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A B S T R A C T

Mapping axon diameters within the central and peripheral nervous system could play an important role in our
understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous
diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single
diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating
gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent
theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown
or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the
extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue.
We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using
Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging
experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT)
maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural
complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we
perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with
the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform se-
quences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index
have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon
diameter index in our nerve tissue samples are 4–5.8 μm and these are excellently matched with the OGSE es-
timates 4.2–6.5 μm, while SDE overestimates at 5.2–8 μm for the same sample. We found OGSE estimates to be
more precise with on average a 0.5 μm standard deviation compared to the SDE estimates which have a 2 μm
standard deviation. When testing the robustness of the estimates when the number of the diffusion gradient di-
rections reduces, we found that both OGSE and SDE estimates are affected, however OGSE is more robust to these
changes than the SDE. Overall, these results suggest, quantitatively and in in vivo conditions, that low-frequency
OGSE sequences may provide improved accuracy of axon diameter mapping compared to standard SDE
sequences.
1. Introduction

Developing a reliable technique to measure axon diameter in vivo is of
great interest for our understanding of the human nervous system in both
puting (CMIC), University College Lo
kar).

ly 2017; Accepted 28 July 2017

c. This is an open access article unde
health and disease. Axon diameter has a direct effect on the speed of
neural communication (Hursh, 1939; Ritchie, 1982) and hence varies in
different regions of the central and peripheral nervous system. Larger
axons are found in neural pathways that require rapid signalling, such as
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in the motor pathways of the peripheral and central nervous system.
Smaller axons are located in pathways that allow slower neuronal
communication such as those responsible for temperature and nocicep-
tive sensations (Burke, 2007). Importantly, axon sizes, if found to be
abnormal, can indicate the presence of certain neurological diseases. For
instance, the presence of swollen axons in the lumbar spinal cord has
been linked to amyotrophic lateral sclerosis, a degenerative disease of the
central nervous system with an insidious onset (Sasaki and Maruyama,
1992; Cluskey and Ramsden, 2001). The axon diameters in controls and
patients in Sasaki and Maruyama (1992) were shown to be 2.44 ±
0.51 μm and 3.32 ± 1.28 μm respectively, which suggests that controls
and patients would be distinguishable by a method that could resolve a
difference of a mean axon diameter of 0.88 μm or less. In autism, a higher
density of unusually small axons in the anterior cingulate and orbito-
frontal cortices has been associated with the mechanism responsible for
the abnormalities in emotion and attention seen in the disorder (Piven
et al., 1997; Zikopoulos and Barbas, 2010). Several peripheral nerve
studies (Ikeda and Oka, 2012; Sanders, 1948) also suggest that axon
diameter is a good indicator of the nerve regeneration rate. Hence,
measuring axon diameter in vivo can be of great importance for a wide
range of applications.

Numerous axon diameter imaging methods using diffusion MRI have
been investigated in the literature. Q-space imaging (Ong and Wehrli,
2010), AxCaliber (Assaf et al., 2008), ActiveAx (Alexander et al., 2010)
and double diffusion encoding (DDEs) (Benjamini et al., 2016; Komlosh
et al., 2011) are important examples that have been previously proposed.
Most of these techniques use conventional single diffusion encoding
(SDE) spin echo sequences (also known as pulsed gradient spin echo
(PGSE)), or DDE sequences which have been shown to have similar
sensitivity to SDE at low diffusionweighting (Jespersen, 2012). However,
various authors suggest that oscillating gradient spin-echo (OGSE) se-
quences should provide a number of important advantages over the more
conventional SDE sequences in the context of axon diameter imaging
(Drobnjak et al., 2016; Jiang et al., 2016; Mercredi et al., 2016; Parsons
et al., 2006; Shemesh et al., 2015; Siow et al., 2012; Xu et al., 2014).

A common argument is that high-frequency OGSE sequences provide
shorter effective diffusion time than SDE and hence are able to probe
smaller length scales. This is clearly an advantage for measuring the free
diffusivity in porous systems with small diameters because it minimizes
the effects of restriction (Callaghan, 2011) and for measurements of
surface to volume ratio (Reynaud et al., 2016). However, it is not clear
whether it is advantageous for measuring axon diameter where contrast
at longer diffusion times may be more informative.

Recently, a thorough numerical approach has been used to compare
directly the sensitivity to axon diameter of SDE and OGSE sequences in a
wide space of clinically plausible sequence parameters with trapezoidal
diffusion gradient waveforms (Drobnjak et al., 2016). Signal sensitivity
was measured as a derivative of the signal with respect to axon diameter
and both parallel and dispersed fibre cases investigated. The research
showed that, for the simple case of gradients perfectly perpendicular to
straight parallel fibres, SDE always gives maximum sensitivity. However,
in real-world scenarios where fibres have unknown and dispersed orien-
tation, low-frequency OGSE provides higher sensitivity. This happens
because the oscillating waveforms can achieve high sensitivity to axon
diameters at a modest b-value, which in turn enables OGSE sequences to
retain their sensitivity for unknown fibre orientations and in the presence
of dispersion by avoiding excessive signal attenuation from unrestricted
displacements in the fibre direction. Similar results were obtained for the
axon diameter resolution limit for a range of different gradient strengths by
Drobnjak et al. (2016) and confirmed analytically in Nilsson et al. (2017).

However, simulation experiments present idealised results and can
never fully capture the varying complexities of tissues or the real envi-
ronment of MR scanning. Even phantoms have been criticised for their
simplicity and their inability to reflect the true microstructure in tissues
(Burcaw et al., 2015; Li et al., 2014). In order to validate biophysical
models and advanced diffusion sequences, it is necessary to test their
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predictions in vivo (Alexander et al., 2010; Santis et al., 2016). However,
doing so can be hampered by an array of difficulties such as subject
motion, restricted scan duration and invasive tissue extractions for his-
tology. In order to avoid these issues a common compromise is to use
fixated ex vivo tissue samples which allow imaging experiments to be
continuously run for weeks if necessary (Dyrby et al., 2013; Xu et al.,
2014). However, fixed tissue has low diffusivity and contains trapped
water, both of which can contribute to changes in the diffusion signal
leading to misleading parameter estimates that cannot be compared to
those from in vivo samples. To bridge this gap between the in vivo state
and the more convenient but less realistic fixed tissue experiments,
Richardson et al. (2013) introduced the viable isolated tissue (VIT) sys-
tem. This is an experimental technique that allows tissue samples to be
kept in a physiologically stable state during which the nerve is as close to
in vivo as possible, maintaining the same diffusion properties and expe-
riencing negligible amount of degradation. The nerve can be kept in the
VIT chamber for an extended period of time (≈ 12 h) and can therefore
emulate in vivo imaging experiments with extensive acquisition times.

The purpose of this study is to experimentally test whether OGSE
waveforms perform better than SDE waveforms when imaging axon
microstructure in viable tissue, using the VIT system, with a direct
comparison to histology. The study uses the ActiveAx framework to
design and optimise the experiment and estimate tissue model parame-
ters via a fitting process. ActiveAx is an orientationally invariant,
experimental design optimisation algorithm (Alexander, 2008; Drobnjak
et al., 2010), which selects diffusion measurement protocols that mini-
mise the expected variance in the model parameters to be estimated.
Originally this approach was constrained to SDE waveforms alone in the
optimised protocols. Recently the approach has been extended to include
the optimisation of the gradient waveform frequency, allowing the al-
gorithm to select OGSE as well as SDE waveforms (Drobnjak and Alex-
ander, 2011; Kakkar et al., 2017; Siow et al., 2013). In this study, we use
OGSE and SDE ActiveAx and compare their performance first using
Monte Carlo simulations and then on pre-clinical imaging data of a viable
excised rat sciatic nerve. To compare the protocols, we evaluate them on
three criteria: (i) Accuracy of the model estimates compared to the
ground truth (for simulated data) or histology (for scanning data); (ii)
Precision of the model estimates; (iii) Robustness of the model estimates
as the total number of diffusion gradient directions reduces.

2. Methods

2.1. Tissue samples

A sample of sciatic nerve tissue, approximately 1 cm in length, is
freshly excised from an adult Sprague Dawley rat. The nerve is carefully
ligated using 4/0 silk sutures at both ends, which are further used to tie
the nerve to a platform. The nerve-platform ensemble is then inserted
into a specially designed viable isolated tissue (VIT) chamber as in
Richardson et al. (2013), which bathes the tissue in a temperature
controlled (at 37oC) oxygenated artificial cerebrospinal fluid (aCSF) so-
lution in order to preserve viability during the course of the image
acquisition. Fig. 1 shows the nerve contained inside this chamber.

The experiments comply with the ARRIVE guidelines and are carried
out in accordance with the U.K. Animals (Scientific Procedures) Act,
1986 and associated guidelines, EU Directive 2010/63/EU for animal
experiments (Home Office, 2000).

2.2. Tissue model

Weuse a simplified version of the CHARMEDmodel (Assaf and Basser,
2005; Assaf et al., 2004) to represent the nerve microstructure. This is a
two compartment model made up of the following compartments:

� Intra-axonal compartment. Similar to Alexander et al. (2010), this
compartment models the signal S1 coming from within non-abutting



Fig. 1. The bottom image shows the chamber used to hold the excised and ligated nerve
tissue within the bore of the scanner during the image acquisition. The top image displays
the magnified sciatic nerve (outlined in blue dashed lines), which is ligated at both ends,
and tied to a platform that is attached to the chamber via a couple of inserts. The full nerve
sample, in reality, extends beyond the sutures. Details about the chamber can be found in
Richardson et al. (2013).
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parallel cylinders each with a single diameter a. We assume that the
intra-axonal space is a perfect cylinder, and hence the diffusion in it
can be characterised with intrinsic diffusivity, which we refer to here
as djj.

� Extra-axonal compartment. Similar to Alexander et al. (2010) and
Drobnjak et al. (2016), this compartment models the signal S2 using
anisotropic Gaussian displacements (Basser et al., 1994). We assume
unhindered diffusion along the axons and hence characterise it with
intrinsic diffusivity djj. Hindered diffusion perpendicular to the axons
is characterised with the apparent diffusivity dh. djj is the same in both
intra- and extra-axonal compartment.

No exchange between the water populations of the two compartments
is assumed because in myelinated sciatic nerves, the inter-compartment
water exchange time is on the order of seconds (Dortch et al., 2013),
which is much longer than the diffusion times in this study and has little
influence on the measured signal (Nedjati-Gilani et al., 2017; Nilsson
et al., 2013). Henceforth, the full model for the diffusionMRI signal, S, is:

S ¼ S0ð fS1 þ ð1� f ÞS2Þ (1)

where, S0 is the non-diffusion weighted signal and f corresponds to the
volume fraction of water within the intra-axonal compartment.

2.3. Protocol optimisation and imaging protocol

The OGSE and SDE diffusion imaging protocols are both optimised for
the peripheral nerve tissue model using the optimisation framework from
Alexander (2008) and Drobnjak et al. (2010). The optimisation seeks the
diffusion sequence parameters: gradient strength (G), diffusion time (Δ),
gradient duration (δ) and also, in the case of OGSE, the waveform fre-
quency (ω); that maximise sensitivity to the tissue model parameters. The
optimisation minimizes the mean Cramer-Rao Lower Bound (CRLB),
which provides a lower bound on the variance of a fitted tissue model
parameter that usually correlates closely with the true variance. We as-
sume a Rician noise model; the full expression for the CRLB assuming the
Rician noise is in Alexander (2008). OGSE sequences are implemented
with the same gradient waveform before and after the RF 180� pulse.
Previous simulations (not shown) found no significant difference in the
waveform shapes output by the optimisation if the gradient polarity is
reversed after the RF 180� pulse.

Both OGSE and SDE protocols are optimised using a priori model
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parameters settings of f ¼ 0.60 (obtained from Kempton et al. (2009)),
djj ¼ 1.7 μm2/ms (obtained from Alexander et al. (2010)),
dh ¼ 0.68 μm2/ms (assumes tortuosity constraint (Szafer et al., 1995)) and
axon diameter indices of 2.26, 4.50, and 6.74 μm (obtained from Ikeda
and Oka (2012)). We optimise three protocols independently from one
another, each protocol with a different number of gradient directionsN 2
f8;16; 32g per shell, in order to quantify the robustness of estimating
axon diameter as the number of directions reduces. Gradient directions
are uniformly sampled on the sphere (Alexander, 2008) andfixed for each
protocol. Each protocol has three HARDI shells for which the shape and
the parameters of the gradientwaveforms (and implicitly the b-value), are
optimised using the following scanner settings Gmax ¼ 800 mT/m, slew
rate ¼ 2000 T/m/s and maximum echo time (TE) ¼ 40 ms. The gradient
waveform shape in the OGSE protocol is constrained to sine-like trape-
zoidal waveforms. The final optimised protocols for SDE and OGSE, for
the three separate gradient directions sets (8, 16 and 32), are displayed in
Fig. 2, each with 3 HARDI shells and unique b-values. An additional
9 b¼ 0 images (non-diffusion weighted measurements) are also included
in the final optimised protocols to allow estimation of the noise variance
per voxel, which is required later for model fitting.

All MR measurements are conducted with a small bore 9.4T scanner
(Agilent Inc., Santa Clara, CA, USA) equipped with 1000 mT/m imaging
gradients and a 33 mm RF bird cage volume coil (RAPID, Biomedical
GmbH, Rimbar, Germany). A single-slice fast spin-echo readout is used
with an echo train length of 8, where the slice is chosen to be at the
middle of the platform (i.e. the location of the ‘inserts’). The following
imaging parameters were used: FOV ¼ 6 mm � 6 mm � 2 mm, matrix
size ¼ 64 � 64, voxel dimensions¼ 93.8 μm � 93.8 μm � 2 mm, 8 signal
averages, TR ¼ 1100 ms, effective TE (SDE) ¼ 20 ms and effective TE
(OGSE) ¼ 35 ms. The total time necessary to complete all imaging pro-
tocols is approximately 12 h. In order to remove cross-terms created by
the crusher and imaging gradients (Mattiello et al., 1994), the diffusion
gradients are calibrated in a post processing step using phantom plates in
a similar manner to Kakkar et al. (2017). The results from the calibration
are summarised in Supplementary Material 1.

2.4. Simulation substrates

We use Monte-Carlo diffusion simulations via the CAMINO frame-
work (Alexander, 2008; Cook et al., 2006; Hall and Alexander, 2009) and
generate synthesised data using 3-D digital phantoms representing the
nerve tissue substrates. Each phantom is characterised as a unique
combination of four parameters: the shape k and the scale parameter θ of
the axon radius distribution, the intrinsic diffusivity of spins djj, and the
intra-axonal volume fraction f, where Best's algorithm (Devroye, 1986) is
used to ensure proper sampling of the diameter distribution. To mimic
the structure of the rat peripheral nerve, we model the nerve as a
collection of non-abutting parallel cylinders with radius drawn from a
gamma distribution.

The shape and the scale parameters of the gamma distribution are
determined from a collective fibre radius histogram of normal rats shown
in Ikeda and Oka (2012), which are further corrected to axon radius using
g-ratio values reported there. We construct twenty-eight unique nerve
substrates, with substrate parameters: ðk; θÞ 2 ��

4:08;4:58� 10�7
�
;�

7:49; 2:27� 10�7
�
;
�
4:08;3:27� 10�7
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�
;
�
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1:65� 10�7
�
;
�
7:49;1:45� 10�7

�
;
�
7:49; 1:03� 10�7

� �
; f 2 f0:4;0:5;

0:6;0:7g and djj ¼ 1.7 μm2/ms. The cylinders are randomly packed in the
substrates as described in Hall and Alexander (2009), with example
substrates shown in Fig. 3. Distribution of cylinder diameters for each
substrates is described using a single summary statistic α, which we call
the “axon diameter index”, as in Alexander et al. (2010), and is described
using the following equation:

α ¼
Pn

i¼1a
3
iPn

i¼1a
2
i

(2)



Fig. 2. The optimised protocols for SDE (top row) and OGSE (bottom row). Each protocol contains three shells which have the same number of gradient directions: 8 for the protocol in the
left column, 16 for the protocol in the middle column and 32 for the protocol in the right column. Red markers indicate RF pulses and the blue lobes indicate diffusion encoding magnetic
field gradients. The sequence parameters are also given for each measurement as: b-value (b), duration of the first gradient waveform (δ), time between the start of the first gradient
waveform and start of the second gradient waveform (Δ) and frequency of the waveforms (ω)(for oscillating waveforms). Note that the order of the shells is arbitrary.
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where n is the number of cylinders, and ai are the diameters sampled
from the distribution of a given substrate.

The simulations are based on the inner axon diameter values and
myelin areas are not included. All simulations are performed using
200000 spins, 6000 time steps and 500 cylinders. We chose these values
as they provide precision of 10�10 of the unweighted signal, which is
several orders of magnitude smaller than realistic signal noise (Hall and
Alexander, 2009). In order to make the synthesised dataset more real-
istic, 50 different instances of random Rician noise (SNR ¼ 10) are
introduced to the final dataset.

2.5. Model fitting

An adapted voxel-wise model fitting procedure described by
Fig. 3. (a) shows histograms of axon diameter distributions we use to generate digital substrates
as a red dashed line. (b) shows digital tissue substrates for the histogram furthest to the right in
each histogram is combined with each of the four volume fractions producing twenty-eight di
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Alexander et al. (2010) is used to estimate f, djj, dh and a. Since the model
assumes a single diameter, in a substrate with multi-diameter cylinders
where the signal contribution of each cylinder is proportional to the
amount of water it contains, a reflects the volume weighted average
diameter we introduced in Equation (2). Hence, throughout the manu-
script we will refer to this single fitted diameter as axon diameter index α
as in Alexander et al. (2010).

In the fitting procedure first, in order to reduce the number of com-
binations of parameters which helps with model stability, a diffusion
tensor is fitted to the data to find the fibre orientation (Alexander et al.,
2010). In the simulation case, dh is estimated assuming all other param-
eters are fixed to the ground truth values and dh is constrained to be
smaller than djj. Then, a two stage fitting process that involves a grid
search, and then a gradient descent algorithm is performed to estimate f,
for the Monte Carlo simulations. The axon diameter index is calculated for each and shown
a) and four different intra-axonal volume fractions we use in simulations. In simulations,

fferent substrates.
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djj and α using the calculated fibre orientation and the estimated dh. In the
tissue case, since the ground truth dh is unknown, dh is fixed to a range of
values from 0.3 μm2/ms (theminimum calculated dh from simulations) to
3 μm2/ms (the diffusivity of free water at 37oC (Holz et al., 2000)) with an
interval of 0.01 μm2/ms, and again constrained to be lower than djj. For
each fixed dh the two step fitting procedure described previously is
applied to estimate the rest of the parameters and the combination of all
parameters that gives the maximum log likelihood is selected.

We then use the estimated parameters to test the accuracy and the
robustness of the protocols. In order to test the precision of the estimates,
we additionally run a Markov Chain Monte Carlo (MCMC) procedure
assuming a Rician noise model. The gradient descent provides a starting
point for the MCMC which then collects 125 samples at intervals of
30000 iterations after a burn in of 5000 iterations. We then calculate the
standard deviation of the posterior distribution of the parameter esti-
mates and use it to test the precision of the protocols.

2.6. ROI selection

In order to perform quantitative analyses of the results from model
fitting a region of interest (ROI) fully within the nerve is selected (see
Fig. 10). The region corresponds to the approximate extent of the large
upper axon-rich nerve fascicle seen in the histology. Voxels from this re-
gion are least likely to contain partial volume of the axon-free epineurium
or of free water outside the nerve and so are most suitable to use for
assessment of the chosen tissuemodel. A preprocessing step in the analysis
excludes a small subset of the ROI voxels from each protocol which have a
signal-to-noise ratio (SNR) < 10 and a fractional anisotropy (FA) < 0.2.

2.7. Histology

The histology procedure is carried out as described in Richardson
Fig. 4. An outline of the main steps in the image processing algorithm implemented for hi
been omitted.
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et al. (2013). The nerve tissue sample is removed from the chamber, still
attached to the platform, and fixed in 2% paraformaldehyde, 2%
glutaraldehyde and sodium cacodylate buffer (pH 7.3). The sample is
post-fixed with 1% osmium tetraoxide, dehydrated, set in resin,
sectioned and then stained with lead citrate in preparation for trans-
mission electron microscopy. The tissue section is extracted and then
imaged with a Joel 1010 transmission electron microscope and the im-
ages recorded using a Gatan Orius CCD camera. Throughout imaging,
fixation and tissue sample extraction, the nerve is kept on a platform that
has inserts crossing the middle region (top of Fig. 1). These inserts are
used for slice localisation during MR imaging and also during the tissue
section extraction in order to match the histology sample with the MR
imaging slice.

Thirty 64 � 50 � 5 μm transmission electron micrographs (TEM), an
example is shown in Fig. 4, obtained at regularly spaced positions across
the whole nerve section are acquired to sample the axon microstructure.
An in-house MATLAB (The MathWorks, Natick MA.) based image pro-
cessing algorithm is used to automatically extract the size and number of
intra-axonal areas in each image. The algorithm involves a threshold
segmentation of the axon myelin sheaths, followed by morphological
operations to clean up the resulting segmentations, and then finally a
connected component analysis that extracts the intra-axonal regions from
within the images. Results are checked visually to ensure accurate seg-
mentation before further analysis takes place.

These intra-axonal regions are then used to calculate the local intra-
axonal volume fraction and the local axon diameter index. The local
intra-axonal volume fraction is calculated by dividing the total area of all
the intra-axonal regions with the total area in the image (excluding the
myelin sheath). The effective diameters come from the intra-axonal re-
gions not connected to the image edges. These diameters are calculated
by taking the cross sectional area of each axon and then calculating the
diameter of a cylinder that would have such a cross sectional area.
stological microstructure measurements. Minor intermediate steps in the pipeline have
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Additionally these effective diameters are corrected for tissue shrinkage
of 30% as suggested by Innocenti et al. (2014a). The local axon diameter
index (computed using Equation (2)) and local intra-axonal volume
fraction for each TEM image are used for comparison with the parameter
estimates obtained from model fitting. An outline of the TEM processing
pipeline is shown in Fig. 4.

3. Results

3.1. Simulation experiments

Fig. 5 shows the fitted model signal for two example substrates for 32
direction SDE and OGSE protocols. As expected, both protocols show that
the substrate with the small diameter index (α ¼ 2.78 μm) shows lower
attenuation than the substrate with the larger diameter index
(α ¼ 4.37 μm). The trend is more clearly shown using the corresponding
noise free data of the substrates in Supplementary Material 2. Higher
attenuation occurs for larger diameters because diffusion can occur for a
longer time without coming across any boundaries. Green lines (marked
with inverted triangles) seem to undershoot the data. This is an expected
effect, which happens because the data contains Rician noise (which is
always positive) and is mainly observed at large b-values in the parallel
direction. During model fitting we account for Rician noise, hence the
fitted curves are below the data points. To assess the model fit accuracy
we plot simulated raw data with underlying ground truth parameters and
without any noise (solid lines). The figure shows a good match between
the ground truth simulated data (solid lines) and data predicted from the
model fit (dashed lines). We tested the degree of agreement using a χ2

test and found that across all the simulated substrates for SDE the median
χ2 is 0.18, and the interquartile range (0.06, 0.49), while for OGSE the
median χ2 is 0.12, and the interquartile range (0.05, 0.29), suggesting a
Fig. 5. Figure shows simulated data with SNR ¼ 10 (data points), predicted signal using est
parameters (solid lines) for two example substrates from the 32 gradient directions SDE (left co
between the gradient directions and the estimated fibre orientation. The estimated parameters a
the agreement between the fitted signal and the simulated signal calculated using the ground t
diffusion weighted measurements and their variation corresponds to the added Rician noise in
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slightly better agreement for the OGSE protocol.
Fig. 6 shows the SDE and OGSE estimated model parameters plotted

against the ground truth diameter indices for the simulated cylinder
substrates. The results are shown for the 32 gradient direction protocol.
The first row shows that although SDE shows a positive correlation with
the ground truth index, it overestimates the diameter index for almost all
substrates while the OGSE protocol is much more accurate, with esti-
mates closer to the ground truth. Both OGSE and SDE underestimate axon
diameters for substrates with a large axon diameter index, which happens
because the protocols are optimised for smaller diameters and hence
their diffusion times are not long enough to probe large diameters. The
intra-axonal volume fraction estimates in the second row are slightly
underestimated for OGSE sequences and slightly overestimated for SDE
sequences. In terms of diffusivities (third and fourth rows), both OGSE
and SDE sequences perform similarly.

Fig. 7 displays the uncertainty in SDE and OGSE model parameter
estimates across all substrates, intra-axonal volume fractions and across
the 50 different instances of random Rician noise (SNR ¼ 10). The un-
certainty is represented by the standard deviation of the posterior dis-
tribution on the model parameter estimate. The uncertainties in the
estimates of diameter index (first row), intra-axonal volume fraction
(second row) and intrinsic diffusivity (third row) from the OGSE protocol
are significantly lower than the SDE protocol with p ≈ 1� 10�27, which is
calculated using a two-sidedWilcoxon rank sum test with a sample size of
1400. We get test statistics of W ¼ 2.6 � 106, W ¼ 2.5 � 106 and
W ¼ 2.2 � 106, respectively, for the diameter index, intra-axonal volume
fraction and intrinsic diffusivity, respectively. The uncertainty of hin-
dered diffusivity is not calculated because it is fixed to a pre-calculated
value (mentioned above) throughout the fitting procedure. In addition
to this, Fig. 17 in Supplementary material 3 compares the performance of
OGSE and SDE protocols shown separately for substrates with different
imated model parameters (dashed lines) and simulated signal using ground truth model
lumn) and OGSE (right column) protocols. The horizontal axis is the absolute dot product
re shown in the bottom right hand corner of each graph, along with the χ2 value to indicate
ruth model parameters. The horizontal dashed lines around S=S0 ¼ 1 represent the 9 non-
the data.



Fig. 6. Accuracy of estimated model parameters in simulation experiments: axon diameter index (1st row), intra-axonal volume fraction (2nd row), intrinsic diffusivity (3rd row) and
hindered diffusivity (4th row) for a range of intra-axonal volume fractions. The box-whisker plots of the model parameter estimates, across 50 different instances of random Rician noise
(SNR ¼ 10), are shown for each diameter index, with SDE in blue (left) and OGSE in red (right). The boxes show median, 25th and 75th percentiles of the uncertainty and the whiskers
extend to the most extreme data points excluding outliers. The ground truth parameters of the substrates are shown as dashed black lines. dh plots do not have any black lines as the ground
truth for dh is unknown and depends on the packing.
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diameters and volume fractions. We find that diameter estimates have
slightly larger uncertainties for smaller diameters, and that these increase
as the volume fraction decreases. For volume fraction the trend is
reversed. Across all diameters and volume fractions we find SDE to have
much larger (statistically significant) uncertainties compared to OGSE,
similar to Fig. 7. Overall, the OGSE appears to estimate parameters with
higher precision across the range of substrates compared to SDE.

Fig. 8 compares the robustness of parameter estimates between SDE
and OGSE protocols across the number of measurement directions
(shown in columns) for the full range of synthetic substrates. The box and
whisker plots on each graph represent the range of median estimates for
each substrates across its 50 instances of added noise. OGSE protocols
consistently deliver estimates of diameter indices that are within the
ground truth range regardless of the number of gradient directions used.
This is clearly seen to be the case for the majority of substrates in Fig. 18
(Supplementary material 3) in which substrates with different diameters
are separately plotted. In addition to high accuracy, OGSE estimates also
have a lower interquartile range with respect to the noise and these
ranges are consistent in size across most measurement directions. SDE
estimates of diameter indices reduce in accuracy and robustness to noise
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as the number of directions reduces. In terms of the intra-axonal volume
fraction and diffusivities, both protocols show similar estimates across
the three sets of gradient directions. Both protocols also show an ex-
pected increase in the number of outliers as the number of directions are
reduced. Overall, OGSE seems to exhibit greater robustness for diameter
indices as the number of diffusion measurements reduces compared to
SDE estimates.

3.2. Viable nerve tissue experiment

3.2.1. Histology results
Fig. 9 shows examples of micrographs obtained from the TEM pro-

cedure described in Section 2.7. The entire nerve section is shown with
the upper and the lower fascicles where the axons are. The image of the
nerve is created by composing two large scale TEM images, and has been
rotated to coincide with the orientation of the nerve in the MR images
and parameter maps presented later.

The ground truth microstructure measurements are obtained from
twenty-eight of the thirty magnified regions (two of the TEM failed
segmentation due to histology processing artefacts) using the image



Fig. 7. Precision of estimated parameters in simulation experiments. Box-whisker plots of
the standard deviation of the posterior distribution, i.e. uncertainty, on the estimated axon
diameter index (1st row), intra-axonal volume fraction (2nd row) and intrinsic diffusivity
(3rd row) for all substrates across all intra-axonal volume fractions and across 50 different
instances of random Rician noise (SNR ¼ 10). The 32 gradient direction SDE and OGSE
values are shown in blue and red, respectively. The boxes show median, 25th and 75th
percentiles of the uncertainty and the whiskers extend to the most extreme data points
excluding outliers. The * represents significant differences (p ≈ 1 � 10�27) in the un-
certainties of the model parameter estimates from the SDE and OGSE protocols.
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processing algorithm. Interestingly, the majority of the sample regions do
not seem to exhibit a gamma distribution of axon diameters. After
shrinkage correction, often the smallest axons (below 3 μm) are the most
numerous (≈45% of the average sample) and the larger axons (>5 μm)
are fewer in numbers (≈13% of the average sample). Overall, the aver-
aged local axon diameter index across the twenty-eight samples is 4.80 ±
0.58 μm. The averaged local intra-axonal volume fraction is 0.44 ± 0.11.

3.2.2. Imaging results
Fig. 10 shows: a) a T2 weighted cross-sectional image of the nerve

with no diffusion weighting applied; and b) the region of interest (ROI)
used for model fitting. The red region covers the whole of the cross-
sectional area of the nerve. The green region covers the inner area of
the upper fascicle of the nerve seen in Fig. 9 to ensure no partial volume
effects. We selected voxels at least one pixel away from the edge of the
nerve and also ensured that only voxels with FA� 0.2 and SNR� 10were
chosen. Model fitting was performed on all voxels, however, only voxels
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from the green region were used for the quantitative analysis.
Fig. 11 shows a quality of fit for an example voxel in the green ROI of

the nerve. Estimated model parameters are shown in the bottom right
corner, the model predictions using those parameters are in dashed lines
and the imaging data is marked with crosses. Similarly to the simulation
results, the signal in the free diffusion direction (for jn:Gj=jGmaxj→1)
cannot be distinguished from the noise floor for b > 2000 s/mm2. The
model prediction visually shows a good fit with the measured data and
this is further quantified with the Rician log likelihood (Rlog) (Alexander,
2008) of the fitted signal given the measured data. A median Rlog of 167
and an interquartile range (159, 172) are found for the SDE protocol
while the OGSE protocol has a lower median Rlog of 110 and an inter-
quartile range (100, 119). Both are of the same order of magnitude as the
expected Rlog for an average SNR estimated from the data, suggesting a
good fit.

Fig. 12 shows the diameter index and intra-axonal volume fraction
maps computed from the 32 gradient direction protocols. The estimated
parameter values on the right (blue crosses for the SDE and red squares
for the OGSE) are from the green ROI shown in Fig. 10. The figure shows
that the SDE protocol overestimates the axon diameter index compared
to the histology based estimates (in black), while the OGSE protocol re-
sults are in excellent agreement with the histology. Both SDE and OGSE
protocol estimates of intra-axonal volume fraction are aligned with his-
tology, however OGSE estimates are more tightly within the histology
range while some of the SDE voxels are outside of that range. Estimates of
diffusivity (data not shown here) are aligned between the two protocols.
These results suggest that the OGSE protocol outperforms the SDE pro-
tocol regarding the accuracy of the estimated parameters are in line with
the simulation results in Fig. 6.

Fig. 13 quantifies the differences in the level of precision between the
OGSE and SDE 32-direction protocol by using uncertainty values of the
axon diameter index (top), intra-axonal volume fraction (middle) and
intrinsic diffusivity (bottom) from the voxels within the green ROI in
Fig. 10b. The uncertainties across diameter index and intra-axonal vol-
ume fraction estimates for the SDE protocol are higher than those from
OGSE protocols, which although not statistically significant (using a two-
sided Wilcoxon rank sum test), are in line with the simulation findings.

Fig. 14 quantitatively demonstrates how the parameter estimates
from OGSE and SDE protocols are affected by a change in the number of
measurement directions included in the protocol. Similar to the simula-
tion results in Fig. 8, this figure suggests that changes in the number of
measurements seem to affect the OGSE parameter estimates less than
those of SDE as we move from 32 to 16 measurement directions. In the
case of 8 measurement directions, the SDE protocol appears to have less
variation in the diameter and intra-axonal volume fraction estimates
compared to the OGSE protocol, however, the SDE protocol has higher
hindered diffusivity than the estimates frommore reliable protocols of 16
and 32 gradient directions. In the case of intrinsic diffusivity, OGSE and
SDE protocols both provide robust estimates.

4. Discussion

In this work, we have compared the performance of the OGSE
ActiveAx method with the standard SDE ActiveAx method by comparing
their ability to estimate axon diameters in tissue. We show that the
optimal OGSE protocol (consisting of one SDE sequence and two low
frequency oscillating diffusion waveforms) consistently outperforms SDE
in both simulated substrates and a viable rat sciatic nerve. The OGSE
ActiveAx estimates of axon diameter have a higher accuracy and a higher
precision compared to those from SDE. Furthermore, OGSE estimates are
more robust compared to the SDE estimates when the number of mea-
surements available for model fitting is reduced. Finally, the OGSE
ActiveAx estimates of axon diameter and volume fraction are in
remarkable agreement with histology results. These results suggest for
the first time, quantitatively and in an as close as possible to in vivo



Fig. 8. Robustness of estimated parameters with respect to the number of gradient directions. Box-whisker plots of the median estimates for each substrates across its 50 instances of added
noise (SNR ¼ 10). All twenty-eight substrates are included and the results plotted for SDE (in blue) and OGSE (in red) protocols. The ground truth model parameters of each substrates are
also plotted on the far right panel (except for dh for which the value is unknown). The boxes show median, 25th and 75th percentiles of the uncertainty and the whiskers extend to the most
extreme data points excluding outliers.
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conditions, that low-frequency OGSE may improve accuracy of axon
diameter mapping compared to using the standard SDE protocol.

The work shows that the imaging results match the simulation results
reasonably well. The signal attenuation in the experimental data is
10–20% higher than in simulations, as can be seen from the signal curves
in Figs. 5 and 11. This is likely due to the higher intrinsic diffusivity in the
tissue compared to that used in the simulations. However, the model
estimates and the trends in the comparison between the OGSE and the
SDE protocols are approximately the same between the two experiments.
Furthermore, the signal in the free diffusion direction at high b-values in
tissue cannot be distinguished from the noise floor, as seen in (Fig. 11)
and matches that in simulations (Fig. 5). This is very similar to in vivo
studies (Alexander et al., 2010) in which the effect of “stationary water”
(observed as constant non-zero signal in the free diffusion direction), that
is usually present in fixed tissue and modelled as an extra compartment
(Panagiotaki et al., 2010; Stanisz et al., 1997), is not present and suggests
that our tissue is in as close to in vivo condition as possible.

The results we obtain here support the theoretical results recently
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published in Drobnjak et al. (2016) and Nilsson et al. (2017). They
showed that when gradients are perfectly perpendicular to the fibres,
SDE provides maximum sensitivity to axon diameter, while OGSE se-
quences have slightly lower performance. However, as the angle departs
from the perfect 90�, SDE sensitivity drastically drops, and OGSE be-
comes more beneficial than SDE. The main reason for this is that as the
angular deviation grows, the signal contribution from free diffusion
parallel to the fibres and hence sequences with high b-values (such as the
optimal SDE sequences) significantly attenuate the signal and reduce the
sensitivity. OGSE sequences have an order of magnitude lower b-value
and hence better preserve the parallel signal and the overall sensitivity.
This effect is present when there is fibre orientation dispersion, as well as
when using HARDI acquisition for perfectly parallel fibres with unknown
orientation. The lower the number of directions in the HARDI acquisi-
tion, the larger the average angular deviation from perpendicular, and
hence the more advantageous OGSE is expected to be. Furthermore,
during protocol optimisation, as the number of gradient directions is
reduced from 32 to 8, the optimisation enforces both SDE and OGSE to



Fig. 9. TEM image of the entire nerve tissue section taken from the nerve in the middle of the MR volume, with a scale bar ¼ 100 μm. Thirty high magnification TEM images of the axons at
the indicated positions within the nerve fascicles are also acquired, two of which are excluded due to artefacts. 12 examples of the magnified TEM images and their corresponding
histograms of their axon diameter distributions (corrected for the 30% tissue shrinkage) are shown. The red bars on the high magnification TEM image indicate the scale bar ¼ 5 μm. The
axon diameter index α for a given ROI is indicated as a red dashed line and the corresponding intra-axonal volume fraction is labelled on each histogram.

Fig. 10. (a) A T2 weighted cross-sectional image of the nerve with no diffusion weighting applied. The black shape at the bottom of the image is the platform which the nerve is resting on.
(b) Region of interest selected for the analysis. The red region covers the whole cross-sectional section of the nerve drawn on top of the b ¼ 0 image shown in (a). The green region is a
selected subsection of the red region, fully within the upper fascicle, used for quantitative analysis.
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Fig. 11. Graphs showing the model signals fitted (dashed lines) to the experimental data (data points) for an example voxel from the 32 gradient directions SDE (left) and OGSE (right)
protocols. The same explanation of the plots as in Fig. 5 applies. The horizontal dashed lines around S=S0 ¼ 1 represent the 9 normalised non-diffusion weighted measurements and their
variation corresponds to the underlying noise in the data.

Fig. 12. Accuracy of estimated parameters in the viable nerve experiment using the 32 direction SDE (left) and OGSE (right) protocols. Maps show the estimates for each individual voxel
in the red ROI defined in Fig. 10b. Blue crosses and red squares show the estimates from the green ROI for SDE and OGSE protocol respectively. Black circles are parameter estimates from
the twenty-eight histology regions (corrected for 30% tissue shrinkage), and black triangles are the non-corrected axon diameter estimates from the same regions. Axonal diameter indices
in the colour bar are in μm.
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reduce b-values in order to minimise the signal loss due to the parallel
gradient component, and consequently both protocols have reduced
durations of the long pulses in the optimised sequences.

It is notable that in every optimised SDE protocol two of the selected
shells are nearly identical. This result has also been observed previously
in Alexander et al. (2010) and suggests that, for the given model, no
alternative SDE waveforms are needed to further enrich the information
provided. OGSE waveforms by comparison, with their extra parameter
(ω) can have more variable forms and tend to be optimised by a
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combination of three different complementary waveforms. As the model
complexity increases both SDE and OGSE may exhibit a larger variety of
different waveforms.

In this study we chose to use OGSE sine profiles. This contrasts with
other studies which have used cosine profiles in order to sample “purely”
the diffusion spectra in the temporal diffusion spectroscopymodels (Does
et al., 2003). In our approach however we directly fit the model of the
tissue into the measured data, without sampling the spectra first, so any
gradient waveform will give accurate estimates of the model parameters,



Fig. 13. Precision of estimated parameters in viable nerve experiment using the 32 di-
rection SDE (in blue) and OGSE (in red) protocols. Box-whisker plots of the uncertainty
calculated as the standard deviation of the posterior distribution are shown. The boxes
show median, 25th and 75th percentiles of the uncertainty and the whiskers extend to the
most extreme data points excluding the outliers.
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conditional on the accuracy of the biophysical model. There has been
recent results (Ianus et al., 2016), which suggest that cosine waveforms
have a slightly higher sensitivity towards the axon diameter and we will
be looking into this in the future.

We used a specialised viable tissue chamber introduced in Richardson
et al. (2013), and were hence able to do a long 12 h scanning session.
Richardson et al. (2013) demonstrated that changes in microstructure
within the nerve in that period are minimal. We also carefully tested our
experimental set-up using a separate set of sciatic nerve (left and right
nerve), one fixed immediately after the extraction and the other
immersed in aCSF, scanned for 12 h and then fixed. We found that axon
sizes, shapes and myelin sheath are similar for both nerves.
4.1. Limitations

In this work we choose a simple model of white matter tissue. Spe-
cifically, the model uses long straight circular cylinders that mimic axon
bundles and does not account for curvature of axons, dispersion or
crossing fibres. Since the nerves in our tissue sample have been ligated
then attached to the platform in a manner that maintained their natural
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tension within the chamber (as in Fig. 1), we believe the effects of this
simplification are minimised. Whilst it has been shown that axons can
demonstrate an ‘undulating’ course through certain peripheral nerves
(which would indeed manifest as an effective orientation dispersion in a
diffusion MR signal), it has also been demonstrated that a small amount
of tension on the nerve can straighten the axons and remove these un-
dulations. This effect is discussed in Pourmand et al. (1994) and Nilsson
et al. (2012). However, we understand this is a simple scenario and in the
future we will improve the set up of the viable tissue (i.e. to account for
undulation and dispersion) to explore the performance of OGSE and SDE
protocols experimentally under realistic conditions. Similar to the results
here, we expect OGSE protocols to perform better than SDE protocols as
has been theoretically demonstrated by Drobnjak et al. (2016) and
Nilsson et al. (2017).

It can also be noted that many of the axons seen in the histology slides
are quite eccentric in shape, as observed in other histology studies (Petit
et al., 2014), which deviates from the circular cylindrical geometry
assumed by the model (similar to models used by Assaf and Basser (2005)
and Alexander et al. (2010)). We expect that the random orientation of
these geometric deviations from a perfect cylinder across the large pop-
ulation of axons could potentially average out, and consequently the
effect of eccentricity on the analysis should be small.

Another assumption of the model is that there is no signal contribu-
tion from the myelin. In reality, myelin water contributes partially to the
signal. However, based on the standard T2 values for myelin (Assaf et al.,
2002; Webb et al., 2003) and echo time in our protocols, we find that the
contribution is only up to 4–5%, which given our low SNR of around 15
would not contribute meaningfully to the signal. Our model also assumes
Gaussian diffusion to describe the collective contribution of extra-axonal
water from microstructure, including glial cells and blood vessels, and
although this is a well established method (Alexander et al., 2010; Assaf
et al., 2004; Santis et al., 2016; Xu et al., 2014), it might not be the most
accurate assumption and we plan to investigate it further in the future.

Additionally, although our model estimates dh, which in itself is more
realistic than using the simple tortuosity assumption, the model does not
assume that dh is time dependent. Time dependence of dh has been pre-
viously reported in Burcaw et al. (2015) and Santis et al. (2016) and we
investigated the effect it has on our data (see Supplementary Material 4).
We used Monte Carlo simulations and looked at the extra-axonal space in
isolation and found that for the substrates and the diffusion times we
used here the effect is not statistically significant. Finally, we assume that
the intra- and extra-axonal intrinsic diffusivity is the same and it has been
suggested that they could be different in tissue (Jelescu et al., 2015).
However, as pointed out in Ferizi et al. (2014), this particular assumption
of separate diffusivities mainly affects our model results if dispersion
occurs in tissue, which we do not expect to see in our tissue as the nerve
is taut.

Furthermore, Monte Carlo simulations have been performed
assuming a Gamma distribution of axon diameters, however, histology
based estimates are noisy and can exhibit departures from the theoretical
distribution. While we do not expect this to have a significant impact on
the results, future work aims to account for more realistic distributions to
better capture the variations shown in histology. Finally, we use a
shrinkage factor of 30% and assume that all compartments shrink
equally, which might not be perfectly accurate. Tissue shrinkage can vary
between 10% and 40% (Innocenti et al., 2014b) and although our pro-
cedure is similar and 30% is widely accepted (Innocenti et al., 2014a), it
is extremely difficult to validate it for individual samples. Hence, we also
show the uncorrected histology values of axon diameter in Figs. 12 and
14 and find that these are approximately 40% lower than OGSE and 70%
lower than SDE estimates, suggesting that the OGSE estimates are within
the accepted shrinkage variation, while SDE are much larger than that.

The model used in optimisation is slightly different to the model used
during fitting, as it assumes the tortuosity constraint in the extracellular
space. Although it would have made more sense to use the same model
for fitting, our model selection revealed that the tortuosity constraint



Fig. 14. Robustness of estimated parameters in viable nerve experiments with respect to the number of gradient directions. The figure shows box-whisker plots of the parameter estimates
within the green ROI in Fig. 10b of the nerve obtained for SDE (blue) and OGSE (red) protocols. Axon diameters estimated from histology are plotted on the far right panel, corrected for
shrinkage on the left and non-corrected on the right. Volume fractions estimated from histology are also given. The boxes show median, 25th and 75th percentiles of the uncertainty with
respect to the noise and the whiskers extend to the most extreme data points excluding the outliers.
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biases the diameter and intra-axonal volume fraction estimates (similar
to Burcaw et al. (2015)), and hence we relaxed this constraint, which
significantly improved the fitting. Similarly as in Alexander et al. (2010),
we do not expect that using this slightly different model during optimi-
sation would change our conclusions. Furthermore, the model parame-
ters used to optimise the protocols were not the same as the values
determined here from the histology of the nerve tissue. We tested this in
simulation and found that using histology values for the optimisation
gives sequences with slightly lower b-value and more variation within
protocols, however no statistical difference in the parameter estimates.

The experiments were done for only one gradient strength of
G ¼ 800 mT/m. Previous work has demonstrated that the gradient
strength dependence is strong, and as the strength reduces the sensitivity
to axon diameter decreases as indeed shown in Sepehrband et al. (2016).
Further sensitivity study carried out in simulations and theoretically by
Drobnjak et al. (2016) and Nilsson et al. (2017) for a range of gradient
strengths found that OGSE wins over SDE in all cases. We hence,
extrapolate that we would expect to see similar results experimentally.

Estimates of hindered diffusivity in nerve tissue have a relatively high
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level of uncertainty, higher than estimates from the simulations. Simu-
lations benefit from ground truth substrate parameters that inform hin-
dered diffusivity estimation (as described in Methods), however it is
possible that the tissue data does not support sufficiently the fitting
method we used, especially for cases with less data such as the 8 gradient
directions protocol, and a more complex fitting procedure is needed.
4.2. Extrapolation to clinical systems

Low frequency OGSE sequences are safe and easy to implement and
use on standard clinical scanners (Baron and Beaulieu, 2014; Kakkar
et al., 2017; Van et al., 2014) and do not cause peripheral nerve stimu-
lation. The key limitation is the inherent lack of sensitivity to axon
diameter at clinical gradient strengths. For gradients of 60–80 mT/m and
standard SNR of 20, the resolution limit is approximately 5 μm (Drobnjak
et al., 2016; Nilsson et al., 2017) and hence, brain imaging is a real
challenge since the majority of axon diameters in the brain are smaller
than 3 μm (Aboitiz et al., 1992) and are unrecoverable with either SDE or
OGSE sequences. On the other hand, axon diameters in the peripheral
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nervous system are larger, 3–14 μm (Jacobs and Love, 1985; Schroder
et al., 1988), and here the clinical transition is a realistic possibility.
Furthermore, more powerful clinical scanners such as the Connectome
with 300 mT/m and higher SNR reduces the resolution limit to 2–3 μm,
which could make clinical imaging possible in the brain as well (as
demonstrated by McNab et al. (2013), Huang et al. (2015) and Ferizi
et al. (2015)).

With the continuing improvements in the SNR of scanners and the rise
in clinical gradient strengths, the number of potential clinical applica-
tions of axon diameter imaging is likely to increase in the future. Here,
the use of OGSE protocols will be essential for maximising the potential
of such techniques as we work to develop them further and ultimately
translate them into clinical use.
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