestine and secreted into the 

plasma. APOA4’s precise function is unknown but it may serve as a lipid-binding 

protein and has lecithin:cholesterol acyltransferase (LCAT) activating ability. The 

APOA4 gene was shown to be up-regulated in familial pancreatic cancer, it has been 

studied extensively in relation to cardio-vascular disease and is a strong candidate as 

a breast and ovarian cancer susceptibility gene [Zervos et al., 2006].  

 

To enrich the lower abundant protein species sample pre-fractionation was performed 

with the multiple affinity removal system. Results showed that 7 of the high 

abundance proteins were removed with high efficiency. One of the major limitations 

of 2D-gels is the sample loading capacity. Too much protein sample results in poorly 

resolved gels and too little protein makes MS based protein identification of low 

abundant protein features difficult [Sriyam et al., 2007; Huang et al., 2005]. Depleting 

serum of the abundant proteins facilitated the analysis of lower abundant species 

since more of these proteins could be loaded on the 2D gels.  

 

Quantitative analysis of the first set of MARS-depleted clinical samples showed only 

10 differentially expressed proteins features that were significant (p < 0.05). Protein 

identifications were made for all of these with several spots yielding more than one 
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protein. The identification of more than one protein in a spot is a major limitation of 

2D-gel based quantitative analysis, since it is difficult to assign the differential 

expression to a particular protein found in the spot. It would most likely to have come 

from the most abundant protein in the spot, particularly if the amount of this protein 

is far in excess of the others. For example, in the first MARS-depletion experiment 

spot number 459 yielded multiple identities including ITIH4, HRG, F2, ALGB and 

PROS1 by LC-MS/MS. Of these ITIH4 was identified by 16 peptides, with a Mascot 

score of 401. HRG was identified by 5 peptides and a Mascot score of 137, F2 was 

identified by 4 peptides with a Mascot score of 95, and ALGB was identified by 2 

peptides with a Mascot score of 52, and finally, PROS1 was identified by 3 peptides 

with a Mascot score of 52. This suggests that the likely difference in abundance is 

attributable to ITIH4. Spot number 459 showed a 2.5-fold increase in the malignant 

condition versus the healthy conditions, respectively. However, it could be speculated 

that the co-migration of all these proteins may have generated a false positive. 

 

Interestingly, in the list of proteins identified, ITIH4 and afamin were two proteins 

which have been previously reported as ‘markers’ for ovarian cancer [Jackson et al., 

2007; Zhang et al., 2004]. Both of these were identified in spot number 464 which 

showed a 2-fold increase in the malignant condition. ITIH4 is an acute-phase protein 

which is produced by the liver. The levels of ITIH4 have been shown to increase 

significantly in the sera of patients after different surgical trauma [Pineiro et al., 

1999]. Afamin is a vitamin E binding glycoprotein which is part of the albumin super 

family. Previous studies have reported on the potential of afamin as a putative marker 

for ovarian cancer recurrence [Jackson et al., 2007]. The study by Jackson et al. 

showed an inverse relationship between CA-125 and afamin concentrations from the 

time of treatment to the time of relapse. The potential complementarity of afamin 

with CA-125 was also shown in three patients in whom CA-125 was relatively 

uninformative, although the changes in afamin were modest. For diagnostic 

discrimination, afamin alone was poor, but it was suggested that the potential for the 

isoforms, in particular isoform 2, for complementing CA-125 or other markers should 

be explored further in a larger study with an independent test set [Jackson et al., 

2007]. 
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The MARS depletion experiment was repeated and several additional proteins which 

showed differential expression between the clinical pooled sera were identified but 

there was no overlap between the two MARS experiments. This is likely due to the 

fact that no Cy2 internal standard was used in the first experiment which made spot 

matching across gels difficult and only 10 differentially expressed features were 

identified. The proteins identified in the second MARS experiment included 

haptoglobin (HP) and isoform 1 of alpha-1-antitrypsin (SERPINA1) both of which 

were up-regulated in the malignant condition. HP is a blood plasma protein that binds 

free haemoglobin, preventing the loss of iron through the kidneys and protecting the 

kidneys from damage by haemoglobin, while making the haemoglobin accessible to 

degradative enzymes. In the clinic, a haptoglobin assay is used to screen for and 

monitor haemolytic anemia.  HP has been previously reported as an up-regulated 

marker protein in ovarian cancer patients [Ye et al., 2003]. Previous reports in ovarian 

cancer have indicated that there is a change of glycosylation on haptoglobin [Turner 

et al., 1995] and IgG [Gercel-Taylor et al., 2001] in ovarian cancer patients.  

 

SERPINA1 is a plasma protein which acts as an inhibitor of serine proteases. Its 

primary target is elastase, but it also has a moderate affinity for plasmin, thrombin, 

trypsin, chymotrypsin and plasminogen activator. The aberrant form increases the rate 

of coagulation and has proteolytic activity against insulin and plasmin. SERPINA1 

has also been previously reported as an acute-phase marker in gyneocological cancers 

[Kloth et al., 2008; Tatra, 1985]. SERPINA1 was one of three proteins which were 

differentially expressed in all the unfractionated, MARS2 and ProteoMiner 

experiments. SERPINA1 was up-regulated in the malignant condition versus the 

healthy and benign condition in all three experiments. However, HP and SERPINA 

were in the list of proteins which should have been depleted by the MARS column. In 

addition, serotransferrin (TF) was identified as a differentially expressed protein 

feature in a number of locations. This suggested that the depletion efficiency of the 

column may have declined with repeated use. TF was found to be down-regulated in 

the malignant condition in 9 different spots. TF is an iron-binding transport protein 

which is responsible for transporting iron from the sites of absorption and heme 

degradation to areas of storage and utilisation and has been previously reported to be 

down-regulated in the serum of ovarian cancer patients [Dumaswala et al., 2000]. 
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Other proteins identified in the second MARS-depletion experiment included alpha-

1-acid glycoprotein 2 precursor (AGP2), phenylalanyl-tRNA synthetase beta chain 

(Phe-RS), protein daple isoform 2 (DAPLE), haptoglobin related protein (HRP), Ras-

related protein (Rab-2B), T-box transcription factor isoforms 1 (TBX3) and vinculin 

isoform 2 (VCL). AGP2 is expressed by the liver, secreted into the plasma and 

appears to function in modulating the activity of the immune system during the acute-

phase reaction. Phenylalanine-tRNA synthetase (Phe-RS) is localised to the 

mitochondrion and is an essential enzyme which catalyzes the transfer of the amino 

acid phenylalanine (Phe) to the Phe-specific transfer-RNA. DAPLE is a negative 

regulator of the canonical Wnt signalling pathway, acting downstream of dishevelled 

(Dvl) to inhibit βeta-catenin stabilisation. Wnts are a large family of cysteine-rich 

secreted glycoproteins that control development. The intracellular signalling pathway 

of Wnt is also conserved evolutionally and regulates cellular proliferation and 

differentiation [Bienz and Clevers, 2000; Seidensticker and Behrens, 2000; Wodarz 

and Nusse, 1998] and several components of Wnt signalling are implicated in the 

genesis of human cancer.  

 

RAB2B is required for protein transport from the endoplasmic reticulum to the Golgi 

complex. Pyruvate kinase L (PKLR) was also identified as a differentially expressed 

protein. Pyruvate kinase, is a homotetramer of 50.60 kDa subunit, with two forms, 

one liver specific (L), the other erythrocyte specific (R), transcribed from a distinct 

promoter, glycolysis, energy pathway, generating ATP from ADP. T-box 

transcription factor isoforms 1 (TBX3) is a transcriptional repressor involved in 

developmental processes which plays a role in limb pattern formation. Tbx3 

transcription is activated by ectopic expression of beta-catenin in mouse liver and in 

human tumor cell lines. Tbx3 has been indicated as a serological marker for ovarian 

cancer [Souchelnytskyi et al., 2006]. Finally, VCL is involved in cell adhesion and 

may be involved in the attachment of the actin-based microfilaments to the plasma 

membrane. It may also play important roles in cell morphology and locomotion. VCL 

subcellular locations include the cytoplasm and cytoskeleton. These proteins were 

predominately found in spots which yielded multiple protein identities it is therefore 

difficult to attribute any specific changes to them. However, several proteins e.g. 
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TBX3 and DAPLE have previously been reported as markers for ovarian cancer thus 

these proteins warrant further investigation.  

 

The ProteoMiner-based fractionation showed that compression of the protein 

dynamic range could be achieved, although mostly high abundance proteins were 

found to be differently expressed; namely, TF, APOA1, APOA4, APOE and 

SERPINA1. The results demonstrated the ProteoMiner kit appeared to have a greater 

affinity for apolipoproteins as previously reported [Pitteri and Hanash, 2007]. 

Numerous studies have reported on changes in serum lipid and lipoproteins levels in 

cancer and other diseases. For example, elevated plasma lipoprotein (A) has been 

associated with an increased risk of cardiovascular disease and significant elevation 

of total plasma apolipoprotein (A) levels have also been reported in cancer patients 

compared with hospitalised control patients and normal healthy blood [Wright et al., 

1989]. Furthermore, an APOE genetic polymorphism has been shown to modify the 

risk for a variety of diseases, including breast cancer  [Moore et al., 2006; Zhang et 

al., 2004; Kuesel et al., 1992]. APOA1 is the major protein constituent of the high-

density lipoprotein (HDL). Previous reports suggest aberrant serum levels of APOA1 

might might be a useful marker of ovarian cancer [Moore et al., 2006; Zhang et al., 

2004; Kuesel et al., 1992]. The results demonstrated that APOA1 was down-regulated 

in the malignant condition in two different spots in the ProteoMiner experiment, 

APOA4 was up-regulated in the malignant condition in 3 out of 4 spots and down-

regulated in the remaining spot in the ProteoMiner experiment and up-regulated in 2 

spots in the malignant condition in the unfractionated and MARS 2 experiments. 

APOE was up-regulated in the malignant condition in 3 out of 4 spots and down-

regulated in the remaining spot in the ProteoMiner experiment.  

 

In addition, vitamin D-binding protein (GC) and utrophin (UTRN) were both up-

regulated in the malignant condition and have both been previously reported as 

‘markers’ for cancer. GC is a secreted multifunctional protein found in plasma, ascitic 

fluid, cerebrospinal fluid and urine, and on the surface of many cell types. In plasma, 

it carries the vitamin D sterols and prevents polymerization of actin by binding its 

monomers. It associates with membrane-bound immunoglobulin on the surface of B-

lymphocytes and with IgG Fc receptor on the membranes of T-lymphocytes. Studies 
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suggest that the exploitation of the unique properties of vitamin D-binding protein 

could enable the development of important therapeutic agents for the treatment of a 

variety of diseases [Gomme and Bertolini, 2004]. UTRN may play a role in anchoring 

the cytoskeleton to the plasma membrane. In normal muscle cells, utrophin is located 

at the neuromuscular synapse and myotendinous junctions. It is necessary for normal 

membrane maintenance, and for the clustering of the acetylcholine receptor. Utrophin 

is known to be intracellular, thus its detection in serum indicates so-called tissue 

leakage [Souchelnytskyi et al., 2006].  

 

Several cellular proteins were found in spots which yielded multiple hits. These 

included adenomatosis polyposis coli 2 (APC2), which was identified in a spot with 

APOE, promotes rapid degradation of cadherin-associated protein and may function 

as a tumour suppressor and may function in Wnt signalling. Kinectin 1 isoform b 

(KTN1) which was identified in a spot with APOA4 has been identified as a tumor-

associated antigen. The receptor for KTN1 kinesin is involved in kinesin-driven 

vesicle motility and accumulates in integrin-based adhesion complexes (IAC) upon 

integrin aggregation by fibronectin. The subcellular locations of KTN1 include the 

endoplasmic reticulum membrane. High levels of KTN1 are found in peripheral blood 

lympocytes, testis and ovary, lower levels in spleen, thymus, prostate, small intestine 

and colon. Defects in KTN1 may be involved in the onset of cancer [Wang et al., 

2004b]. Periplakin (PPL) which was identified in a spot with CFHR is a component 

of the cornified envelope of keratinocytes. PPL may link the cornified envelope to 

desmosomes, intermediate filaments and may act as a localisation signal in 

PKB/AKT-mediated cell signalling pathway. Finally, Pericentrin (PCNT) which was 

also found with APOA4 may be involved in organisation of microtubules during 

meiosis and mitosis. Again these proteins were predominately found in spots which 

yielded multiple protein identities and it is therefore difficult to attribute any specific 

changes to them. It is important to note that only three proteins including SERPINA1, 

APOA4 and IGHG1 were found to be commonly differentially expressed in the 

unfractionated, MARS2 and ProteoMiner fractionated samples. 

In summary, results have shown that a panel of putative markers consisting of several 

apolipoproteins (APOA1, A4 & E), serotransferrin (TF), haptoglobin (HP), α-1-

antitrypsin precursor isoform 1 (SERPINA1), vitamin D-binding protein (GC), 



Chapter 6 

 210

afamin, utrophin and the celluar proteins (APC, Tbx3 and DAPLE) involved in Wnt 

signalling warrant further investigation. Future experiments may involve a large scale 

immuno-based study in an independent cohort of UKOPS case control samples which 

is beyond the time frame of this project. This would be the ideal way to evaluate the 

diagnostic usefulness of these proteins, in combination with the CA-125 assay, for 

early detection of ovarian cancer. 
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Chapter 7: Conclusions and future directions 
 
 
The primary hypothesis driving the research presented in this thesis is that the human 

serum proteome contains a source of proteins whose abundances change with disease 

state. It is proposed that the identified protein abundance changes between the 

diseased and healthy state could act as early biomarkers of ovarian cancer giving 

clinicians the opportunity for earlier intervention. The search for putative markers of 

ovarian cancer was investigated using polypeptide separation methods and mass 

spectrometry. As previously detailed several collections of clinically relevant serum 

samples were available for this investigation. However, due to the low incidence of 

ovarian cancer the number of diseased samples was limited.  

 

The results achieved are presented in four chapters. Chapter three utilised a previously 

established magnetic bead-based peptide extraction protocol and MALDI-TOF MS 

profiling which was then used to analyse case-control samples. Chapter four describes 

the various steps taken to adapt and optimise this protocol in the host laboratory. 

Chapter five describes the analysis of case-control samples in the host laboratory 

using the optimised protocols. Finally, chapter six is concerned with the use of 

additional protein separation techniques designed to increase the dynamic range of 

detection of the serum proteome for 2D-DIGE-MS profiling.  

 

In Chapter three, one of the interesting findings from the case-control study where 

samples pre-dating diagnosis of ovarian cancer and control groups were compared 

using MS analysis was that peaks 4292.5 m/z and 3171.1 m/z could be used in 

combination with CA-125 levels to detect ovarian cancer up to 12 months prior to 

diagnosis. Although these peaks were not identified, it could be speculated that they 

may be fragments of host immune/acute phase proteins (e.g. inter-α-trypsin inhibitor 

heavy chain (ITIH4)) generated by exo-peptidases as previously reported by 

Villanueva et al. (2005). Several groups have reported on the use of a combination of 

host immune/acute phase proteins as potential disease markers [Chen et al., 2005]. It 

is clear that the presumption of the existence of a single cancer-specific biomarker is 

outdated and investigations concentrating of finding panels of markers have the 

potential to produce greater sensitivity and specificity. The fact that cancer cells are 
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themselves ‘deranged’ host cells, tends to suggest that the existence of single and 

specific cancer biomarkers is improbable. In contrast, the complex proteomic pattern 

of the tumour–host microenvironment may be unique and may constitute a biomarker 

amplification cascade. In fact, the most important biomarkers may be normal host 

response proteins that are aberrantly cleaved through cancer-specific protease 

activities. Such a proposal lends itself to a pattern analysis approach to investigate the 

loss or gain of peptide ions within the spectra of disease versus normal samples.  

 
Having identified protocols suited to the high-throughput analysis of serum-based 

spectral patterns, the overall aim of the experiments presented in chapter 4 was to 

identify sources of error which may affect the reproducibility of the selected 

technology platform. Although automation allowed the processing and analysis of a 

greater number of samples the initial reproducibility of the platform was poor. The 

reproducibility was improved by reducing the bead loss during the wash steps and 

diluting the eluate before MS analysis. Interestingly, the beads chosen for general use 

were found to bind highly abundant proteins including HSA and apolipoproteins 

which are common serum proteins. It is speculated that the presence of these proteins 

led to competition and suppression effects during peptide extraction and MALDI 

ionisation. Diluting the eluate led to improved spectral quality, presumably by 

improving crystallisation and reducing peptide ion suppression but did not facilitate 

peptide identification. Subsequent studies showed that despite attempts to deplete the 

abundant proteins they continued to mask the detection of lower abundant protein 

species.  

 

In addition, different clinically feasible sample handling and processing protocols 

were assessed. An interesting finding was that samples kept on ice after collection 

with a transport time of less than 6 hours were more stable (as defined by serum 

peptide inter sample profile comparison) than those which had not been kept on ice 

prior to transport. This provides support for the exopeptidase activity hypothesis 

[Villanueva et al., 2006]. This states that disease-specific exopeptidases are active on 

serum proteins after blood samples have been left to clot with the fragmentation 

patterns generated by these exoprotease activities providing diagnostic information. 

Fragments of fibrinopeptide A (FPA) and complement 3f (C3f), among others have 

been identified and reported as surrogate markers of cancer [Villanueva et al., 2006]. 
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More importantly, several groups have also reported on differential expression of 

abundant serum proteins (or fragments thereof) as markers of disease [Villanueva et 

al., 2006; Ye et al., 2003; Zhang et al., 2004]. 

 

There was also support for the use of older sample collections where samples have 

been in transit and storage for prolonged periods of time. Case-control studies can be 

performed as long as all samples have been handled identically. Exopeptidase activity 

may come to an end point after a certain period depending on the transit and storage 

conditions. Placing samples on ice would serve to lower the rate of exopeptidase 

activity and thus, sample integrity remains intact for MS-based analysis. The peptides 

are themselves the product of specific enzymatic activities, and careful qualitative and 

quantitative measurements may therefore yield some insights in the protease activities 

at work. However, steady state measurements can only provide some quantitative 

estimates of enzyme activity when contributing factors such as specific activity and 

half-life of the product or metabolite are known. Proteases are well-established 

components of tumour progression and invasiveness [Matrisian et al., 2003]. As such, 

enzymes, inactive proteolytic fragments of enzymes or protease inhibitors have 

become important and promising cancer biomarkers [Landis-Piwowar et al., 2006]. 

Some efforts are being made towards activity-based proteomic profiling involving the 

use of chemical probes that selectively label, on a whole-proteome background, 

certain classes of active enzymes but not their inactive forms [Kato et al., 2005]. 

Furthermore, a test to compare defined exopeptidase activities by quantifying the 

peptide products of such enzymes within individual proteomes of two or more groups 

of biological samples has recently been reported [Villanueva et al., 2008]. 

 

The experiments described in chapter 5 utilised the optimised magnetic bead-based 

serum profiling platform and a panel of peptide masses were found to be useful in 

(poorly) discriminating between the clinical conditions. However despite defining a 

cut-off for the technical variance, the biological heterogeneity innate in human-

derived clinical samples resulted in large variation within the clinical conditions. The 

SVM classification algorithm was also limited by the small number of diseased 

samples. A larger sample set needs to be analysed to validate these results. It would 

have been ideal to identify some of the discriminatory masses. However, as 
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previously mentioned, direct peptide identification using MALDI-TOF/TOF MS 

suffers from several limitations. This is especially true for a complex sample such as 

serum where in the presence of numerous proteins the separation of the parent ion of 

interest is often difficult. As the data in chapter 4 showed the beads used for peptide 

extraction also captured larger proteins making the sample eluate complex and 

generating crystallisation heterogeneity and ion suppression. Although the peaks of 

interest were not identified it is most likely that the distinctive MS profiles have 

resulted from the differential expression of relatively abundant serum proteins and 

their fragments associated with (the response to) tumours, which may have been 

further cleaved by disease specific ex-vivo exoprotease activity [Villanueva et al., 

2008]. Work on isolating and identifying peaks of interest is ongoing. A larger 

sample set from UKOPS has been analysed using the automated bead-based 

fractionation protocol in the host laboratory and data is being analysed in 

collaboration with Professor Gammerman’s group at Royal Holloway University. On 

their own the peptide peaks identified performed poorly when used to classify a test 

set of samples, but sensitivity is improved when used in combination with CA-125, 

data analysis is on-going. 

 

The next step would involve the validation of these markers. Validation of 

biomarkers would require robust diagnostic performance on independent case-control 

sets. To this end, the platform developed herein could be expanded to incorporate an 

antibody-based enrichment strategy for capturing peptides on magnetic beads coated 

with an array of antibodies for several proteins coupled to mass spectrometry-based 

multiple reaction monitoring (MRM) quantification. Since the majority of markers 

reported from proteomic studies to date have predominately included host-response 

(acute-phase) proteins, this would be an ideal way to quantitatively analyse peptides 

associated with the host immune response [Whiteaker et al., 2007]. 

 

The experiments described in chapter six permitted the identification of several 

proteins that were differentially expressed between pools of clinical sera. In the 

unfractionated serum experiment, several host response/acute-phase proteins 

including the immunoglobins and proteins from the SERPIN family were identified 

as differentially expressed protein features. Of these the SERPIN proteins which are 
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commonly known as positive acute-phase reactants were up-regulated in the 

malignant condition. SERPIN proteins are involved in down regulation of local 

inflammation. The inflammatory cascade includes a multitude of constituent proteins 

with varying functions, including structural proteins, clotting factors, angiogenesis 

and transport proteins. The host response is generally mediated by the innate immune 

system and the host response proteins exist at substantially high concentrations within 

the tumour microenvironment. According to the host-response protein amplification 

cascade concept, proteins synthesized in the liver enter the circulation and when 

exposed to a localized disease area, they are processed by the local host response, and 

modified forms of the proteins re-enter the general circulation. This is the source of 

amplification of a localised disease signal. Specificity of this process is made possible 

by the fact that each disease generates a different type of local host response. This 

may be due to the fact that each disease expresses a different set of antigens (e.g. 

tumour markers) or that the recruitment of specific inflammatory mediators differs 

based on the inciting event. However, it is likely that these markers may not be 

specific for ovarian cancer. 

 

Using an antibody-based enrichment strategy for quantitative measurements of such 

host response proteins and the peptides associated with them may provide detailed 

insights on tumour progression and invasiveness. Numerous proteomic studies 

published to date have identified relatively abundant host response proteins as 

candidate biomarkers [Moore et al., 2006; Zhang et al., 2004; Zhang et al., 2007]. It 

would be interesting to measure how their levels fluctuate with tumour progression 

and to determine if the changes are disease and/or stage specific in samples pre-dating 

diagnosis. 

 

The systematic detection of low abundance proteins in human blood is complicated 

by the extremely wide dynamic range of protein abundances. The depletion of major 

proteins is a popular strategy for enhancing detection sensitivity in serum or plasma. 

The low abundance proteins enrichment strategies employed herein enabled 

additional protein species to be detected on 2-DE, although the increase was modest, 

and most newly visualized spots were minor forms of relatively abundant proteins. 

The inability to detect low abundance proteins near expected 2-D staining limits was 
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probably due to both the highly heterogeneous nature of most serum proteins and 

masking of low abundance proteins by the next series of medium abundance proteins, 

which included the apolipoproteins. Due to the wide dynamic range of the serum 

proteome, even removing the top 20 most abundant proteins would probably not 

allow the detection of the lowest abundant proteins. In reality the removal of the top 

seven proteins enhances mid-range rather than low-range proteins and additional 

fractionation is required. 

 

Not surprisingly, in both the MARS and ProteoMiner experiments, a number of gel 

spots yielded identities for the apolipoproteins (APOA1, APOA4 & APOE). Of these 

APOA4 was also identified in the unfractionated serum experiment. The precise 

function of APOA4 is unknown. Interestingly, the ProteoMiner protein enrichment 

kit showed a greater affinity for these ‘medium’ abundant proteins. APOA1 and 

APOE were only found in the ProteoMiner experiment and both proteins were found 

to be down-regulated in the malignant condition. APOE is synthesized principally in 

the liver and is the lipoprotein component of very low-density lipoproteins (VLDLs). 

APOE combines with lipids and is involved in cholesterol transport, lipid metabolism 

and protein synthesis. APOE is expressed in significant amounts in the ovaries, testes 

and the brain, is synthesised by a wide variety of peripheral cells, including 

macrophages. Its production by extra-hepatic cells has also raised questions regarding 

its role in peripheral tissues. In addition, APOE is involved in numerous other 

functions, including tissue repair, the immune response and regulation of cell growth 

and differentiation. The levels of these proteins in diseased samples may be related to 

tumour size and future follow up investigations should be able to confirm this as long 

as the relevant clinical data is available. In summary, the results from chapter 6 

showed that a panel of putative markers consisting of several apolipoproteins 

(APOA1, A4 & E), serotransferrin (TF), haptoglobin (HP), α-1-antitrypsin precursor 

isoform 1 (SERPINA1), vitamin D-binding protein, afamin and utrophin warrant 

further investigation. As Table 7.1 shows many of these proteins have previously 

been reported as markers for ovarian and other cancers.  
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Biomarker Cancer type References
Apolipoprotein A1 Ovarian, pancreatic Zhang et al., 2004; Kozak et al., 2005
Haptoglobin α-subunit Ovarian, pancreatic, lung Ye et al., 2003
Transthyretin fragment Ovarian Kozak et al., 2005
Inter-alpha-trypsin inhibitor 
fragment

Ovarian, pancreatic Zhang et al., 2004

Vitamin D-binding protein Prostate, breast Corder et al.,1993; Pawlik et al., 2006

Serum amyloid A Nasopharyngeal, pancreatic, 
ovarian

Orchekowski et al., 2005; Moshkovskii et al.,2005; 
Helleman et al., 2007

α1-antitrypsin and α1-
antichymotrypsin

Pancreatic Orchekowski et al., 2005: Yu et al., 2005

Haemoglobin-alpha & -beta 
subunits 

Ovarian Woong-Shick et al., 2005

EPCA-2 Prostate Leman et al,. 2007
Afamin Ovarian Jackson et al., 2007  
Table 7.1 Examples of putative serum biomarkers. Adapted from aoui-Jamali and Xu, 

(2006). 

 

 

In addition, several cellular proteins involved in Wnt-signalling were found in spots 

which yielded multiple hits. Wnts are a large family of cysteine-rich secreted 

glycoproteins that control development and several components of Wnt signalling are 

implicated in the genesis of human cancer. These included adenomatosis polyposis 

coli 2 (APC2; identified in a spot with APOE), which promotes rapid degradation of 

cadherin-associated protein and may function as a tumour suppressor. Protein Daple 

Isoform 2 (DAPLE) is a negative regulator of the canonical Wnt signalling pathway, 

acting downstream of Dvl to inhibit β-catenin stabilisation. In addition, Kinectin 1 

isoform b (KTN1; identified in a spot with APOA4) has been identified as a tumor-

associated antigen. Kinesin, the receptor for KTN1 is involved in kinesin-driven 

vesicle motility and accumulates in integrin-based adhesion complexes upon integrin 

aggregation by fibronectin. Previous reports have suggested that defects in KTN1 

may be involved in the onset of cancer [Wang et al., 2004]. 

 

In conclusion, the work presented in this thesis has revealed several candidate 

markers that need to be tested on a larger sample set in combination with CA-125 

using immuno-based assays. The proteome of an organism, in this case human, is 

defined as the complete set of proteins that can be expressed by the genetic material. 

Based on the number of proteins found in the extensive separation and analysis 

shown by this work, the number of disease specific-biomarkers may well be lower 

than the postulated number in the literature.  
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To further improve the chances of finding serum markers for ovarian cancer, a 

number of parameters could be improved. The proteome could be divided into 

smaller ‘sub-proteomes’. For example, using fractionation techniques to separate the 

glycoproteins and phosphoproteins or 2D-LC separation of tryptic peptides would 

facilitate more detailed analysis of the serum proteome. In addition, quantitative 

analysis using stable isotope labelling techniques such as isotope-coded affinity tags 

(ICAT) or isobaric tags for relative and absolute quantitation (iTRAQ) could be 

performed on these fractions. The use of such sub-proteome fractionation techniques 

would permit a simplification of the proteome while providing practical steps towards 

the ultimate dissection of the entire proteome. In essence, these methods are capable 

of capturing fairly accurately the relative quantitative information from two or more 

samples in a single analysis, thereby reducing the analysis time and the effect of 

technical variability. The MARS or ProteoMiner fractionation strategies could also be 

extended to an LC-MALDI label-free quantitation platform. Additional analysis of 

the bound fraction from the MARS depletion studies could also yield useful data. As 

previous studies on the analysis of albumin-associated peptides and proteins from 

ovarian cancer patients have shown, low-abundance nuclear proteins linked to cancer 

susceptibility, including BRCA2, were represented in sera as a series of specific 

fragments bound to albumin [Lowenthal et al., 2005]. 
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Smooth 
 
function [X_new] = smooth(X,windowSize) 
start = windowSize+1;    
for i=start:size(X,1)-start+1 % changed from size(X,1) - start 
X_new(i-start+1,:) = [X(i,1) mean(X(i-
windowSize:i+windowSize,2))];         
end 
 
 
Baseline correction 
 
function [point_present] = 
baseline_correction(base,point_present,X,pd) 
% base - baseline function 
% pd - percentage difference 
counting = 0; 
min_X = inf; 
for i = 1:size(X,1) 
if base(i,2) > X(i,2) 
if X(i,2) < min_X 
min_X = X(i,2);    
min_X_index = i;  
end   
counting = 1;     
else 
if counting 
counting = 0; 
min_X = inf; 
for j = 1:size(X) 
if point_present(j) 
if abs(X(j,1) - X(min_X_index))/X(min_X_index) < pd 
point_present(j) = 0; 
end 
end 
end 
point_present(min_X_index) = 1; 
end 
end 
end 
if counting 
counting = 0; 
min_X = inf; 
for j = 1:size(X) 
if point_present(j) 
if abs(X(j,1) - X(min_X_index))/X(min_X_index) < pd 
point_present(j) = 0; 
end 
end 
end 
point_present(min_X_index) = 1; 
end 
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function [B,point_present] = splinefun(B,point_present) 
index = 1; 
B1 = B(:,1); 
B2 = B(:,2); 
xx = B1; 
X = B1(point_present==1); 
Y = B2(point_present==1); 
for i=1:size(B,1) 
xx(i) = B(i,1); 
if point_present(i) 
X(index) = B(i,1); 
Y(index) = B(i,2); 
index = index + 1; 
end 
end 
yy = pchip(X,Y,xx); 
s = size(B,1); 
clear B; 
B(:,1) = xx(:); 
B(:,2) = yy(:); 
for i=1:s 
B(i,1) = xx(i); 
B(i,2) = yy(i); 
end 
 
 
Normalise 
 
function [X] = normalise(X,C) 
point_sum = sum(X(:,2)); 
%C = 5*10^8; 
X(:,2) = (X(:,2)/point_sum)*C; 
for i=1:size(X,1) 
  
t = (X(i,2)/point_sum)*C; 
  X(i,2) = t; 
end 
%plot(X(:,1),(point_sum/size(X,1))*ones(size(X,1),1),'-') 
 
 
Peak identification 
 
function p=peak_finder(X,ws,thold,sample_index) 
% sw - singal-to-noise ratio window size 
thold - minimum intensity threshold 
% The output 'p': 
p(:, 1) sample index; 
p(:, 2) number of the peak in the initial array; 
p(:, 3) m/z-ratio; 
% p(:, 4) signal-to-noise ratio (intensity divided by the 
average intensity in the window); 
p(:, 5) intensity. 
if nargin == 3 
    sample_index = 0; 
end 
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slopeSign = diff(X(:,2))>0; 
slopeSignChange = diff(slopeSign)<0; 
h = find(slopeSignChange) + 1; 
h(X(h,2) < thold) = [];      
p(:,1) = h; 
p(:,2) = X(h,1); 
XX = X(:,1); 
X2 = X(:,2); 
index = 1; 
for i=h' 
wst = min(ws,length(XX) - i); 
wst = min(wst,i-1); 
    q = find(XX<=(XX(i+wst))); 
q1 = find(XX>=(XX(i-wst))); 
    q2 = intersect(q,q1); 
p(index,3) = X(i,2)/mean(X2(q2)); 
index = index + 1; 
end 
p(:,4) = X(h,2); 
p = [sample_index*ones(size(p(:,1))) p]; 
 
 
Peak list 
 
function peak_list = 
genPeakList_001(proc_spec_LMR,proc_spec_HMR,peak_set,lab,peakG
roups,pd) 
% peakGroups - max or mean values of the peakalign2-function 
output  
% pd - mass separation parameter, must be the same as in 
peakalign2.m function 
% peak_set, lab - not used parameters 
peak_list = zeros(1,size(peakGroups,1)); 
for j = 1:size(peakGroups,1) 
    if size(peak_set,1) == 0 
        h=[]; 
    else 
 
        h1 = find(peak_set(:,2)<peakGroups(j,1)); 
        h2 = find(peak_set(:,2)>peakGroups(j,1)); 
        h = intersect(h1,h2); 
    end 
    if size(h,1) == 0 
        if 1%peakGroups(j) < max(proc_spec_LMR(:,1)) 
h1 = find(proc_spec_LMR(:,1)<peakGroups(j,1) + 
peakGroups(j,1)*pd); 
h2 = find(proc_spec_LMR(:,1)>peakGroups(j,1) - 
peakGroups(j,1)*pd); 
h = intersect(h1,h2); 
ep = max(proc_spec_LMR(h,2)); 
if length(ep) == 0 
 ['no signal, setting to -1, m/z=' num2str(peakGroups(j))] 
peak_list(1,j) = -1; 
else 
peak_list(1,j) = ep; 
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end 
else 
h1 = find(proc_spec_HMR(:,1)<peakGroups(j,1) + 
peakGroups(j,1)*pd); 
            h2 = find(proc_spec_HMR(:,1)>peakGroups(j,1) - 
peakGroups(j,1)*pd); 
            h = intersect(h1,h2); 
            ep = max(proc_spec_HMR(h,2)); 
if length(ep) == 0 
['no signal, setting to -1 m/z = ' num2str(peakGroups(j))] 
peak_list(1,j) = -1; 
else 
peak_list(1,j) = ep; 
end 
end 
else 
if size(h,1) == -1 
peak_list(1,j) = peak_set(h,5); 
else 
if size(h,1) > 1 
peak_list(1,j) = max(peak_set(h,5)); 
 
end 
end 
peak_list(1,j+1) = lab; 
 
 
Peak alignment 
 
function peak_groups = peakalign2(pks, first_SNR, second_SNR, 
massSep) 
 
Input: peaks    -    spectrum ID            
peak location in clock ticks 
peak location in mass units 
signal-to-noise ratio of the peak 
normalized baseline-corrected intensity of the peak 
first_SNR  -  Minimum signal-to-noise ratio for new cluster 
second_SNR -  Minimum signal-to-noise to be included in 
existing cluster 
this is not used in this version as it adds no extra peaks 
to a cluster just incriments the count 
massSep    -  Mass separation param 
Output: 
peak_groups - PeakID 
Highest peak mass location 
Mean Mass location 
Min mass 
Max mass 
Number of pks 
Max Intensity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
pks = sortrows(pks,-5); % descending order of the 5th column 
group_index = 1; 
peak_groups = []; 
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spec_at_peak = zeros(size(pks,1),1); 
pks_second_SNR = pks(pks(:,4)<first_SNR,:); 
pks_second_SNR(pks_second_SNR(:,4) < second_SNR) = []; 
pks(pks(:,4)<first_SNR,:) = []; 
size(pks) 
for i=1:size(pks,1) 
if mod(i,100)==0 
i /size(pks,1) 
end 
if pks(i,4) >= first_SNR 
if size(peak_groups,1) == 0 
peak_groups(group_index,:) = [ group_index pks(i,3) pks(i,3) 
pks(i,3) pks(i,3) 1 pks(i,5)]; 
spec_at_peak(i) = group_index; 
group_index = group_index + 1; 
spec_list(group_index).list = pks(i,1); 
else 
h = []; 
for j=1:size(peak_groups,1) 
if abs((peak_groups(j,2) - pks(i,3))/peak_groups(j,2)) <= 
massSep 
h = [h j]; 
end 
end 
 
             
if size(h,1) == 0 %create new group 
peak_groups(group_index,:) = [group_index pks(i,3) pks(i,3) 
pks(i,3) pks(i,3) 1 pks(i,5)]; 
spec_at_peak(i) = group_index; 
group_index = group_index + 1; 
spec_list(group_index).list = pks(i,1); 
else 
if size(h,1) >= 1 %add to existing group;  
if size(h,1) > 1 then choose closest group 
if size(h,1) > 1 
ind = h(1); 
for j=h 
if abs((peak_groups(j,2) - pks(i,3))/peak_groups(j,2)) <= 
abs((peak_groups(ind,2) - pks(i,3))/peak_groups(ind,2)) 
ind = j; 
end 
end 
else 
ind = h(1); 
end %  
end  
if size(h,1) > 1 
hsp1 = find(spec_at_peak == ind); 
hps2 = find(pks(hsp1,1) == pks(i,1)); 
if size(hps2,1) == 0 
%add peak to peak_groups(ind,:) 
peak_groups(ind,3) = (peak_groups(ind,6)*peak_groups(ind,3) + 
pks(i,3))/(peak_groups(ind,6)+1); 
peak_groups(ind,6) = peak_groups(ind,6) + 1; 
if pks(i,3) < peak_groups(ind,4) 
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peak_groups(ind,4) = pks(i,3); 
end 
if pks(i,3) > peak_groups(ind,5) 
peak_groups(ind,5) = pks(i,3); 
end 
spec_at_peak(i) = ind; 
spec_list(ind).list = [spec_list(ind).list; pks(i,1)];           
end % 
end  
if size(hps2,1) == 0 
end % 
end  
size(h,1) == 0 
end  
end  
size(peak_groups,1) == 0 
end % 
end  
pks(i,4) >= first_SNR 
end % 
end  
for i=1:size(pks,1) 
for i=1:size(pks_second_SNR,1) 
h= []; 
for j=1:size(peak_groups,1) 
if abs((peak_groups(j,2) - 
pks_second_SNR(i,3))/peak_groups(j,2)) <= massSep 
h = [h j]; 
end 
end 
if size(h,1) == 0 %do nothing 
elseif size(h,1) >= 1 
ind = h(1); 
if size(h,1) > 1 
for j=h 
if abs(peak_groups(j,2) - pks_second_SNR(i,3)) <= 
abs(peak_groups(ind,2) - pks_second_SNR(i,3)) 
ind = j; 
end 
end 
end 
end 
hsp1 = find(spec_list(ind).list == pks_second_SNR(i,1)); 
if size(hsp1,1) == 0 
peak_groups(ind,6) = peak_groups(ind,6) + 1; 
spec_list(ind).list = [spec_list(ind).list; 
pks_second_SNR(i,1)]; 
end 
end 
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Peak intensity list 
 
function [peak_list f_list] = make_peak_int_list(pg,massSep, 
proc_path) 
 
pg - peak_groups, output of peakalign2.m 
pg = pg(:, 2); % max value 
%pg = pg(:,3); % mean value 
%proc_path = '/rmt/csnewton/pgrads/brian/UKCTOCS_GW/proc/'; 
%proc_path = '/rmt/csnewton/pgrads/brian/Current/D-
drive/Tempst/proc_cal/'; 
if nargin < 3 
    proc_path = [pwd '\res\processed\'] 
end 
f_list = file_finder(proc_path); 
%f_list_ctr = file_finder([proc_path 'Ctr\'],'*_1*');%'*_2' 
%f_list_bre = file_finder([proc_path 'Bre\'],'*_1*');%'*_2' 
%f_list_pro = file_finder([proc_path 'Pro\'],'*_1*');%'*_2' 
%f_list_bla = file_finder([proc_path 'Bla\'],'*_1*');%'*_2' 
%l = length(f_list_ctr) + length(f_list_bre) + 
length(f_list_pro) + length(f_list_bla); 
l = length(f_list); 
massSep = 0.0015; 
 
peak_list = []; 
c=0; 
for i=1:length(f_list) 
c=c+1; 
   c/l 
    X = dlmread([proc_path f_list(i).fname]); 
peak_list = [peak_list; 
genPeakList_001(X,[],[],0,pg,massSep)]; 
end 
%{ 
for i=1:length(f_list_ctr) 
c=c+1; 
   c/l 
    X = dlmread([proc_path 'Ctr\' f_list_ctr(i).fname]); 
peak_list = [peak_list; 
genPeakList_001(X,[],[],0,pg,massSep)]; 
end 
for i=1:length(f_list_bre) 
c=c+1; 
    c/l 
    X = dlmread([proc_path 'Bre\' f_list_bre(i).fname]); 
peak_list = [peak_list; 
genPeakList_001(X,[],[],1,pg,massSep)]; 
end 
for i=1:length(f_list_pro) 
c=c+1; 
    c/l 
    X = dlmread([proc_path 'Pro\' f_list_pro(i).fname]); 
peak_list = [peak_list; 
genPeakList_001(X,[],[],2,pg,massSep)]; 
end 
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for i=1:length(f_list_bla) 
c=c+1; 
    c/l 
    X = dlmread([proc_path 'Bla\' f_list_bla(i).fname]); 
peak_list = [peak_list; 
genPeakList_001(X,[],[],3,pg,massSep)]; 
end 
%} 
 
 
Spectral calibration 
 
function Xc = cal_spec(raw, cal, cal_peaks, massSep,ws) 
SNR_low = 1.5; 
%ws = 50; 
%cal_peaks = [782.402 1047.20 1297.51 1348.66 1620.88 2094.46 
2466.73 ... 
%         3149.61 6181.05 8565.89 12361.09]; 
cal_peaks = sort(cal_peaks); 
index = 1:length(cal_peaks); 
%LMR_index = [1 2 3 7]; 
% 
HMR_index = [10 12 13]; 
TOFs = sqrt(cal_peaks); 
use = []; 
length(cal_peaks) 
for j = 1:length(cal_peaks) 
inds = intersect(find(cal(:,1) > cal_peaks(j)*(1 - massSep)), 
find(cal(:,1) < cal_peaks(j)*(1 + massSep))); 
[m_1 h_1] = max(cal(inds,2)); 
peak_mz(j) = cal(inds(h_1),1); 
max_point_index = inds(h_1); 
XX = cal(:,1); 
  X2 = cal(:,2); 
q = find(XX<=(XX(max_point_index)+ws)); 
q1 = find(XX>=(XX(max_point_index)-ws)); 
q2 = intersect(q,q1); 
  snr(j) = cal(max_point_index,2)/mean(X2(q2)); 
if cal(max_point_index,2)/mean(X2(q2)) > SNR_low 
use = [use 1]; 
else 
use = [use 0]; 
end 
end 
initial = [1; 1]; 
1 
[peak_mz' snr'] 
use = find(use == 1); 
x = lsqnonlin(@(x)fun1(x, peak_mz(index(use)), 
TOFs(index(use))), initial); 
raw_mz = ((x(1)*ones(size(raw,1),1) + 
sqrt(raw(:,1)/x(2)))).^2; 
Xc = [raw_mz raw(:,2)];  
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Graphical output 
 
function plot_all(pg,plot_path) 
pg = pg(:, 2); % max value % 
pg = pg(:,3); % mean value 
if nargin < 2 
plot_path = [pwd '\res\plots\']; 
end 
if ~isdir(plot_path) 
mkdir([pwd '\res\'], 'plots'); 
end 
if ~isdir([plot_path 'fig\']) 
mkdir(plot_path, 'fig'); 
end 
if ~isdir([plot_path 'eps\'])    
mkdir(plot_path, 'eps'); 
end 
proc_path = [pwd '\res\processed\']; 
proc_path_c = [proc_path 'Ctr\']; 
proc_path_bla = [proc_path 'Bla\']; 
proc_path_pro = [proc_path 'Pro\']; 
proc_path_bre = [proc_path 'Bre\']; 
for i=1:length(pg) 
figure 
plot_peak(pg(i),50,proc_path_c,'m') 
plot_peak(pg(i),50,proc_path_bla,'g') 
h = gcf; % returns the current figure handle 
saveas(h,[plot_path 'eps\' num2str(pg(i)) '_bla.eps']) 
saveas(h,[plot_path 'fig\' num2str(pg(i)) '_bla.fig']) 
close(h); % deletes the figure 
figure % created the figure object 
plot_peak(pg(i),50,proc_path_c,'m') 
plot_peak(pg(i),50,proc_path_pro,'b') 
h = gcf; 
saveas(h,[plot_path 'eps\' num2str(pg(i)) '_pro.eps']) 
saveas(h,[plot_path 'fig\' num2str(pg(i)) '_pro.fig']) 
close(h);  
figure 
plot_peak(pg(i),50,proc_path_c,'m') 
plot_peak(pg(i),50,proc_path_bre,'r') 
 
h = gcf; 
saveas(h,[plot_path 'eps\' num2str(pg(i)) '_bre.eps']) 
 
saveas(h,[plot_path 'fig\' num2str(pg(i)) '_bre.fig']) 
close(h); 
end 
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Differently expressed protein feature identified by LC-MS/MS. A) HP protein 
identified by 3 unique peptides (highlighted in yellow in the protein sequence). B) An 
MS/MS spectrum and C) table indicating the masses of identified fragment ions. 
 
 
 
 
 
 
 
 

IPI00431645 (100%), 31,381.6 Da
Gene_Symbol=HP HP protein
3 unique peptides, 4 unique spectra, 4 total spectra, 40/281 amino acids (14% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) ALB protein 
identified by 9 unique peptides (highlighted in yellow in the protein sequence). B) An 
MS/MS spectrum and C) table indicating the masses of identified fragment ions. 
 
 
 
 
 
 

IPI00022434 (100%), 71,704.8 Da
Gene_Symbol=ALB Uncharacterized protein ALB
9 unique peptides, 10 unique spectra, 10 total spectra, 98/627 amino acids (16% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) IGHM protein 
identified by 8 unique peptides (highlighted in yellow in the protein sequence). B) An 
MS/MS spectrum and C) table indicating the masses of identified fragment ions. 
 
 
 
 
 
 
 
 

IPI00472610 (100%), 52,665.5 Da
Gene_Symbol=IGHM IGHM protein
6 unique peptides, 7 unique spectra, 8 total spectra, 69/478 amino acids (14% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) SERPINA1 
protein identified by 8 unique peptides (highlighted in yellow in the protein 
sequence). B) An MS/MS spectrum and C) table indicating the masses of identified 
fragment ions. 
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IPI00553177 (100%), 46,737.9 Da
Gene_Symbol=SERPINA1 Isoform 1 of Alpha-1-antitrypsin precursor
8 unique peptides, 8 unique spectra, 9 total spectra, 73/418 amino acids (17% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) SERPINA3 
protein identified by 4 unique peptides (highlighted in yellow in the protein 
sequence). B) An MS/MS spectrum and C) table indicating the masses of identified 
fragment ions. 
 
 
 
 
 
 
 
 
 
 
 
 

IPI00550991 (100%), 50,600.5 Da
Gene_Symbol=SERPINA3 Alpha-1-antichymotrypsin precursor
4 unique peptides, 4 unique spectra, 4 total spectra, 39/448 amino acids (9% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) AHSG protein 
identified by 3 unique peptides (highlighted in yellow in the protein sequence). B) An 
MS/MS spectrum and C) table indicating the masses of identified fragment ions. 
 
 
 
 
 
 
 

IPI00022431 (100%), 39,323.4 Da
Gene_Symbol=AHSG Alpha-2-HS-glycoprotein precursor
3 unique peptides, 3 unique spectra, 3 total spectra, 41/367 amino acids (11% coverage)
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Differently expressed protein feature identified by LC-MS/MS. A) APOA4 
protein identified by 3 unique peptides (highlighted in yellow in the protein 
sequence). B) An MS/MS spectrum and C) table indicating the masses of identified 
fragment ions. 
 
 
 
 
 
 
 
 
 

IPI00304273 (100%), 45,399.4 Da
Gene_Symbol=APOA4 Apolipoprotein A-IV precursor
3 unique peptides, 3 unique spectra, 3 total spectra, 30/396 amino acids (8% coverage)
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 

MARS 1 Spot 242 CP Ceruloplasmin precursorMARS 1 Spot 242 CP Ceruloplasmin precursor
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 

MARS1 Spot 412 ITIH4 Isoform 1 of Inter-alpha-trypsin inhibitor heavy chain H4 
precursor
MARS1 Spot 412 ITIH4 Isoform 1 of Inter-alpha-trypsin inhibitor heavy chain H4 
precursor
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score. B) RMS based error scores for the peptide mass in the PMF. C) Details 

of the identified protein’s score, sequence including matched peptides are shown.  

MARS1 Spot 472 ITIH4 Isoform 2 of Inter-alpha-trypsin inhibitor heavy chain H4 precursorMARS1 Spot 472 ITIH4 Isoform 2 of Inter-alpha-trypsin inhibitor heavy chain H4 precursor
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 
 
 
 
 

ProteoMiner Spot 208 Pyruvate Kinase LProteoMiner Spot 208 Pyruvate Kinase L
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 

ProteoMiner Spot 243 Kinesin-like protein ProteoMiner Spot 243 Kinesin-like protein 
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 

ProteoMiner Spot 243 Amyotrophic lateral sclerosis isoform 2 ProteoMiner Spot 243 Amyotrophic lateral sclerosis isoform 2 
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 

ProteoMiner Spot 405 Kinectin 1 isoform b ProteoMiner Spot 405 Kinectin 1 isoform b 
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 

ProteoMiner Spot 406 PeriplakinProteoMiner Spot 406 Periplakin
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ProteoMiner Spot 435 PericentrinProteoMiner Spot 435 Pericentrin
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 

ProteoMiner Spot 435 PericentrinProteoMiner Spot 435 Pericentrin
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 

ProteoMiner Spot 444 GTPase-activating Rap/Ras-GAP domain-like 1 ProteoMiner Spot 444 GTPase-activating Rap/Ras-GAP domain-like 1 
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 

ProteoMiner Spot 461 Adenomatosis polyposis coil 2 ProteoMiner Spot 461 Adenomatosis polyposis coil 2 



Appendix 4 ProteoMiner PMF 

 260

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown. 

ProteoMiner Spot 577 UtrophinProteoMiner Spot 577 Utrophin
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 
 

MARS2 spot 644 Phenylalany1-tRNA synthetase beta chainMARS2 spot 644 Phenylalany1-tRNA synthetase beta chain
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 
 

MARS2 spot 664 Protein DAPLE isoform 2MARS2 spot 664 Protein DAPLE isoform 2
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 
 
 
 
 

MARS2 spot 664 Ras-related Rab-2BMARS2 spot 664 Ras-related Rab-2B
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

MARS2 spot 712 VinculinMARS2 spot 712 Vinculin
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MALDI-TOF PMF protein identification. Prominent peaks in the mass range 700-4000 

from the MALDI-TOF spectrum were used to generate a peptide mass fingerprint which was 

searched against the IPI-Human database using the Mascot search engine. A) Probability 

based Mowse score, B) RMS based error scores for the peptide mass in the PMF and C) 

details of the identified protein’s score, sequence including matched peptides are shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MARS2 spot 712 T-box transcription factorMARS2 spot 712 T-box transcription factor
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